1
|
Wang X, Ju J, Xie Y, Hang L. Emerging roles of the G-protein-coupled receptor 37 in neurological diseases and pain. Neuroscience 2024; 559:199-208. [PMID: 39244010 DOI: 10.1016/j.neuroscience.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Neurological disorders and pain are prevalent clinical issues that severely impact patients' quality of life and daily functioning. With the advancing exploration of these disease mechanisms, G protein-coupled receptor 37 (GPR37) has emerged as a critical protein, garnering widespread attention in the scientific community. As a member of the G protein-coupled receptor family, GPR37 features a seven-transmembrane helix structure and is widely expressed in various brain regions, including the substantia nigra and striatum. In addition to neurons, GPR37 is also detected in immune cells within the nervous system, indicating its potential role in neuron-immune cell interactions. Research has shown that the expression level of GPR37 in neurological disorders can affect neuron survival, cellular signaling, and overall neurological health. Abnormal expression of GPR37 is often associated with disease progression and symptom exacerbation in neurological disorders such as Parkinson's disease and stroke. In the context of pain, GPR37 alleviates pain and inflammatory responses by regulating the phagocytic activity and polarization state of macrophages. This article aims to delve into the mechanistic roles of GPR37 in neurological disorders and pain. Through a comprehensive literature review, we summarize the latest research on GPR37's involvement in neurological diseases and pain, highlighting its critical roles in neural signaling, inflammatory responses, and neuroprotection. This understanding expands the comprehension of GPR37's biological functions and provides new perspectives for improving the clinical outcomes of patients with neurological disorders and pain.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Jiajun Ju
- Gusu College, Nanjing Medical University, Department of Anesthesiology, The First People's Hospital of Kunshan, Suzhou 215300, China.
| | - Yafei Xie
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Lihua Hang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| |
Collapse
|
2
|
Argerich J, Garma LD, López-Cano M, Álvarez-Montoya P, Gómez-Acero L, Fernández-Dueñas V, Muñoz-Manchado AB, Aso E, Boxer A, Andres-Benito P, Svenningsson P, Ciruela F. GPR37 processing in neurodegeneration: a potential marker for Parkinson's Disease progression rate. NPJ Parkinsons Dis 2024; 10:172. [PMID: 39256360 PMCID: PMC11387472 DOI: 10.1038/s41531-024-00788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
The orphan G protein-coupled receptor 37 (GPR37), widely associated with Parkinson's disease (PD), undergoes proteolytic processing under physiological conditions. The N-terminus domain is proteolyzed by a disintegrin and metalloproteinase 10 (ADAM-10), which generates various membrane receptor forms and ectodomain shedding (ecto-GPR37) in the extracellular environment. We investigated the processing and density of GPR37 in several neurodegenerative conditions, including Lewy body disease (LBD), multiple system atrophy (MSA), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). The presence of ecto-GPR37 peptides in the cerebrospinal fluid (CSF) of PD, MSA, CBD and PSP patients was assessed through an in-house nanoluciferase-based immunoassay. This study identified increased receptor processing in early-stage LBD within the PFC and striatum, key brain areas in neurodegeneration. In MSA only the 52 kDa form of GPR37 appeared in the striatum. This form was also significantly elevated in the striatum of AD necropsies. On the contrary, GPR37 processing remained unchanged in the brains of CBD and PSP patients. Furthermore, while CSF ecto-GPR37 increased in PD patients, its levels remained unchanged in MSA, CBD, and PSP subjects. Importantly, patients with PD with rapid progression of the disease did not have elevated ecto-GPR37 in the CSF, while those with slow progression showed a significant increase, suggesting a possible prognostic use of ecto-GPR37 in PD. This research underscores the distinctive processing and density patterns of GPR37 in neurodegenerative diseases, providing crucial insights into its potential role as an indicator of PD progression rates.
Collapse
Affiliation(s)
- Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Leonardo D Garma
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas - CNIO, 28029, Madrid, Spain
| | - Marc López-Cano
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Paula Álvarez-Montoya
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Laura Gómez-Acero
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177, Sweden
- Department of Pathological Anatomy, Cellular Biology, Histology, History of Science, Legal and Forensic Medicine and Toxicology. Biomedical Research and Innovation Institute of Cadiz (INiBICA). University of Cádiz, 11002, Cádiz, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, CA, 94158, USA
| | - Pol Andres-Benito
- Neurological disorders and neurogenetics Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE-17177, Sweden.
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
3
|
Liang K, Guo Z, Zhang S, Chen D, Zou R, Weng Y, Peng C, Xu Z, Zhang J, Liu X, Pang X, Ji Y, Liao D, Lai M, Peng H, Ke Y, Wang Z, Wang Y. GPR37 expression as a prognostic marker in gliomas: a bioinformatics-based analysis. Aging (Albany NY) 2023; 15:10146-10167. [PMID: 37837549 PMCID: PMC10599758 DOI: 10.18632/aging.205063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Gliomas are the most frequently diagnosed primary brain tumors, and are associated with multiple molecular aberrations during their development and progression. GPR37 is an orphan G protein-coupled receptor (GPCR) that is implicated in different physiological pathways in the brain, and has been linked to various malignancies. The aim of this study was to explore the relationship between GPR37 gene expression and the clinicopathological factors, patient prognosis, tumor-infiltrating immune cell signature GSEA and methylation levels in glioma. METHODS We explored the diagnostic value, clinical relevance, and molecular function of GPR37 in glioma using TCGA, STRING, cBioPortal, Tumor Immunity Estimation Resource (TIMER) database and MethSurv databases. Besides, the "ssGSEA" algorithm was conducted to estimate immune cells infiltration abundance, with 'ggplot2' package visualizing the results. Immunohistochemical staining of clinical samples were used to verify the speculations of bioinformatics analysis. RESULTS GPR37 expression was significantly higher in the glioma tissues compared to the normal brain tissues, and was linked to poor prognosis. Functional annotation of GPR37 showed enrichment of ether lipid metabolism, fat digestion and absorption, and histidine metabolism. In addition, GSEA showed that GPR37 was positively correlated to the positive regulation of macrophage derived foam cell differentiation, negative regulation of T cell receptor signaling pathway, neuroactive ligand receptor interaction, calcium signaling pathway, and negatively associated with immunoglobulin complex, immunoglobulin complex circulating, ribosome and spliceosome mediated by circulating immunoglobulin etc. TIMER2.0 and ssGSEA showed that GPR37 expression was significantly associated with the infiltration of T cells, CD8 T cell, eosinophils, macrophages, neutrophils, NK CD56dim cells, NK cells, plasmacytoid DCs (pDCs), T helper cells and T effector memory (Tem) cells. In addition, high GPR37 expression was positively correlated with increased infiltration of M2 macrophages, which in turn was associated with poor prognosis. Furthermore, GPR37 was positively correlated with various immune checkpoints (ICPs). Finally, hypomethylation of the GPR37 promoter was associated with its high expression levels and poor prognosis in glioma. CONCLUSION GPR37 had diagnostic and prognostic value in glioma. The possible biological mechanisms of GPR37 provide novel insights into the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhaoxiong Guo
- Science and Technology Innovation Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shizhen Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuhao Weng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Chengxiang Peng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhichao Xu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jingbai Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaorui Liu
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Degui Liao
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Miaoling Lai
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Huaidong Peng
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yanbin Ke
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
4
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
5
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
6
|
Emerging Roles for the Orphan GPCRs, GPR37 and GPR37 L1, in Stroke Pathophysiology. Int J Mol Sci 2022; 23:ijms23074028. [PMID: 35409385 PMCID: PMC9000135 DOI: 10.3390/ijms23074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.
Collapse
|
7
|
Klenk C, Hommers L, Lohse MJ. Proteolytic Cleavage of the Extracellular Domain Affects Signaling of Parathyroid Hormone 1 Receptor. Front Endocrinol (Lausanne) 2022; 13:839351. [PMID: 35273573 PMCID: PMC8902639 DOI: 10.3389/fendo.2022.839351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to Gs and increased activation of Gq compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity, and that its cleavage affects receptor signaling.
Collapse
Affiliation(s)
- Christoph Klenk
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Leif Hommers
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- ISAR Bioscience Institute, Planegg, Germany
| |
Collapse
|
8
|
Hertz E, Saarinen M, Svenningsson P. GM1 Is Cytoprotective in GPR37-Expressing Cells and Downregulates Signaling. Int J Mol Sci 2021; 22:ijms222312859. [PMID: 34884663 PMCID: PMC8657933 DOI: 10.3390/ijms222312859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.
Collapse
Affiliation(s)
- Ellen Hertz
- Correspondence: (E.H.); (P.S.); Tel.: +46-8517-74-614 (E.H.)
| | | | | |
Collapse
|
9
|
Li T, Oasa S, Ciruela F, Terenius L, Vukojević V, Svenningsson P. Cytosolic GPR37, but not GPR37L1, multimerization and its reversal by Parkin: A live cell imaging study. FASEB J 2021; 35:e22055. [PMID: 34822195 DOI: 10.1096/fj.202101213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Biochemical data have shown aggregated G protein-coupled receptor 37 (GPR37) in the cytoplasm and Lewy bodies in Parkinson's disease (PD). Properly folded GPR37 at the plasma membrane appears to be neuroprotective. GPR37, and its homologue GPR37L1, are orphan G protein-coupled receptors and their homo- and hetero-dimers have not been established. We therefore examined GPR37 and GPR37L1 dimerization and extended studies of multimerization of GPR37 to live cells. In this study, we investigated GPR37 and GPR37L1 dimerization and multimerization in live cells using three quantitative imaging methods: Fluorescence Cross-Correlation Spectroscopy, Förster Resonance Energy Transfer, and Fluorescence Lifetime Imaging Microscopy. Our data show that GPR37 and GPR37L1 form homo- and heterodimers in live N2a cells. Importantly, aggregation of GPR37, but not GPR37L1, was identified in the cytoplasm, which could be counteracted by Parkin overexpression. These data provide further evidence that GPR37 participate in cytosolic aggregation processes implicated in PD pathology.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Mattila SO, Tuhkanen HE, Lackman JJ, Konzack A, Morató X, Argerich J, Saftig P, Ciruela F, Petäjä-Repo UE. GPR37 is processed in the N-terminal ectodomain by ADAM10 and furin. FASEB J 2021; 35:e21654. [PMID: 34042202 DOI: 10.1096/fj.202002385rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
GPR37 is an orphan G protein-coupled receptor (GPCR) implicated in several neurological diseases and important physiological pathways in the brain. We previously reported that its long N-terminal ectodomain undergoes constitutive metalloprotease-mediated cleavage and shedding, which have been rarely described for class A GPCRs. Here, we demonstrate that the protease that cleaves GPR37 at Glu167↓Gln168 is a disintegrin and metalloprotease 10 (ADAM10). This was achieved by employing selective inhibition, RNAi-mediated downregulation, and genetic depletion of ADAM10 in cultured cells as well as in vitro cleavage of the purified receptor with recombinant ADAM10. In addition, the cleavage was restored in ADAM10 knockout cells by overexpression of the wild type but not the inactive mutant ADAM10. Finally, postnatal conditional depletion of ADAM10 in mouse neuronal cells was found to reduce cleavage of the endogenous receptor in the brain cortex and hippocampus, confirming the physiological relevance of ADAM10 as a GPR37 sheddase. Additionally, we discovered that the receptor is subject to another cleavage step in cultured cells. Using site-directed mutagenesis, the site (Arg54↓Asp55) was localized to a highly conserved region at the distal end of the ectodomain that contains a recognition site for the proprotein convertase furin. The cleavage by furin was confirmed by using furin-deficient human colon carcinoma LoVo cells and proprotein convertase inhibitors. GPR37 is thus the first multispanning membrane protein that has been validated as an ADAM10 substrate and the first GPCR that is processed by both furin and ADAM10. The unconventional N-terminal processing may represent an important regulatory element for GPR37.
Collapse
Affiliation(s)
- S Orvokki Mattila
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Hanna E Tuhkanen
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Jarkko J Lackman
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Josep Argerich
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Paul Saftig
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Morató X, Garcia-Esparcia P, Argerich J, Llorens F, Zerr I, Paslawski W, Borràs E, Sabidó E, Petäjä-Repo UE, Fernández-Dueñas V, Ferrer I, Svenningsson P, Ciruela F. Ecto-GPR37: a potential biomarker for Parkinson's disease. Transl Neurodegener 2021; 10:8. [PMID: 33637132 PMCID: PMC7908677 DOI: 10.1186/s40035-021-00232-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Objective α-Synuclein has been studied as a potential biomarker for Parkinson’s disease (PD) with no concluding results. Accordingly, there is an urgent need to find out reliable specific biomarkers for PD. GPR37 is an orphan G protein-coupled receptor that toxically accumulates in autosomal recessive juvenile parkinsonism. Here, we investigated whether GPR37 is upregulated in sporadic PD, and thus a suitable potential biomarker for PD. Methods GPR37 protein density and mRNA expression in postmortem substantia nigra (SN) from PD patients were analysed by immunoblot and RT-qPCR, respectively. The presence of peptides from the N-terminus-cleaved domain of GPR37 (i.e. ecto-GPR37) in human cerebrospinal fluid (CSF) was determined by liquid chromatography-mass spectrometric analysis. An engineered in-house nanoluciferase-based immunoassay was used to quantify ecto-GPR37 in CSF samples from neurological control (NC) subjects, PD patients and Alzheimer’s disease (AD) patients. Results GPR37 protein density and mRNA expression were significantly augmented in sporadic PD. Increased amounts of ecto-GPR37 peptides in the CSF samples from PD patients were identified by mass spectrometry and quantified by the in-house ELISA method. However, the CSF total α-synuclein level in PD patients did not differ from that in NC subjects. Similarly, the cortical GPR37 mRNA expression and CSF ecto-GPR37 levels in AD patients were also unaltered. Conclusion GPR37 expression is increased in SN of sporadic PD patients. The ecto-GPR37 peptides are significantly increased in the CSF of PD patients, but not in AD patients. These results open perspectives and encourage further clinical studies to confirm the validity and utility of ecto-GPR37 as a potential PD biomarker. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00232-7.
Collapse
Affiliation(s)
- Xavier Morató
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain.,Section of Neurology, Department of Clinical Neuroscience, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Paula Garcia-Esparcia
- Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain.,Neuropathology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain
| | - Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Franc Llorens
- Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain.,Neuropathology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain.,Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Wojciech Paslawski
- Section of Neurology, Department of Clinical Neuroscience, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Eva Borràs
- Proteomics Unit, Center for Genomic Regulation, Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomic Regulation, Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ulla E Petäjä-Repo
- Research Unit of Biomedicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Isidro Ferrer
- Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain.,Neuropathology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Madrid, Spain
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain. .,Neuroscience Program, Bellvitge Biomedical Research Institute, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
12
|
Ahmad R, Lahuna O, Sidibe A, Daulat A, Zhang Q, Luka M, Guillaume JL, Gallet S, Guillonneau F, Hamroune J, Polo S, Prévot V, Delagrange P, Dam J, Jockers R. GPR50-Ctail cleavage and nuclear translocation: a new signal transduction mode for G protein-coupled receptors. Cell Mol Life Sci 2020; 77:5189-5205. [PMID: 31900622 PMCID: PMC11105015 DOI: 10.1007/s00018-019-03440-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
Transmission of extracellular signals by G protein-coupled receptors typically relies on a cascade of intracellular events initiated by the activation of heterotrimeric G proteins or β-arrestins followed by effector activation/inhibition. Here, we report an alternative signal transduction mode used by the orphan GPR50 that relies on the nuclear translocation of its carboxyl-terminal domain (CTD). Activation of the calcium-dependent calpain protease cleaves off the CTD from the transmembrane-bound GPR50 core domain between Phe-408 and Ser-409 as determined by MALDI-TOF-mass spectrometry. The cytosolic CTD then translocates into the nucleus assisted by its 'DPD' motif, where it interacts with the general transcription factor TFII-I to regulate c-fos gene transcription. RNA-Seq analysis indicates a broad role of the CTD in modulating gene transcription with ~ 8000 differentially expressed genes. Our study describes a non-canonical, direct signaling mode of GPCRs to the nucleus with similarities to other receptor families such as the NOTCH receptor.
Collapse
Affiliation(s)
- Raise Ahmad
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Olivier Lahuna
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Anissa Sidibe
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Avais Daulat
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Qiang Zhang
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Marine Luka
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Jean-Luc Guillaume
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Sarah Gallet
- Jean-Pierre Aubert Research Center, U837, Lille, France
| | - François Guillonneau
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Juliette Hamroune
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Sophie Polo
- Epigenetics and Cell Fate Centre, UMR7216, CNRS, Paris Diderot University, Paris, France
| | | | - Philippe Delagrange
- Pôle D'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy, France
| | - Julie Dam
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
13
|
The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Sci Rep 2020; 10:19995. [PMID: 33203955 PMCID: PMC7673139 DOI: 10.1038/s41598-020-76384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
GPR37L1 is an orphan G protein-coupled receptor expressed exclusively in the brain and linked to seizures, neuroprotection and cardiovascular disease. Based upon the observation that fragments of the GPR37L1 N-terminus are found in human cerebrospinal fluid, we hypothesized that GPR37L1 was subject to post-translational modification. Heterologous expression of GPR37L1-eYFP in either HEK293 or U87 glioblastoma cells yielded two cell surface species of approximately equivalent abundance, the larger of which is N-glycosylated at Asn105. The smaller species is produced by matrix metalloprotease/ADAM-mediated proteolysis (shown by the use of pharmacological inhibitors) and has a molecular weight identical to that of a mutant lacking the entire N-terminus, Δ122 GPR37L1. Serial truncation of the N-terminus prevented GPR37L1 expression except when the entire N-terminus was removed, narrowing the predicted site of N-terminal proteolysis to residues 105–122. Using yeast expressing different G protein chimeras, we found that wild type GPR37L1, but not Δ122 GPR37L1, coupled constitutively to Gpa1/Gαs and Gpa1/Gα16 chimeras, in contrast to previous studies. We tested the peptides identified in cerebrospinal fluid as well as their putative newly-generated N-terminal ‘tethered’ counterparts in both wild type and Δ122 GPR37L1 Gpa1/Gαs strains but saw no effect, suggesting that GPR37L1 does not signal in a manner akin to the protease-activated receptor family. We also saw no evidence of receptor activation or regulation by the reported GPR37L1 ligand, prosaptide/TX14A. Finally, the proteolytically processed species predominated both in vivo and ex vivo in organotypic cerebellar slice preparations, suggesting that GPR37L1 is rapidly processed to a signaling-inactive form. Our data indicate that the function of GPR37L1 in vivo is tightly regulated by metalloprotease-dependent N-terminal cleavage.
Collapse
|
14
|
Lai S, Cheng R, Gao D, Chen YG, Deng C. LGR5 constitutively activates NF-κB signaling to regulate the growth of intestinal crypts. FASEB J 2020; 34:15605-15620. [PMID: 33001511 DOI: 10.1096/fj.202001329r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
Mammalian LGR5 and LGR4, markers of adult stem cells, are involved in many physiological functions by enhancing WNT signaling. However, whether LGR5 and LGR4 are coupled to other intracellular signaling pathways to regulate stem cell function remains unknown. Here, we show that LGR5 and LGR4 can constitutively activate NF-κB signaling in a ligand-independent manner, which is dependent on their C-termini, but independent of receptor endocytosis. Moreover, the C-termini of LGR5/4 interact with TROY, which is required for activating NF-κB signaling. In small intestinal crypt organoids, overexpression of a C-terminal deletion mutant of LGR5 inhibits the growth and bud formation of organoids, whereas overexpression of the R-spondin-binding mutant of LGR5 that is defective for WNT signaling can still promote organoid growth. Our study reveals that NF-κB signaling, regulated by LGR5 and LGR4, plays an important role in the survival of colon cancer cells and the growth of intestinal crypts. Our findings also suggest that LGR5/4-induced NF-κB signaling and WNT signaling may co-regulate the growth of LGR5+ adult stem cells and intestinal crypts.
Collapse
Affiliation(s)
- Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Janezic EM, Lauer SML, Williams RG, Chungyoun M, Lee KS, Navaluna E, Lau HT, Ong SE, Hague C. N-glycosylation of α 1D-adrenergic receptor N-terminal domain is required for correct trafficking, function, and biogenesis. Sci Rep 2020; 10:7209. [PMID: 32350295 PMCID: PMC7190626 DOI: 10.1038/s41598-020-64102-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) biogenesis, trafficking, and function are regulated by post-translational modifications, including N-glycosylation of asparagine residues. α1D-adrenergic receptors (α1D-ARs) - key regulators of central and autonomic nervous system function - contain two putative N-glycosylation sites within the large N-terminal domain at N65 and N82. However, determining the glycosylation state of this receptor has proven challenging. Towards understanding the role of these putative glycosylation sites, site-directed mutagenesis and lectin affinity purification identified N65 and N82 as bona fide acceptors for N-glycans. Surprisingly, we also report that simultaneously mutating N65 and N82 causes early termination of α1D-AR between transmembrane domain 2 and 3. Label-free dynamic mass redistribution and cell surface trafficking assays revealed that single and double glycosylation deficient mutants display limited function with impaired plasma membrane expression. Confocal microscopy imaging analysis and SNAP-tag sucrose density fractionation assays revealed the dual glycosylation mutant α1D-AR is widely distributed throughout the cytosol and nucleus. Based on these novel findings, we propose α1D-AR transmembrane domain 2 acts as an ER localization signal during active protein biogenesis, and that α1D-AR N-terminal glycosylation is required for complete translation of nascent, functional receptor.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Sophia My-Linh Lauer
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Robert George Williams
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Michael Chungyoun
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Edelmar Navaluna
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Ho-Tak Lau
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98185, USA.
| |
Collapse
|
16
|
Tang H, Shu C, Chen H, Zhang X, Zang Z, Deng C. Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. PLoS Biol 2019; 17:e3000175. [PMID: 30840614 PMCID: PMC6422423 DOI: 10.1371/journal.pbio.3000175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/18/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent the most productive drug targets. Orphan GPCRs, with their endogenous ligands unknown, were considered a source of drug targets and consequently attract great interest to identify their endogenous cognate ligands for deorphanization. However, a contrary view to the ubiquitous existence of endogenous ligands for every GPCR is that there might be a significant overlooked fraction of orphan GPCRs that function constitutively in a ligand-independent manner only. Here, we investigated the evolution of the bombesin receptor-ligand family in vertebrates in which one member-bombesin receptor subtype-3 (BRS3)-is a potential orphan GPCR. With analysis of 17 vertebrate BRS3 structures and 10 vertebrate BRS3 functional data, our results demonstrated that nonplacental vertebrate BRS3 still connects to the original ligands-neuromedin B (NMB) and gastrin-releasing peptide (GRP)-because of adaptive evolution, with significantly changed protein structure, especially in three altered key residues (Q127R, P205S, and R294H) originally involved in ligand binding/activation, whereas the placental mammalian BRS3 lost the binding affinity to NMB/GRP and constitutively activates Gs/Gq/G12 signaling in a ligand-independent manner. Moreover, the N terminus of placental mammalian BRS3 underwent positive selection, exhibiting significant structural differences compared to nonplacental vertebrate BRS3, and this domain plays an important role in constitutive activity of placental mammalian BRS3. In conclusion, constitutively active BRS3 is a genuinely orphan GPCR in placental mammals, including human. To our knowledge, this study identified the first example that might represent a new group of genuinely orphan GPCRs that will never be deorphanized by the discovery of a natural ligand and provided new perspectives in addition to the current ligand-driven GPCR deorphanization.
Collapse
Affiliation(s)
- Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuanjun Shu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Bioinformatics, College of Biomedical Engineering and Information, Nanjing Medical University, Nanjing, China
| | - Haidi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaojing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Liu B, Mosienko V, Vaccari Cardoso B, Prokudina D, Huentelman M, Teschemacher AG, Kasparov S. Glio- and neuro-protection by prosaposin is mediated by orphan G-protein coupled receptors GPR37L1 and GPR37. Glia 2018; 66:2414-2426. [PMID: 30260505 PMCID: PMC6492175 DOI: 10.1002/glia.23480] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors. A video abstract of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8
Collapse
Affiliation(s)
- Beihui Liu
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Valentina Mosienko
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Barbara Vaccari Cardoso
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | | | - Anja G Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sergey Kasparov
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
19
|
Morató X, Luján R, López-Cano M, Gandía J, Stagljar I, Watanabe M, Cunha RA, Fernández-Dueñas V, Ciruela F. The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A 2A receptor controlling its cell surface expression and function in vivo. Sci Rep 2017; 7:9452. [PMID: 28842709 PMCID: PMC5573386 DOI: 10.1038/s41598-017-10147-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson’s disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37−/− mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Luján
- IDINE, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Marc López-Cano
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Gandía
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Igor Stagljar
- Donnelly Centre, Department of Molecular Genetics, Department of Biochemistry, University of Toronto, Toronto, M5S 3E1, Canada
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-0818, Japan
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Leinartaité L, Svenningsson P. Folding Underlies Bidirectional Role of GPR37/Pael-R in Parkinson Disease. Trends Pharmacol Sci 2017. [PMID: 28629580 DOI: 10.1016/j.tips.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since conformational flexibility, which is required for the function of a protein, comes at the expense of structural stability, many proteins, including G-protein-coupled receptors (GPCRs), are under constant risk of misfolding and aggregation. In this regard GPR37 (also named PAEL-R and ETBR-LP-1) takes a prominent role, particularly in relation to Parkinson disease (PD). GPR37 is a substrate for parkin and accumulates abnormally in autosomal recessive juvenile parkinsonism, contributing to endoplasmic reticulum stress and death of dopaminergic neurons. GPR37 also constitutes a core structure of Lewy bodies, demonstrating a more general involvement in PD pathology. However, if folded and matured properly, GPR37 seems to be neuroprotective. Moreover, GPR37 modulates functionality of the dopamine transporter and the dopamine D2 receptor and stimulates dopamine neurotransmission. Here we review the multiple roles of GPR37 with relevance to potential disease modification and symptomatic therapies of PD and highlight unsolved issues in this field.
Collapse
Affiliation(s)
- Lina Leinartaité
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Per Svenningsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
21
|
Berger BS, Acebron SP, Herbst J, Koch S, Niehrs C. Parkinson's disease-associated receptor GPR37 is an ER chaperone for LRP6. EMBO Rep 2017; 18:712-725. [PMID: 28341812 DOI: 10.15252/embr.201643585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky β-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/β-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.
Collapse
Affiliation(s)
- Birgit S Berger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan Koch
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany .,Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
22
|
Goth CK, Tuhkanen HE, Khan H, Lackman JJ, Wang S, Narimatsu Y, Hansen LH, Overall CM, Clausen H, Schjoldager KT, Petäjä-Repo UE. Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) Co-regulates β 1-Adrenergic Receptor N-terminal Cleavage. J Biol Chem 2017; 292:4714-4726. [PMID: 28167537 PMCID: PMC5377785 DOI: 10.1074/jbc.m116.730614] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/29/2017] [Indexed: 01/08/2023] Open
Abstract
The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Christoffer K Goth
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hanna E Tuhkanen
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Hamayun Khan
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Jarkko J Lackman
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - Shengjun Wang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lasse H Hansen
- the Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark and
| | - Christopher M Overall
- the Centre for Blood Research, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Henrik Clausen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark,
| | - Ulla E Petäjä-Repo
- the Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland,
| |
Collapse
|
23
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
24
|
Li X, Nabeka H, Saito S, Shimokawa T, Khan MSI, Yamamiya K, Shan F, Gao H, Li C, Matsuda S. Expression of prosaposin and its receptors in the rat cerebellum after kainic acid injection. IBRO Rep 2017; 2:31-40. [PMID: 30135931 PMCID: PMC6084904 DOI: 10.1016/j.ibror.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Prosaposin (PSAP), a highly conserved glycoprotein, is a precursor of saposins A–D. Accumulating evidence suggests that PSAP is a neurotrophic factor that induces differentiation and prevents death in a variety of neuronal cells through the active region within the saposin C domain both in vivo and in vitro. Recently, GPR37 and GPR37L1 were recognized as PSAP receptors. In this study, we examined the alteration in expression of PSAP and its receptors in the cerebellum using rats injected with kainic acid (KA). The results show that PSAP was strongly expressed in the cytoplasm of Purkinje cells and interneurons in the molecular layer, and that PSAP expression in both types of neurons was markedly enhanced following KA treatment. Immunoblotting revealed that the expression of GPR37 was diminished significantly three days after KA injection compared with control rats; however, no changes were observed through immunostaining. No discernable changes were found in GPR37L1. These findings may help us to understand the role of PSAP and the GPR37 and GPR37L1 receptors in alleviating the neural damage caused by KA.
Collapse
Key Words
- BSA, bovine serum albumin
- Cerebellum
- ER, endoplasmic reticulum
- GPCR, G protein-coupled receptor
- GPR37
- GPR37L1
- H-E staining, hematoxylin-eosin staining
- IF, immunofluorescence
- IHC, immunohistochemistry
- ISH, in situ hybridization
- KA, kainic acid
- Kainic acid
- Neurodegeneration
- PSAP, prosaposin
- Prosaposin
- SSC, standard saline citrate
Collapse
Affiliation(s)
- Xuan Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Huiling Gao
- College of Life and Health Science, Northeastern University, Shenyang, PR China
| | - Cheng Li
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
25
|
Coleman JLJ, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal 2017; 33:1-9. [PMID: 28188824 DOI: 10.1016/j.cellsig.2017.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are a vast family of membrane-traversing proteins, essential to the ability of eukaryotic life to detect, and mount an intracellular response to, a diverse range of extracellular stimuli. GPCRs have evolved with archetypal features including an extracellular N-terminus and intracellular C-terminus that flank a transmembrane structure of seven sequential helices joined by intracellular and extracellular loops. These structural domains contribute to the ability of a GPCR to be correctly synthesised and inserted into the cell membrane, to interact with its cognate ligand(s) and to couple with signal-transducing heterotrimeric G proteins, allowing the activated receptor to selectively modulate a number of signalling cascades. Whilst well known for its importance in receptor translation and trafficking, the GPCR N-terminus is underexplored as a participant in receptor signalling. This review aims to discuss and integrate recent advances in knowledge of the vital roles of the GPCR N-terminus in receptor signalling.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Tony Ngo
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola J Smith
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|