1
|
Wheelock CE, Lavoie EM, Stooks J, Schwob J, Hess HW, Pryor RR, Hostler D. Carbohydrate or Electrolyte Rehydration Recovers Plasma Volume but Not Post-immersion Performance Compared to Water After Immersion Diuresis. Mil Med 2024; 189:1612-1620. [PMID: 37776545 DOI: 10.1093/milmed/usad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. METHODS Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. RESULTS After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). CONCLUSIONS Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
Collapse
Affiliation(s)
- Courtney E Wheelock
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Elizabeth M Lavoie
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Jocelyn Stooks
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Jacqueline Schwob
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Hayden W Hess
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - David Hostler
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
2
|
Funnell MP, Juett LA, Reynolds KM, Johnson DA, James RM, Mears SA, Cheuvront SN, Kenefick RW, James LJ. Iterative assessment of a sports rehydration beverage containing a novel amino acid formula on water uptake kinetics. Eur J Nutr 2024; 63:1125-1137. [PMID: 38349552 PMCID: PMC11139694 DOI: 10.1007/s00394-024-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Rapid gastric emptying and intestinal absorption of beverages is essential for rapid rehydration, and certain amino acids (AA) may augment fluid delivery. Three sugar-free beverages, containing differing AA concentrations (AA + PZ), were assessed for fluid absorption kinetics against commercial sugar-free (PZ, GZ) and carbohydrate-containing (GTQ) beverages. METHODS Healthy individuals (n = 15-17 per study) completed three randomised trials. Three beverages (550-600 mL) were ingested in each study (Study 1: AA + PZ [17.51 g/L AA], PZ, GZ; Study 2: AA + PZ [6.96 g/L AA], PZ, GZ; Study 3: AA + PZ [3.48 g/L AA], PZ, GTQ), containing 3.000 g deuterium oxide (D2O). Blood samples were collected pre-, 2-min, 5-min, and every 5-min until 60-min post-ingestion to quantify maximal D2O enrichment (Cmax), time Cmax occurred (Tmax) and area under the curve (AUC). RESULTS Study 1: AUC (AA + PZ: 15,184 ± 3532 δ‰ vs. VSMOW; PZ: 17,328 ± 3153 δ‰ vs. VSMOW; GZ: 17,749 ± 4204 δ‰ vs. VSMOW; P ≤ 0.006) and Tmax (P ≤ 0.005) were lower for AA + PZ vs. PZ/GZ. Study 2: D2O enrichment characteristics were not different amongst beverages (P ≥ 0.338). Study 3: Cmax (AA + PZ: 440 ± 94 δ‰ vs. VSMOW; PZ: 429 ± 83 δ‰ vs. VSMOW; GTQ: 398 ± 81 δ‰ vs. VSMOW) was greater (P = 0.046) for AA + PZ than GTQ, with no other differences (P ≥ 0.106). CONCLUSION The addition of small amounts of AA (3.48 g/L) to a sugar-free beverage increased fluid delivery to the circulation compared to a carbohydrate-based beverage, but greater amounts (17.51 g/L) delayed delivery.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Loris A Juett
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Kirsty M Reynolds
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Drusus A Johnson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Ruth M James
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Samuel N Cheuvront
- Entrinsic Bioscience, LLC, Norwood, MA, 02062, USA
- Sports Science Synergy, LLC, Franklin, MA, 02038, USA
| | | | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
3
|
Otsuka J, Okamoto Y, Enoki Y, Maejima D, Fujii N, Kenny GP, Mündel T, Cotter JD, Amano T. Effects of ingesting beverages containing glycerol and sodium with isomaltulose or sucrose on fluid retention in young adults: a single-blind, randomized crossover trial. Appl Physiol Nutr Metab 2024; 49:667-679. [PMID: 38377479 DOI: 10.1139/apnm-2023-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We evaluated changes in hyperhydration and beverage hydration index (BHI, a composite measure of fluid balance after consuming a test beverage relative to water) during resting, induced by the consumption of beverages containing glycerol and sodium supplemented with fast-absorbing sucrose or slow-absorbing isomaltulose. In a randomized crossover, single-blinded protocol (clinical trials registry: UMIN000042644), 14 young physically active adults (three women) consumed 1 L of beverage containing either 7% glycerol + 0.5% sodium (Gly + Na), Gly + Na plus 7% sucrose (Gly + Na + Suc), Gly + Na plus 7% isomaltulose (Gly + Na + Iso), or water (CON) over a 40 min period. We assessed the change in plasma volume (ΔPV), BHI (calculated from cumulative urine output following consumption of water relative to that of the beverage), and blood glucose and sodium for 180 min after initiating ingestion. Total urine volume was reduced in all beverages containing glycerol and sodium compared to CON (all P ≤ 0.002). The addition of isomaltulose increased BHI by ∼45% (3.43 ± 1.0 vs. 2.50 ± 0.7 for Gly + Na, P = 0.011) whereas sucrose did not (2.6 ± 0.6, P = 0.826). The PV expansion was earliest for Gly + Na (30 min), slower for Gly + Na + Suc (90 min), and slowest for Gly + Na + Iso (120 min) with a concomitant lag in the increase of blood glucose and sodium concentrations. Supplementation of beverages containing glycerol and sodium with isomaltulose but not sucrose enhances BHI from those of glycerol and sodium only under a resting state, likely due to the slow absorption of isomaltulose-derived monosaccharides (i.e., glucose and fructose).
Collapse
Affiliation(s)
- Junto Otsuka
- Laboratory for Exercise and Environment Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yumi Okamoto
- Laboratory for Exercise and Environment Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yasuaki Enoki
- Advanced Research Institutes, Bourbon Corporation, Niigata, Japan
| | - Daisuke Maejima
- Advanced Research Institutes, Bourbon Corporation, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Tatsuro Amano
- Laboratory for Exercise and Environment Physiology, Faculty of Education, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Teysseire F, Bordier V, Beglinger C, Wölnerhanssen BK, Meyer-Gerspach AC. Metabolic Effects of Selected Conventional and Alternative Sweeteners: A Narrative Review. Nutrients 2024; 16:622. [PMID: 38474749 PMCID: PMC10933973 DOI: 10.3390/nu16050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Sugar consumption is known to be associated with a whole range of adverse health effects, including overweight status and type II diabetes mellitus. In 2015, the World Health Organization issued a guideline recommending the reduction of sugar intake. In this context, alternative sweeteners have gained interest as sugar substitutes to achieve this goal without loss of the sweet taste. This review aims to provide an overview of the scientific literature and establish a reference tool for selected conventional sweeteners (sucrose, glucose, and fructose) and alternative sweeteners (sucralose, xylitol, erythritol, and D-allulose), specifically focusing on their important metabolic effects. The results show that alternative sweeteners constitute a diverse group, and each substance exhibits one or more metabolic effects. Therefore, no sweetener can be considered to be inert. Additionally, xylitol, erythritol, and D-allulose seem promising as alternative sweeteners due to favorable metabolic outcomes. These alternative sweeteners replicate the benefits of sugars (e.g., sweetness and gastrointestinal hormone release) while circumventing the detrimental effects of these substances on human health.
Collapse
Affiliation(s)
- Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | - Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | | | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (F.T.); (V.B.); (B.K.W.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland;
| |
Collapse
|
5
|
Pérez-Castillo ÍM, Williams JA, López-Chicharro J, Mihic N, Rueda R, Bouzamondo H, Horswill CA. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2023; 16:17. [PMID: 38201848 PMCID: PMC10781183 DOI: 10.3390/nu16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hypohydration can impair aerobic performance and deteriorate cognitive function during exercise. To minimize hypohydration, athletes are recommended to commence exercise at least euhydrated, ingest fluids containing sodium during long-duration and/or high-intensity exercise to prevent body mass loss over 2% and maintain elevated plasma osmolality, and rapidly restore and retain fluid and electrolyte homeostasis before a second exercise session. To achieve these goals, the compositions of the fluids consumed are key; however, it remains unclear what can be considered an optimal formulation for a hydration beverage in different settings. While carbohydrate-electrolyte solutions such as sports drinks have been extensively explored as a source of carbohydrates to meet fuel demands during intense and long-duration exercise, these formulas might not be ideal in situations where fluid and electrolyte balance is impaired, such as practicing exercise in the heat. Alternately, hypotonic compositions consisting of moderate to high levels of electrolytes (i.e., ≥45 mmol/L), mainly sodium, combined with low amounts of carbohydrates (i.e., <6%) might be useful to accelerate intestinal water absorption, maintain plasma volume and osmolality during exercise, and improve fluid retention during recovery. Future studies should compare hypotonic formulas and sports drinks in different exercise settings, evaluating different levels of sodium and/or other electrolytes, blends of carbohydrates, and novel ingredients for addressing hydration and rehydration before, during, and after exercise.
Collapse
Affiliation(s)
| | | | | | - Niko Mihic
- Real Madrid, Medical Services, 28055 Madrid, Spain; (J.L.-C.); (N.M.)
| | | | | | - Craig A. Horswill
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60608, USA;
| |
Collapse
|
6
|
Schillinger RJ, Mwakamui S, Mulenga C, Tembo M, Hodges P, Besa E, Chandwe K, Owino VO, Edwards CA, Kelly P, Morrison DJ. 13C-sucrose breath test for the non-invasive assessment of environmental enteropathy in Zambian adults. Front Med (Lausanne) 2022; 9:904339. [PMID: 35966866 PMCID: PMC9372340 DOI: 10.3389/fmed.2022.904339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/13/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Environmental enteropathy (EE) is a subclinical disorder highly prevalent in tropical and disadvantaged populations and is thought to play a role in growth faltering in children, poor responses to oral vaccines, and micronutrient deficiencies. This study aims to evaluate the potential of a non-invasive breath test based on stable isotopes for evaluation of impaired digestion and absorption of sucrose in EE. Methods We optimized a 13C-sucrose breath test (13C-SBT) in 19 young adults in Glasgow, United Kingdom. In a further experiment (in 18 adults) we validated the 13C-SBT using Reducose, an intestinal glucosidase inhibitor. We then compared the 13C-SBT to intestinal mucosal morphometry, immunostaining for sucrose-isomaltase (SI) expression, and SI activity in 24 Zambian adults with EE. Results Fully labeled sucrose (0.3 mg/kg) provided clear breath enrichment signals over 2–3 h in both British and Zambian adults, more than fivefold higher than naturally enriched sucrose. Reducose dramatically impaired 13C-sucrose digestion, reducing 4 h 13CO2 breath recovery by > 50%. Duodenal biopsies in Zambian adults confirmed the presence of EE, and SI immunostaining was present in 16/24 adults. The kinetics of 13CO2 evolution were consistently faster in participants with detectable SI immunostaining. Although sucrase activity was strongly correlated with villus height (r = 0.72; P < 0.05) after adjustment for age, sex and body mass index, there were no correlations between 13C-SBT and villus height or measured sucrase activity in pinch biopsies. Conclusion A 13C-SBT was developed which was easy to perform, generated clear enrichment of 13CO2 in breath samples, and clearly reports sucrase activity. Further work is needed to validate it and understand its applications in evaluating EE.
Collapse
Affiliation(s)
- Robert J. Schillinger
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Chola Mulenga
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Mizinga Tembo
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Phoebe Hodges
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Victor O. Owino
- Nutritional and Health-Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Christine A. Edwards
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom
- *Correspondence: Paul Kelly,
| | - Douglas J. Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, United Kingdom
- Douglas J. Morrison,
| |
Collapse
|
7
|
Miller GD, Nesbit BA, Kim-Shapiro DB, Basu S, Berry MJ. Effect of Vitamin C and Protein Supplementation on Plasma Nitrate and Nitrite Response following Consumption of Beetroot Juice. Nutrients 2022; 14:1880. [PMID: 35565845 PMCID: PMC9100995 DOI: 10.3390/nu14091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Beetroot juice is a food high in nitrate and is associated with cardiometabolic health benefits and enhanced exercise performance through the production of nitric oxide in the nitrate−nitrite−nitric oxide pathway. Since various food components influence this pathway, the aim of this trial was to study the effect of beetroot juice alone and in conjunction with vitamin C or protein on the acute response to plasma nitrate and nitrite levels in healthy middle- to older-aged adults. In this cross-over trial, each participant received, in a randomized order, a single dose of Beet It Sport® alone; Beet It Sport®, plus a 200 mg vitamin C supplement; and Beet It Sport® plus 15 g of whey protein. Plasma levels of nitrate and nitrite were determined prior to and at 1 and 3 h after intervention. Log plasma nitrate and nitrite was calculated to obtain data that were normally distributed, and these data were analyzed using two-way within-factors ANOVA, with time and treatment as the independent factors. There were no statistically significant differences for log plasma nitrate (p = 0.308) or log plasma nitrite (p = 0.391) values across treatments. Log plasma nitrate increased significantly from pre-consumption levels after 1 h (p < 0.001) and 3 h (p < 0.001), but plasma nitrate was lower at 3 h than 1 h (p < 0.001). Log plasma nitrite increased from pre to 1 h (p < 0.001) and 3 h (p < 0.001) with log values at 3 h higher than at 1 h (p = 0.003). In this cohort, we observed no differences in log plasma nitrate and nitrite at 1 h and 3 h after co-ingesting beetroot juice with vitamin C or a whey protein supplement compared to beetroot juice alone. Further research needs to be undertaken to expand the blood-sampling time-frame and to examine factors that may influence the kinetics of the plasma nitrate to nitrite efficacy, such as differences in fluid volume and osmolarity between treatments employed.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Beverly A. Nesbit
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Daniel B. Kim-Shapiro
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| |
Collapse
|
8
|
Berry CW, Murray B, Kenney WL. Scientific basis for a milk permeate-based sports drink – A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med 2021; 52:349-375. [PMID: 34716905 PMCID: PMC8803723 DOI: 10.1007/s40279-021-01558-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/25/2023]
Abstract
Background Body-fluid loss during prolonged continuous exercise can impair cardiovascular function, harming performance. Delta percent plasma volume (dPV) represents the change in central and circulatory body-water volume and therefore hydration during exercise; however, the effect of carbohydrate–electrolyte drinks and water on the dPV response is unclear. Objective To determine by meta-analysis the effects of ingested hypertonic (> 300 mOsmol kg−1), isotonic (275–300 mOsmol kg−1) and hypotonic (< 275 mOsmol kg−1) drinks containing carbohydrate and electrolyte ([Na+] < 50 mmol L−1), and non-carbohydrate drinks/water (< 40 mOsmol kg−1) on dPV during continuous exercise. Methods A systematic review produced 28 qualifying studies and 68 drink treatment effects. Random-effects meta-analyses with repeated measures provided estimates of effects and probability of superiority (p+) during 0–180 min of exercise, adjusted for drink osmolality, ingestion rate, metabolic rate and a weakly informative Bayesian prior. Results Mean drink effects on dPV were: hypertonic − 7.4% [90% compatibility limits (CL) − 8.5, − 6.3], isotonic − 8.7% (90% CL − 10.1, − 7.4), hypotonic − 6.3% (90% CL − 7.4, − 5.3) and water − 7.5% (90% CL − 8.5, − 6.4). Posterior contrast estimates relative to the smallest important effect (dPV = 0.75%) were: hypertonic-isotonic 1.2% (90% CL − 0.1, 2.6; p+ = 0.74), hypotonic-isotonic 2.3% (90% CL 1.1, 3.5; p+ = 0.984), water-isotonic 1.3% (90% CL 0.0, 2.5; p+ = 0.76), hypotonic-hypertonic 1.1% (90% CL 0.1, 2.1; p+ = 0.71), hypertonic-water 0.1% (90% CL − 0.8, 1.0; p+ = 0.12) and hypotonic-water 1.1% (90% CL 0.1, 2.0; p+ = 0.72). Thus, hypotonic drinks were very likely superior to isotonic and likely superior to hypertonic and water. Metabolic rate, ingestion rate, carbohydrate characteristics and electrolyte concentration were generally substantial modifiers of dPV. Conclusion Hypotonic carbohydrate–electrolyte drinks ingested continuously during exercise provide the greatest benefit to hydration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01558-y.
Collapse
|
10
|
Comparisons of isomaltulose, sucrose, and mixture of glucose and fructose ingestions on postexercise hydration state in young men. Eur J Nutr 2021; 60:4519-4529. [PMID: 34129073 DOI: 10.1007/s00394-021-02614-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Isomaltulose is a low glycemic and insulinaemic carbohydrate available as a constituent in sports drink. However, it remains unclear whether postexercise rehydration achieved by isomaltulose drink ingestion alone differs as compared to other carbohydrates. METHODS Thirteen young men performed intermittent exercise in the heat (35 °C and relative humidity 40%) to induce a state of hypohydration as defined by a 2% loss in body mass. Thereafter, participants were rehydrated by ingesting drinks equal to the volume of body mass loss with either a mixture of 3.25% glucose and 3.25% fructose, 6.5% sucrose (SUC), or 6.5% isomaltulose (ISO) within the first 30 min of a 3-h recovery. The change in plasma volume (ΔPV) from pre-exercise baseline, blood glucose, and plasma insulin concentration were assessed every 30-min. RESULTS ΔPV was lower in ISO as compared to SUC until 90 min of the recovery (all P ≤ 0.038) with no difference thereafter (all P ≥ 0.391). The ΔPV were paralleled by concomitant changes in blood glucose levels that were greater in ISO as compared to other drinks after 90 min of the recovery (all P ≤ 0.035). Plasma insulin secretion, which potentially enhances renal sodium reabsorption and fluid retention, did not differ between the trials (interaction, P = 0.653). ISO induced a greater net fluid volume retention as compared to SUC (P = 0.010). CONCLUSION We showed that rehydration with an isomaltulose drink following exercise-heat stress induces comparable recovery of PV and a greater net fluid retention as compared to other drinks, albeit this response is delayed. The delayed water transport along with glucose absorption may modulate this response. This trial was registered in 25th Sep 2019 at https://www.umin.ac.jp/ as UMIN000038099. (249/250).
Collapse
|
11
|
Wölnerhanssen BK, Drewe J, Verbeure W, le Roux CW, Dellatorre‐Teixeira L, Rehfeld JF, Holst JJ, Hartmann B, Tack J, Peterli R, Beglinger C, Meyer‐Gerspach AC. Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot dose-ranging study. Diabetes Obes Metab 2021; 23:1311-1321. [PMID: 33565706 PMCID: PMC8247993 DOI: 10.1111/dom.14342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
AIM To determine whether a dose-dependent effect in the stimulation of gut hormone release (plasma cholecystokinin [CCK], active glucagon-like peptide-1 [aGLP-1] and peptide tyrosine tyrosine [PYY]) is found for the natural sweetener erythritol. MATERIALS AND METHODS Twelve healthy, lean volunteers received solutions with 10, 25 or 50 g erythritol, or tap water enriched with 13 C-sodium acetate on four study days via a nasogastric tube in this randomized (active treatments), placebo-controlled, double-blind, cross-over trial. Blood samples and breath samples (13 C-sodium acetate method for measurement of gastric emptying [GE]) were taken at regular intervals, and sensations of appetite and gastrointestinal symptoms were rated. RESULTS We found (a) a dose-dependent stimulation of CCK, aGLP-1 and PYY, and slowing of GE, (b) no effect on blood glucose, insulin, motilin, glucagon or glucose-dependent insulinotropic polypeptide, (c) no effect on blood lipids and uric acid, and (d) no abdominal pain, nausea or vomiting. CONCLUSIONS Solutions with 10 and 50 g of erythritol stimulated gut hormone release. Emptying of erythritol-containing solutions from the stomach was slower compared with placebo. There was no effect on plasma glucose, insulin, glucagon, blood lipids or uric acid. All doses were well tolerated.
Collapse
Affiliation(s)
| | - Jürgen Drewe
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital of BaselBaselSwitzerland
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal DisordersCatholic University of LeuvenLeuvenBelgium
| | - Carel W. le Roux
- Diabetes Complications Research CentreConway Institute University College DublinDublinIreland
| | | | - Jens F. Rehfeld
- Department of Clinical Biochemistry, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jan Tack
- Translational Research Center for Gastrointestinal DisordersCatholic University of LeuvenLeuvenBelgium
| | - Ralph Peterli
- Clarunis, Department of Surgery, St. ClaraspitalBaselSwitzerland
| | - Christoph Beglinger
- St. Clara Research Ltd at St. ClaraspitalBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Anne C. Meyer‐Gerspach
- St. Clara Research Ltd at St. ClaraspitalBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
12
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
13
|
Hydration Efficacy of a Milk Permeate-Based Oral Hydration Solution. Nutrients 2020; 12:nu12051502. [PMID: 32455677 PMCID: PMC7284605 DOI: 10.3390/nu12051502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
Milk permeate is an electrolyte-rich, protein- and fat-free liquid with a similar carbohydrate and mineral content to that of milk. Its hydration efficacy has not been examined. The beverage hydration index (BHI) has been used to compare various beverages to water in terms of post-ingestion fluid balance and retention. Our purpose was to compare the BHI (and related physiological responses) of a novel milk permeate solution (MPS) to that of water and a traditional carbohydrate–electrolyte solution (CES). Over three visits, 12 young subjects consumed 1 L of water, CES, or MPS. Urine samples were collected immediately post-ingestion and at 60, 120, 180, and 240 min. BHI was calculated by dividing cumulative urine output after water consumption by cumulative urine output for each test beverage at each time point. The BHI for MPS was significantly higher at all time points compared to water (all p < 0.001) and CES (all p ≤ 0.01) but did not differ between CES and water at any time point. Drinking 1 L of MPS resulted in decreased cumulative urine output across the subsequent 4 h compared to water and CES, suggesting that a beverage containing milk permeate is superior to water and a traditional CES at sustaining positive fluid balance post-ingestion.
Collapse
|
14
|
Sutehall S, Galloway SDR, Bosch A, Pitsiladis Y. Addition of an Alginate Hydrogel to a Carbohydrate Beverage Enhances Gastric Emptying. Med Sci Sports Exerc 2020; 52:1785-1792. [PMID: 32079920 DOI: 10.1249/mss.0000000000002301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to examine the effect of altering osmolality or adding sodium alginate and pectin to a concentrated carbohydrate (CHO) beverage on gastric-emptying (GE) rate. METHODS Boluses (500 mL) of three drinks were instilled double blind in eight healthy men while seated, GE was measured using the double sampling method for 90 min, and blood samples were collected regularly. Drinks consisted of glucose and fructose (MON; 1392 mOsmol·kg), maltodextrin and fructose (POLY; 727 mOsmol·kg), and maltodextrin, fructose, sodium alginate, and pectin (ENCAP; 732 mOsmol·kg) with each providing 180 g·L CHO (CHO ratio of 1:0.7 maltodextrin or glucose/fructose). RESULTS Time to empty half of the ingested bolus was faster for ENCAP (21 ± 9 min) than for POLY (37 ± 8 min); both were faster than MON (51 ± 15 min). There were main effects for time and drink in addition to an interaction effect for the volume of test drink remaining in the stomach over the 90 min period, but there were no differences between MON and POLY at any time point. ENCAP had a smaller volume of the test drink in the stomach than MON at 30 min (193 ± 62 vs 323 ± 54 mL), which remained less up to 60 min (93 ± 37 vs 210 ± 88 mL). There was a smaller volume of the drink remaining in the stomach in ENCAP compared with POLY 20 min (242 ± 73 vs 318 ± 47 mL) and 30 min (193 ± 62 vs 304 ± 40 mL) after ingestion. Although there was a main effect of time, there was no effect of drink or an interaction effect on serum glucose, insulin or nonesterified fatty acid concentrations. CONCLUSION The addition of sodium alginate and pectin to a CHO beverage enhances early GE rate but did not affect serum glucose, insulin, or nonesterified fatty acid concentration at rest.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Stuart D R Galloway
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UNITED KINGDOM
| | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| |
Collapse
|
15
|
Meldgaard T, Keller J, Olesen AE, Olesen SS, Krogh K, Borre M, Farmer A, Brock B, Brock C, Drewes AM. Pathophysiology and management of diabetic gastroenteropathy. Therap Adv Gastroenterol 2019; 12:1756284819852047. [PMID: 31244895 PMCID: PMC6580709 DOI: 10.1177/1756284819852047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
Polyneuropathy is a common complication to diabetes. Neuropathies within the enteric nervous system are associated with gastroenteropathy and marked symptoms that severely reduce quality of life. Symptoms are pleomorphic but include nausea, vomiting, dysphagia, dyspepsia, pain, bloating, diarrhoea, constipation and faecal incontinence. The aims of this review are fourfold. First, to provide a summary of the pathophysiology underlying diabetic gastroenteropathy. Secondly to give an overview of the diagnostic methods. Thirdly, to provide clinicians with a focussed overview of current and future methods for pharmacological and nonpharmacological treatment modalities. Pharmacological management is categorised according to symptoms arising from the upper or lower gut as well as sensory dysfunctions. Dietary management is central to improvement of symptoms and is discussed in detail, and neuromodulatory treatment modalities and other emerging management strategies for diabetic gastroenteropathy are discussed. Finally, we propose a diagnostic/investigation algorithm that can be used to support multidisciplinary management.
Collapse
Affiliation(s)
| | - Jutta Keller
- Israelitic Hospital in Hamburg, Academic
Hospital University of Hamburg, Germany
| | - Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology and
Hepatology and Department of Clinical Medicine, Aalborg University Hospital,
Denmark,Department of Clinical Medicine, Aalborg
University, Denmark
| | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and
Hepatology and Department of Clinical Medicine, Aalborg University Hospital,
Denmark,Department of Clinical Medicine, Aalborg
University, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology,
Aarhus University Hospital, Denmark
| | - Mette Borre
- Department of Hepatology and Gastroenterology,
Aarhus University Hospital, Denmark
| | - Adam Farmer
- Department of Gastroenterology, University
Hospitals of North Midlands, Stoke on Trent, Staffordshire, UK,Centre for Digestive Diseases, Blizard
Institute of Cell and Molecular Science, Wingate Institute of
Neurogastroenterology, Barts and the London School of Medicine and
Dentistry, Queen Mary University of London, UK
| | - Birgitte Brock
- Department of Clinical Research, Steno Diabetes
Center Copenhagen (SDCC), Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and
Hepatology and Department of Clinical Medicine, Aalborg University Hospital,
Denmark,Department of Clinical Medicine, Aalborg
University, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and
Hepatology and Department of Clinical Medicine, Aalborg University Hospital,
Denmark,Department of Clinical Medicine, Aalborg
University, Denmark
| |
Collapse
|
16
|
Moens F, Van den Abbeele P, Basit AW, Dodoo C, Chatterjee R, Smith B, Gaisford S. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. Int J Pharm 2018; 555:1-10. [PMID: 30445175 DOI: 10.1016/j.ijpharm.2018.11.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
Poorly formulated probiotic supplements intended for oral administration often fail to protect bacteria from the challenges of human digestion, meaning bacteria do not reach the small intestine in a viable state. As a result, the ability of probiotics to influence the human gut microbiota has not been proven. Here we show how (i) considered formulation of an aqueous probiotic suspension can facilitate delivery of viable probiotic bacteria to the gut and (ii) quantitate the effect of colonisation and proliferation of specific probiotic species on the human gut microbiota, using an in-vitro gut model. Our data revealed immediate colonisation and growth of three probiotic species in the luminal and mucosal compartments of the proximal and distal colon, and growth of a fourth species in the luminal proximal colon, leading to higher proximal and distal colonic lactate concentrations. The lactate stimulated growth of lactate-consuming bacteria, altering the bacterial diversity of the microbiota and resulting in increased short-chain fatty acid production, especially butyrate. Additionally, an immunomodulatory effect of the probiotics was seen; production of anti-inflammatory cytokines (IL-6 and IL-10) was increased and production of inflammatory chemokines (MCP-1, CXCL 10 and IL-8.) was reduced. The results indicate that the probiotic species alone do not result in a clinical effect; rather, they facilitate modulation of the gut microbiota composition and metabolic activity thereby influencing the immune response.
Collapse
Affiliation(s)
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Cornelius Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Barry Smith
- Symprove Ltd, Sandy Farm, The Sands, Farnham, Surrey GU10 1PX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|