1
|
Wang Z, Su M, Zhang Y, Peng R, Qu Y, Han J, Jin J, Hu J. Levels, enrichment characteristics, and health risks of halogenated and parent polycyclic aromatic hydrocarbons in traditional smoked pork. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124915. [PMID: 39245204 DOI: 10.1016/j.envpol.2024.124915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Chinese traditional smoked pork was contaminated with polycyclic aromatic hydrocarbons (PAHs) and chlorinated and brominated PAHs (ClPAHs and BrPAHs; XPAHs) during the smoking process. Therefore, our study investigated the concentrations, enrichment characteristics, and health risks associated with PAHs, as well as ClPAHs and BrPAHs in Chinese traditional smoked pork. The total concentrations of PAHs, ClPAHs and BrPAHs in traditional smoked pork ranged from 90.0 to 79200 ng/g fat weight (fw), 23.6-2340 pg/g fw and 0.550-200 pg/g fw, respectively, which were significantly higher than their levels found in raw pork. Additionally, the concentrations of PAHs and XPAHs in the surface of smoked pork were higher than those in the inner parts. High-ring PAHs exhibited a greater enrichment compared to low-ring PAHs, and BrPAHs exhibited greater enrichment ability than ClPAHs in smoked pork. Furthermore, the ability of individual congeners to migrate from the surface to the inner parts of the smoked pork were varied. When the smoking fuels were similar, a longer smoking time resulted in higher concentrations of PAHs and XPAHs in smoked pork, while casing effectively reduced their concentrations. The correlation between XPAH and parent PAH concentrations indicated that chlorination of PAHs was one of the primary formation mechanisms of some monochlorinated PAHs. Over half of the smoked pork samples posed a potential carcinogenic risk, particularly the surface samples. It is recommended to remove the surface parts when consuming smoked pork and to improve traditional smoking methods to mitigate the health risks.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Mai Su
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Yanli Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Rongxin Peng
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Yingxi Qu
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Jiali Han
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Jun Jin
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China.
| | - Jicheng Hu
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Osaka Y, Onozato M, Okoshi K, Nishigaki A. Changes in the concentration of polycyclic aromatic hydrocarbons in fecal pellets of Marphysa sp. E and reduced mud in the Yoro tidal flat, Japan. MARINE POLLUTION BULLETIN 2024; 208:116977. [PMID: 39306966 DOI: 10.1016/j.marpolbul.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Marphysa sp. E (Annelida, Eunicidae), inhabiting the Yoro tidal flat (inner part of Tokyo Bay, Japan), ingests reduced mud comprising black and high viscosity sediments that contain high levels of polycyclic aromatic hydrocarbons (PAHs); these PAHs are excreted within the fecal pellets. PAH concentration in the fecal pellets rapidly decrease to half its quantity 2 h after its excretion. To investigate their specificity of change, we analyzed the PAHs in fecal pellets and reduced mud using gas chromatography-mass spectrometry. PAH concentration of the fecal pellets was observed to decrease by 46 % in 2 h, whereas that of reduced mud decreased by only 8 % in the same duration. This suggests that the PAH concentration of reduced mud decreases only after passing through the worm's digestive system. These results indicate that Marphysa sp. E contributes to the purification of the tidal flat environment.
Collapse
Affiliation(s)
- Yuichiro Osaka
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Kenji Okoshi
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan; Toyo Institute of Food Technology, 4-23-2 Minami-Hanayashiki, Kawanishi-shi, Hyogo 666-0026, Japan
| | - Atsuko Nishigaki
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
3
|
Fu J, Fang T, Gao Y, Wang T, Jia Z, Guo D, Mao H. Emission characteristic, spatial distribution, and health risk of polycyclic aromatic compounds (PAHs, NPAHs, and OPAHs) from light-duty gasoline and diesel vehicles based on on-road measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173390. [PMID: 38815831 DOI: 10.1016/j.scitotenv.2024.173390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Vehicle exhaust is the primary source of polycyclic aromatic compounds (PACs). Real road tests using a portable vehicle measurement system on light-duty gasoline vehicles and light-duty diesel trucks were conducted to investigate gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and oxy-PAHs (OPAHs) in vehicle exhaust with different emission standards, fuel types, and altitudes. The results showed that with the tightening of emission standards, the overall emission factors (EFs) of PACs decreased. Compared with China V diesel vehicles, the emissions of PAHs, OPAHs, and NPAHs from China VI diesel vehicles were 75.1 %, 84.4 %, and 61.2 % lower, respectively. With a ∼100 m increase in altitude, the EFs of PAHs, OPAHs, and NPAHs of diesel vehicles increased 1.88, 1.92, and 1.59 times due to incomplete combustion. In addition, the EFs of PAHs and OPAHs in gasoline vehicles were lower than those in diesel vehicles. In contrast, the proportion of PAHs with highly toxic components, such as dibenzo[a,h]anthracene (DahA) and benzo[a]pyrene (BaP), and the EFs of gas-phase NPAHs in gasoline vehicles were higher than those in diesel vehicles. Furthermore, the emissions of 1,8-DNP from diesel vehicles cannot be disregarded. 1,8-DNP was the main gas-phase NPAHs emitted by China VI and China V diesel vehicles, accounting for 49.3 % and 26.0 %, respectively. Moreover, gas-phase PACs contributed more to the EFs than particle-phase PACs, whereas particle-phase PACs have greater toxic effects. Although the EFs of PAHs are more than 100 times those of NPAHs, the toxic equivalent concentrations (TEQBaP) of PAHs in diesel and gasoline vehicles were approximately 6.5 times and 35 times those of NPAHs. The spatial distribution characteristics revealed that PACs emissions were mainly concentrated in urban areas and highways, and the differences in the toxicity of PACs emissions between different cities depended on the proportion of diesel vehicles. The average TEQBaP of PAHs and NPAHs in Haidong, Haibei, Huangnan, Hainan, Guoluo, and Yushu was 8.42 μg/m3 and 0.36 μg/m3, respectively, while those of Xining and Haixi were 0.24-0.29 μg/m3 and 0.09-0.108 μg/m3 higher, respectively. This study provides a comprehensive understanding of the emission characteristics, health risks, and spatial distribution of PACs from diesel and gasoline vehicle PACs in urban areas.
Collapse
Affiliation(s)
- Jiaqi Fu
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yutong Gao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhenyu Jia
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongping Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Stankovic B, Marinkovic F. A novel procedure for selection of molecular descriptors: QSAR model for mutagenicity of nitroaromatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54603-54617. [PMID: 39207617 DOI: 10.1007/s11356-024-34800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Nitroaromatic compounds (NACs) stand out as pervasive organic pollutants, prompting an imperative need to investigate their hazardous effects. Computational chemistry methods play a crucial role in this exploration, offering a safer and more time-efficient approach, mandated by various legislations. In this study, our focus lay on the development of transparent, interpretable, reproducible, and publicly available methodologies aimed at deriving quantitative structure-activity relationship models and testing them by modelling the mutagenicity of NACs against the Salmonella typhimurium TA100 strain. Descriptors were selected from Mordred and RDKit molecular descriptors, along with several quantum chemistry descriptors. For that purpose, the genetic algorithm (GA), as the most widely used method in the literature, and three alternative algorithms (Boruta, Featurewiz, and ForwardSelector) combined with the forward stepwise selection technique were used. The construction of models utilized the multiple linear regression method, with subsequent scrutiny of fitting and predictive performance, reliability, and robustness through various statistical validation criteria. The models were ranked by the Multi-Criteria Decision Making procedure. Findings have revealed that the proposed methodology for descriptor selection outperforms GA, with Featurewiz showing a slight advantage over Boruta and ForwardSelector. These constructed models can serve as valuable tools for the quick and reliable prediction of NACs mutagenicity.
Collapse
Affiliation(s)
- Branislav Stankovic
- Department for Nuclear and Plasma Physics, Vinča Institute of Nuclear Sciences -National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
5
|
Li F, Wang P, Fan T, Zhang N, Zhao L, Zhong R, Sun G. Prioritization of the ecotoxicological hazard of PAHs towards aquatic species spanning three trophic levels using 2D-QSTR, read-across and machine learning-driven modelling approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133410. [PMID: 38185092 DOI: 10.1016/j.jhazmat.2023.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a common group of environmental pollutants that endanger various aquatic organisms via various pathways. To better prioritize the ecotoxicological hazard of PAHs to aquatic environment, we used 2D descriptors-based quantitative structure-toxicity relationship (QSTR) to assess the toxicity of PAHs toward six aquatic model organisms spanning three trophic levels. According to strict OECD guideline, six easily interpretable, transferable and reproducible 2D-QSTR models were constructed with high robustness and reliability. A mechanistic interpretation unveiled the key structural factors primarily responsible for controlling the aquatic ecotoxicity of PAHs. Furthermore, quantitative read-across and different machine learning approaches were employed to validate and optimize the modelling approach. Importantly, the optimum QSTR models were further applied for predicting the ecotoxicity of hundreds of untested/unknown PAHs gathered from Pesticide Properties Database (PPDB). Especially, we provided a priority list in terms of the toxicity of unknown PAHs to six aquatic species, along with the corresponding mechanistic interpretation. In summary, the models can serve as valuable tools for aquatic risk assessment and prioritization of untested or completely new PAHs chemicals, providing essential guidance for formulating regulatory policies.
Collapse
Affiliation(s)
- Feifan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
| | - Peng Wang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Zhang Y, Zhao J, Hu Q, Mao H, Wang T. Nitro substituent caused negative impact on occurrence and development of atherosclerotic plaque by PM 2.5-bound polycyclic aromatic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167700. [PMID: 37827309 DOI: 10.1016/j.scitotenv.2023.167700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
PM2.5 exposure is a significant risk factor for the occurrence and development of atherosclerosis. Polycyclic aromatic hydrocarbons (PAHs) play prominent roles in PM2.5-related toxicity. However, the nitrated derivatives of PAHs, nitrated polycyclic aromatic hydrocarbons (NPAHs), have strong oxidizing properties due to the nitro substituents. Thus, the in vivo and in vitro experiments exposure to benzo[a]pyrene (BaP) and 6-nitro benzo[a]pyrene (NBaP) were conducted to evaluate the effect of nitro substituent on the atherosclerosis due to (or attributable to) PAHs. The results showed that NBaP exposure induced the inhibition of human umbilical vein endothelial cells (HUVECs) viability and cell morphology damage via more severe oxidative stress than BaP exposure. Furthermore, exposure to PM2.5-bound NBaP caused dyslipidemia in the Apolipoprotein E-deficient (ApoE-/-) mice, including the increment of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and malondialdehyde levels, and the decrement of high-density lipoprotein cholesterol levels, superoxide dismutase and glutathione peroxidase levels in serum and aorta. Furthermore, histology showed atherosclerotic plaque in the aorta of ApoE-/- mice. However, there were no significant differences of the physiological and pathological changes between BaP and control groups. Thus, NPAHs induced endothelial dysfunction and dyslipidemia via severe oxidative stress, and further accelerated the occurrence and development of atherosclerosis compared with the parent PAHs. Our findings provide the first evidence that nitro substituent caused much severer negative health impact of polycyclic aromatic compounds, which highlight the significance of NPAHs in health risk estimation of polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Yu Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - JingBo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300071, China
| | - Qian Hu
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - HongJun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Liu A, Li X, Zhou L, Yan X, Xia N, Song Z, Cao J, Hao Z, Zhang Z, Liang R, Zhang H. BPDE-DNA adduct formation and alterations of mRNA, protein, and DNA methylation of CYP1A1, GSTP1, and GSTM1 induced by benzo[a]pyrene and the intervention of aspirin in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106549-106561. [PMID: 37730975 DOI: 10.1007/s11356-023-29878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Benzo[a]pyrene (B[a]P), one typical environmental pollutant, the toxicity mechanisms, and potential prevention remain perplexing. Available evidence suggests cytochrome P450 1A1 (CYP1A1) and glutathione S-transferases (GSTs) metabolize B[a]P, resulting in metabolic activation and detoxification of B[a]P. This study aimed to reveal the impact of B[a]P exposure on trans-7,8-diol-anti-9,10-epoxide DNA (BPDE-DNA) adduct formation, level of CYP1A1, glutathione S-transferase pi (GSTP1) and glutathione S-transferase mu1 (GSTM1) mRNA, protein and DNA methylation in mice, and the potential prevention of aspirin (ASP). This study firstly determined the BPDE-DNA adduct formation in an acute toxicity test of a large dose in mice induced by B[a]P, which subsequently detected CYP1A1, GSTP1, and GSTM1 at levels of mRNA, protein, and DNA methylation in the organs of mice in a subacute toxicity test at appropriate doses and the potential prevention of ASP, using the methods of real-time quantitative PCR (QPCR), western blotting, and real-time methylation-specific PCR (MSP), respectively. The results verified that B[a]P induced the formation of BPDE-DNA adduct in all the organs of mice in an acute toxicity test, and the order of concentration of which was lung > kidney > liver > brain. In a subacute toxicity test, following B[a]P treatment, mice showed a dose-dependent slowdown in body weight gain and abnormalities in behavioral and cognitive function and which were alleviated by ASP co-treatment. Compared to the controls, following B[a]P treatment, CYP1A1 was significantly induced in all organs in mice at mRNA level (P < 0.05), was suppressed in the lung and cerebrum of mice at protein level, and inhibited at DNA methylation level in the liver, lung, and cerebrum, whereas GSTP1 and GSTM1 at mRNA, protein, and DNA methylation levels showed organ-specific changes in mice following B[a]P treatment, which was generally alleviated by ASP intervention. In conclusion, B[a]P induced BPDE-DNA adduct formation in all organs in mice and altered the mRNA, protein, and DNA methylation levels in CYP1A1, GSTP1, and GSTM1 in an organ-dependent pattern, which could be related to the organ toxicity and mechanism of B[a]P. ASP intervention may be an effective measure to prevent B[a]P toxicity. The findings provide scientific evidence for further study on the organ toxicity and mechanisms of B[a]P.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Department of Health Information Management, Shanxi Medical University Fenyang College, Fenyang, 032200, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Co Ltd, Taiyuan, 030003, Shanxi, China
| | - Lisha Zhou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaoqing Yan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, 030001, Shanxi, China
| | - Zhanfei Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
9
|
Wang P, Sun S, Lam S, Lockwood WW. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J Transl Med 2023; 21:585. [PMID: 37653450 PMCID: PMC10472682 DOI: 10.1186/s12967-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Despite never smokers comprising between 10 and 25% of all cases, lung cancer in never smokers (LCNS) is relatively under characterized from an etiological and biological perspective. The application of multi-omics techniques on large patient cohorts has significantly advanced the current understanding of LCNS tumor biology. By synthesizing the findings of multi-omics studies on LCNS from a clinical perspective, we can directly translate knowledge regarding tumor biology into implications for patient care. Primarily focused on never smokers with lung adenocarcinoma, this review details the predominance of driver mutations, particularly in East Asian patients, as well as the frequency and importance of germline variants in LCNS. The mutational patterns present in LCNS tumors are thoroughly explored, highlighting the high abundance of the APOBEC signature. Moreover, this review recognizes the spectrum of immune profiles present in LCNS tumors and posits how it can be translated to treatment selection. The recurring and novel insights from multi-omics studies on LCNS tumor biology have a wide range of clinical implications. Risk factors such as exposure to outdoor air pollution, second hand smoke, and potentially diet have a genomic imprint in LCNS at varying degrees, and although they do not encompass all LCNS cases, they can be leveraged to stratify risk. Germline variants similarly contribute to a notable proportion of LCNS, which warrants detailed documentation of family history of lung cancer among never smokers and demonstrates value in developing testing for pathogenic variants in never smokers for early detection in the future. Molecular driver subtypes and specific co-mutations and mutational signatures have prognostic value in LCNS and can guide treatment selection. LCNS tumors with no known driver alterations tend to be stem-like and genes contributing to this state may serve as potential therapeutic targets. Overall, the comprehensive findings of multi-omics studies exert a wide influence on clinical management and future research directions in the realm of LCNS.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Osaka Y, Abe S, Abe H, Tanaka M, Onozato M, Okoshi K, Nishigaki A. Sources of Polycyclic Aromatic Hydrocarbons in Fecal Pellets of a Marphysa Species (Annelida: Eunicidae) in the Yoro Tidal Flat, Japan. Zoolog Sci 2023; 40:292-299. [PMID: 37522600 DOI: 10.2108/zs230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 08/01/2023]
Abstract
The fecal pellets of Marphysa sp. E sensu Abe et al. (2019) (Annelida, Eunicidae) living in the Yoro tidal flat (Ichihara, Chiba, Japan) contain high levels of polycyclic aromatic hydrocarbons (PAHs), and the concentrations rapidly decrease over time. To investigate the origin of the high-concentration PAHs in the fecal pellets and food sources of the worms, the PAH concentrations, carbon and nitrogen stable isotope ratios (δ13C and δ15N), total organic carbon, and total nitrogen for two types of sediment (sands and reduced muds), fecal pellets, and the body of the worms were determined. The PAH concentrations and chemical properties of the fecal pellets were similar to those of the reduced muds (20-30 cm sediment depth). The δ13C, δ15N, and C/N values of reduced muds were the same as the typical values of terrestrial C3 plants, suggesting that reduced muds were derived from terrestrial plants. These data indicated that the worms selectively take up reduced muds containing high levels of PAHs. The δ13C and δ15N values of the worm bodies indicated that the worms did not use the organic carbon derived from terrestrial C3 plants as primary nutrition. Taking into consideration their selective uptake of reduced muds, excretion, and subsequent rapid decrease of PAHs in the fecal pellets, the worms could contribute to the remediation of chemical pollutants in the tidal flat sediments.
Collapse
Affiliation(s)
- Yuichiro Osaka
- Department of Environmental Science, Faculty of Science, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Satoshi Abe
- Department of Environmental Science, Faculty of Science, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Hirokazu Abe
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Minamisakai, Ishinomaki-shi, Miyagi 986-8580, Japan
| | - Masaatsu Tanaka
- Department of Biology, Keio University, Kohoku-ku, Yokohama-shi, Kanagawa 223-8521, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Kenji Okoshi
- Department of Environmental Science, Faculty of Science, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Atsuko Nishigaki
- Department of Environmental Science, Faculty of Science, Toho University, Funabashi-shi, Chiba 274-8510, Japan,
| |
Collapse
|
11
|
Ma T, Kong J, Li W, Cheng X, Zhang Y, Kong D, Yang S, Li S, Zhang L, He H. Inventory, source and health risk assessment of nitrated and parent PAHs in agricultural soils over a rural river in Southeast China. CHEMOSPHERE 2023; 329:138688. [PMID: 37059199 DOI: 10.1016/j.chemosphere.2023.138688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have become a concerning topic because of their widespread occurrence and carcinogenicity. However, studies on NPAHs in soils, especially in agricultural soils, are still limited. In this study, a systematic monitoring campaign of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) was performed in agricultural soils from the Taige Canal basin in 2018, which is a typical agricultural activity area of the Yangtze River Delta. The total concentration of NPAHs and PAHs ranged from 14.4 to 85.5 ng g-1 and 118-1108 ng g-1, respectively. Among the target analytes, 1,8-dinitropyrene and fluoranthene were the most predominant congeners accounting for 35.0% of ∑15NPAHs and 17.2% of ∑16PAHs, respectively. Four-ring NPAHs and PAHs were predominant, followed by three-ring NPAHs and PAHs. NPAHs and PAHs had a similar spatial distribution pattern with high concentrations in the northeastern Taige Canal basin. The soil mass inventory of ∑16PAHs and ∑15NPAHs was evaluated to be 31.7 and 2.55 metric tons, respectively. Total organic carbon had a significant impact on the distribution of PAHs in soils. The correlation between PAH congeners in agricultural soils was higher than that between NPAH congeners. Based on diagnostic ratios and principal component analysis-multiple linear regression model, vehicle exhaust emission, coal combustion, and biomass combustion were the predominant sources of these NPAHs and PAHs. According to the lifetime incremental carcinogenic risk model, the health risk posed by NPAHs and PAHs in agricultural soils of the Taige Canal basin was virtually negligible. The total health risk in soils of the Taige Canal basin to adults was slightly higher than that to children.
Collapse
Affiliation(s)
- Tao Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China; School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weidi Li
- Jiangsu Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
12
|
Peng K, Li Z, Gao TR, Lv J, Wang WJ, Zhan P, Yao WC, Zhao H, Wang H, Xu DX, Huang Y, Tan ZX. Polycyclic aromatic hydrocarbon exposure burden: Individual and mixture analyses of associations with chronic obstructive pulmonary disease risk. ENVIRONMENTAL RESEARCH 2023; 222:115334. [PMID: 36702192 DOI: 10.1016/j.envres.2023.115334] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.
Collapse
Affiliation(s)
- Kun Peng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhao Li
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tian-Rui Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wen-Jing Wang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Zhan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Cong Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Zhu-Xia Tan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Kong J, Han M, Cao X, Cheng X, Yang S, Li S, Sun C, He H. Sedimentary spatial variation, source identification and ecological risk assessment of parent, nitrated and oxygenated polycyclic aromatic hydrocarbons in a large shallow lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160926. [PMID: 36543273 DOI: 10.1016/j.scitotenv.2022.160926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/16/2023]
Abstract
Because polycyclic aromatic compounds (PACs) are persistent, universal, and toxic pollutants, understanding the potential source and ecological risk thereof in lakes is critical to the safety of the aquatic environment. Here, a total of 25 sedimentary samples were collected from Lake Taihu, China, in 2018. The total concentrations of 16 parent polycyclic aromatic hydrocarbons (PAHs), 15 nitrated PAHs (NPAHs), nine oxygenated PAHs (OPAHs), and five hydroxy-PAHs (OH-PAHs) ranged from 294 to 1243, 3.0 to 54.5, 188 to 1897, and 8.3 to 51.7 ng/g dw, with the most abundant compounds being fluoranthene, 1,8-dinitropyrene, 6H-Benzo[cd]pyren-6-one, and 2-phenylphenol, respectively. The spatial distribution of PACs in sediments of Lake Taihu showed elevated concentrations from east to west due to economic development and transportation. The positive correlations between most paired PAHs indicate that these compounds likely originated from similar sources. The total organic carbon and organic matter contents affected the distribution characteristics of PACs in sediments. Diagnostic ratios, principal component analysis-multiple linear regression (PCA-MLR), and positive matrix factorization (PMF) were integrated to identify the sources. PACs had various sources including combustion, petroleum leakage, traffic emissions, hydroxyl metabolism, and other oxidation pathways in sediments of Lake Taihu. The PMF (R2 > 0.9824), which showed better optimal performance compared with PCA-MLR (R2 > 0.9564) for PAHs and derivatives, is recommended as the preferred model for quantitative source analysis. Ecological risk assessment showed that the risk quotient values of OPAHs in sediments were much higher than those of other PACs and should be given special attention.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China.
| |
Collapse
|
14
|
Siudek P. Summertime Characteristics of Atmospheric Polycyclic Aromatic Hydrocarbons in a Coastal City of Northern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4475. [PMID: 36901482 PMCID: PMC10001597 DOI: 10.3390/ijerph20054475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Parent polycyclic aromatic hydrocarbons (PAHs) in the gas and particle fraction were measured between May and August 2021 at a coastal urban site in Poland, to examine their chemical characteristics, distribution, sources, deposition fluxes and interactions with basic meteorological drivers. The mean concentration of PAHs in the gas phase was significantly higher (26.26 ± 15.83 ng m-3) than levels measured in the particle phase (1.77 ± 1.26 ng m-3). The highest concentration in the gas phase was found for phenanthrene (Phe), followed by fluoranthene (Flt), acenaphthene (Ace) and naphthalene (Naph). The contribution from each group of PAHs to the total particulate phase accounted for 50%, 25%, 14% and 12% for 3-, 4-, 5- and 6-ring compounds, respectively. The mean ΣPAH deposition flux was 59 ± 24 ng m-2 day-1. During the whole field campaign, the efficient removal of PM-bound PAHs was typically observed after precipitation events. Based on statistical analysis, it was found that 4-ring PAHs were less effectively removed (25%) by daily precipitation as compared to 5- and 6-ring components, whose fluxes decreased by 32% and 53%, respectively. This study revealed local urban sources such as vehicular emissions, coal-fired power plants, shipping activities, docks/ports infrastructure and municipal solid waste recycling units as predominant contributors to PM-bound and gas-phase PAHs.
Collapse
Affiliation(s)
- Patrycja Siudek
- Institute of Meteorology and Water Management-National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
| |
Collapse
|
15
|
Kong J, Ma T, Cao X, Li W, Zhu F, He H, Sun C, Yang S, Li S, Xian Q. Occurrence, partition behavior, source and ecological risk assessment of nitro-PAHs in the sediment and water of Taige Canal, China. J Environ Sci (China) 2023; 124:782-793. [PMID: 36182183 DOI: 10.1016/j.jes.2022.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) are widespread organic pollutants that possess carcinogenic and mutagenic properties, so they may pose a risk to the environment and human health. In this study, the concentrations of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) in 30 surface water samples and 26 sediment samples were measured in 2018 from the Taige Canal, one of the main rivers flowing into Taihu Lake, China. The total NPAH concentrations in water and sediment ranged from 14.7 to 235 ng/L and 22.9 to 96.5 ng/g dw, respectively. 9-nitrophenanthrene (nd-76.3 ng/L) was the dominant compound in surface water, while 2+3-nitrofluoranthene (1.73-18.1 ng/g dw) dominated in sediment. Among PAHs, concentration ranging from 1,097 to 2,981 ng/L and 1,089 to 4,489 ng/g dw in surface water and sediment, respectively. There was a strong positive correlation between the log octanol-water partition coefficient (Kow) and log sediment-water partition coefficient due to hydrophobic interaction. The fugacity fraction value increased with the decrease of log Kow, and chrysene was transferred from water into sediment. The residual NPAHs in surface water and sediment of the Taige Canal have partial correlation. Diesel engine and coal combustion emissions were probably the principal sources of NPAHs in surface water and sediment. The results of ecological risk assessment showed that some NPAHs in water (e.g, 1-nitropyrene and 6-nitrochrysene) and sediment (e.g., 2-nitrobiphenyl, 5-nitroacenaphthene, 9-nitrophenanthrene and 2+3-nitrofluoranthene) had moderate ecological risks, which should be of concern.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tao Ma
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Weidi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Fujian Provincial Key laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Li F, Sun G, Fan T, Zhang N, Zhao L, Zhong R, Peng Y. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106393. [PMID: 36621240 DOI: 10.1016/j.aquatox.2022.106393] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) are a type of organic compounds widely occurring in the environment that pose a potential hazard to ecosystem and public health, and thus receive extensive attention from various regulatory agencies. Here, quantitative structure-activity relationship (QSAR) models were constructed to model the ecotoxicity of FNFPAHs against two aquatic species, Daphnia magna and Oncorhynchus mykiss. According to the stringent OECD guidelines, we used genetic algorithm (GA) plus multiple linear regression (MLR) approach to establish QSAR models of the two aquatic toxicity endpoints: D. magna (48 h LC50) and O. mykiss (96 h LC50). The models were established using simple 2D descriptors with explicit physicochemical significance and evaluated using various internal/external validation metrics. The results clearly show that both models are statistically robust (QLOO2 = 0.7834 for D. magna and QLOO2 = 0.8162 for O. mykiss), have good internal fitness (R2 = 0.8159 for D. magna and R2 = 0.8626 for O. mykiss and external predictive ability (D. magna: Rtest2 = 0.8259, QFn2 = 0.7640∼0.8140, CCCtest = 0.8972; O. mykiss:Rtest2 = 0.8077, QFn2 = 0.7615∼0.7722, CCCtest = 0.8910). To prove the predictive performance of the developed models, an additional comparison with the standard ECOSAR tool obviously shows that our models have lower RMSE values. Subsequently, we utilized the best models to predict the true external set compounds collected from the PPDB database to further fill the toxicity data gap. In addition, consensus models (CMs) that integrate all validated individual models (IMs) were more externally predictive than IMs, of which CM2 has the best prediction performance towards the two aquatic species. Overall, the models presented here could be used to evaluate unknown FNFPAHs inside the domain of applicability (AD), thus being very important for environmental risk assessment under current regulatory frameworks.
Collapse
Affiliation(s)
- Feifan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
18
|
Zhang J, Wang K, Guo J, Huang Y, Wei Y, Jia K, Peng Y, Lu H. Study on the mechanism of liver toxicity induced by acenaphthene in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114441. [PMID: 38321660 DOI: 10.1016/j.ecoenv.2022.114441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2024]
Abstract
Acenaphthene is a polycyclic aromatic hydrocarbon (PAH) that is a widely distributed environmental pollutant that accumulates in organisms and leads to health risks in humans. Although acenaphthene is reported to be toxic to aquatic organisms, its effects of acenaphthene on the livers of these organisms have not been evaluated. Here, zebrafish were used as an experimental model. Zebrafish larvae were exposed to 4.5, 5.5, and 6.5 mg/L acenaphthene for 72 h while adult zebrafish were exposed to 1.5, 2, and 2.5 mg/L acenaphthene for 28 days. We investigated the mechanism by which acenaphthene causes liver toxicity in zebrafish. The results showed that acenaphthene affected the early development of zebrafish and led to mitochondrial damage by promoting the production of reactive oxygen species (ROS) resulting in oxidative stress. The expression of genes related to inflammation and apoptosis was analyzed, observing up-regulation of the pro-inflammatory factors IL-8, TNF-α, and IL-6. The pro-apoptotic genes p53, Caspase-3, and Bax and the Bax/Bcl-2 ratio were up-regulated, while the anti-apoptotic gene Bcl-2 was down-regulated. In addition, we investigated the effects of acenaphthene on liver metabolism. When exposed to acenaphthene, the glycogen content of the liver decreased, while lipid accumulation increased together with alterations in related indicators of liver metabolism. In conclusion, acenaphthene induced oxidative stress through ROS production, leading to mitochondrial damage and activation of pathways associated with inflammation and apoptosis, resulting in hepatotoxicity. This affects normal liver metabolism. Our results revealed the mechanism of hepatotoxicity in zebrafish acenaphthene, and provided new evidence for a more comprehensive understanding of the hepatotoxicity of acenaphthene.
Collapse
Affiliation(s)
- June Zhang
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China.
| | - Kexin Wang
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Kun Jia
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yuan Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|
19
|
Xing W, Yang L, Zhang H, Zhang X, Wang Y, Bai P, Zhang L, Hayakawa K, Nagao S, Tang N. Variations in traffic-related polycyclic aromatic hydrocarbons in PM 2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. J Environ Sci (China) 2022; 121:38-47. [PMID: 35654514 DOI: 10.1016/j.jes.2021.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
A three-year sampling campaign was conducted at a roadside air pollution monitoring station in the urban area of Kanazawa, Japan. Due to a new emission regulation, PAHs levels decreased over the sampling campaign, exhibiting values of 706 ± 413 pg/m3 in 2017, 559 ± 384 pg/m3 in 2018, and 473 ± 234 pg/m3 in 2019. In each year, similar seasonal variations in PAHs levels were observed, with higher levels observed in winter and lower levels in summer. Among the PAHs isomer ratios, we observed that the ratio of benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF), [BbF]/([BbF] + [BkF]), and the ratio of indeno[1,2,3-cd]pyrene (IDP) and benzo[ghi]perylene (BgPe), [IDP]/([BgPe] + [IDP]), showed stability over the sampling campaign and were less affected by the new emission regulation, seasonal variations, and regional characteristics. When using the combined ratio ranges of 0.66 - 0.80 ([BbF]/([BbF] + [BkF]) and 0.26-0.49 ([IDP]/([BgPe] + [IDP]), traffic emissions were clearly distinguished from other PAHs emission sources. Principal component analysis (PCA) and positive matrix factorization (PMF) were also performed to further analyse the characteristics of traffic-related PAHs. Overall, this study affirmed the effectiveness of the new emission regulation in the reduction of PAHs emissions and provided a combined range for identifying PAHs traffic emission sources.
Collapse
Affiliation(s)
- Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
20
|
Zhang H, Zhang X, Wang Y, Bai P, Hayakawa K, Zhang L, Tang N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3944. [PMID: 35409624 PMCID: PMC8998094 DOI: 10.3390/ijerph19073944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
To mitigate global warming and achieve carbon neutrality, biomass has become a widely used carbon-neutral energy source due to its low cost and easy availability. However, the incomplete combustion of biomass can produce polycyclic aromatic hydrocarbons (PAHs), which are harmful to human health. Moreover, increasing numbers of wildfires in many regions caused by global warming have greatly increased the emissions of PAHs from biomass burning. To effectively mitigate PAH pollution and health risks associated with biomass usage, the concentrations, compositions and influencing factors of PAH emissions from biomass burning are summarized in this review. High PAH emissions from open burning and stove burning are found, and two- to four-ring PAHs account for a higher proportion than five- and six-ring PAHs. Based on the mechanism of biomass burning, biomass with higher volatile matter, cellulose, lignin, potassium salts and moisture produces more PAHs. Moreover, burning biomass in stoves at a high temperature or with an insufficient oxygen supply can increase PAH emissions. Therefore, the formation and emission of PAHs can be reduced by pelletizing, briquetting or carbonizing biomass to increase its density and burning efficiency. This review contributes to a comprehensive understanding of PAH pollution from biomass burning, providing prospective insight for preventing air pollution and health hazards associated with carbon neutrality.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| |
Collapse
|
21
|
Shimada K, Nohchi M, Maeshima K, Uchino T, Kobayashi Y, Ono K, Ogata H, Katsumi N, Inazu K, Okochi H. Effects of changes in polycyclic aromatic hydrocarbons (PAHs) emissions and degradation on their concentrations in Tokyo from 2007 and 2016. Sci Rep 2022; 12:4249. [PMID: 35277564 PMCID: PMC8917142 DOI: 10.1038/s41598-022-08138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in aerosol were measured in Shinjuku, which is central Tokyo, Japan, for 10 years from 2007 to 2016. The effects of changes in emission sources and their degradation by reaction with ozone were assessed in this study. There was no significant increasing or decreasing trend of the PAH concentrations during 10 years (P > 0.05). The average selected seven the PAH concentrations (0.88 ng m−3) during 10 years was lower than those in New York and Paris. However, the trend of ozone concentrations is increasing in central Tokyo. This inconsistency raises a question. Did the fact that the ozone concentration was higher than the PAH concentrations promote PAH degradation? To apportion the PAH sources, we used PAH concentration profiles and positive matrix factorization analysis. The contribution of vehicle emissions to the PAHs ranged from 40 to 80%. Ozone concentrations increased by 3.70%/year during 10 years. The theoretical degradation rates of PAHs by ozone, which were calculated using a pseudo-first-order rate equation, suggested that the lifetimes of benzo[a]pyrene (BaP) decreased by 1 min from 2007 to 2016. We investigated the aging of BaP using the profile of the isomer ratios. We found that the aging of BaP at the urban and roadside sites were nearly identical indicating aging regardless of the season. Although the decomposition of BaP is promoted by the photochemical oxidation reaction, this result suggests that a certain threshold value exists as the degree of the decomposition. This degradation of PAH can improve chemical loss processes in air quality model.
Collapse
Affiliation(s)
- Kojiro Shimada
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.,Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Masayuki Nohchi
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Koji Maeshima
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Tomonori Uchino
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Kobayashi
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Kazuki Ono
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Hiroko Ogata
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Naoya Katsumi
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.,Department of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Koji Inazu
- National Institute of Technology, Numazu College, 3600 Ooka, Numazu City, Shizuoka, 410-8501, Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| |
Collapse
|
22
|
Li F, Fan T, Sun G, Zhao L, Zhong R, Peng Y. Systematic QSAR and iQCCR modelling of fused/non-fused aromatic hydrocarbons (FNFAHs) carcinogenicity to rodents: reducing unnecessary chemical synthesis and animal testing. GREEN CHEMISTRY 2022; 24:5304-5319. [DOI: 10.1039/d2gc00986b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The prediction of new or untested FNFAHs will reduce unnecessary chemical synthesis and animal testing, and contribute to the design of safer chemicals for production activities.
Collapse
Affiliation(s)
- Feifan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
- Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Degrendele C, Kanduč T, Kocman D, Lammel G, Cambelová A, Dos Santos SG, Horvat M, Kukučka P, Holubová Šmejkalová A, Mikeš O, Nuñez-Corcuera B, Přibylová P, Prokeš R, Saňka O, Maggos T, Sarigiannis D, Klánová J. NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148528. [PMID: 34328964 PMCID: PMC8434474 DOI: 10.1016/j.scitotenv.2021.148528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 05/24/2023]
Abstract
Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.
Collapse
Affiliation(s)
| | - Tjaša Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - David Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | | | | | - Saul Garcia Dos Santos
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Czech Republic
| | | | - Ondřej Mikeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Beatriz Nuñez-Corcuera
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | | | - Roman Prokeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Ondřej Saňka
- RECETOX Centre, Masaryk University, Czech Republic
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, NCSR "Demokritos", Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece; University School of Advanced Study, Pavia, Italy
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Czech Republic
| |
Collapse
|
24
|
Sun G, Zhang Y, Pei L, Lou Y, Mu Y, Yun J, Li F, Wang Y, Hao Z, Xi S, Li C, Chen C, Zhao L, Zhang N, Zhong R, Peng Y. Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112525. [PMID: 34274838 DOI: 10.1016/j.ecoenv.2021.112525] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The information of the acute oral toxicity for most polycyclic aromatic hydrocarbons (PAHs) in mammals are lacking due to limited experimental resources, leading to a need to develop reliable in silico methods to evaluate the toxicity endpoint. In this study, we developed the quantitative structure-activity relationship (QSAR) models by genetic algorithm (GA) and multiple linear regression (MLR) for the rat acute oral toxicity (LD50) of PAHs following the strict validation principles of QSAR modeling recommended by OECD. The best QSAR model comprised eight simple 2D descriptors with definite physicochemical meaning, which showed that maximum atom-type electrotopological state, van der Waals surface area, mean atomic van der Waals volume, and total number of bonds are main influencing factors for the toxicity endpoint. A true external set (554 compounds) without rat acute oral toxicity values, and 22 limit test compounds, were firstly predicted along with reliability assessment. We also compared our proposed model with the OPERA predictions and recently published literature to prove the prediction reliability. Furthermore, the interspecies toxicity (iST) models of PAHs between rat and mouse were also established, validated and employed for filling data gap. Overall, our developed models should be applicable to new or untested or not yet synthesized PAHs falling within the applicability domain (AD) of the models for rapid acute oral toxicity prediction, thus being important for environmental or personal exposure risk assessment under regulatory frameworks.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Yifan Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Luyu Pei
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yuqing Lou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yao Mu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayi Yun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Feifan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yachen Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Zhaoqi Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Sha Xi
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Chen Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Chuhan Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
25
|
Hayakawa K, Tang N, Matsuki A, Inomata Y, Toriba A, Nagato EG. Calculating source contributions to urban atmospheric polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons using 1-nitropyrene and pyrene: An application to an Asian dust event. CHEMOSPHERE 2021; 280:130662. [PMID: 33940447 DOI: 10.1016/j.chemosphere.2021.130662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
A method to calculate source contributions to atmospheric polycyclic aromatic hydrocarbons (PAHs) and their nitrated congeners (NPAHs) is proposed, using pyrene (Pyr) and 1-nitropyrene (1-NP), as respective representatives of PAHs and NPAHs. This is based on the known increases in NPAH to PAH ratios as combustion temperatures increase. The fractions of 1-NP and Pyr from high temperature combustion sources in total 1-NP and Pyr are respectively calculated as a (0 < a <1) and b (0 < b < 1). By using atmospheric concentrations of Pyr and 1-NP obtained at monitoring sites, contributions of high and low temperature combustion sources were calculated. Using this method, the contributions of automobiles and coal combustion facilities/industries to atmospheric Pyr and 1-NP concentrations were calculated for atmospheric samples collected in Kanazawa, Japan during a seasonal Asian dust event. The results show that Pyr was almost entirely emitted from industries in China and transported long-range to Japan. By contrast, 1-NP was emitted primarily from automobiles in Kanazawa and its surrounding areas, with a small amount of 1-NP possibly transported from China. The proposed method can provide greater clarity on source identification compared to the typically used PAH isomer pairs.
Collapse
Affiliation(s)
- Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan
| | - Atsushi Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Edward G Nagato
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-machi, Matsue, 690-8504, Japan
| |
Collapse
|
26
|
Ofman P, Skoczko I, Włodarczyk-Makuła M. Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126332. [PMID: 34118540 DOI: 10.1016/j.jhazmat.2021.126332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons belong to the main priority substances for the aquatic environment. One of the emission sources of these compounds to environment is wastewater discharged from conventional wastewater treatment systems, which are not designed to cope with this type of pollution. Thus, due to the widely discussed properties of aerobic granular activated sludge in the literature - a conducted study has proven its ability to remove LMW PAHs (naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe) and anthracene (Ant)) from wastewater by biosorption process at varying loadings of organic compounds expressed as BOD (kg/kg·d) on the activated sludge mass. The maximum biosorption of Nap was 605 µg/kgd.m., Acy equals to 134 µg/kgd.m., Ace equals to 355 µg/kgd.m. Flu equals to 104 µg/kgd.m. Phe equal to 204 µg/kgd.m. and Ant equal to 173 µg/kgd.m. The study showed that the BOD loading rate is one of the factors affecting the biosorption process of LMW PAHs. However, as the amount of adsorbed LMW PAHs increased, the condition of aerobic granular activated sludge deteriorated, which was evidenced by gradual increase in the values of technological parameters of activated sludge (SVI, HRT, SRT) and a smaller increase in activated sludge dry mass.
Collapse
Affiliation(s)
- Piotr Ofman
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | - Iwona Skoczko
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | | |
Collapse
|
27
|
Wei C, Bandowe BAM, Han Y, Cao J, Watson JG, Chow JC, Wilcke W. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147234. [PMID: 33971611 DOI: 10.1016/j.scitotenv.2021.147234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic compounds (PACs) such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives [oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs), and azaarenes (AZAs)] are toxic and ubiquitous air pollutants. In this study, the concentrations of these PACs were determined in air obtained in spring and autumn of 2012 from urban and rural areas of the Tibetan Plateau, temperate, subtropical, and tropical climate zones in China. Average concentrations (gaseous + particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs, and ∑4AZAs were 928 ± 658, 54 ± 45, 5.3 ± 4.4, 14 ± 11 ng m-3 and 995 ± 635, 67 ± 38, 8.4 ± 6.1, 24 ± 16 ng m-3 in spring and autumn, respectively. Various C fractions and latitude correlated significantly with the concentrations and ratios of PACs. The slopes of the regression of gas-particle partition coefficients (Kp) of PACs on their sub-cooled liquid vapor pressures (PL0), indicated both adsorption and absorption to total suspended particles (TSP) for PAHs, OPAHs, and NPAHs in the four studied climatic zones. This result was further supported by comparing the fractions of PACs in TSP calculated from field data with those predicted by the Junge-Pankow adsorption and KOA absorption models. The concentration ratios of most OPAHs or NPAHs to their parent PAHs and of benzo[e]pyrene/benzo[a]pyrene were higher in autumn than in spring and increased with remoteness from point sources. This suggests enhanced secondary formation of PAH derivatives due to the elevated photochemical activity in autumn and longer ageing of air and associated transformation of PACs during their long-distance transport from source regions (urban sites) to rural sites. Lifetime lung cancer risk estimated from PACs ranged from 0.8 ± 0.6 to 3.1 ± 1.0 (×10-3), exceeding the value (10-5) recommended by the WHO. Gaseous PACs contributed substantially to the estimated cancer risks and their contributions increased with decreasing latitude in China.
Collapse
Affiliation(s)
- Chong Wei
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shanghai Carbon Data Research Center (SCDRC), CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - John G Watson
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Judith C Chow
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Isoda M, Abe T, Aoki K, Harata A. Ultraviolet and Deep-Ultraviolet Excitation Photothermal Heterodyne Interferometer Combined with Semi-Micro HPLC. ANAL SCI 2021; 37:911-916. [PMID: 33229821 DOI: 10.2116/analsci.20p328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A detection system consisting of a photothermal heterodyne interferometer (PHI) combined with semi-micro HPLC (high-performance liquid chromatography) has been designed and investigated. An ultraviolet (UV) or deep-UV laser emitting at 375 or 213 nm, respectively, was used for the excitation of nitro-polycyclic aromatic hydrocarbons (NPAHs) and amino acids. A photothermally induced change in the refractive index of the solvent causes an optical phase difference between two arms of the interferometer, one beam passing through the photoexcited region and another used as a reference, which was sensitively detected with the PHI. The separation and detection of NPAHs and amino acids were successfully demonstrated via semi-micro HPLC with the PHI and a UV detector. The detection limits of the UV-excitation PHI for NPAHs were 1.2 - 5.2 times better than that of the commercial UV detector, although the first demonstration of deep-UV excitation suffered from significant baseline fluctuation.
Collapse
Affiliation(s)
- Miki Isoda
- Department of Molecular and Material Sciences, Kyushu University
| | - Toshihiko Abe
- Department of Molecular and Material Sciences, Kyushu University
| | - Kai Aoki
- Department of Molecular and Material Sciences, Kyushu University
| | - Akira Harata
- Department of Molecular and Material Sciences, Kyushu University
| |
Collapse
|
29
|
Daytime Restricted Feeding Modifies the Temporal Expression of CYP1A1 and Attenuated Damage Induced by Benzo[a]pyrene in Rat Liver When Administered before CYP1A1 Acrophase. TOXICS 2021; 9:toxics9060130. [PMID: 34199736 PMCID: PMC8228946 DOI: 10.3390/toxics9060130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity.
Collapse
|
30
|
Li B, Ma LX, Sun SJ, Thapa S, Lu L, Wang K, Qi H. Polycyclic aromatic hydrocarbons and their nitro-derivatives in urban road dust across China: Spatial variation, source apportionment, and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141194. [PMID: 32777498 DOI: 10.1016/j.scitotenv.2020.141194] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
As an essential carrier of hazardous substances, fugitive road dust has become a severe issue in China. In this study, 212 road dust samples from 53 cities in China were collected to comprehensively investigate the spatial variations, potential sources, and cancer risk of 16 polycyclic aromatic hydrocarbons (PAHs) and 16 nitro-PAHs. The total PAHs concentrations ranged from 0.07 to 345 μg/g dry weight, which is at a moderate level compared to other regions in the world. The mean concentration of Σ16nitro-PAHs was 111 ± 115 ng/g, which is 2-3 orders of magnitude lower than that of Σ16PAHs. A clear geographical trend of dust PAHs and nitro-PAHs was observed in the northeast, north, and east coastal regions of China at a higher level. Moreover, a significant correlation between latitude and PAHs/nitro-PAHs revealed the influences of outdoor temperature and coal combustion for heating in the different regions on the emission and reaction of PAHs and nitro-PAHs. The secondary formation of most nitro-PAHs increases with a decrease in latitude indicated that solar radiation and temperature are important factors on secondary formation of nitro-PAHs. The average concentration of total PAHs and their derivatives in trunk road samples were statistically higher than those in other road samples (p < 0.05), indicating the influence of traffic load on target compound concentration. Generally, the primary sources of PAHs in the road dust samples were coal combustion (23.9%), vehicles (57.1%), and wood/biomass combustion (19.0%). For nitro-PAHs, the main sources were secondary formation (30.9%), biomass/coal combustion (28.4%), and vehicles (44.9%). Furthermore, a moderate potential carcinogenic risk due to PAHs and nitro-PAHs in the dust samples was found in China.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Li-Xin Ma
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Shao-Jing Sun
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Samit Thapa
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, 73Huanghe Road, Nangang District, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
31
|
Wilson J, Octaviani M, Bandowe BAM, Wietzoreck M, Zetzsch C, Pöschl U, Berkemeier T, Lammel G. Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14224-14234. [PMID: 33112146 PMCID: PMC7676291 DOI: 10.1021/acs.est.0c04319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common atmospheric pollutants and known to cause adverse health effects. Nitrated PAHs (NPAHs) are formed in combustion activities and by nitration of PAHs in the atmosphere and may be equally or more toxic, but their spatial and temporal distribution in the atmosphere is not well characterized. Using the global EMAC model with atmospheric chemistry and surface compartments coupled, we investigate the formation, abundance, and fate of two secondarily formed NPAHs, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR). The default reactivity scenario, the model with the simplest interpretation of parameters from the literature, tends to overestimate both absolute concentrations and NPAH/PAH ratios at observational sites. Sensitivity scenarios indicate that NO2-dependent NPAH formation leads to better agreement between measured and predicted NPAH concentrations and that photodegradation is the most important loss process of 2-NFLT and 2-NPYR. The highest concentrations of 2-NFLT and 2-NPYR are found in regions with strong PAH emissions, but because of continued secondary formation from the PAH precursors, these two NPAHs are predicted to be spread across the globe.
Collapse
Affiliation(s)
- Jake Wilson
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Mega Octaviani
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | | | - Marco Wietzoreck
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Cornelius Zetzsch
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Bayreuth
Centre for Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Gerhard Lammel
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Research
Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
32
|
Hao Y, Sun G, Fan T, Tang X, Zhang J, Liu Y, Zhang N, Zhao L, Zhong R, Peng Y. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122981. [PMID: 32534390 DOI: 10.1016/j.jhazmat.2020.122981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Nitroaromatic compounds (NACs) in the environment can cause serious public health and environmental problems due to their potential toxicity. This study established quantitative structure-toxicity relationship (QSTR) models for the acute oral toxicity of NACs towards rats following the stringent OECD principles for QSTR modelling. All models were assessed by various internationally accepted validation metrics and the OECD criteria. The best QSTR model contains seven simple and interpretable 2D descriptors with defined physicochemical meaning. Mechanistic interpretation indicated that van der Waals surface area, presence of C-F at topological distance 6, heteroatom content and frequency of C-N at topological distance 9 are main factors responsible for the toxicity of NACs. This proposed model was successfully applied to a true external set (295 compounds), and prediction reliability was analysed and discussed. Moreover, the rat-mouse and mouse-rat interspecies quantitative toxicity-toxicity relationship (iQTTR) models were also constructed, validated and employed in toxicity prediction for true external sets consisting of 67 and 265 compounds, respectively. These models showed good external predictivity that can be used to rapidly predict the rat oral acute toxicity of new or untested NACs falling within the applicability domain of the models, thus being beneficial in environmental risk assessment and regulatory purposes.
Collapse
Affiliation(s)
- Yuxing Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyu Tang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Jing Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongdong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
33
|
Hayakawa K, Tang N, Toriba A, Nagato EG. Calculating sources of combustion-derived particulates using 1-nitropyrene and pyrene as markers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114730. [PMID: 32470900 DOI: 10.1016/j.envpol.2020.114730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Airborne particulate matter (PM) contains numerous hazardous polycyclic aromatic hydrocarbons (PAHs) as well as their functionalized congeners. However, the lack of useful methods to identify the sources of PM has hindered the development of researches in atmospheric and public health fields. This report proposes a new method for estimating the source contribution of combustion-derived particulate (Pc) by using 1-nitropyrene (1-NP) and pyrene (Pyr) as markers. This is premised on the fact that the formation of nitrogen oxides in the flame gas and the subsequent nitration of PAHs are functions of combustion temperature and therefore the concentration ratios of NPAHs to PAHs are highly temperature dependent. This method divides combustion sources into two groups - high and low temperatures - which here are respectively represented by automobile engine and coal combustion in urban areas. Formulae are derived for combustion-derived particulate (Pc), whose fraction in the total particulate is y (0 < y < 1), and particulates from combustion sources with high temperatures (Ph), whose fraction in Pc is x (0 < x < 1), and low temperatures (Pl), whose fraction is (1 -x). When concentrations of 1-NP and Pyr in Ph and Pl are known, values x and y can be calculated from the formulae by determining atmospheric 1-NP and Pyr concentrations at monitoring sites. Then atmospheric concentrations of Pc, Ph and Pl can be calculated. The proposed method has been applied for total suspended particulate matter (TSP) samples collected in Kanazawa and Kitakyushu (Japan) and Beijing (China) having different types of atmospheric pollution to clarify the change of contributions of automobiles and coal combustion.
Collapse
Affiliation(s)
- Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa, 923-1224, Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Edward G Nagato
- Graduate School of Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishitsugawa-machi, Matsue, 690-8504, Japan
| |
Collapse
|
34
|
Ding Z, Yi Y, Wang W, Zhang Q. Understanding the role of Cl and NO 3 radicals in initiating atmospheric oxidation of fluorene: A mechanistic and kinetic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136905. [PMID: 32044478 DOI: 10.1016/j.scitotenv.2020.136905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The photooxidation of volatile organic compounds (VOCs) initiated by Cl and NO3 radicals has been investigated for decades to assess the atmospheric fates of pollutants. Gas-phase fluorene is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) that can be oxidized by activated radicals. In this study, we used quantum chemical calculation to study the atmospheric degradation of fluorene initiated by Cl and NO3 radicals. The results showed that the Cl radical initiated reaction of fluorene mainly produces 9-fluorene radical that has significant potential to form secondary pollutants with more persistent toxic properties. The NO3 radical initiated reaction of fluorene leads to the formation of oxygenated PAHs (OPAHs) and nitrated PAHs (NPAHs) including nitrooxyfluorene, nitrooxyfluorenone and 1,4-fluorenequinone. The rate constants and branch ratios of elementary reactions were determined based on Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The atmospheric lifetime of fluorene determined by NO3 radical is deduced to be 1.52 days according to the calculated overall rate constant, 1.52 × 10-14 cm3 molecule-1 s-1. The derivatives produced from the atmospheric degradation of fluorene initiated by Cl and NO3 radicals increase the environmental risks of fluroene. Combined with previous experimental and theoretical findings, this work can help to clarify the atmospheric fate and assess the environmental risks of fluorene.
Collapse
Affiliation(s)
- Zhezheng Ding
- Environment Research Institute, Shandong University Qingdao, 266237, PR China
| | - Yayi Yi
- Environment Research Institute, Shandong University Qingdao, 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University Qingdao, 266237, PR China.
| |
Collapse
|
35
|
Shimada K, Nohchi M, Yang X, Sugiyama T, Miura K, Takami A, Sato K, Chen X, Kato S, Kajii Y, Meng F, Hatakeyama S. Degradation of PAHs during long range transport based on simultaneous measurements at Tuoji Island, China, and at Fukue Island and Cape Hedo, Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113906. [PMID: 31972416 DOI: 10.1016/j.envpol.2019.113906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
We investigated the degradation of polycyclic aromatic hydrocarbons (PAHs) during long-range transport. Aerosols were collected simultaneously at remote sites on Tuoji Island, China; Fukue Island, Japan; and the Cape Hedo Atmosphere and Aerosol Measurement Station (CHAAMS), Okinawa, Japan in April, October, and December from 2012 to 2013. These remote sites were convenient for investigating the degradation of PAHs during long-range transport. PAHs were analyzed via gas chromatography/mass spectrometry. We identified air masses that passed over all sites and combined our measurements with a chemical transport model. We estimated the relative contributions of the PAHs at the three sites by normalizing the PAH concentrations to elemental carbon. Benzo[a]pyrene persisted in 5-16% of samples. The results of this study are consistent with laboratory studies in which secondary organic aerosol (SOA) coatings protected PAHs from degradation by ozone. We detected an inhibition of the degradation PAHs by SOA coatings by collecting PAHs simultaneously at the three sites. To elucidate the major sources of the SOAs, we carried out a positive matrix factorization analysis to identify the major sources of SOA coating, which controls the lifetime of PAHs. In spring and winter, the contribution of vehicle emissions was higher (46%) at Tuoji Island than at CHAAMS (13%). In contrast, the contribution of coal combustion was higher at CHAAMS (59%) than at Tuoji Island (28%). This result implies that during long-range transport, PAHs derived from coal combustion are more slowly degraded than PAHs derived from vehicle emissions. We found that the viscosity of SOA coatings derived from vehicle emissions in China was low, and the corresponding PAHs were rapidly degraded. In contrast, the viscosity of SOA coatings derived from coal combustion was high, and degradation of the corresponding PAHs was relatively slow. These results imply that PAHs derived from coal combustion have long lifetime.
Collapse
Affiliation(s)
- Kojiro Shimada
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan; School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, Japan
| | - Masayuki Nohchi
- School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, Japan
| | - Xiaoyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beiyuan Road, Chaoyang, Beijing, 100012, China.
| | - Taichi Sugiyama
- Graduate School of Engineering, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaori Miura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kei Sato
- Center for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Xuan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beiyuan Road, Chaoyang, Beijing, 100012, China
| | - Shungo Kato
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-oosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yoshizumi Kajii
- Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyoku, Kyoto, Kyoto, 606-8501, Japan
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beiyuan Road, Chaoyang, Beijing, 100012, China
| | - Shiro Hatakeyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan; Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama, 347-0115, Japan; Present address: Asia Center for Air Pollution Research, 1182, Sowa, Nishiku, Niigatashi, Niigata, 950-2144, Japan
| |
Collapse
|
36
|
Sola MCR, Santos AG, Martinez ST, Nascimento MM, da Rocha GO, de Andrade JB. Occurrence of 3-nitrobenzanthrone and other powerful mutagenic polycyclic aromatic compounds in living organisms: polychaetes. Sci Rep 2020; 10:3465. [PMID: 32103055 PMCID: PMC7044212 DOI: 10.1038/s41598-020-60369-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
In this work we report the occurrence of powerful mutagenic 3-nitrobenzanthrone (3-NBA), in addition to 18 polycyclic aromatic hydrocarbons (PAHs), 6 oxygenated PAHs and 27 nitrated PAHs in polychaete worms. Benzanthrone (BA), another important mutagenic polycyclic aromatic compound (PAC) also was detected in the samples. Polychaete annelids have great ecological relevance, being widely distributed in different environmental conditions, from intertidal zones up to seven thousand feet deep areas. They are abundantly found in both contaminated and uncontaminated areas and, therefore, used as indicators of the pollution status of a given area. As we know, so far, most of these PACs has not been previously reported in living organisms before. The 3-NBA concentrations determined in this study were within 0.11-5.18 µg g-1. Other relevant PACs such as PAHs, quinones and nitro-PAHs were found in maximum concentrations at 0.013 µg g-1 (coronene) to 11.1 µg g-1 (benzo[k]fluoranthene), 0.823 µg g-1 (9,10-phenenthrenequinone) to 12.1 µg g-1 (1,4-benzoquinone) and 0.434 (1-nitronaphthalene) µg g-1 to 19.2 µg g-1 (6-nitrobenzo[a]pyrene), respectively. Principal component analysis (PCA), ternary correlations and diagnostic ratios were employed in order to propose probable sources for PACs. Although statistical analysis preliminarily has indicated both pyrogenic and petrogenic contributions, petrogenic sources were predominant reflecting the impacts of petroleum exploration and intensive traffic of boats in the study area.
Collapse
Affiliation(s)
- Maria Claudia R Sola
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Aldenor G Santos
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil
| | - Sabrina T Martinez
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Madson M Nascimento
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil
| | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil. .,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil. .,Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil.
| |
Collapse
|
37
|
Characteristics of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at A Roadside Air Pollution Monitoring Station in Kanazawa, Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030805. [PMID: 32012877 PMCID: PMC7037384 DOI: 10.3390/ijerph17030805] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were collected at a roadside monitoring station in Kanazawa, Japan, in every season from 2017 to 2018. Nine PAHs and five NPAHs were determined using high-performance liquid chromatography with fluorescence detection and chemiluminescence detection, respectively. The mean concentrations of PAHs and NPAHs were highest in winter and lowest in summer. Fluoranthene and pyrene were the dominant PAHs and 1-nitropyrene was the dominant NPAH in all seasons, and these compounds were mainly emitted by diesel vehicles. The concentration ratio of benzo(a)pyrene (BaP) to benzo(ghi)perylene (BgPe) ((BaP)/(BgPe)) and of indeno(1,2,3-cd)pyrene (IDP) to the sum of IDP and benzo(ghi)perylene (BgPe) ((IDP)/((IDP)+(BgPe0) might still be useful indicators for identifying traffic emission sources today. Moreover, our results showed that the carcinogenic risk in all seasons was below the acceptable limit set by the WHO.
Collapse
|
38
|
MORI T, OHATA S, MORINO Y, KOIKE M, MOTEKI N, KONDO Y. Changes in black carbon and PM 2.5 in Tokyo in 2003-2017. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:122-129. [PMID: 32161210 PMCID: PMC7167368 DOI: 10.2183/pjab.96.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Black carbon (BC) particles cause adverse health effects and contribute to the heating of the atmosphere by absorbing visible solar radiation. Efforts have been made to reduce BC emissions, especially in urban areas; however, long-term measurements of BC mass concentration (MBC) are very limited in Japan. We report MBC measurements conducted in Tokyo from 2003 to 2017, showing that MBC decreased by a factor of 3 from 2003 to 2010 and was stable from 2010 to 2017. Fine particulate concentrations (PM2.5) decreased by a much smaller factor during 2003-2010. The diurnal variations of BC size distributions suggest that the BC in Tokyo originates mainly from local sources, even after 2010. Our three-dimensional model calculations show that BC from the Asian continent contributes a small portion (about 20%) of the annual average MBC in the Kanto region of Japan, which includes Tokyo. This indicates that continued reduction of BC emissions inside Japan should be effective in further decreasing MBC.
Collapse
Affiliation(s)
- Tatsuhiro MORI
- Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
| | - Sho OHATA
- Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Yu MORINO
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Makoto KOIKE
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro MOTEKI
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka KONDO
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
- Correspondence should be addressed: Y. Kondo, National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan (e-mail: )
| |
Collapse
|
39
|
Hao Y, Sun G, Fan T, Sun X, Liu Y, Zhang N, Zhao L, Zhong R, Peng Y. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109822. [PMID: 31634658 DOI: 10.1016/j.ecoenv.2019.109822] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Nitroaromatic compounds (NACs) are an important type of environmental organic pollutants. However, it is lack of sufficient information relating to their potential adverse effects on human health and the environment due to the limited resources. Thus, using in silico technologies to assess their potential hazardous effects is urgent and promising. In this study, quantitative structure activity relationship (QSAR) and classification models were constructed using a set of NACs based on their mutagenicity against Salmonella typhimurium TA100 strain. For QSAR studies, DRAGON descriptors together with quantum chemistry descriptors were calculated for characterizing the detailed molecular information. Based on genetic algorithm (GA) and multiple linear regression (MLR) analyses, we screened descriptors and developed QSAR models. For classification studies, seven machine learning methods along with six molecular fingerprints were applied to develop qualitative classification models. The goodness of fitting, reliability, robustness and predictive performance of all developed models were measured by rigorous statistical validation criteria, then the best QSAR and classification models were chosen. Moreover, the QSAR models with quantum chemistry descriptors were compared to that without quantum chemistry descriptors and previously reported models. Notably, we also obtained some specific molecular properties or privileged substructures responsible for the high mutagenicity of NACs. Overall, the developed QSAR and classification models can be utilized as potential tools for rapidly predicting the mutagenicity of new or untested NACs for environmental hazard assessment and regulatory purposes, and may provide insights into the in vivo toxicity mechanisms of NACs and related compounds.
Collapse
Affiliation(s)
- Yuxing Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiaodong Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yongdong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
40
|
Isoda M, Fukuma M, Harata A. Ultraviolet-Excitation Photothermal Heterodyne Interferometer as a Micro-HPLC Detector. ANAL SCI 2019; 35:1311-1315. [PMID: 31827036 DOI: 10.2116/analsci.19p190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The first demonstration of a photothermal heterodyne interferometer (PHI) combined with micro-HPLC (high-performance liquid chromatography) is reported. A semiconductor laser (375 nm) was used for excitation, and the temperature change caused by heat released from photoexcited species was detected with a He-Ne laser (632.8 nm). The temperature-dependent refractive index change of the solvent modified the optical path of the probe beam. The phase difference between two arms of the interferometer, one passing through the heated sample and another as a reference, was sensitively detected with the PHI. The nitro-polycyclic aromatic hydrocarbon and vitamin mixture separated via micro-HPLC was successfully detected with the PHI as well as a UV detector. The detection limit of the PHI for riboflavin in the absorbance units was 77 times better than that of the commercial UV detector. The detection limit of the PHI with a small flow cell (6 nL) was the same as that with a large flow cell (18 nL) for 1-nitropyrene.
Collapse
Affiliation(s)
- Miki Isoda
- Department of Molecular and Material Sciences, Kyushu University
| | - Makoto Fukuma
- Department of Molecular and Material Sciences, Kyushu University
| | - Akira Harata
- Department of Molecular and Material Sciences, Kyushu University
| |
Collapse
|
41
|
Miura K, Shimada K, Sugiyama T, Sato K, Takami A, Chan CK, Kim IS, Kim YP, Lin NH, Hatakeyama S. Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Sci Rep 2019; 9:12591. [PMID: 31467297 PMCID: PMC6715677 DOI: 10.1038/s41598-019-47409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/10/2019] [Indexed: 11/09/2022] Open
Abstract
This paper reports the long term observation of particle-associated polycyclic aromatic hydrocarbons (PAHs) at Cape Hedo Atmosphere and Aerosol Monitoring Station, a remote site in the Western Pacific Ocean, from 2008 to 2015. This is the first long-term study that evaluated the contribution of long-range transport of PAHs in East Asia. No obvious trend (P > 0.05) was found in a particular season over the years. However, there are seasonal variations of PAH concentrations with higher in spring and winter. The higher PAH are attributed to air masses from the area including part of China. Source apportionment using three different approaches, i.e., PAH compositional pattern analysis, PAH diagnostic ratio analysis and positive matrix factorization modeling, showed the combined high contribution of biomass burning (18%, 14%) and coal combustion (33%, 24%) in spring and winter. In addition, the contribution of ship emissions (35%) was relatively high in spring, whereas that of vehicle emissions (36%) was relatively high in winter. The contribution of coal combustion to PAH has decreased throughout the years, likely due to changes in energy structure in China. The contribution of biomass burning to PAH has showed no trend, being stable, and that of vehicular emissions has increased.
Collapse
Affiliation(s)
- Kaori Miura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kojiro Shimada
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
- Graduate School of Creative Science and Engineering, Waseda University, Tokyo, Japan.
| | - Taichi Sugiyama
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kei Sato
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Akinori Takami
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - In Sun Kim
- Department of Environmental Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yong Pyo Kim
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Chemical, Engineering & Materials Science, Ewha Womans University, Seoul, Republic of Korea
| | - Neng-Huei Lin
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Atmospheric Science and Department of Chemistry, National Central University, Chung-Li, Taiwan
| | - Shiro Hatakeyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Center for Environmental Science in Saitama, Kazo, Saitama, Japan
| |
Collapse
|
42
|
Yang L, Suzuki G, Zhang L, Zhou Q, Zhang X, Xing W, Shima M, Yoda Y, Nakatsubo R, Hiraki T, Sun B, Fu W, Qi H, Hayakawa K, Toriba A, Tang N. The Characteristics of Polycyclic Aromatic Hydrocarbons in Different Emission Source Areas in Shenyang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2817. [PMID: 31394804 PMCID: PMC6721111 DOI: 10.3390/ijerph16162817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
Particulate matter (PM) was collected in three different areas, SY-1, SY-2, and SY-3, in Shenyang, China, during the warm and cold seasons from 2012 to 2014. SY-1 was located beside a thermal power plant, far from the central area. SY-2 was near a coal heating boiler on the main road, close to the central area. SY-3 was on the main road, without fixed emission sources. Nine PM-bound polycyclic aromatic hydrocarbons (PAHs) were analyzed. The results showed that the mean concentration of total PAHs was higher in the cold season (92.6-316 ng m-3) than in the warm season (18.4-32.2 ng m-3). Five- and six-ring PAHs occupied a large percentage at all sites in the warm season, and four-ring PAHs were the dominant components in the cold season. Several diagnostic PAH ratios indicated that the main sources of PAHs in Shenyang in the warm and cold seasons were not only coal burning but also vehicle emission. In this study, we suggest that a benzo[a]pyrene/benzo[ghi]perylene ratio ([BaP]/[BgPe]) of 0.6 was a useful indicator to speculate the relative significance of coal burning and vehicle exhaust. Although the Shenyang government has undertaken actions to address air pollution, the PM and PAH concentrations did not decrease significantly compared to those in our previous studies. The cancer risk calculated from the BaP equivalent total concentration at all three sites in the warm and cold seasons exceeded the acceptable limit established by the US EPA.
Collapse
Affiliation(s)
- Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Genki Suzuki
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Lulu Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Quanyu Zhou
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Wanli Xing
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya 663-8131, Japan
| | - Yoshiko Yoda
- Department of Public Health, Hyogo College of Medicine, Nishinomiya 663-8131, Japan
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe 654-0037, Japan
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe 654-0037, Japan
| | - Baijun Sun
- Shenyang Center for Disease Control and Prevention, Shenyang 110031, China
| | - Wenhua Fu
- Shenyang Center for Disease Control and Prevention, Shenyang 110031, China
| | - Hongye Qi
- Shenyang Center for Disease Control and Prevention, Shenyang 110031, China
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Akira Toriba
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
43
|
Zhao J, Tian W, Liu S, Wang Z, Du Z, Xie W. Existence, removal and transformation of parent and nitrated polycyclic aromatic hydrocarbons in two biological wastewater treatment processes. CHEMOSPHERE 2019; 224:527-537. [PMID: 30836248 DOI: 10.1016/j.chemosphere.2019.02.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs) are pollutants commonly present in the environment. Some NPAHs are considered to have more severe toxic effects than their parent PAHs. The existence of 16 PAHs (678.5-3817.8 ng/L in wastewater, 499.9 ng/g-1239.6 ng/g in sludge) and 5 NPAHs (175.8-1392.4 ng/L in wastewater, 483.5 ng/g-2763.1 ng/g in sludge) was determined in a biological wastewater treatment plant (WWTP) in Qingdao, China. Anthracene and naphthalene were the predominant PAHs, and 2-nitrofluorene and 9-nitroanthracene were the predominant NPAHs. Petroleum, liquid fossil fuel combustion and exhaust emissions were the main sources of PAHs and NPAHs in this study. In both the sequencing batch reactor/moving-bed biofilm (SBR/MBBR) and the anaerobic-anoxic-aerobic (A2O) process, low-molecular-weight PAHs were mainly removed through volatilization and biodegradation/biotransformation. Meanwhile, the removal of high-molecular-weight PAHs and NPAHs depended on adsorption and sedimentation. The transformation from PAHs to NPAHs mainly occurred in the aqueous-phase, especially in summer and that was confirmed by mass flow and ratios variation. Overall, the removal capacity of the A2O process for PAHs and NPAHs was better than that of the SBR/MBBR process. Tertiary treatment processes had little effect or even a negative effect on the removal of PAHs and NPAHs.
Collapse
Affiliation(s)
- Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China.
| | - Shuhui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhe Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhaoyang Du
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Wenlong Xie
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
44
|
Kalisa E, Archer S, Nagato E, Bizuru E, Lee K, Tang N, Pointing S, Hayakawa K, Lacap-Bugler D. Chemical and Biological Components of Urban Aerosols in Africa: Current Status and Knowledge Gaps. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E941. [PMID: 30875989 PMCID: PMC6466367 DOI: 10.3390/ijerph16060941] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Aerosolized particulate matter (PM) is a complex mixture that has been recognized as the greatest cause of premature human mortality in low- and middle-income countries. Its toxicity arises largely from its chemical and biological components. These include polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) as well as microorganisms. In Africa, fossil fuel combustion and biomass burning in urban settings are the major sources of human exposure to PM, yet data on the role of aerosols in disease association in Africa remains scarce. This review is the first to examine studies conducted in Africa on both PAHs/NPAHs and airborne microorganisms associated with PM. These studies demonstrate that PM exposure in Africa exceeds World Health Organization (WHO) safety limits and carcinogenic PAHs/NPAHs and pathogenic microorganisms are the major components of PM aerosols. The health impacts of PAHs/NPAHs and airborne microbial loadings in PM are reviewed. This will be important for future epidemiological evaluations and may contribute to the development of effective management strategies to improve ambient air quality in the African continent.
Collapse
Affiliation(s)
- Egide Kalisa
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
- School of Sciences, College of Science and Technology, University of Rwanda, P.O. Box 4285, Kigali, Rwanda.
| | - Stephen Archer
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| | - Edward Nagato
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Elias Bizuru
- School of Sciences, College of Science and Technology, University of Rwanda, P.O. Box 4285, Kigali, Rwanda.
| | - Kevin Lee
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| | - Ning Tang
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Stephen Pointing
- Yale NUS-College and Department of Biological Sciences, National University of Singapore, Singapore 138527, Singapore.
| | - Kazuichi Hayakawa
- Institute of Natural and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Donnabella Lacap-Bugler
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
45
|
Byambaa B, Yang L, Matsuki A, Nagato EG, Gankhuyag K, Chuluunpurev B, Banzragch L, Chonokhuu S, Tang N, Hayakawa K. Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E442. [PMID: 30717405 PMCID: PMC6388224 DOI: 10.3390/ijerph16030442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to identify pollution sources by characterizing polycyclic aromatic hydrocarbons from total suspended particles in Ulaanbaatar City. Fifteen polycyclic aromatic hydrocarbons were measured in total suspended particle samples collected from different sites, such as the urban center, industrial district and ger (Mongolian traditional house) areas, and residential areas both in heating (January, March), and non-heating (September) periods in 2017. Polycyclic aromatic hydrocarbon concentration ranged between 131 and 773 ng·m-3 in winter, 22.2 and 530.6 ng·m-3 in spring, and between 1.4 and 54.6 ng·m-3 in autumn. Concentrations of specific polycyclic aromatic hydrocarbons such as phenanthrene were higher in the ger area in winter and spring seasons, and the pyrene concentration was dominant in late summer in the residential area. Polycyclic aromatic hydrocarbons concentrations in the ger area were particularly higher than the other sites, especially in winter. Polycyclic aromatic hydrocarbon ratios indicated that vehicle emissions were likely the main source at the city center in the winter time. Mixed contributions from biomass, coal, and petroleum combustion were responsible for the particulate polycyclic aromatic hydrocarbon pollution at other sampling sites during the whole observation period. The lifetime inhalation cancer risk values in the ger area due to winter pollution were estimated to be 1.2 × 10-5 and 2.1 × 10-5 for child and adult exposures, respectively, which significantly exceed Environmental Protection Agency guidelines.
Collapse
Affiliation(s)
- Batdelger Byambaa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
- Department of Environment and Forest engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Atsushi Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Edward G Nagato
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Khongor Gankhuyag
- Department of Environment and Forest engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Byambatseren Chuluunpurev
- Department of Environment and Forest engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Lkhagvajargal Banzragch
- Department of Environment and Forest engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Sonomdagva Chonokhuu
- Department of Environment and Forest engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
46
|
A Case Study Describing a Community-Engaged Approach for Evaluating Polycyclic Aromatic Hydrocarbon Exposure in a Native American Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030327. [PMID: 30682857 PMCID: PMC6388274 DOI: 10.3390/ijerph16030327] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/04/2023]
Abstract
In 2015, the Swinomish Indian Tribal Community (SITC) was impacted by an air toxic release from one of two nearby oil refineries. This experience motivated SITC members to learn more about their exposure to air toxics. On the invitation of SITC, this community-based study measured personal exposure to polycyclic aromatic hydrocarbons (PAHs) and conducted interviews with the volunteers to evaluate perceptions of the data and experience of participating. Non-smoking SITC members were recruited in March 2016 (N = 10) and January 2017 (N = 22) with seven volunteers participating both times. Volunteers wore a wristband passive sampler for 7 days and completed daily activity diaries. Wristbands were analyzed for 62 PAHs using gas chromatography mass spectrometry. Wilcoxon exact tests determined if the sum total PAHs (ΣPAH) differed by activity, proximity to the refineries, and time. Aggregated results were shared during community meetings, and volunteers received individual reports. Volunteers (N = 9) participated in individual interviews. All volunteers were exposed to different amounts and types of PAHs. Burning candles or using a wood stove and/or propane heating were associated with higher ΣPAH exposures. While ΣPAH was similar in both sampling periods, the composition of PAHs differed. More priority listed PAHs were detected in January (N = 17) versus March (N = 10). Among volunteers who participated in both sampling events, exposure to four PAHs significantly differed between seasons. Overall, volunteers reported that the study made them more aware of air pollution sources in their community. They also commented that the chemical nomenclature was difficult to understand, but appreciated the individual reports that allowed them to visually compare their data to the distribution of data collected in their community. For volunteers with lower exposures, these comparisons gave them relief. However, volunteers with higher exposures reported concern and several changed their behaviors to reduce their exposure to known PAH sources. This study provided an opportunity for SITC members to learn about their personal exposure to a class of air toxics within the context of their community. While the limitations of the study hindered the ability to identify sources of air toxics in the community, this activity appeared to raise awareness about ambient and indoor air pollution among the volunteers.
Collapse
|
47
|
Santos AG, da Rocha GO, de Andrade JB. Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Sci Rep 2019; 9:1. [PMID: 30626917 PMCID: PMC6327027 DOI: 10.1038/s41598-018-37186-2] [Citation(s) in RCA: 3925] [Impact Index Per Article: 785.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 µg g−1 and 4.39 µg g−1, respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.
Collapse
Affiliation(s)
- Aldenor G Santos
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Gisele O da Rocha
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115, Salvador, BA, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil. .,Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil. .,SENAI-CIMATEC University Center, 41650-110, Salvador, Bahia, Brazil.
| |
Collapse
|
48
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
49
|
Effects of Ambient Atmospheric PM2.5, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats. Cardiovasc Toxicol 2018; 19:178-190. [DOI: 10.1007/s12012-018-9488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
DiScenza DJ, Lynch J, Verderame M, Smith MA, Levine M. Cyclodextrin-Promoted Fluorescence Detection of Aromatic Toxicants and Toxicant Metabolites in Commercial Milk Products. FOOD ANAL METHOD 2018; 11:2419-2430. [PMID: 30288206 PMCID: PMC6166478 DOI: 10.1007/s12161-018-1228-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The detection of polycyclic aromatic hydrocarbons (PAHs) and their metabolites in food and in agricultural sources is an important research objective due to the PAHs' known persistence, carcinogenicity, and toxicity. PAHs have been found in the milk of lactating cows, and in the leaves and stems of plants grown in PAH-contaminated areas, thereby making their way into both cow milk and plant milk alternatives. Reported herein is the rapid, sensitive, and selective detection of 10 PAHs and PAH metabolites in a variety of cow milks and plant milk alternatives using fluorescence energy transfer from the PAH to a high quantum yield fluorophore, combined with subsequent array-based statistical analyses of the fluorescence emission signals. This system operates with high sensitivity (low micromolar detection limits), selectivity (100% differentiation even between structurally similar analytes), and general applicability (for both unmodified lipophilic PAHs and highly polar oxidized PAH metabolites, as well as for different cow and plant milk samples). These promising results show significant potential to be translated into solid-state devices for the rapid, sensitive, and selective detection of PAHs and their metabolites in complex, commercial food products.
Collapse
Affiliation(s)
| | | | | | | | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881 ; 401-874-4243
| |
Collapse
|