1
|
Le DE, Alkayed NJ, Cao Z, Chattergoon NN, Garcia-Jaramillo M, Thornburg K, Kaul S. Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective β1-receptor blockers. J Physiol 2024; 602:3423-3448. [PMID: 38885335 PMCID: PMC11284965 DOI: 10.1113/jp285720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.
Collapse
Affiliation(s)
- D. Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Nabil J. Alkayed
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Natasha N. Chattergoon
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
3
|
Marketou M, Lazopoulos G, Kontaraki J, Kalogerakos P, Plevritaki A, Chlouverakis G, Fragiadakis K, Maragkoudakis S, Zervakis S, Savva E, Kampanieris E, Kochiadakis G. PPAR-γ gene expression in pericoronary adipose tissue: A focus on obesity. Hellenic J Cardiol 2023; 69:67-68. [PMID: 36179807 DOI: 10.1016/j.hjc.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University General Hospital, Crete, Greece.
| | - George Lazopoulos
- Cardiovascular Surgery Department, Heraklion University General Hospital, Crete, Greece
| | - Joanna Kontaraki
- Molecular Cardiology Laboratory, School of Medicine, University of Crete, Crete, Greece
| | - Paris Kalogerakos
- Cardiovascular Surgery Department, Heraklion University General Hospital, Crete, Greece
| | | | - Gregory Chlouverakis
- Department of Biostatistics, School of Medicine, University of Crete, Crete, Greece
| | | | | | - Stelios Zervakis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | - Eirini Savva
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | - George Kochiadakis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| |
Collapse
|
4
|
Protective role of activating PPARγ in advanced glycation end products-induced impairment of coronary artery vasodilation via inhibiting p38 phosphorylation and reactive oxygen species production. Biomed Pharmacother 2022; 147:112641. [DOI: 10.1016/j.biopha.2022.112641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
|
5
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
6
|
Huang Y, Xie H, Pan P, Qu Q, Xia Q, Gao X, Zhang S, Jiang Q. Heat stress promotes lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. Cell Stress Chaperones 2021; 26:563-574. [PMID: 33743152 PMCID: PMC8065074 DOI: 10.1007/s12192-021-01201-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Heat stress (HS) results in health problems in animals. This study was conducted to investigate the effect and the underlying mechanism of HS on the proliferation and differentiation process of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated at 37 °C or 41.5 °C. HS up-regulated the mRNA and protein expression level of heat shock protein 70 (HSP70). Furthermore, the proliferation of 3T3-L1 preadipocytes were significantly inhibited after HS treatment for 2 days. A large number of accumulated lipid droplets were observed under the microscope after HS treatment for 8 days. Notably, the result of oil red O staining showed that the number of lipid droplets increased significantly and the differentiation ability of the cells was enhanced after HS. Moreover, after 2 and 8 d of differentiation, HS increased the transcription levels of fat synthesis genes including peroxisome proliferators activated receptor γ (PPARγ), fatty acid binding protein 2 (AP2), fatty acid synthase (FAS) and CCAAT enhancer binding protein α (CEBPα) genes, while decreasing the transcription levels of lipid decomposition genes including ATGL and HSL genes. In addition, HS reduced the expression of AMPK and PGC-1α, as well as the dephosphorylation of AMPK. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) can eliminate HS induced lipogenesis by activating AMPK. These results indicated that HS inhibited the proliferation of 3T3-L1 preadipocytes and promoted lipid accumulation by inhibiting the AMPK-PGC-1α signaling pathway in 3T3-L1 preadipocytes. This work lays a theoretical foundation for improving the effect of HS on meat quality of livestock and provides a new direction for the prevention of obesity caused by HS.
Collapse
Affiliation(s)
- Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongyue Xie
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Peng Pan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiuhong Qu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qin Xia
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
7
|
Expression of Genes Encoding Nuclear Factors PPARγ, LXRβ, and RORα in Epicardial and Subcutaneous Adipose Tissues in Patients with Coronary Heart Disease. Bull Exp Biol Med 2021; 170:654-657. [PMID: 33788111 DOI: 10.1007/s10517-021-05126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 10/21/2022]
Abstract
The nuclear factors PPARγ, RORα, and LXRβ are involved in transcriptional control of adipogenesis and implicated in glucose and lipid metabolism. In adipose tissues, they regulate inflammation. This study focuses on expression of the PPARG, RORA, and LXRβ (NR1H2) genes in epicardial and subcutaneous adipose tissues in patients with coronary heart disease as well as with concomitant abdominal obesity. In patients with coronary heart disease and abdominal obesity, PPARG mRNA level in subcutaneous adipose tissue was reduced in comparison with control group. In patients with total coronary occlusions, LXRβ mRNA level in epicardial adipose tissue was reduced, and it positively correlated with plasma HDL cholesterol. Thus, in cases of concomitant abdominal obesity and chronic total coronary occlusions, coronary heart disease is characterized by down-regulated expression of the genes of various transcriptional adipogenesis-regulating factors in adipose tissue.
Collapse
|
8
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
9
|
Awwad ZM, El-Ganainy SO, ElMallah AI, Khattab MM, El-Khatib AS. Telmisartan and captopril ameliorate pregabalin-induced heart failure in rats. Toxicology 2019; 428:152310. [PMID: 31629013 DOI: 10.1016/j.tox.2019.152310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Pregabalin (PRG) is highly effective in the treatment of epilepsy, neuropathic pain and anxiety disorders. Despite its potential benefits, PRG administration has been reported to induce or exacerbate heart failure (HF). It has been previously documented that overactivation of the renin angiotensin system (RAS) is involved in HF pathophysiological mechanism. The target of the current study was to examine the possible cardioprotective effect of telmisartan (Tel), an angiotensin II type 1 receptor (AT1R) blocker, compared with that of captopril (Cap), an angiotensin converting enzyme (ACE) inhibitor, in ameliorating PRG-induced HF in rats by assessing morphometric, echocardiographic and histopathological parameters. Furthermore, to investigate the role of RAS blockade by the two drugs in guarding against PRG-induced changes in cardiac angiotensin 1-7 (Ang 1-7) and angiotensin II (Ang II) levels, in addition to myocardial expression of ACE2, ACE, Mas receptor (MasR) and AT1R. Results showed that PRG administration induced morphometric, echocardiographic and histopathological deleterious alterations and significantly elevated cardiac Ang II, ACE and AT1R levels, while reduced Ang 1-7, ACE2 and MasR cardiac levels. Concurrent treatment with either Tel or Cap reversed PRG-induced morphometric, echocardiographic and histopathological abnormalities and revealed prominent protection against PRG-induced HF via downregulation of ACE/Ang II/AT1R and upregulation of ACE2/Ang 1-7/MasR axes. These are the first findings to demonstrate that the potential benefits of Tel and Cap are mediated by counteracting the altered balance between the RAS axes induced by PRG. Hence; Tel and Cap may attenuate PRG-induced HF partially through stimulation of ACE2/Ang 1-7/MasR pathway.
Collapse
Affiliation(s)
- Zeinab M Awwad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Ahmed I ElMallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Rahmani E, Akbarzadeh S, Broomand A, Torabi F, Motamed N, Zohrabi M. Serum Levels of Angiopoietin-Like Protein 2 and Obestatin in Iranian Women with Polycystic Ovary Syndrome and Normal Body Mass Index. J Clin Med 2018; 7:jcm7070159. [PMID: 29932432 PMCID: PMC6069096 DOI: 10.3390/jcm7070159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disease in women of reproduction age and a major cause of anovulatory infertility. Insulin resistance plays an important role in the development and durability of this disorder. ANGPTL2 is known as an inflammatory mediator derived from adipose tissue that links obesity to systemic insulin resistance, and obestatin has been identified as a hormone associated with insulin resistance that suppresses food reabsorption, inhibits gastric emptying and decreases weight gain. The aim of this study was to evaluate serum levels of ANGPTL2 and obestatin in PCOS women with normal body mass index (BMI). Methods: In this case-control study, 26 PCOS women based on the Rotterdam 2003 diagnostic criteria as the case group and 26 women with normal menstrual cycles as the control group were enrolled. Serum levels of ANGPTL2, obestatin, insulin and other hormone factors related with PCOS were measured by ELISA method and biochemical parameters were measured by an autoanalyzer. Data were analyzed by independent samples-T test, Chi Square, Correlation and a single sample Kolmogrov–Smirnov test using SPSS software, version 16. Results: There were no significant variations in the amount of ANGPTL2, obestatin, cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein, cholesterol, creatinine and dehydroepiandrosterone-sulfate between the two groups. There were significant increases in serum levels of fasting blood sugar (p = 0.01), insulin (p = 0.04), homeostasis model assessments of insulin resistance (p = 0.04), testosterone (p = 0.02), luteinizing hormone (p = 0.004), luteinizing hormone/follicle stimulating hormone (p = 0.006) and prolactin (p = 0.04) in case group compared to the control group. A significant positive correlation was observed between ANGPTL2 and insulin (p = 0.02), HOMA-IR (p = 0.01) and, on the other hand, a significant negative correlation was observed between obestatin and insulin (p = 0.01), HOMA-IR (p = 0.008) in PCOS group. Conclusions: In this study, no significant variations were observed in serum levels of ANGPTL2 and obestatin in PCOS women with normal BMI.
Collapse
Affiliation(s)
- Elham Rahmani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Samad Akbarzadeh
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Ainaz Broomand
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Fatemeh Torabi
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Niloofar Motamed
- Department of Community Medicine, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Marzieh Zohrabi
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514947932, Iran.
| |
Collapse
|
11
|
Afdal P, AbdelMassih AF. Is pulmonary vascular disease reversible with PPAR ɣ agonists? Microcirculation 2018; 25:e12444. [DOI: 10.1111/micc.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Afdal
- Faculty of Medicine; Cairo University; Cairo Egypt
| | | |
Collapse
|
12
|
Du Y, Fu J, Yao L, Qiao L, Liu N, Xing Y, Xue X. Altered expression of PPAR‑γ and TRPC in neonatal rats with persistent pulmonary hypertension. Mol Med Rep 2017. [PMID: 28627661 PMCID: PMC5562061 DOI: 10.3892/mmr.2017.6744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a life-threatening disease that is commonly observed in the neonatal intensive care unit. PPHN is pathologically characterized by pulmonary vascular remodeling and, in particular, pulmonary artery smooth muscle cell (PASMC) proliferation. Decreased expression levels of peroxisome proliferator-activated receptor γ (PPAR-γ), which is a member of the nuclear receptor hormone superfamily, in combination with elevated expressions of transient receptor potential cation channel, subfamily C, member 1 (TRPC1) and TRPC6 contributes to the PASMC proliferation and excessive pulmonary vascular remodeling in adult pulmonary hypertension (PH). Whether PPAR-γ, TRPC1 and TRPC6 affect the development of vascular remodeling in PPHN model rats remains unknown. The aim of the present study was to investigate the roles of PPAR-γ, TRPC1 and TRP6 on the pathogenesis of PPHN in rats. The rat model of PPHN was established by exposure to hypoxic conditions and indomethacin treatment. Lung tissues, hearts and blood from PPHN model and Control rats were collected and examined. Parameters, including the percentage of medial wall thickness (WT %), the percentage of medial wall area (WA %), right ventricular hypertrophy (RVH) and the plasma concentration of B-type natriuretic peptide (BNP) were used to estimate the development of PPHN. The expression levels of PPAR-γ, TRPC1 and TRPC6 in lung tissues were detected by immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. Significant increases were observed in the WT %, WA %, RVH and plasma BNP in the PPHN group compare with the Control group (P<0.01). In addition, the mRNA and protein expression levels of PPAR-γ were markedly downregulated (P<0.05 vs. Control). In the PPHN group, the protein expression levels of TRPC1 and TRPC6 were higher compared to the control group; however, there was no difference in the mRNA expression levels (P>0.05). In conclusion, the present study successfully established a PPHN rat model, and the altered expressions of PPAR-γ, TRPC1 and TRPC6 in the pulmonary artery located in the lungs of newborn rats with PPHN suggested that these proteins may be important mediators of PPHN.
Collapse
Affiliation(s)
- Yanna Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
13
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol 2017; 13:279-296. [PMID: 28581362 PMCID: PMC5941699 DOI: 10.2217/fca-2017-0019] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
The PPARs are a subfamily of three ligand-inducible transcription factors, which belong to the superfamily of nuclear hormone receptors. In mammals, the PPAR subfamily consists of three members: PPAR-α, PPAR-β/δ and PPAR-γ. PPARs control the expression of a large number of genes involved in metabolic homeostasis, lipid, glucose and energy metabolism, adipogenesis and inflammation. PPARs regulate a large number of metabolic pathways that are implicated in the pathogenesis of metabolic diseases such as metabolic syndrome, Type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular disease. The aim of this review is to provide up-to-date information about the biochemical and metabolic actions of PPAR-β/δ and PPAR-γ, the therapeutic potential of their agonists currently under clinical development and the cardiovascular disease outcome of clinical trials of PPAR-γ agonists, pioglitazone and rosiglitazone.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13:259-278. [PMID: 28581332 PMCID: PMC5941715 DOI: 10.2217/fca-2016-0059] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
This article provides a comprehensive review about the molecular and metabolic actions of PPAR-α. It describes its structural features, ligand specificity, gene transcription mechanisms, functional characteristics and target genes. In addition, recent progress with the use of loss of function and gain of function mouse models in the discovery of diverse biological functions of PPAR-α, particularly in the vascular system and the status of the development of new single, dual, pan and partial PPAR agonists (PPAR modulators) in the clinical management of metabolic diseases are presented. This review also summarizes the clinical outcomes from a large number of clinical trials aimed at evaluating the atheroprotective actions of current clinically used PPAR-α agonists, fibrates and statin-fibrate combination therapy.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Peng Y, Zeng Y, Xu J, Huang XL, Zhang W, Xu XL. PPAR-γ is involved in the protective effect of 2,3,4',5-tetrahydroxystilbene-2-O-beta-D-glucoside against cardiac fibrosis in pressure-overloaded rats. Eur J Pharmacol 2016; 791:105-114. [PMID: 27568841 DOI: 10.1016/j.ejphar.2016.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
2, 3, 4', 5-tetrahydroxystilbene-2-0-β-D glucoside (TSG) could inhibit cardiac remodeling in response to pressure overload. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been recognized as a potent, endogenous antifibrotic factor and maintaining a proper expression level in myocardium is necessary for assuring that structure and function of heart adapt to pressure overload stress. The aim of the present study was to investigate whether PPAR-γ is involved in the beneficial effect of TSG on pressure overload-induced cardiac fibrosis. TSG (120mg/kg/day) or TSG (120mg/kg/day) plus the PPAR-γ antagonist GW9662 (1mg/kg/day) was administered to rats with pressure overload induced by abdominal aortic banding. 30 days later, pressure overload-induced hypertension, cardiac dysfunction and fibrosis were significantly inhibited by TSG. TSG also significantly reduced collagen I, collagen III, fibronectin and plasminogen activator inhibitor (PAI)-1 expression, as makers of myocardial fibrosis. Theses anti-fibrotic effects of TSG in pressure overloaded hearts could be abrogated by co-treatment with GW9662. Accordingly, upregulated PPAR-γ protein expression by TSG in pressure overloaded hearts was also reversed by co-treatment with GW9662. Additionally, the inhibitory effects of TSG on angiotensin II induced cardiac fibroblasts proliferation, differentiation and expression of collagen I and III, fibronectin and PAI-1 were abrogated by PPAR-γ antagonist GW9662 and PPAR-γ silencing. Furthermore, TSG directly increased PPAR-γ gene expression at gene promoter, mRNA and protein level in angiotensin II-treated cardiac fibroblats in vitro. Our results suggested that upregualtion of endogenous PPAR-γ expression by TSG may be involved in its beneficial effect on pressure overload-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Yi Zeng
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Jin Xu
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Xing Lan Huang
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China
| | - Wei Zhang
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China.
| | - Xiao Le Xu
- Department of Pharmacology, Nantong University, Pharmacy College, Nantong, China.
| |
Collapse
|
16
|
Shaik-Dasthagirisaheb YB, Mekasha S, He X, Gibson FC, Ingalls RR. Signaling events in pathogen-induced macrophage foam cell formation. Pathog Dis 2016; 74:ftw074. [PMID: 27481727 DOI: 10.1093/femspd/ftw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yazdani B Shaik-Dasthagirisaheb
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Samrawit Mekasha
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Xianbao He
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Frank C Gibson
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | - Robin R Ingalls
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Chen R, Peng X, Du W, Wu Y, Huang B, Xue L, Wu Q, Qiu H, Jiang Q. Curcumin attenuates cardiomyocyte hypertrophy induced by high glucose and insulin via the PPARγ/Akt/NO signaling pathway. Diabetes Res Clin Pract 2015; 108:235-42. [PMID: 25765666 DOI: 10.1016/j.diabres.2015.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/19/2014] [Accepted: 02/15/2015] [Indexed: 12/21/2022]
Abstract
AIM To investigate the potential effect of curcumin on cardiomyocyte hypertrophy and a possible mechanism involving the PPARγ/Akt/NO signaling pathway in diabetes. METHODS The cardiomyocyte hypertrophy induced by high glucose (25.5mmol/L) and insulin (0.1μmol/L) (HGI) and the antihypertrophic effect of curcumin were evaluated in primary culture by measuring the cell surface area, protein content and atrial natriuretic factor (ANF) mRNA expression. The mRNA and protein expressions were assayed by reverse transcription PCR and Western blotting, whereas the NO concentration and endothelial NO synthase (eNOS) activity were determined using nitrate reduction and ELISA methods, respectively. RESULTS The cardiomyocyte hypertrophy induced by HGI was characterized by increasing ANF mRNA expression, total protein content, and cell surface area, with downregulated mRNA and protein expressions of both PPARγ and Akt, which paralleled the declining eNOS mRNA expression, eNOS content, and NO concentration. The effects of HGI were inhibited by curcumin (1, 3, 10μmol/L) in a concentration-dependent manner. GW9662 (10μmol/L), a selective PPARγ antagonist, could abolish the effects of curcumin. LY294002 (20μmol/L), an Akt blocker, and N(G)-nitro-l-arginine-methyl ester (100μmol/L), a NOS inhibitor, could also diminish the effects of curcumin. CONCLUSIONS The results suggested that curcumin supplementation can improve HGI-induced cardiomyocytes hypertrophy in vitro through the activation of PPARγ/Akt/NO signaling pathway.
Collapse
Affiliation(s)
- Rongchun Chen
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaofeng Peng
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Weimin Du
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yang Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Bo Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qin Wu
- Department of Pharmacology, Zunyi Medical College, Guizhou 563003, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
18
|
Pioglitazone, a peroxisome proliferator-activated receptor γ activator, suppresses coronary spasm. Coron Artery Dis 2014; 25:671-7. [DOI: 10.1097/mca.0000000000000144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mathew R. Pulmonary hypertension and metabolic syndrome: Possible connection, PPARγ and Caveolin-1. World J Cardiol 2014; 6:692-705. [PMID: 25228949 PMCID: PMC4163699 DOI: 10.4330/wjc.v6.i8.692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
A number of disparate diseases can lead to pulmonary hypertension (PH), a serious disorder with a high morbidity and mortality rate. Recent studies suggest that the associated metabolic dysregulation may be an important factor adversely impacting the prognosis of PH. Furthermore, metabolic syndrome is associated with vascular diseases including PH. Inflammation plays a significant role both in PH and metabolic syndrome. Adipose tissue modulates lipid and glucose metabolism, and also produces pro- and anti-inflammatory adipokines that modulate vascular function and angiogenesis, suggesting a close functional relationship between the adipose tissue and the vasculature. Both caveolin-1, a cell membrane scaffolding protein and peroxisome proliferator-activated receptor (PPAR) γ, a ligand-activated transcription factor are abundantly expressed in the endothelial cells and adipocytes. Both caveolin-1 and PPARγ modulate proliferative and anti-apoptotic pathways, cell migration, inflammation, vascular homeostasis, and participate in lipid transport, triacylglyceride synthesis and glucose metabolism. Caveolin-1 and PPARγ regulate the production of adipokines and in turn are modulated by them. This review article summarizes the roles and inter-relationships of caveolin-1, PPARγ and adipokines in PH and metabolic syndrome.
Collapse
|
20
|
He K, Li Y, Yang K, Gong JP, Li PZ. Effect of peroxisome proliferator-activated receptor γ on the cholesterol efflux of peritoneal macrophages in inflammation. Mol Med Rep 2014; 10:373-8. [PMID: 24788275 DOI: 10.3892/mmr.2014.2200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disorder characterized by lipid and cholesterol accumulation, is the principal contributing factor to the pathology of cardiovascular disease. Macrophages contribute to plaque development by internalizing native and modified lipoproteins that convert them into cholesterol-rich foam cells. With multiple factors, including hypercholesterolemia and inflammation, promoting atherosclerosis, it is of great significance to elucidate how the mechanism of cholesterol efflux from the macrophages changes and the role of peroxisome proliferator-activated receptor γ (PPARγ) in these situations. Following isolation and culture of peritoneal macrophages from C57BL/6 mice in the present study, the cells were divided into three groups: The control group, the ciglitazone group and the PPARγ antisense oligonucleotide group. The expression of PPARγ and nuclear factor of κ light polypeptide gene enhancer in B‑cells inhibitor α (IκBα) in each group was observed through the levels of protein and mRNA, and then the cholesterol efflux of each group was investigated. In addition, the same experiments were repeated following stimulation of each group with lipopolysaccharide (LPS). No significant difference in the expression levels of PPARγ between the control group and ciglitazone group was observed. The expression levels of PPARγ in the PPARγ antisense oligonucleotide group were evidently lower than those in the control group. Subsequent to stimulation with LPS, the expression levels of PPARγ in the three groups were higher than those of each group prior to stimulation. The cholesterol efflux of the PPARγ antisense oligonucleotide group was clearly suppressed following stimulation with LPS in comparison with that of the other groups. PPARγ contributes to anti-inflammation by protecting IκBα from being phosphorylated and degraded and promoting cholesterol efflux from peritoneal macrophages in inflammation.
Collapse
Affiliation(s)
- Kun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yue Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Kang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Pei-Zhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
21
|
Peroxisome proliferator-activated receptor γ ligands retard cultured vascular smooth muscle cells calcification induced by high glucose. Cell Biochem Biophys 2014; 66:421-9. [PMID: 23274912 DOI: 10.1007/s12013-012-9490-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1% (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9% (P > 0.05), 50.0 % (P < 0.01), and 24.4% (P < 0.05), and 48.4% (P < 0.05), 41.4% (P < 0.01) and 56.2% (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2% (P < 0.01) and 70.0%, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.
Collapse
|
22
|
Activation of PPAR-γ ameliorates pulmonary arterial hypertension via inducing heme oxygenase-1 and p21WAF1: An in vivo study in rats. Life Sci 2014; 98:39-43. [DOI: 10.1016/j.lfs.2013.12.208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/08/2013] [Accepted: 12/26/2013] [Indexed: 11/19/2022]
|
23
|
PPARs Integrate the Mammalian Clock and Energy Metabolism. PPAR Res 2014; 2014:653017. [PMID: 24693278 PMCID: PMC3945976 DOI: 10.1155/2014/653017] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation.
Collapse
|
24
|
Fahmi H, Martel-Pelletier J, Pelletier JP, Kapoor M. Peroxisome proliferator-activated receptor gamma in osteoarthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-010-0347-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Cheang WS, Fang X, Tian XY. Pleiotropic effects of peroxisome proliferator-activated receptor γ and δ in vascular diseases. Circ J 2013; 77:2664-71. [PMID: 24107399 DOI: 10.1253/circj.cj-13-0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptors gamma (PPARγ) and delta (PPARδ) are nuclear receptors that have significant physiological effects on glucose and lipid metabolism. Experimental studies in animal models of metabolic disease have demonstrated their effects on improving lipid profile, insulin sensitivity, and reducing inflammatory responses. PPARγ and -δ are also expressed in the vasculature and their beneficial effects have been examined in various cardiovascular disease models such as atherosclerosis, hypertension, diabetic vascular complications, etc. using pharmacological ligands or genetic tools including viral vectors and transgenic mice. These studies suggest that PPARγ and δ are antiinflammatory, antiatherogenic, antioxidant, and antifibrotic against vascular diseases. Several signaling pathways, effector molecules, as well as coactivators/repressors have been identified as responsible for the protective effects of PPARγ and -δ in the vasculature. We discuss the pleiotropic effect of PPARγ and δ in vascular dysfunction, including atherosclerosis, hypertension, vascular remodeling, vascular injury, and diabetic vasculopathy, in various animal models, and the major underlying mechanisms. We also compare the phenotypes of several endothelial cell/vascular smooth muscle-specific PPARγ and -δ knockout and overexpressing transgenic mice in various disease models, and the implications underlying the functional importance of vascular PPARγ and δ in regulating whole-body homeostasis.
Collapse
Affiliation(s)
- Wai San Cheang
- Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong
| | | | | |
Collapse
|
26
|
Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. Br J Nutr 2013; 111:194-200. [DOI: 10.1017/s0007114513002390] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study investigated the potential of a wild blueberry (WB)-enriched diet to improve blood lipid profile and modulate the expression of genes related to lipid homeostasis in obese Zucker rats (OZR), a model of the metabolic syndrome with severe dyslipidaemia. For this purpose, twenty OZR and twenty lean Zucker rats (LZR; controls) were placed either on a control (C) or an 8 % WB diet for 8 weeks. Plasma total cholesterol (TC), HDL-cholesterol and TAG concentrations were determined. The relative expression of six genes involved in lipid metabolism was also determined in both the liver and the abdominal adipose tissue (AAT). Plasma TAG and TC concentrations were significantly lower in the OZR following WB consumption (4228 (sem 471) and 2287 (sem 125) mg/l, respectively) than in those on the C diet (5475 (sem 315) and 2631 (sem 129) mg/l, P< 0·05), while there was no change in HDL-cholesterol concentration. No significant effects were observed for plasma lipids in the LZR. Following WB consumption, the expression of the transcription factors PPARα and PPARγ in the OZR was increased in the AAT, while that of sterol regulatory element-binding protein 1 (SREBP-1) was decreased in the liver and AAT. The expression of fatty acid synthase was significantly decreased in both the liver and AAT and that of ATP-binding cassette transporter 1 was increased in the AAT following WB consumption. In conclusion, WB consumption appears to improve lipid profiles and modulate the expression of key enzymes and transcription factors of lipid metabolism in severely dyslipidaemic rats.
Collapse
|
27
|
Prokocimer M, Barkan R, Gruenbaum Y. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 2013; 12:533-43. [PMID: 23496208 DOI: 10.1111/acel.12070] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 12/14/2022] Open
Abstract
Lamins are nuclear intermediate filaments. In addition to their structural roles, they are implicated in basic nuclear functions such as chromatin organization, DNA replication, transcription, DNA repair, and cell-cycle progression. Mutations in human LMNA gene cause several diseases termed laminopathies. One of the laminopathic diseases is Hutchinson-Gilford progeria syndrome (HGPS), which is caused by a spontaneous mutation and characterized by premature aging. HGPS phenotypes share certain similarities with several apparently comparable medical conditions, such as aging and atherosclerosis, with the conspicuous absence of neuronal degeneration and cancer rarity during the short lifespan of the patients. Cell lines from HGPS patients are characterized by multiple nuclear defects, which include abnormal morphology, altered histone modification patterns, and increased DNA damage. These cell lines provide insight into the molecular pathways including senescence that require lamins A and B1. Here, we review recent data on HGPS phenotypes through the lens of transcriptional deregulation caused by lack of functional lamin A, progerin accumulation, and lamin B1 silencing.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | |
Collapse
|
28
|
Chen YJ, Sheu ML, Tsai KS, Yang RS, Liu SH. Advanced glycation end products induce peroxisome proliferator-activated receptor γ down-regulation-related inflammatory signals in human chondrocytes via Toll-like receptor-4 and receptor for advanced glycation end products. PLoS One 2013; 8:e66611. [PMID: 23776688 PMCID: PMC3680452 DOI: 10.1371/journal.pone.0066611] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs) in joints is important in the development of cartilage destruction and damage in age-related osteoarthritis (OA). The aim of this study was to investigate the roles of peroxisome proliferator-activated receptor γ (PPARγ), toll-like receptor 4 (TLR4), and receptor for AGEs (RAGE) in AGEs-induced inflammatory signalings in human OA chondrocytes. Human articular chondrocytes were isolated and cultured. The productions of metalloproteinase-13 and interleukin-6 were quantified using the specific ELISA kits. The expressions of related signaling proteins were determined by Western blotting. Our results showed that AGEs enhanced the productions of interleukin-6 and metalloproteinase-13 and the expressions of cyclooxygenase-2 and high-mobility group protein B1 and resulted in the reduction of collagen II expression in human OA chondrocytes. AGEs could also activate nuclear factor (NF)-κB activation. Stimulation of human OA chondrocytes with AGEs significantly induced the up-regulation of TLR4 and RAGE expressions and the down-regulation of PPARγ expression in a time- and concentration-dependent manner. Neutralizing antibodies of TLR4 and RAGE effectively reversed the AGEs-induced inflammatory signalings and PPARγ down-regulation. PPARγ agonist pioglitazone could also reverse the AGEs-increased inflammatory signalings. Specific inhibitors for p38 mitogen-activated protein kinases, c-Jun N-terminal kinase and NF-κB suppressed AGEs-induced PPARγ down-regulation and reduction of collagen II expression. Taken together, these findings suggest that AGEs induce PPARγ down-regulation-mediated inflammatory signalings and reduction of collagen II expression in human OA chondrocytes via TLR4 and RAGE, which may play a crucial role in the development of osteoarthritis pathogenesis induced by AGEs accumulation.
Collapse
Affiliation(s)
- Ying Ju Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University and Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Keh Sung Tsai
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:921012. [PMID: 23762167 PMCID: PMC3674686 DOI: 10.1155/2013/921012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/07/2013] [Indexed: 12/18/2022]
Abstract
The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In addition, peroxisome proliferator-activated receptor gamma (PPAR-γ) and AMP-activated protein kinase (AMPK) activities were increased by YPEE in a dose-dependent manner. Pretreatment of AMPK inhibitor decreased the glucose uptake stimulated by YPEE in C2C12 myotubes. We confirmed the anti-diabetic effect of YPEE in mice fed a high fat-diet (HFD). Compared with control mice on a normal diet (ND), these mice showed increased body weight, liver fat, insulin resistance, triacylglycerol (TG), and total cholesterol content. Addition of 5% YPEE significantly reduced the weight gain and rise in liver fat content, serum triacylglycerol (TG), total cholesterol, and insulin resistance found in mice fed a high-fat diet (HFD). Moreover, YPEE reduced the secretion of HFD-induced adipocytokines such as leptin and resistin. YPEE also resulted in increased phosphorylation of AMPK in muscle tissues. These results suggest that ethanol extract of yuja peel exerts anti-diabetic effects via AMPK and PPAR-γ in both cell culture and mouse models.
Collapse
|
30
|
Lee HJ, Kim JH, Kim JH, Martinus RD, Park SH. Angiopoietin-like protein 2, a chronic inflammatory mediator, is a new target induced by TGF-β1 through a Smad3-dependent mechanism. Biochem Biophys Res Commun 2013; 430:981-6. [DOI: 10.1016/j.bbrc.2012.11.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 01/05/2023]
|
31
|
Shen X, Li H, Li W, Wu X, Ding X. Pioglitazone prevents hyperglycemia induced decrease of AdipoR1 and AdipoR2 in coronary arteries and coronary VSMCs. Mol Cell Endocrinol 2012; 363:27-35. [PMID: 22820128 DOI: 10.1016/j.mce.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Adiponectin receptors play an important role in inflammatory diseases like diabetes and atherosclerosis. Former studies revealed that the regulation of adiponectin receptors expression differs in the receptor responses to pioglitazone. However, expression of AdipoRs has not been investigated in the coronary arteries or the coronary vascular smooth muscle cells (VSMCs). In the present study we investigated the effect of pioglitazone on the adiponectin receptors both in vitro and in vivo. METHODS Male Sprague-Dawley rats were randomly divided in three groups. One of them fed with regular chow (the Control group) and two of them fed with high-fat diet and then received low-dose Streptozotocin once by intraperitoneal injection (the DM groups). Rats in one of the DM groups were further treated with pioglitazone (the PIO group). Blood pressure, serum adiponectin, fasting blood glucose, fasting serum insulin, cholesterol, triglyceride, AdipoR1 and AdipoR2 expression, and TNF-α expression in coronary arteries of these groups were investigated. For the in vitro study, the rat coronary VSMCs maintained under defined in vitro conditions were treated with either PIO or the PIO+ GW9662 (PPAR-γ antagonist), and then stimulated with high glucose. AdipoR1 and AdipoR2 expression, TNF-α expression and PPAR-γ expression were investigated. RESULTS Compared to the DM group, treatment with PIO in vivo significantly attenuated cholesterol level, triglyceride level, fasting serum insulin and TNF-α overexpression (p<0.05). PIO also increased AdipoR1 and AdipoR2 expression in coronary arteries, which were reduced notably in the DM group (p<0.05). Consistently, in the study with rat coronary VSMCs, PIO prominently downregulated TNF-α expression and induced PPAR-γ expression, as well as prevented hyperglycemia induced decrease of AdipoR1 and AdipoR2 expression (p<0.05). And pretreatment of PIO+GW9662 did not manifest the prevention effect. CONCLUSION In this study, we showed that treatment with PIO could ameliorate coronary insulin resistant and upregulate the expression of AdipoR1/R2. PIO showed an anti-atherogenic property via the activation of PPAR-γ, suppression of TNF-α overexpression in coronary and coronary VSMCs.
Collapse
MESH Headings
- Adiponectin/blood
- Animals
- Blood Pressure/drug effects
- Cells, Cultured
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Gene Expression/drug effects
- Glucose/metabolism
- Hyperglycemia/chemically induced
- Hyperglycemia/drug therapy
- Hyperglycemia/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Lipid Metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- Pioglitazone
- Rats
- Rats, Sprague-Dawley
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Thiazolidinediones/pharmacology
- Thiazolidinediones/therapeutic use
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Xuhua Shen
- Department of Cardiology, Beijing Friendship Hospital Affiliated to the Capital Medical University, China.
| | | | | | | | | |
Collapse
|
32
|
Manzano-Fernández S, López-Cuenca A, Januzzi JL, Parra-Pallares S, Mateo-Martínez A, Sánchez-Martínez M, Pérez-Berbel P, Orenes-Piñero E, Romero-Aniorte AI, Avilés-Plaza F, Valdés-Chavarri M, Marín F. Usefulness of β-trace protein and cystatin C for the prediction of mortality in non ST segment elevation acute coronary syndromes. Am J Cardiol 2012; 110:1240-8. [PMID: 22818840 DOI: 10.1016/j.amjcard.2012.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 11/30/2022]
Abstract
Beta-trace protein (BTP) is a low-molecular mass protein belonging to the lipocalin protein family, which is more sensitive than serum creatinine for detecting impaired renal function. The aims of the present study were to evaluate whether plasma BTP improves the risk stratification of patients with non-ST-segment elevation acute coronary syndromes and to compare it to cystatin C (CysC), serum creatinine, and estimated glomerular filtration rate. Two hundred twenty-six consecutive patients with non-ST-segment elevation acute coronary syndromes were prospectively included. Blood samples were obtained within 24 hours of hospital admission to measure BTP, CysC, and creatinine. The study end point was all-cause death. Over a median follow-up period of 859 days (interquartile range [IQR] 524 to 1,164), 24 patients (10.6%) died. Decedents had higher concentrations of BTP (1.03 mg/L [IQR 0.89 to 1.43] vs 0.74 mg/L [IQR 0.61 to 0.92], p <0.001), CysC (1.16 mg/L [IQR 0.91 to 1.59] vs 0.90 mg/L [IQR 0.76 to 1.08], p = 0.001), and serum creatinine (1.10 mg/L [IQR 0.87 to 1.46] vs 0.94 mg/L [IQR 0.80 to 1.10], p = 0.004) and a lower mean estimated glomerular filtration rate (60 ± 20 vs 80 ± 24 ml/min/1.73 m(2), p <0.001). After multivariate adjustment, BTP and CysC were predictors of all-cause death, while estimated glomerular filtration rate and serum creatinine concentrations did not achieve statistical significance. In stratified analyses according to kidney function, elevated BTP and CysC were associated with a higher risk for all-cause death. Reclassification analyses showed that BTP and CysC added complementary information to Global Registry for Acute Coronary Events (GRACE) risk score. In conclusion, BTP and CysC levels were associated with all-cause death risk and modestly improved prognostic discrimination beyond the GRACE risk score in patients with non-ST segment elevation acute coronary syndromes.
Collapse
|
33
|
Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J Hypertens 2012; 30:315-26. [PMID: 22179086 DOI: 10.1097/hjh.0b013e32834f043b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Hypertension is associated with increased plasma inflammatory markers such as cytokines and increased vascular cyclooxygenase-2 (COX-2) expression. The ability of peroxisome proliferator-activated receptor-γ (PPARγ) agonists to reduce oxidative stress seems to contribute to their anti-inflammatory properties. This study analyzes the effect of pioglitazone, a PPARγ agonist, on interleukin-1β-induced COX-2 expression and the role of reactive oxygen species (ROS) on this effect. METHODS AND RESULTS Vascular smooth muscle cells from hypertensive rats stimulated with interleukin-1β (10 ng/ml, 24 h) were used. Interleukin-1β increased: 1) COX-2 protein and mRNA levels; 2) protein and mRNA levels of the NADPH oxidase subunit NOX-1, NADPH oxidase activity and ROS production; and 3) phosphorylation of inhibitor of nuclear factor kappa B (IκB) kinase (IKK) nuclear expression of the p65 nuclear factor kappa B (NF-κB) subunit and cell proliferation, all of which were reduced by apocynin (30 μmol/l). Interleukin-1β-induced COX-2 expression was reduced by apocynin, tempol (10 μmol/l), catalase (1000 U/ml) and lactacystin (5 μmol/l). Moreover, H2O2 (50 μmol/l, 90 min) induced COX-2 expression, which was reduced by lactacystin. Pioglitazone (10 μmol/l) reduced the effects of interleukin-1β on: 1) COX-2 protein and mRNA levels; 2) NOX-1 protein and mRNA levels, NADPH oxidase activity and ROS production; and 3) p-IKK, p65 expressions and cell proliferation. Pioglitazone also reduced the H2O2-induced COX-2 expression and increased Cu/Zn and Mn-superoxide dismutase protein expression. PPARγ small interfering RNA (5 nmol/l) further increased interleukin-1β-induced COX-2 and NOX-1 mRNA levels. In addition, pioglitazone increased the interleukin-1β-induced PPARγ mRNA levels. CONCLUSION PPARγ activation with pioglitazone reduces interleukin-1β-induced COX-2 expression by interference with the redox-sensitive transcription factor NF-κB.
Collapse
|
34
|
Prakash J, Srivastava N, Awasthi S, Agarwal C, Natu S, Rajpal N, Mittal B. Association of PPAR-γ gene polymorphisms with obesity and obesity-associated phenotypes in North Indian population. Am J Hum Biol 2012; 24:454-9. [PMID: 22410809 DOI: 10.1002/ajhb.22245] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/24/2011] [Accepted: 01/02/2011] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES The worldwide increasing prevalence of obesity is considered as a major health problem. Peroxisome proliferator-activated receptor gamma (PPAR-γ) controls adipocyte differentiation and regulates a number of genes associated with energy homeostasis. In this study, we investigated the association of PPAR-γ gene Pro12Ala (rs1801282) and C1431T (rs3856806) polymorphisms with morbid obesity and related phenotypes, in north Indian population. METHODS A total of 6,42 subjects, 309, obese and 333 nonobese individuals were included in this case-control study. Insulin, adiponectin, glucose, and lipid levels were estimated using standard protocols. All subjects were genotyped by PCR restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The ProAla+AlaAla genotypes of PPAR-γ Pro12Ala were significantly associated with higher risk of obesity while C1431T polymorphism did not show any significant association. None of the haplotypes showed association with morbid obesity. However, a strong association of variant genotypes was observed with higher levels of insulin, HOMA-IR, and lower serum adiponectin concentrations. CONCLUSION PPAR-γ gene polymorphisms influence obesity and obesity phenotype in a complex manner, probably involving insulin resistance in north Indian population.
Collapse
Affiliation(s)
- Jai Prakash
- Chatrapati Shahuji Maharaj Medical University, Lucknow, U.P., India
| | | | | | | | | | | | | |
Collapse
|
35
|
Peroxisome Proliferator-Activator Receptor γ: A Link between Macrophage CD36 and Inflammation in Malaria Infection. PPAR Res 2012; 2012:640769. [PMID: 22287954 PMCID: PMC3263638 DOI: 10.1155/2012/640769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/21/2022] Open
Abstract
Severe malaria infection caused by Plasmodium falciparum is a global life-threatening disease and a leading cause of death worldwide. Intensive investigations have demonstrated that macrophages play crucial roles in control of inflammatory and immune responses and clearance of Plasmodium-falciparum-parasitized erythrocytes (PE). This paper focuses on how macrophage CD36 recognizes and internalizes PE and participates the inflammatory signaling in response to Plasmodium falciparum. In addition, recent advances in our current understanding of the biological actions of PPARγ on CD36 and malaria clearance from the hosts are highlighted.
Collapse
|
36
|
Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice. J Hypertens 2011; 29:1810-9. [PMID: 21836474 DOI: 10.1097/hjh.0b013e32834a4d03] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Pharmacological activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to attenuate pressure overload-induced cardiac fibrosis, suggesting that PPARγ has an antifibrotic effect. This study tested the hypothesis that there is a functional interaction between transforming growth factor-β (TGF-β) signaling and endogenous PPARγ expression in cardiac fibroblasts and pressure overloaded heart. METHODS AND RESULTS We observed that, in response to pressure overload induced by transverse aortic constriction, left-ventricular PPARγ protein levels were decreased in wild-type mice, but increased in mice with an inducible overexpression of dominant negative mutation of the human TGF-β type II receptor (DnTGFβRII), in which TGF-β signaling is blocked. In isolated mouse cardiac fibroblasts, we demonstrated that TGF-β1 treatment decreased steady state PPARγ mRNA (-34%) and protein (-52%) levels, as well as PPARγ transcriptional activity (-53%). Chromatin immunoprecipitation analysis showed that TGF-β1 treatment increased binding of Smad2/3, Smad4 and histone deacetylase 1, and decreased binding of acetylated histone 3 to the PPARγ promoter in cardiac fibroblasts. Both pharmacological activation and overexpression of PPARγ significantly inhibited TGF-β1-induced extracellular matrix molecule expression in isolated cardiac fibroblasts, whereas treatment with the PPARγ agonist rosiglitazone inhibited, and treatment with the PPARγ antagonist T0070907 exacerbated chronic pressure overload-induced cardiac fibrosis and remodeling in wild-type mice in vivo. CONCLUSION These data provide strong evidence that TGF-β1 directly suppresses PPARγ expression in cardiac fibroblasts via a transcriptional mechanism and suggest that the down-regulation of endogenous PPARγ expression by TGF-β may be involved in pressure overload-induced cardiac fibrosis.
Collapse
|
37
|
Giaginis C, Klonaris C, Katsargyris A, Kouraklis G, Spiliopoulou C, Theocharis S. Correlation of Peroxisome Proliferator-Activated Receptor-gamma (PPAR-gamma) and Retinoid X Receptor-alpha (RXR-alpha) expression with clinical risk factors in patients with advanced carotid atherosclerosis. Med Sci Monit 2011; 17:CR381-91. [PMID: 21709632 PMCID: PMC3539575 DOI: 10.12659/msm.881849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Peroxisome proliferator-activated Receptor-γ (PPAR-γ) and its nuclear partners, the Retinoid X Receptors (RXRs), have been recognized as crucial players in the pathogenesis of atherosclerosis. The present study aimed to assess the clinical significance of PPAR-γ and RXR-α expression in different cellular populations localized within advanced carotid atherosclerosis lesions. Material/Methods PPAR-γ and RXR-α expression was assessed by immunohistochemistry ïn 134 carotid atherosclerotic plaques obtained from an equal number of patients that underwent endarterectomy procedure for vascular repair, and was correlated with patients’ medical history, risk factors and medication intake. Results Increased incidence of low PPAR-γ expression in both macrophages and smooth muscle cells was noted in patients presenting coronary artery disease (p=0.032 and p=0.046, respectively). PPAR-γ expression in smooth muscle cells was borderline down-regulated in symptomatic compared to asymptomatic patients (p=0.061), reaching statistical significance when analyzing groups of patients with specific cerebrovascular events; amaurosis fugax (p=0.008), amaurosis fugax/stroke (p=0.020) or amaurosis fugax/transient ischemic attack patients (p=0.028) compared to asymptomatic patients. Low RXR-α expression in macrophages was more frequently observed in hypertensive (p=0.048) and hyperlipidemic patients (p=0.049). Increased incidence of low RXR-α expression in smooth muscle cells was also noted in patients presenting advanced carotid stenosis grade (p=0.015). Conclusions PPAR-γ and RXR-α expression down-regulation in macrophages and smooth muscle cells was associated with a more pronounced disease progression in patients with advanced carotid atherosclerotic lesions.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
38
|
Effects of telmisartan and losartan on cardiovascular protection in Japanese hypertensive patients. Hypertens Res 2011; 34:1179-84. [PMID: 21796128 DOI: 10.1038/hr.2011.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Telmisartan and Losartan Cardiac Evaluation Trial, a multicenter, prospective, randomized, open-labeled, blinded-endpoint trial, was designed to compare the effects of two angiotensin II receptor blockers (ARBs), telmisartan and losartan, on cardiovascular protection in Japanese patients with mild to moderate essential hypertension. We compared the effects of telmisartan and losartan on left ventricular (LV) hypertrophy, cardiac function, atherosclerosis of carotid arteries and surrogate markers related to the actions of peroxisome proliferator-activated receptor-γ. A total of 58 patients were enrolled in the present trial and the follow-up period was 1 year. There were no significant differences in blood pressure (BP) levels between the telmisartan group and the losartan group throughout the trial. The percentage of the patients treated with ARB monotherapy was significantly higher in the telmisartan group compared with the losartan group. In addition, the progression of intima-media thickness of common carotid artery was significantly inhibited in the telmisartan group compared with the losartan group. Neither group experienced significant changes in cardiac function and LV mass index. There were no differences between the groups with respect to changes in surrogate markers such as serum adiponectin, creatinine, homeostasis model assessment index, plasminogen activator inhibitor-1 and high sensitivity C-reactive protein. Although BP levels were equal and well controlled in both groups, telmisartan showed more protective vascular effects than losartan.
Collapse
|
39
|
Ali BH, Al Za’abi M, Blunden G, Nemmar A. Experimental Gentamicin Nephrotoxicity and Agents that Modify it: A Mini-Review of Recent Research. Basic Clin Pharmacol Toxicol 2011; 109:225-32. [DOI: 10.1111/j.1742-7843.2011.00728.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Thomas AP, Dunn TN, Oort PJ, Grino M, Adams SH. Inflammatory phenotyping identifies CD11d as a gene markedly induced in white adipose tissue in obese rodents and women. J Nutr 2011; 141:1172-80. [PMID: 21508205 DOI: 10.3945/jn.110.127068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In severe obesity, white adipose tissue (WAT) inflammation and macrophage infiltration are thought to contribute to WAT and whole-body insulin resistance. Specific players involved in triggering and maintaining inflammation (i.e. those regulating adipokine release and WAT macrophage recruitment, retention, or function) remain to be fully elaborated, and the degree to which moderate obesity promotes WAT inflammation remains to be clarified further. Therefore, we characterized adiposity and metabolic phenotypes in adult male C57BL/6J mice fed differing levels of dietary fat (10, 45, and 60% of energy) for 12 wk, concurrent with determinations of WAT inflammation markers and mRNA expression of leukocyte-derived integrins (CD11b, CD11c, CD11d) involved in macrophage extravasation and tissue macrophage homing/retention. As expected, a lard-based, very high-fat diet (60% energy) significantly increased adiposity and glucose intolerance compared with 10% fat-fed controls, coincident with higher retroperitoneal (RP) WAT transcript levels for proinflammatory factors and macrophage markers, including TNFα and CD68 mRNA, which were ~3- and ~15-fold of control levels, respectively (P < 0.001). Mice fed the 45% fat diet had more moderate obesity, less glucose intolerance, and lower WAT macrophage/inflammatory marker mRNA abundances compared with 60% fat-fed mice; TNFα and CD68 mRNA levels were ~2- and ~5-fold of control levels (P < 0.01). Relative WAT expression of CD11d was massively induced by obesity to an extent greater than any other inflammatory marker (to >300-fold of controls in the 45 and 60% fat groups) (P < 0.0001) and this induction was WAT specific. Because we found that CD11d expression also increased in RP-WAT of Zucker obese rats and in the subcutaneous WAT of obese adult women, this appears to be a common feature of obesity. Observed correlations of WAT macrophage transcript marker abundances with body weight in lean to modestly obese mice raises an interesting possibility that the activities of at least some WAT macrophages are closely linked to the normal adipose remodeling that is a requisite for changes in WAT energy storage capacity.
Collapse
Affiliation(s)
- Anthony P Thomas
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
41
|
Dusaulcy R, Rancoule C, Grès S, Wanecq E, Colom A, Guigné C, van Meeteren LA, Moolenaar WH, Valet P, Saulnier-Blache JS. Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res 2011; 52:1247-1255. [PMID: 21421848 DOI: 10.1194/jlr.m014985] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATX(F/F)/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO mice and their control littermates were fed either a normal or a high-fat diet (HFD) (45% fat) for 13 weeks. FATX-KO mice showed a strong decrease (up to 90%) in ATX expression in white and brown adipose tissue, but not in other ATX-expressing organs. This was associated with a 38% reduction in plasma LPA levels. When fed an HFD, FATX-KO mice showed a higher fat mass and a higher adipocyte size than control mice although food intake was unchanged. This was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)γ2 and of PPAR-sensitive genes (aP2, adiponectin, leptin, glut-1) in subcutaneous white adipose tissue, as well as in an increased tolerance to glucose. These results show that adipose-ATX is a negative regulator of fat mass expansion in response to an HFD and contributes to plasma LPA levels.
Collapse
Affiliation(s)
- Rodolphe Dusaulcy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Chloé Rancoule
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Sandra Grès
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Estelle Wanecq
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Charlotte Guigné
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Laurens A van Meeteren
- Division of Cell Biology and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, Cedex 4, France; Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, IFR150, BP84225, Toulouse, France.
| |
Collapse
|
42
|
Dohi T, Miyauchi K, Iesaki T, Tsuruta R, Tsuboi S, Ogita M, Kubota N, Kasai T, Yokoyama T, Daida H. Candesartan with pioglitazone protects against endothelial dysfunction and inflammatory responses in porcine coronary arteries implanted with sirolimus-eluting stents. Circ J 2011; 75:1098-106. [PMID: 21383515 DOI: 10.1253/circj.cj-10-0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sirolimus-eluting stents (SES) are widely used in coronary artery disease as revascularization therapy. Although endothelial dysfunction induced by implanted SES can become a major clinical concern, therapeutic strategies to overcome this disorder remain unclear. The aim of the present study was therefore to identify effective therapies in a clinically relevant animal model. METHODS AND RESULTS Twenty-one pigs were randomized to control, candesartan (CAN) and candesartan plus pioglitazone (CAN+PIO) groups. Drugs were administered orally for 7 days before SES implantation until the time of death. Forty-two SES were used in porcine coronary arteries. Early inflammatory cell adhesion in SES evaluated on scanning electron microscopy at 3 days was significantly suppressed in the CAN and CAN+PIO groups compared with controls. Bradykinin-induced endothelium-dependent relaxation at an adjacent segment distal to the SES evaluated using organ chambers was reduced compared with intact segments in control coronaries at 28 days. Endothelial dysfunction was reversed by CAN and even more obviously improved in the CAN+PIO group. CONCLUSIONS Candesartan protected against vascular inflammation and restored endothelial function after SES implantation. The combination of candesartan and pioglitazone was more effective than candesartan monotherapy and might confer vascular protection when administered before SES implantation.
Collapse
Affiliation(s)
- Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Folwaczny M, Manolis V, Markus C, Glas J. Variants of the human PPARG locus and the susceptibility to chronic periodontitis. Innate Immun 2011; 17:541-7. [DOI: 10.1177/1753425910392089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Apart from its regulatory function in lipid and glucose metabolism, peroxisome proliferator-activated receptor (PPAR)γ has impact on the regulation of inflammation and bone metabolism. The aim of the study was to investigate the association of five polymorphisms (rs10865710, rs2067819, rs3892175, rs1801282, rs3856806) within the PPARG gene with chronic periodontitis. The study population comprised 402 periodontitis patients and 793 healthy individuals. Genotyping of the PPARG gene polymorphisms was performed by PCR and melting curve analysis. Comparison of frequency distribution of genotypes between individuals with periodontal disease and healthy controls for the polymorphism rs3856806 showed a P-value of 0.04 but failed to reach significance after correction for multiple testing ( P < 0.01). Two single nucleotide polymorphisms (SNPs) (rs10865710 and rs3892175) were found to be in strong linkage disequilibrium to rs2067819 (D’ > 0.90). A 3-site analysis (rs2067819-rs1801282-rs3856860) revealed five haplotypes with a frequency of ≥1% among cases and controls. Following adjustment for age, gender and smoking, none of the haplotypes was significantly different between periodontitis and healthy controls after Bonferroni correction. This study could not show a significant association between PPARG gene variants and chronic periodontitis.
Collapse
Affiliation(s)
- Matthias Folwaczny
- Poliklinik für Zahnerhaltung und Parodontologie, Ludwig-Maximilians-University, Munich, Germany
| | - Vasilios Manolis
- Poliklinik für Zahnerhaltung und Parodontologie, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Markus
- Medizinische Klinik und Poliklinik II – Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Jürgen Glas
- Poliklinik für Zahnerhaltung und Parodontologie, Ludwig-Maximilians-University, Munich, Germany
- Institut für Humangenetik, RWTH Aachen, Aachen, Germany
| |
Collapse
|
44
|
Matsumoto T, Eguchi Y, Oda H, Yamane T, Tarutani Y, Ozawa T, Hayashi H, Nakae I, Horie M, Urade Y. Lipocalin-Type Prostaglandin D Synthase Is Associated With Coronary Vasospasm and Vasomotor Reactivity in Response to Acetylcholine. Circ J 2011; 75:897-904. [DOI: 10.1253/circj.cj-10-0902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tetsuya Matsumoto
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Yutaka Eguchi
- Intensive Care Unit, Shiga University of Medical Science
| | - Hiroshi Oda
- Central Research Institute, Maruha Nichiro Holdings, Inc
| | | | | | - Tomoya Ozawa
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Hideki Hayashi
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Ichiro Nakae
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Yoshihiro Urade
- Department of Behavioral Biology, Osaka Bioscience Institute
| |
Collapse
|
45
|
Chen L, Wang L, Sun J, Qin J, Tang C, Jin H, Du J. Midodrine Hydrochloride Is Effective in the Treatment of Children With Postural Orthostatic Tachycardia Syndrome. Circ J 2011; 75:927-931. [DOI: 10.1253/circj.cj-10-0514] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Li Chen
- Department of Pediatrics, Peking University First Hospital
| | - Li Wang
- Health Science Center, Peking University
| | - Jinghui Sun
- Department of Pediatrics, Jilin University First Hospital
| | - Jiong Qin
- Department of Pediatrics, Peking University First Hospital
| | - Chaoshu Tang
- Health Science Center, Peking University
- Key Lab, Molecular Cardiovascular Diseases, Ministry of Education
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital
| |
Collapse
|
46
|
|
47
|
Wang N, Yin R, Liu Y, Mao G, Xi F. Role of Peroxisome Proliferator-Activated Receptor-.GAMMA. in Atherosclerosis - An Update -. Circ J 2011; 75:528-35. [DOI: 10.1253/circj.cj-11-0060] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Ruiying Yin
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Guangmei Mao
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Fang Xi
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| |
Collapse
|
48
|
Kadomatsu T, Tabata M, Oike Y. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 2010; 278:559-64. [PMID: 21182596 DOI: 10.1111/j.1742-4658.2010.07979.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity and related metabolic diseases, such as type 2 diabetes, hypertension and hyperlipidemia are an increasingly prevalent medical and social problem in developed and developing countries. These conditions are associated with increased risk of cardiovascular disease, the leading cause of death. Therefore, it is important to understand the molecular basis underlying obesity and related metabolic diseases in order to develop effective preventive and therapeutic approaches against these conditions. Recently, a family of proteins structurally similar to the angiogenic-regulating factors known as angiopoietins was identified and designated 'angiopoietin-like proteins' (ANGPTLs). Encoded by seven genes, ANGPTL1-7 all possess an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, both characteristic of angiopoietins. ANGPTLs do not bind to either the angiopoietin receptor Tie2 or the related protein Tie1, indicating that these ligands function differently from angiopoietins. Like angiopoietins, some ANGPTLs potently regulate angiogenesis, but ANGPTL3, -4 and ANGPTL6/angiopoietin-related growth factor (AGF) directly regulate lipid, glucose and energy metabolism independent of angiogenic effects. Recently, we found that ANGPTL2 is a key adipocyte-derived inflammatory mediator that links obesity to systemic insulin resistance. In this minireview, we focus on the roles of ANGPTL2 and ANGPTL6/AGF in obesity and related metabolic diseases, and discuss the possibility that both could function as molecular targets for the prevention and treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | |
Collapse
|
49
|
Peroxisome proliferator-activated receptor gamma in osteoarthritis. Mod Rheumatol 2010; 21:1-9. [PMID: 20820843 DOI: 10.1007/s10165-010-0347-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Osteoarthritis (OA) is among the most prevalent chronic human health disorders and the most common form of arthritis. It is a leading cause of disability in developed countries. This disease is characterized by cartilage deterioration, synovitis, and remodeling of the subchondral bone. There is not yet a satisfactory treatment to stop or arrest this disease process. Although several candidates for therapeutic approaches have been put forward, recent studies suggest that activation of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) is an interesting target for this disease. PPARγ is a ligand-activated transcription factor and member of the nuclear receptor superfamily. Agonists of PPARγ inhibit inflammation and reduce synthesis of cartilage degradation products both in vitro and in vivo, and reduce the development/progression of cartilage lesions in OA animal models. This review will highlight the recent experimental studies on the presence of PPARγ in articular tissues and its effect on inflammatory and catabolic responses in chondrocytes and synovial fibroblasts, as well as the protective effects of PPARγ ligands in arthritis experimental models. Finally, the role of PPARγ polymorphism in the pathogenesis of OA and related musculoskeletal diseases will also be discussed.
Collapse
|
50
|
Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 2010; 74:1265-73. [PMID: 20558892 DOI: 10.1253/circj.cj-10-0196] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is a leading cause of cardiovascular mortality and morbidity in the Western world. It affects men at younger age than women. Women have more frequently diastolic HF, associated with the major risk factors of diabetes and hypertension and men have more frequently systolic HF because of coronary artery disease. Under stress, male hearts develop more easily pathological hypertrophy with dilatation and poor systolic function than female hearts. Women with aortic stenosis have more concentric hypertrophy with better systolic function, less upregulation of extracellular matrix genes and better reversibility after unloading. Stressed female hearts maintain energy metabolism better than male hearts and are better protected against calcium overload. Estrogens and androgens and their receptors are present in the myocardium and lead to coordinated regulation of functionally relevant pathways. Atrial fibrillation (AF) is a more ominous sign in women than in men. Men with end-stage cardiomyopathy more frequently have auto-antibodies than women. Women receive less guideline-based diagnostics and therapy. Expensive and invasive therapies such as advanced pacemakers and transplantation are underused in women. Drug studies point at sex differences in efficacy. Despite worse diagnostics and therapy, prognosis is better in women than in men.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Medicine Berlin, Germany.
| | | | | | | |
Collapse
|