1
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
2
|
Martins-Oliveira M, Akerman S, Holland PR, Tavares I, Goadsby PJ. Pharmacological modulation of ventral tegmental area neurons elicits changes in trigeminovascular sensory processing and is accompanied by glycemic changes: Implications for migraine. Cephalalgia 2022; 42:1359-1374. [PMID: 36259130 DOI: 10.1177/03331024221110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Imaging migraine premonitory studies show increased midbrain activation consistent with the ventral tegmental area, an area involved in pain modulation and hedonic feeding. We investigated ventral tegmental area pharmacological modulation effects on trigeminovascular processing and consequent glycemic levels, which could be involved in appetite changes in susceptible migraine patients. METHODS Serotonin and pituitary adenylate cyclase-activating polypeptide receptors immunohistochemistry was performed in ventral tegmental area parabrachial pigmented nucleus of male Sprague Dawley rats. In vivo trigeminocervical complex neuronal responses to dura mater nociceptive electrical stimulation, and facial mechanical stimulation of the ophthalmic dermatome were recorded. Changes in trigeminocervical complex responses following ventral tegmental area parabrachial pigmented nucleus microinjection of glutamate, bicuculline, naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole were measured, and blood glucose levels assessed pre- and post-microinjection. RESULTS Glutamatergic stimulation of ventral tegmental area parabrachial pigmented nucleus neurons reduced nociceptive and spontaneous trigeminocervical complex neuronal firing. Naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole inhibited trigeminovascular spontaneous activity, and trigeminocervical complex neuronal responses to dural-evoked electrical and mechanical noxious stimulation. Trigeminovascular sensory processing through modulation of the ventral tegmental area parabrachial pigmented nucleus resulted in reduced circulating glucose levels. CONCLUSION Pharmacological modulation of ventral tegmental area parabrachial pigmented nucleus neurons elicits changes in trigeminovascular sensory processing. The interplay between ventral tegmental area parabrachial pigmented nucleus activity and the sensory processing by the trigeminovascular system may be relevant to understand associated sensory and homeostatic symptoms in susceptible migraine patients.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Nutrition and Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa; Lisboa, Portugal.,Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Philip R Holland
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Neurology, University of California, Los Angeles, Los Angeles CA USA
| |
Collapse
|
3
|
Field SL, Marrero MG, Dado-Senn B, Skibiel AL, Ramos PM, Scheffler TL, Laporta J. Peripheral serotonin regulates glucose and insulin metabolism in Holstein dairy calves. Domest Anim Endocrinol 2021; 74:106519. [PMID: 32739765 DOI: 10.1016/j.domaniend.2020.106519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
Peripheral serotonin regulates energy metabolism in several mammalian species, however, the potential contribution of serotonergic mechanisms as metabolic and endocrine regulators in growing dairy calves remain unexplored. Objectives were to characterize the role of serotonin in glucose and insulin metabolism in dairy calves with increased serotonin bioavailability. Milk replacer was supplemented with saline, 5-hydroxytryptophan (90 mg/d), or fluoxetine (40 mg/d) for 10-d (n = 8/treatment). Blood was collected daily during supplementation and on days 2, 7, and 14 during withdrawal. Calves were euthanized after 10-d supplementation or 14-d withdrawal periods to harvest liver and pancreas tissue. 5-hydroxytryptophan increased circulating insulin concentrations during the supplementation period, whereas both treatments increased circulating glucose concentration during the withdrawal period. The liver and pancreas of preweaned calves express serotonin factors (ie, TPH1, SERT, and cell surface receptors), indicating their ability to synthesize, uptake, and respond to serotonin. Supplementation of 5-hydroxytryptophan increased hepatic and pancreatic serotonin concentrations. After the withdrawal period, fluoxetine cleared from the pancreas but not liver tissue. Supplementation of 5-hydroxytryptophan upregulated hepatic mRNA expression of serotonin receptors (ie, 5-HTR1B, -1D, -2A, and -2B), and downregulated pancreatic 5-HTR1F mRNA and insulin-related proteins (ie, Akt and pAkt). Fluoxetine-supplemented calves had fewer pancreatic islets per microscopic field with reduced insulin intensity, whereas 5-hydroxytryptophan supplemented calves had increased islet number and area with greater insulin and serotonin and less glucagon intensities. After the 14-d withdrawal of 5-hydroxytryptophan, hepatic mRNA expression of glycolytic and gluconeogenic enzymes were simultaneously downregulated. Improving serotonin bioavailability could serve as a potent regulator of endocrine and metabolic processes in dairy calves.
Collapse
Affiliation(s)
- S L Field
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - A L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - P M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - T L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
4
|
Yu Z, Shibazaki M, Otsuka H, Takada H, Nakamura M, Endo Y. Dynamics of Platelet Behaviors as Defenders and Guardians: Accumulations in Liver, Lung, and Spleen in Mice. Biol Pharm Bull 2020; 42:1253-1267. [PMID: 31366863 DOI: 10.1248/bpb.b18-00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic platelet behaviors in experimental animals are often assessed by infusion of isotope-labeled platelets and measuring them under anesthesia. However, such procedures alter, therefore may not reveal, real-life platelet behaviors. 5-Hydroxytryptamine (5HT or serotonin) is present within limited cell-types, including platelets. In our studies, by measuring 5HT as a platelet-marker in non-anesthetized mice, we identified stimulation- and time-dependent accumulations in liver, lung, and/or spleen as important systemic platelet behaviors. For example, intravenous, intraperitoneal, or intragingival injection of lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria), interleukin (IL)-1, or tumor necrosis factor (TNF)-α induced hepatic platelet accumulation (HPA) and platelet translocation into the sinusoidal and perisinusoidal spaces or hepatocytes themselves. These events occurred "within a few hours" of the injection, caused hypoglycemia, and exhibited protective or causal effects on hepatitis. Intravenous injection of larger doses of LPS into normal mice, or intravenous antigen-challenge to sensitized mice, induced pulmonary platelet accumulation (PPA), as well as HPA. These reactions occurred "within a few min" of the LPS injection or antigen challenge and resulted in shock. Intravenous injection of 5HT or a catecholamine induced a rapid PPA "within 6 s." Intravenous LPS injection, within a minute, increased the pulmonary catecholamines that mediate the LPS-induced PPA. Macrophage-depletion from liver and spleen induced "day-scale" splenic platelet accumulation, suggesting the spleen is involved in clearing senescent platelets. These findings indicate the usefulness of 5HT as a marker of platelet behaviors, and provide a basis for a discussion of the roles of platelets as both "defenders" and "guardians."
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University
| | - Masahiro Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Graduate School of Dentistry, Tohoku University
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
5
|
Horst EA, Kvidera SK, Abuajamieh M, Mayorga EJ, Al-Qaisi M, Baumgard LH. Short communication: Ketosis, feed restriction, and an endotoxin challenge do not affect circulating serotonin in lactating dairy cows. J Dairy Sci 2019; 102:11736-11743. [PMID: 31606210 DOI: 10.3168/jds.2019-17105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
Circulating serotonin (5-hydroxytryptamine; 5-HT) appears to be associated with various energetic disorders and hypocalcemia during the transition period. The objective of this study was to evaluate the effects of ketosis, feed restriction (FR), and endotoxin challenge (models in which energetic and calcium metabolism are markedly altered) on circulating 5-HT in lactating Holstein cows. Blood samples were obtained from 3 separate experiments; circulating β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), and glucose were measured in all 3 experiments, whereas ionized calcium (iCa2+) was measured only in the endotoxin challenge. In the ketosis study, blood samples from cows clinically diagnosed with ketosis (n = 9) or classified as healthy (n = 9) were obtained from a commercial dairy farm at d -7, 3, and 7 relative to calving. Ketosis was diagnosed using a urine-based test starting at 5 d in milk. There was no effect of health status on circulating 5-HT and no association between 5-HT and BHB, NEFA, or glucose; however, 5-HT concentrations progressively decreased following calving. In the FR experiment, mid-lactation cows were either fed ad libitum (n = 3) or restricted to 20% of their ad libitum intake (n = 5) for 5 d. There were no FR effects on circulating 5-HT, nor was FR correlated with energetic metabolites. In the immune activation model, mid-lactation cows were intravenously challenged with either lipopolysaccharide (LPS; 1.5 µg/kg of BW; n = 6) or sterile saline (control; n = 6). Administering LPS decreased (56%) blood iCa2+ but had no effect on circulating 5-HT, nor was there a correlation between circulating 5-HT and NEFA, BHB, or iCa2+. Circulating 5-HT tended to be positively correlated (r = 0.54) with glucose in Holstein cows administered LPS. In summary, in contrast to expectations, circulating 5-HT was unaffected in models of severely disturbed energetic and Ca2+ homeostasis.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
6
|
Marrero MG, Dado-Senn B, Field SL, da Silva DR, Skibiel AL, Laporta J. Increasing serotonin bioavailability in preweaned dairy calves impacts hematology, growth, and behavior. Domest Anim Endocrinol 2019; 69:42-50. [PMID: 31280025 DOI: 10.1016/j.domaniend.2019.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023]
Abstract
Peripheral serotonin has been shown to regulate important physiological functions such as energy homeostasis and immunity, particularly in rodent and humans, but its role is poorly understood in livestock species. Herein, we tested the safety and effectiveness of increasing serotonin bioavailability in preweaned dairy calves by oral supplementation of a serotonin precursor (5-hydroxytryptophan, 5-HTP) or a serotonin reuptake inhibitor (fluoxetine, FLX). Bull Holstein calves (21 ± 2 d old; N = 24) were fed milk replacer (8 L/d) supplemented with either saline as control (CON, 8 mL/d, n = 8), FLX (40 mg/d, approx. 0.8 mg/kg; n = 8), or 5-HTP (90 mg/d, approx. 1.8 mg/kg; n = 8) for 10 consecutive days in a complete randomized block design. Heart rate (HR), respiration rate, rectal temperature, and health scores were recorded daily. Hip height and body weight were measured at d 1, 5, and 10 relative to initiation of supplementation. Blood samples were collected once before the supplementation period (d 1), during the 10-d supplementation period (daily), and during a 14-d withdrawal period (d 2, 3, 4, 7, and 14 relative to initiation of withdrawal). Cerebrospinal fluid and muscle tissue were collected from a subset of calves (n = 12) that were euthanized after the 10-d supplementation or 14-d withdrawal period. Whole blood serotonin concentrations increased in 5-HTP calves and decreased in FLX calves compared with CON (P < 0.001), indicating that serotonin bioavailability was increased in both groups. Whole blood serotonin concentrations of 5-HTP and FLX calves returned to CON levels after 7 d of withdrawal. All calves grew and were considered healthy throughout the study. In fact, calves fed 5-HTP had higher average daily gain compared with CON (0.87 vs 0.66 ± 0.12 kg/d, P = 0.05). Calves fed FLX had lower HR (P = 0.02) and greater red blood cells and hemoglobin counts on d 10 of supplementation compared with CON (P < 0.01). After the 14-d withdrawal period, FLX was not detected in circulation of FLX calves, but was still present in the muscle tissue. Our results demonstrate that manipulation of the serotonin pathway by supplementing FLX or 5-HTP is a feasible and safe approach in preweaned dairy calves; however, it takes more than 14 d for FLX to be completely withdrawn from the body.
Collapse
Affiliation(s)
- M G Marrero
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - S L Field
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - D R da Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - A L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 2019; 225:e13101. [PMID: 29791774 DOI: 10.1111/apha.13101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signalling network in islets involving 5-HT is being unravelled. With more than fourteen different 5-HT receptors expressed in human islets and receptor-independent mechanisms in insulin-producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of type 2 diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signalling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homoeostasis. In this review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas.
Collapse
Affiliation(s)
- L. R. Cataldo Bascuñan
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - C. Lyons
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - H. Bennet
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - I. Artner
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - M. Fex
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| |
Collapse
|
8
|
Ye H, Adane B, Khan N, Alexeev E, Nusbacher N, Minhajuddin M, Stevens BM, Winters AC, Lin X, Ashton JM, Purev E, Xing L, Pollyea DA, Lozupone CA, Serkova NJ, Colgan SP, Jordan CT. Subversion of Systemic Glucose Metabolism as a Mechanism to Support the Growth of Leukemia Cells. Cancer Cell 2018; 34:659-673.e6. [PMID: 30270124 PMCID: PMC6177322 DOI: 10.1016/j.ccell.2018.08.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
From an organismal perspective, cancer cell populations can be considered analogous to parasites that compete with the host for essential systemic resources such as glucose. Here, we employed leukemia models and human leukemia samples to document a form of adaptive homeostasis, where malignant cells alter systemic physiology through impairment of both host insulin sensitivity and insulin secretion to provide tumors with increased glucose. Mechanistically, tumor cells induce high-level production of IGFBP1 from adipose tissue to mediate insulin sensitivity. Further, leukemia-induced gut dysbiosis, serotonin loss, and incretin inactivation combine to suppress insulin secretion. Importantly, attenuated disease progression and prolonged survival are achieved through disruption of the leukemia-induced adaptive homeostasis. Our studies provide a paradigm for systemic management of leukemic disease.
Collapse
Affiliation(s)
- Haobin Ye
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Biniam Adane
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Nabilah Khan
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Erica Alexeev
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Nichole Nusbacher
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Brett M Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Amanda C Winters
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, 13123 E 16th Avenue, Aurora, CO 80045, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - John M Ashton
- Functional Genomics Center, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Enkhtsetseg Purev
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Catherine A Lozupone
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Natalie J Serkova
- Department of Radiology, Animal Imaging Shared Resources, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Kessler EC, Wall SK, Hernandez LL, Bruckmaier RM, Gross JJ. Short communication: Circulating serotonin is related to the metabolic status and lactational performance at the onset of lactation in dairy cows. J Dairy Sci 2018; 101:11455-11460. [PMID: 30243629 DOI: 10.3168/jds.2018-14626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) affects many physiological functions because it is involved in glucose and lipid metabolism, calcium homeostasis, and regulation of lactation in dairy cows. This study aimed to examine physiological differences in serum 5-HT concentrations (high vs. low) and their association with metabolic status and milk production at the onset of lactation. Twelve multiparous Holstein dairy cows were milked within 4 h of calving, and blood and milk samples were collected at the first 6 subsequent milkings after parturition and at the evening milkings on d 5, 8, 10, and 14. Cows were retrospectively divided into 2 groups (6 cows/group): low serum 5-HT (LSS) and high serum 5-HT (HSS) according to their calculated areas under the curve (AUC) for serum 5-HT for the entire experimental period (cut-off: 46,000 ng/mL × 324 h). Concentrations of 5-HT, free fatty acids (FFA), β-hydroxybutyrate (BHB), glucose, calcium, and IGF-1 were measured in blood. Milk was analyzed for fat, protein, lactose, and 5-HT concentrations. Milk yield was recorded at each milking and energy-corrected milk yield was calculated. Serum 5-HT concentrations were higher in HSS than in LSS [AUC (ng/mL × 324 h): 57,830 ± 4,810 vs. 25,005 ± 5,930]. The amount of energy-corrected milk was lower in HSS than in LSS. The HSS group produced less colostrum and had decreased milk yield, specifically during the first 6 milkings. Concentrations of FFA, BHB, and glucose in plasma did not differ between groups. Concentrations of IGF-1 in serum were elevated in HSS compared with LSS throughout the experiment. Total circulating calcium concentrations in serum tended to be higher in HSS than in LSS. Milk fat and protein yields were decreased in HSS compared with LSS. Milk 5-HT decreased overall during the experimental period, with LSS maintaining higher 5-HT concentrations than HSS until d 14 of lactation. In conclusion, cows with high serum 5-HT concentrations showed a reduced metabolic load at the onset of lactation, concomitantly lower milk yield, and a reduced energy output via milk.
Collapse
Affiliation(s)
- E C Kessler
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - S K Wall
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - L L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
10
|
Hernández-Castellano LE, Özçelik R, Hernandez LL, Bruckmaier RM. Short communication: Supplementation of colostrum and milk with 5-hydroxy-l-tryptophan affects immune factors but not growth performance in newborn calves. J Dairy Sci 2018; 101:794-800. [DOI: 10.3168/jds.2017-13501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
|
11
|
Hernández-Castellano LE, Hernandez LL, Sauerwein H, Bruckmaier RM. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor. J Dairy Sci 2017; 100:5050-5057. [DOI: 10.3168/jds.2016-12441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
|
12
|
Hernández-Castellano LE, Hernandez LL, Weaver S, Bruckmaier RM. Increased serum serotonin improves parturient calcium homeostasis in dairy cows. J Dairy Sci 2016; 100:1580-1587. [PMID: 27988124 DOI: 10.3168/jds.2016-11638] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Hypocalcemia in dairy cows is caused by the sudden increase in calcium demand by the mammary gland for milk production at the onset of lactation. Serotonin (5-HT) is a key factor for calcium homeostasis, modulating calcium concentration in blood. Therefore, it is hypothesized that administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, can increase 5-HT concentrations in blood and, in turn, induce an increase in blood calcium concentration. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (C group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before the estimated parturition and ceased the day of parturition, resulting in at least 4 d of infusion (8.37 ± 0.74 d of infusion). Until parturition, blood samples were collected every morning before the infusions, after parturition samples were taken daily until d 7, and a final sample was collected on d 30. Milk yield was recorded during this period. No differences between groups were observed for blood glucose, magnesium, and β-hydroxybutyrate. Cows receiving the 5-HTP infusion showed an increase in fatty acid concentrations from d -3 to -1 before parturition. Serum 5-HT concentrations were increased at d -4 related to parturition until d 5 postpartum in the 5-HTP group compared with the C group. In addition, cows from the 5-HTP group had increased 5-HT concentrations in colostrum, but not in mature milk, on d 7 postpartum. Serum calcium concentrations decreased in both groups around parturition; however, calcium remained higher in the 5-HTP group than in controls, with a significant difference between groups on d 1 (1.62 ± 0.08 vs. 1.93 ± 0.09 mmol/L in control and 5-HTP groups, respectively) and d 2 (1.83 ± 0.06 vs. 2.07 ± 0.07 mmol/L in control and 5-HTP groups, respectively). Additionally, colostrum yield (first milking) was lower in the 5-HTP group compared with the C group, but without consequences on colostrum IgG concentrations. Milk yield did not differ between groups during the rest of the experiment. The study data were consistent with the concept that infusion of 5-HTP to dairy cows increases blood 5-HT concentrations, which in turn is a significant regulatory component in the chain of effectors that affect calcium status around parturition, hence the occurrence of clinical or subclinical hypocalcemia.
Collapse
Affiliation(s)
| | | | - Samantha Weaver
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
13
|
Kokavec A. Migraine: A disorder of metabolism? Med Hypotheses 2016; 97:117-130. [PMID: 27876120 DOI: 10.1016/j.mehy.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The treatment and prevention of migraine within the last decade has become largely pharmacological. While there is little doubt that the advent of drugs (e.g. triptans) has helped many migraine sufferers to lead a normal life, there is still little knowledge with respect to the factors responsible for precipitating a migraine attack. Evidence from biochemical and behavioural studies from a number of disciplines is integrated to put forward the proposal that migraine is part of a cascade of events, which together act to protect the organism when confronted by a metabolic challenge.
Collapse
Affiliation(s)
- Anna Kokavec
- University of New England, School of Health, Armidale, NSW 2350, United States.
| |
Collapse
|
14
|
Jha PK, Foppen E, Kalsbeek A, Challet E. Sleep restriction acutely impairs glucose tolerance in rats. Physiol Rep 2016; 4:e12839. [PMID: 27354542 PMCID: PMC4923238 DOI: 10.14814/phy2.12839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h sleep deprivation in the early rest period, leading to prolonged (16 h) wakefulness. Another group of rats was allowed to sleep during the first 4 h of the light period and sleep deprived in the next 4 h. During treatment, food was withdrawn to avoid a postmeal rise in plasma glucose. An intravenous glucose tolerance test (IVGTT) was performed immediately after the sleep deprivation period. Sleep deprivation at both times of the day similarly impaired glucose tolerance and reduced the early-phase insulin responses to a glucose challenge. Basal concentrations of plasma glucose, insulin, and corticosterone remained unchanged after sleep deprivation. Throughout IVGTTs, plasma corticosterone concentrations were not different between the control and sleep-deprived group. Together, these results demonstrate that independent of time of day and sleep pressure, short sleep deprivation during the resting phase favors glucose intolerance in rats by attenuating the first-phase insulin response to a glucose load. In conclusion, this study highlights the acute adverse effects of only a short sleep restriction on glucose homeostasis.
Collapse
Affiliation(s)
- Pawan K Jha
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences UPR3212 Centre National de la Recherche Scientifique (CNRS) University of Strasbourg, Strasbourg, France International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences UPR3212 Centre National de la Recherche Scientifique (CNRS) University of Strasbourg, Strasbourg, France International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| |
Collapse
|
15
|
Hansson B, Medina A, Fryklund C, Fex M, Stenkula KG. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochem Biophys Res Commun 2016; 474:357-363. [PMID: 27109474 DOI: 10.1016/j.bbrc.2016.04.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 01/11/2023]
Abstract
Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism.
Collapse
Affiliation(s)
- Björn Hansson
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University Diabetes Centre, Biomedical Centre, Lund University, 221 84 Lund, Sweden
| | - Anya Medina
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Centre, 20502 Malmö, Sweden
| | - Claes Fryklund
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University Diabetes Centre, Biomedical Centre, Lund University, 221 84 Lund, Sweden
| | - Malin Fex
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Centre, 20502 Malmö, Sweden
| | - Karin G Stenkula
- Glucose Transport and Protein Trafficking, Department of Experimental Medical Science, Lund University Diabetes Centre, Biomedical Centre, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
16
|
Laporta J, Moore SAE, Weaver SR, Cronick CM, Olsen M, Prichard AP, Schnell BP, Crenshaw TD, Peñagaricano F, Bruckmaier RM, Hernandez LL. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows. J Endocrinol 2015; 226:43-55. [PMID: 26099356 DOI: 10.1530/joe-14-0693] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism.
Collapse
Affiliation(s)
- Jimena Laporta
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Spencer A E Moore
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Samantha R Weaver
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Callyssa M Cronick
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Megan Olsen
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Austin P Prichard
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Brian P Schnell
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Thomas D Crenshaw
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Francisco Peñagaricano
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Rupert M Bruckmaier
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Laura L Hernandez
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
17
|
Versteeg RI, Serlie MJ, Kalsbeek A, la Fleur SE. Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease. Neuroscience 2015; 301:155-67. [PMID: 26047725 DOI: 10.1016/j.neuroscience.2015.05.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 01/27/2023]
Abstract
It is evident that eating in misalignment with the biological clock (such as in shift work, eating late at night and skipping breakfast) is associated with increased risk for obesity and diabetes. The biological clock located in the suprachiasmatic nucleus dictates energy balance including feeding behavior and glucose metabolism. Besides eating and sleeping patterns, glucose metabolism also exhibits clear diurnal variations with higher blood glucose concentrations, glucose tolerance and insulin sensitivity prior to waking up. The daily variation in plasma glucose concentrations in rats, is independent of the rhythm in feeding behavior. On the other hand, feeding itself has profound effects on glucose metabolism, but differential effects occur depending on the time of the day. We here review data showing that a disturbed diurnal eating pattern results in alterations in glucose metabolism induced by a disrupted circadian clock. We first describe the role of central serotonin on feeding behavior and glucose metabolism and subsequently describe the effects of central serotonin on the circadian system. We next explore the interaction between the serotonergic system and the circadian clock in conditions of disrupted diurnal rhythms in feeding and how this might be involved in the metabolic dysregulation that occurs with chronodisruption.
Collapse
Affiliation(s)
- R I Versteeg
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - S E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98. [PMID: 25925636 DOI: 10.1111/jne.12287] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health.
Collapse
Affiliation(s)
- L K Burke
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - L K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
19
|
Laporta J, Hernandez LL. Serotonin receptor expression is dynamic in the liver during the transition period in Holstein dairy cows. Domest Anim Endocrinol 2015; 51:65-73. [PMID: 25528206 DOI: 10.1016/j.domaniend.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/04/2023]
Abstract
Nonneuronal serotonin (5-HT) participates in glucose metabolism, but little is known regarding the actions of 5-HT in the liver during the transition period in dairy cattle. Here, we explore circulating patterns of 5-HT and characterize the hepatic 5-HT receptor and glucose transporter profiles around calving in multiparous Holstein dairy cows (n = 6, average lactation = 4 ± 1.9). Concentrations of serum 5-HT decreased on day -3 compared with -5 and -7 precalving (167.7 ± 80 vs 1511.1 ± 602 ng/mL). 5-HT nadir was on day -1 precalving and remained low postcalving (481.4 ± 49 ng/mL). Plasma glucose concentrations decreased precalving (P = 0.008) and were positively correlated with 5-HT during the precalving period (r = 0.55, P = 0.043). On day 1, postcalving hepatic messenger RNA expression of 5-HT1D, 2B, 3C, 6, and 7 receptors were decreased compared with day -7 (P < 0.048). The 5-HT3A and 5-HT3B decreased on day 7. The 5-HT2A increased on days 1 and 7 compared with -7 (P < 0.05). The 5-HT1F and 5-HT1A receptors were increased 2.5- and 3.8-fold on day 7, respectively, compared with days -7 and 1 (P < 0.046). The 5-HT5A was not detected, and 5-HT4 was detected on days -7 and 1 only. Expression of Glut-2,-5 and SGLT1 were decreased on days 1 and 7 compared with -7 (P < 0.05), whereas Glut-1 was increased on day 7 compared with -7 (P < 0.05). These results indicate that 5-HT could be important for liver glucose homeostasis possibly through receptor mediated signaling at specific times. Additional research is needed to further explore the functional role of these receptors in the liver during the transition from pregnancy to lactation.
Collapse
Affiliation(s)
- J Laporta
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | - L L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
20
|
Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013; 7:36. [PMID: 23543912 PMCID: PMC3608917 DOI: 10.3389/fnins.2013.00036] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/03/2013] [Indexed: 01/17/2023] Open
Abstract
Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.
Collapse
Affiliation(s)
- Michael H Donovan
- Department of Psychiatry, University of California San Francisco CA, USA
| | | |
Collapse
|
21
|
Laporta J, Peters TL, Merriman KE, Vezina CM, Hernandez LL. Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS One 2013; 8:e57847. [PMID: 23469086 PMCID: PMC3585179 DOI: 10.1371/journal.pone.0057847] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/29/2013] [Indexed: 11/24/2022] Open
Abstract
The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n = 45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5′ AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation.
Collapse
Affiliation(s)
- Jimena Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | | |
Collapse
|
22
|
Ardiansyah, Shirakawa H, Inagawa Y, Koseki T, Komai M. Regulation of blood pressure and glucose metabolism induced by L-tryptophan in stroke-prone spontaneously hypertensive rats. Nutr Metab (Lond) 2011; 8:45. [PMID: 21831334 PMCID: PMC3152873 DOI: 10.1186/1743-7075-8-45] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amino acids have been reported to act as modulators of various regulatory processes and to provide new therapeutic applications for either the prevention or treatment of metabolic disorders. The purpose of the present study is to investigate the effects of single oral dose administration and a continuous treatment of L-tryptophan (L-Trp) on the regulation of blood pressure and glucose metabolism in stroke-prone spontaneously hypertensive rats (SHRSP). METHODS First, male 9-week-old SHRSP were administered 100 mg L-Trp·kg-1 body weight in saline to the L-Trp group and 0.9% saline to the control group via a gastric tube as a single oral dose of L-Trp. Second, three groups of SHRSP were fed an AIN-93M-based diet supplemented with L-tryptophan (L-Trp) (0, 200, or 1000 mg·kg-1 diet) for 3 weeks as continuous treatment of L-Trp. RESULTS Single oral dose administration of L-Trp improved blood pressure, blood glucose, and insulin levels. Blood pressure, blood glucose, and insulin levels improved significantly in the L-Trp treatment groups. The administration of L-Trp also significantly increased plasma nitric oxide and serotonin levels. CONCLUSION L-Trp by both single oral dose administration and continuous treatment improves glucose metabolism and blood pressure in SHRSP.
Collapse
Affiliation(s)
- Ardiansyah
- Laboratory of Nutrition, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Two independent serotonin systems exist, one in the brain and the other in the periphery. Serotonin is a well known monoaminergic neurotransmitter in the central nervous system and it is known to regulate feeding behavior, meal size, and body weight. On the other hand, there is much less evidence for the role of serotonin as a gastrointestinal hormone, particularly with respect to its effects on glucose and lipid metabolism. This review summarizes our current understanding of the role of peripheral serotonin on glucose and lipid metabolism and the implications of this for further research. RECENT FINDINGS The enterochromaffin cells of the gastrointestinal tract produce peripheral serotonin postprandially. In mice, it induces a decrease in the concentration of circulating lipids as well as hyperglycemia and hyperinsulinemia through its action on several serotonin receptors. Further, serotonin metabolites act as endogenous agonists for peroxisome proliferator-activated receptor γ and serotonin accelerates adipocyte differentiation via serotonin receptor 2A and 2C. Studies of serotonin are likely to provide new insights into the field of lipid accumulation and metabolism. SUMMARY Recent studies show new physiological functions of peripheral serotonin, linked to glucose and lipid metabolism. Peripheral serotonin may serve as an attractive new therapeutic target for the treatment of metabolic disorders in the near future.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
24
|
Kadioglu M, Muci E, Kesim M, Ulku C, Duman E, Kalyoncu N, Yaris E. The Effect of Paroxetine, A Selective Serotonin Reuptake Inhibitor, on Blood Glucose Levels in Mice. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.283.290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Watanabe H, Akasaka D, Ogasawara H, Sato K, Miyake M, Saito K, Takahashi Y, Kanaya T, Takakura I, Hondo T, Chao G, Rose MT, Ohwada S, Watanabe K, Yamaguchi T, Aso H. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology 2010; 151:4776-86. [PMID: 20685881 DOI: 10.1210/en.2009-1349] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serotonin is synthesized by two distinct tryptophan hydroxylases, one in the brain and one in the periphery. The latter is known to be unable to cross the blood-brain barrier. These two serotonin systems have apparently independent functions, although the functions of peripheral serotonin have yet to be fully elucidated. In this study, we have investigated the physiological effect of peripheral serotonin on the concentrations of metabolites in the circulation and in the liver. After fasting, mice were ip injected with 1 mg serotonin. The plasma glucose concentration was significantly elevated between 60 and 270 min after the injection. In contrast, plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations were decreased. The hepatic glycogen synthesis and concentrations were significantly higher at 240 min. At the same time, the hepatic triglyceride content was significantly lower than the basal levels noted before the serotonin injection, whereas the hepatic cholesterol content was significantly higher by 60 min after the injection. Furthermore, serotonin stimulated the contraction of the gallbladder and the excretion of bile. After the serotonin injection, there was a significant induction of apical sodium-dependent bile acid transporter expression, resulting in a decrease in the concentration of bile acids in the feces. Additionally, data are presented to show that the functions of serotonin are mediated through diverse serotonin receptor subtypes. These data indicate that peripheral serotonin accelerates the metabolism of lipid by increasing the concentration of bile acids in circulation.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iordanidou M, Tavridou A, Petridis I, Arvanitidis KI, Christakidis D, Vargemezis V, Manolopoulos VG. The serotonin transporter promoter polymorphism (5-HTTLPR) is associated with type 2 diabetes. Clin Chim Acta 2010; 411:167-71. [DOI: 10.1016/j.cca.2009.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 01/19/2023]
|
27
|
Abstract
To examine whether escitalopram enhances net hepatic glucose uptake during a hyperinsulinemic hyperglycemic clamp, studies were performed in conscious 42-h-fasted dogs. The experimental period was divided into P1 (0-90 min) and P2 (90-270 min). During P1 and P2 somatostatin (to inhibit insulin and glucagon secretion), 4x basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (2x hepatic glucose load) were infused. Saline was infused intraportally during P1 in all groups. In one group saline infusion was continued in P2 (SAL, n = 11), while escitalopram was infused intraportally at 2 microg/kg/min (L-ESC, n = 6) or 8 microg/kg/min (H-ESC, n = 7) during P2 in two other groups. The arterial insulin concentrations rose approximately four fold (to 123 +/- 8, 146 +/- 13 and 148 +/- 15 pmol/L) while glucagon concentrations remained basal (41 +/- 3, 44 +/- 9 and 40 +/- 3 ng/L) in all groups. The hepatic glucose load averaged 216 +/- 13, 223 +/- 19 and 202 +/- 12 micromol/kg/min during the entire experimental period (P1 and P2) in the SAL, L-ESC and H-ESC groups, respectively. Net hepatic glucose uptake was 11.6 +/- 1.4, 10.1 +/- 0.9 and 10.4 +/- 2.3 micromol/kg/min in P1 and averaged 16.9 +/- 1.5, 15.7 +/- 1.3 and 22.6 +/- 3.7 (P < 0.05) in the SAL, L-ESC and H-ESC groups, respectively during the last hour of P2 (210-270 min). Net hepatic carbon retention (glycogen storage) was 15.4 +/- 1.3, 14.9 +/- 0.6 and 20.9 +/- 2.6 (P < 0.05) micromol/kg/min in SAL, L-ESC and H-ESC respectively during the last hour of P2. Escitalopram enhanced net hepatic glucose uptake and hepatic glycogen deposition, showing that it can improve hepatic glucose clearance under hyperinsulinemic hyperglycemic conditions. Its use in individuals with diabetes may, therefore, result in improved glycemic control.
Collapse
|
28
|
Chi TC, Ho YJ, Chen WP, Chi TL, Lee SS, Cheng JT, Su MJ. Serotonin enhances β-endorphin secretion to lower plasma glucose in streptozotocin-induced diabetic rats. Life Sci 2007; 80:1832-8. [PMID: 17397876 DOI: 10.1016/j.lfs.2007.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Although serotonin, serotonin uptake inhibitors and serotonin precursors (including tryptophan or 5-hydroxytryptophan) are known to have hypoglycemic action in rodents or human, it is not clear whether serotonin has hypoglycemic effect in streptozotocin-induced diabetic rats (STZ-diabetic rats). The aim of this study was to investigate the action of serotonin in regulating the plasma glucose STZ-diabetic rats. Plasma glucose, insulin, beta-endorphin and adrenaline were assessed after intraperitoneal administration of serotonin. Serotonin produced hypoglycemic effects without altering plasma insulin and adrenaline levels but increasing beta-endorphin level in STZ-diabetic rats. The glycogen content in soleus muscle was increased at 90 min after application of serotonin (0.3 mg/kg) in STZ-diabetic rats. Dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT(7) receptor blocker) abolished the hypoglycemic effect of serotonin in STZ-diabetic rats. Serotonin-induced hypoglycemic effect in association with the increase of beta-endorphin release was abolished in bilaterally adrenalectomized STZ-diabetic rats. In isolated adrenal gland of STZ-diabetic rats, the increase of beta-endorphin secretion in response to serotonin was reduced by either dihydroergotamine or pimozide. Pretreatment with naloxone (1.0 mg/kg, i.p.) prevented serotonin-induced plasma glucose lowering effect in STZ-diabetic rats. The results demonstrated that serotonin may activate 5-HT(7) receptor on rat adrenal gland to enhance of beta-endorphin secretion, which then stimulates the opioid receptor to increase peripheral glucose utilization, resulting in decreased plasma glucose levels in STZ-diabetic rats.
Collapse
Affiliation(s)
- Tzong-Cherng Chi
- Institute of Pharmacology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chang SL, Tsai CC, Lin JG, Hsieh CL, Lin RT, Cheng JT. Involvement of serotonin in the hypoglycemic response to 2Hz electroacupuncture of zusanli acupoint (ST36) in rats. Neurosci Lett 2005; 379:69-73. [PMID: 15814202 DOI: 10.1016/j.neulet.2004.12.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/18/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
In our previous studies, an insulin-dependent hypoglycemic effect produced by electroacupuncture (EA) was shown to be mediated by endogenous opioid peptides (EOP). In the present study, we applied 2 Hz EA to both zusanli acupoints (ST36) in the test group for 30 min, and to a nonacupoint area in the control group for 30 min to compare the acupoint specific character in the hypoglycemic effect of EA. Assays of plasma beta-endorphin and insulin levels were performed by ELISA kits. The insulin-dependent mechanism of the hypoglycemic effect was also investigated in streptozotocin (STZ)-induced diabetic rats. The mediation of EOP and the role of mu-opioid receptor were examined by naloxone and mu-opioid receptor knockout mice (MOR-KOM). The serotonin depletion was carried out by injecting (i.p.) p-chlorophenylalanine (PCPA); two low doses of serotonin were also injected (i.v.) to analyze the direct effect on plasma glucose levels. The hypoglycemic effect of EA was much greater in rats stimulated at ST36 than in rats receiving the same stimulation at the nonacupoint area. The plasma levels of insulin and beta-endorphin were also significantly elevated after stimulation of both zusanli acupoints, but remained unchanged following stimulation at the nonacupoint area. There was no sharp hypoglycemic response to 2 Hz EA at zusanli acupoint of STZ-induced diabetic rats. However, the hypoglycemic effect of this EA was not totally blocked by the sufficient dose of naloxone (1 mg/kg, i.v.). Additionally, 2 Hz EA at ST36 also showed a sharp decrease in plasma glucose levels of MOR-KOM. Pretreatment with PCPA did not reproduce hypoglycemic response to 2 Hz EA in naloxone-treated rats and MOR-KOM mice. Furthermore, injection of serotonin decreased the plasma glucose levels significantly. Therefore, we suggest that serotonin also involved in the hypoglycemic action of 2 Hz EA at both zusanli acupoints of normal rats.
Collapse
Affiliation(s)
- Shih-Liang Chang
- Graduate Institute of Integration Chinese and Western Medicine, China Medical University, Taichung, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
30
|
Yamada J, Sugimoto Y, Ujikawa M, Goko H, Yagura T. Hyperleptinemia elicited by the 5-HT precursor, 5-hydroxytryptophan in mice: involvement of insulin. Life Sci 2003; 73:2335-44. [PMID: 12941435 DOI: 10.1016/s0024-3205(03)00641-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mechanisms for hyperleptinemia elicited by a serotonin (5-hydroxytryptamine, 5-HT) precursor, 5-hydroxytryptophan (5-HTP), were investigated. 5-HTP elicited apparent increases in serum leptin levels of mice. Administration of 5-HTP did not alter expression of leptin mRNA in white adipose tissues. Furthermore, neither 5-HTP nor 5-HT increased leptin secretion from isolated fat pads of mice. Since insulin is known to enhance leptin release, involvement of insulin in 5-HTP-induced hyperleptinemia was examined. 5-HTP significantly elevated serum insulin levels. In mice treated with streptozotocin, which depletes insulin, 5-HTP did not increase serum leptin levels. These results suggest that hyperinsulinemia participates the elevation of serum leptin levels elicited by 5-HTP.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Pharmacology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada, Kobe 658-8558, Japan.
| | | | | | | | | |
Collapse
|
31
|
Fischer Y, Thomas J, Kamp J, Jüngling E, Rose H, Kammermeier H. 5-hydroxytryptamine stimulates glucose transport in cardiomyocytes via a monoamine oxidase-dependent reaction. Biochem J 1995; 311 ( Pt 2):575-83. [PMID: 7487898 PMCID: PMC1136038 DOI: 10.1042/bj3110575] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study deals with the effect of 5-hydroxytryptamine (5-HT; serotonin) on glucose transport in isolated rat cardiac myocytes. In these cells, 5-HT (10-300 microns), as well as tryptamine, 5-methoxytryptamine and dopamine, elicited a 3-5 fold increase in glucose transport, as compared with control. This effect was maximal after 90 min, and was concomitant with a 1.8- and 1.5-fold increase in the amounts of glucose transporters GLUT1 and GLUT4 at the cell surface of the cardiomyocytes, as determined by using the photoaffinity label 3H-2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-manno s-4-yl) propyl-2-amine (3H-ATB-BMPA). In contrast, 3-3000 microM of the selective 5-HT receptor agonists 5-carboxyamido-tryptamine, alpha-methyl-serotonin, 2-methyl-serotonin or renzapride failed to stimulate glucose transport. The effect of 5-HT was not affected by (i) the 5-HT receptor antagonists methysergide (1 microM), ketanserin (1 microM), cyproheptadine (1 microM), MDL 72222 (1 microM) or ICS 205-930 (3 microM), nor by (ii) the adrenergic receptor antagonists prazosin (1 microM), yohimbine (1 microM) or propranolol (5 microM), nor by (iii) the dopaminergic antagonists SCH 23390 (1 microM) or haloperidol (1 microM). The monoamine oxidase inhibitors clorgyline (1 microM) and tranylcypromine (1 microM) completely suppressed the effect of 5-HT, whereas the control and insulin-stimulated rates of glucose transport were unaffected. Addition of catalase or glutathione diminished the 5-HT-dependent stimulation of glucose transport by 50%; these two factors are known to favour the degradation of H2O2 (which can be formed during the deamination of amines by monoamine oxidases). Glutathione also depressed the stimulatory action of exogenously added H2O2 (20 microM) by 30%. Furthermore, in cells treated with 5_HT, a time-dependent accumulation of 5-hydroxy-1H-indol-3-ylacetic acid (a product of 5-HT metabolism via monoamine oxidases) was observed, which paralleled the changes in glucose transport. In conclusion, the stimulation of glucose transport by 5-HT in cardiomyocytes is not mediated by a 5-HT1, 5-HT2, 5-HT3 or 5-HT4 receptor, nor by an adrenergic or dopaminergic receptor, but is likely to occur through the degradation of by a monoamine oxidase and concomitant formation of H2O2.
Collapse
Affiliation(s)
- Y Fischer
- Institute of Physiology, Medical Faculty, RWTH Aachen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Yamada J, Sugimoto Y, Yoshikawa T, Kimura I, Horisaka K. The involvement of the peripheral 5-HT2A receptor in peripherally administered serotonin-induced hyperglycemia in rats. Life Sci 1995; 57:819-25. [PMID: 7637555 DOI: 10.1016/0024-3205(95)02010-g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of the hyperglycemic response to intraperitoneally administered serotonin (5-HT) was studied in rats. 5-HT i.p.-induced hyperglycemia was strongly antagonized by the 5-HT2A receptor antagonist ketanserin. 5-HT did not affect the serum insulin levels and increased plasma glucagon levels only at the high dose of 10 mg/kg. 5-HT dose-dependently induced a remarkable increase in plasma adrenaline levels and these effects were antagonized by ketanserin. 5-HT-induced hyperglycemia was abolished by adrenodemedullation. These results suggest that the hyperglycemic effects of 5-HT are closely related to the release of adrenaline from the adrenal gland, mediated by 5-HT2A receptors.
Collapse
Affiliation(s)
- J Yamada
- Department of Pharmacology, Kobe Pharmaceutical University, Motoyamakita-Machi, Kobe, Japan
| | | | | | | | | |
Collapse
|