1
|
Ceccarelli M, Rossi S, Bonaventura F, Massari R, D'Elia A, Soluri A, Micheli L, D'Andrea G, Mancini B, Raspa M, Scavizzi F, Alaggio R, Del Bufalo F, Miele E, Carai A, Mastronuzzi A, Tirone F. Intracerebellar administration of the chemokine Cxcl3 reduces the volume of medulloblastoma lesions at an advanced stage by promoting the migration and differentiation of preneoplastic precursor cells. Brain Pathol 2025; 35:e13283. [PMID: 38946128 PMCID: PMC11669415 DOI: 10.1111/bpa.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Sabrina Rossi
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | | | - Roberto Massari
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Unit of Molecular NeurosciencesUniversity Campus Bio‐MedicoRomeItaly
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Barbara Mancini
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Marcello Raspa
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Rita Alaggio
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
- Department of Medico‐surgical Sciences and BiotechnologiesSapienza UniversityRomeItaly
| | - Francesca Del Bufalo
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Evelina Miele
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Andrea Carai
- Neurosurgery UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Angela Mastronuzzi
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| |
Collapse
|
2
|
Pak ME, Kim YJ, Kim H, Shin CS, Yoon JW, Jeon SM, Song YH, Kim K. Anti-Neuroinflammatory Effects of the Human Milk Oligosaccharide, 2'-Fucosyllactose, Exerted via Modulation of M2 Microglial Activation in a Mouse Model of Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023; 12:1281. [PMID: 37372011 DOI: 10.3390/antiox12061281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. 2'-fucosyllactose (2'-FL), a human milk oligosaccharide, exerts anti-inflammatory effects and plays a protective role in arterial thrombosis; however, its role in ischemic stroke remains unclear. This study aimed to investigate the neuroprotective effects of 2'-FL and its potential mechanisms in a mouse model of ischemic stroke. Neurological score and behavior tests revealed that 2'-FL promoted the recovery of neurological deficits and motor function in middle cerebral artery occlusion (MCAO) mice, and that 2'FL led to a reduction in the size of cerebral infarct. Biochemical studies showed that administration of 2'-FL led to a reduction of reactive oxygen species (ROS)-related products in the brain of MCAO mice. 2'-FL upregulated IL-10 and downregulated TNF-α level. In addition, 2'-FL enhanced M2-type microglial polarization and upregulated CD206 expression at 7 days after MCAO. At 3 days after MCAO, 2'-FL increased IL-4 levels and activated STAT6. Our data show that 2'-FL reduced the neurological symptoms of ischemic stroke and ROS accumulation in the brain through IL-4/STAT6-dependent M2-type microglial polarization in MCAO mice. These results demonstrate that 2'-FL is a potentially effective therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Malk Eun Pak
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yeon-Ji Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hanhae Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34054, Republic of Korea
| | - Chul Soo Shin
- Advanced Protein Technologies Corp., Suwon 16229, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon 16229, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon 16229, Republic of Korea
| | - Young-Ha Song
- Advanced Protein Technologies Corp., Suwon 16229, Republic of Korea
| | - Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34054, Republic of Korea
| |
Collapse
|
3
|
Surya K, Manickam N, Jayachandran KS, Kandasamy M, Anusuyadevi M. Resveratrol Mediated Regulation of Hippocampal Neuroregenerative Plasticity via SIRT1 Pathway in Synergy with Wnt Signaling: Neurotherapeutic Implications to Mitigate Memory Loss in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S125-S140. [PMID: 36463442 PMCID: PMC10473144 DOI: 10.3233/jad-220559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a major form of dementia. Abnormal amyloidogenic event-mediated degeneration of cholinergic neurons in the cognitive centers of the brain has been attributed to neuropathological sequelae and behavioral deficits in AD. Besides, impaired adult neurogenesis in the hippocampus has experimentally been realized as an underlying cause of dementia regardless of neurodegeneration. Therefore, nourishing the neurogenic process in the hippocampus has been considered an effective therapeutic strategy to mitigate memory loss. In the physiological state, the Wnt pathway has been identified as a potent mitogenic generator in the hippocampal stem cell niche. However, downstream components of Wnt signaling have been noticed to be downregulated in AD brains. Resveratrol (RSV) is a potent Sirtuin1 (SIRT1) enhancer that facilitates neuroprotection and promotes neurogenesis in the hippocampus of the adult brain. While SIRT1 is an important positive regulator of Wnt signaling, ample reports indicate that RSV treatment strongly mediates the fate determination of stem cells through Wnt signaling. However, the possible therapeutic roles of RSV-mediated SIRT1 enhancement on the regulation of hippocampal neurogenesis and reversal of memory loss through the Wnt signaling pathway have not been addressed yet. Taken together, this review describes RSV-mediated effects on the regulation of hippocampal neurogenesis via the activation of SIRT1 in synergy with the Wnt signaling. Further, the article emphasizes a hypothesis that RSV treatment can provoke the activation of quiescent neural stem cells and prime their neurogenic capacity in the hippocampus via Wnt signaling in AD.
Collapse
Affiliation(s)
- Kumar Surya
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nivethitha Manickam
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kesavan Swaminathan Jayachandran
- Department of Bioinformatics, Molecular Cardiology and Drug Discovery Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
4
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
- *Correspondence: Kai Yuan,
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Pengyue Zhang,
| |
Collapse
|
5
|
Li D, Hu Y, Wei H, Chen W, Liu Y, Yan X, Guo L, Liao M, Chen B, Chai R, Tang M. Superparamagnetic Iron Oxide Nanoparticles and Static Magnetic Field Regulate Neural Stem Cell Proliferation. Front Cell Neurosci 2022; 15:815280. [PMID: 35185472 PMCID: PMC8854213 DOI: 10.3389/fncel.2021.815280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
Neural stem cells (NSCs) transplantation is a promising approach for the treatment of various neurodegenerative diseases. Superparamagnetic iron oxide nanoparticles (SPIOs) are reported to modulate stem cell behaviors and are used for medical imaging. However, the detailed effects of SPIOs under the presence of static magnetic field (SMF) on NSCs are not well elucidated. In this study, it was found that SPIOs could enter the cells within 24 h, while they were mainly distributed in the lysosomes. SPIO exhibited good adhesion and excellent biocompatibility at concentrations below 500 μg/ml. In addition, SPIOs were able to promote NSC proliferation in the absence of SMF. In contrast, the high intensity of SMF (145 ± 10 mT) inhibited the expansion ability of NSCs. Our results demonstrate that SPIOs with SMF could promote NSC proliferation, which could have profound significance for tissue engineering and regenerative medicine for SPIO applications.
Collapse
Affiliation(s)
- Dan Li
- School of Biology, Food and Environment, Hefei University, Hefei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yangnan Hu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Hao Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yun Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaoqian Yan
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Lingna Guo
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Menghui Liao
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
- *Correspondence: Renjie Chai,
| | - Mingliang Tang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
- Mingliang Tang,
| |
Collapse
|
6
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
7
|
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. Int J Mol Sci 2020; 21:ijms21197249. [PMID: 33008128 PMCID: PMC7582579 DOI: 10.3390/ijms21197249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.
Collapse
|
8
|
Revuelta M, Elicegui A, Moreno-Cugnon L, Bührer C, Matheu A, Schmitz T. Ischemic stroke in neonatal and adult astrocytes. Mech Ageing Dev 2019; 183:111147. [PMID: 31493435 DOI: 10.1016/j.mad.2019.111147] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
The objective of this paper is to review current information regarding astrocytes function after a stroke in neonatal and adult brain. Based on the current literature, there are some molecular differences related to blood brain barrier (BBB) homeostasis disruption, inflammation and reactive oxygen species (ROS) mediated injury between the immature and mature brain after an ischemic event. In particular, astrocytes, the main glial cells in brain, play a different role in neonatal and adult brain after stroke, as time course of glial activation is strongly age dependent. Moreover, the present review provides further insight into the therapeutic approaches of using neonatal and adult astrocytes after stroke. More research will be needed in order to translate them into an effective treatment against stroke, the second main cause of death and disability worldwide.
Collapse
Affiliation(s)
- Miren Revuelta
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany; Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Elicegui
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Doctor Begiristain, 20014, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko 3, 48013, Bilbao, Spain; CIBERfes, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Chariteplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
10
|
Yoneyama M, Ogita K. [Adult Neurogenesis-activating Signals as Therapeutic Targets for Neurodegenerative Disorders]. YAKUGAKU ZASSHI 2019; 139:853-859. [PMID: 31155525 DOI: 10.1248/yakushi.18-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most mammalian species, adult neurogenesis appears to occur only in the olfactory bulb and hippocampal dentate gyrus, where neural stem/progenitor cells exist to create new neurons. The discovery of multi-potential neural stem/progenitor cells (NPCs) in the adult brain has precipitated a novel therapeutic strategy for harnessing these endogenous cells to aid in recovery from neurodegenerative disorders. During neurodegeneration, a plethora of endogenous factors, including cytokines, chemokines, neurotransmitters, blood-derived factors, and reactive oxygen species, are released by the activation of resident microglia, astrocytes, and infiltrating peripheral macrophages. It is interesting that these endogenous factors affect the proliferation, migration, differentiation, and survival of newly generated cells involved in the incorporation of newly generated neurons into the brain's circuitry. The unique profile of these endogenous factors can vary the degree of neuroregeneration after neurodegeneration. We show that adult neurogenesis-activating signals are regulated by endogenous factors produced during neurodegeneration.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
11
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
12
|
Li D, Yan X, Hu Y, Liu Y, Guo R, Liao M, Shao B, Tang Q, Guo X, Chai R, Zhang Q, Tang M. Two-Photon Image Tracking of Neural Stem Cells via Iridium Complexes Encapsulated in Polymeric Nanospheres. ACS Biomater Sci Eng 2019; 5:1561-1568. [PMID: 33405629 DOI: 10.1021/acsbiomaterials.8b01231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iridium(III) complexes have been shown to be promising probes in two-photon imaging to real-time track the transplanted cells in stem-cell-based therapy. Here, we report on polymeric nanocapsules loaded with red phosphorescence dye of bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) iridium(III) (Ir(MDQ)2acac) with excellent stability created by the double emulsion method. The Ir(MDQ)2acac nanocapsules present high biocompatibility and an efficient fluorescent labeling rate when incubated with cultured mouse neural stem cells (NSCs). More importantly, the Ir(MDQ)2acac nanocapsules had both one- and two-photon imaging properties with stable phosphorescence lasting for 72 h. Furthermore, data from in vivo tracking in nude mice demonstrated that the photoluminescence from Ir(MDQ)2acac nanocapsules in NSCs could be stably monitored for up to 21 days. Our data shed light on the potential clinical application of iridium complexes encapsulated in polymeric nanospheres for two-photon imaging in real-time tracking of the transplanted stem cells.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 10010, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
13
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
14
|
Rockne RC, Adhikarla V, Tsaturyan L, Li Z, Masihi MB, Aboody KS, Barish ME, Gutova M. Long-term stability and computational analysis of migration patterns of L-MYC immortalized neural stem cells in the brain. PLoS One 2018; 13:e0199967. [PMID: 30071048 PMCID: PMC6071994 DOI: 10.1371/journal.pone.0199967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022] Open
Abstract
Background Preclinical studies indicate that neural stem cells (NSCs) can limit or reverse central nervous system (CNS) damage through delivery of therapeutic agents for cell regeneration. Clinical translation of cell-based therapies raises concerns about long-term stability, differentiation and fate, and absence of tumorigenicity of these cells, as well as manufacturing time required to produce therapeutic cells in quantities sufficient for clinical use. Allogeneic NSC lines are in growing demand due to challenges inherent in using autologous stem cells, including production costs that limit availability to patients. Methods/Principal findings We demonstrate the long-term stability of L-MYC immortalized human NSCs (LM-NSC008) cells in vivo, including engraftment, migration, and absence of tumorigenicity in mouse brains for up to nine months. We also examined the distributions of engrafted LM-NSC008 cells within brain, and present computational techniques to analyze NSC migration characteristics in relation to intrinsic brain structures. Conclusions/Significance This computational analysis of NSC distributions following implantation provides proof-of-concept for the development of computational models that can be used clinically to predict NSC migration paths in patients. Previously, models of preferential migration of malignant tumor cells along white matter tracts have been used to predict their final distributions. We suggest that quantitative measures of tissue orientation and white matter tracts determined from MR images can be used in a diffusion tensor imaging tractography-like approach to describe the most likely migration routes and final distributions of NSCs administered in a clinical setting. Such a model could be very useful in choosing the optimal anatomical locations for NSC administration to patients to achieve maximum therapeutic effects.
Collapse
Affiliation(s)
- Russell C. Rockne
- Department of Information Sciences, Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Vikram Adhikarla
- Department of Information Sciences, Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Lusine Tsaturyan
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Zhongqi Li
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Meher B. Masihi
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Michael E. Barish
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Margarita Gutova
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hayes DM, Nickell CG, Chen KY, McClain JA, Heath MM, Deeny MA, Nixon K. Activation of neural stem cells from quiescence drives reactive hippocampal neurogenesis after alcohol dependence. Neuropharmacology 2018; 133:276-288. [PMID: 29378214 PMCID: PMC6620048 DOI: 10.1016/j.neuropharm.2018.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/30/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Neural stem cell-driven adult neurogenesis contributes to the integrity of the hippocampus. Excessive alcohol consumption in alcoholism results in hippocampal degeneration that may recover with abstinence. Reactive, increased adult neurogenesis during abstinence following alcohol dependence may contribute to recovery, but the mechanism driving reactive neurogenesis is not known. Therefore, adult, male rats were exposed to alcohol for four days and various markers were used to examine cell cycle dynamics, the percentage and number of neural progenitor cell subtypes, and the percentage of quiescent versus activated progenitors. Using a screen for cell cycle perturbation, we showed that the cell cycle is not likely altered at 7 days in abstinence. As the vast majority of Bromodeoxyuridine-positive (+) cells were co-labeled with progenitor cell marker, Sox2, we then developed a quadruple fluorescent labeling scheme to examine Type-1, -2a, -2b and -3 progenitor cells simultaneously. Prior alcohol dependence indiscriminately increased all subtypes at 7 days, the peak of the reactive proliferation. An evaluation of the time course of reactive cell proliferation revealed that cells begin proliferating at 5 days post alcohol, where only actively dividing Type 2 progenitors were increased by alcohol. Furthermore, prior alcohol increased the percentage of actively dividing Sox2+ progenitors, which supported that reactive neurogenesis is likely due to the activation of progenitors out of quiescence. These observations were associated with granule cell number returning to normal at 28 days. Therefore, activating stem and progenitor cells out of quiescence may be the mechanism underlying hippocampal recovery in abstinence following alcohol dependence.
Collapse
Affiliation(s)
- Dayna M Hayes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Chelsea G Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Kevin Y Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Megan M Heath
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - M Ayumi Deeny
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| |
Collapse
|
16
|
Rodrigues RS, Ribeiro FF, Ferreira F, Vaz SH, Sebastião AM, Xapelli S. Interaction between Cannabinoid Type 1 and Type 2 Receptors in the Modulation of Subventricular Zone and Dentate Gyrus Neurogenesis. Front Pharmacol 2017; 8:516. [PMID: 28848435 PMCID: PMC5554396 DOI: 10.3389/fphar.2017.00516] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/24/2017] [Indexed: 01/13/2023] Open
Abstract
Neurogenesis in the adult mammalian brain occurs mainly in two neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG). Cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to differently modulate neurogenesis. However, low attention has been given to the interaction between CB1R and CB2R in modulating postnatal neurogenesis (proliferation, neuronal differentiation and maturation). We focused on a putative crosstalk between CB1R and CB2R to modulate neurogenesis and cultured SVZ and DG stem/progenitor cells from early postnatal (P1-3) Sprague-Dawley rats. Data showed that the non-selective cannabinoid receptor agonist WIN55,212-2 promotes DG cell proliferation (measured by BrdU staining), an effect blocked by either CB1R or CB2R selective antagonists. Experiments with selective agonists showed that facilitation of DG cell proliferation requires co-activation of both CB1R and CB2R. Cell proliferation in the SVZ was not affected by the non-selective receptor agonist, but it was enhanced by CB1R selective activation. However, either CB1R or CB2R selective antagonists abolished the effect of the CB1R agonist in SVZ cell proliferation. Neuronal differentiation (measured by immunocytochemistry against neuronal markers of different stages and calcium imaging) was facilitated by WIN55,212-2 at both SVZ and DG. This effect was mimicked by either CB1R or CB2R selective agonists and blocked by either CB1R or CB2R selective antagonists, cross-antagonism being evident. In summary, our findings indicate a tight interaction between CB1R and CB2R to modulate neurogenesis in the two major neurogenic niches, thus contributing to further unraveling the mechanisms behind the action of endocannabinoids in the brain.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| | - Filipa Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
17
|
Hooshmand MJ, Nguyen HX, Piltti KM, Benavente F, Hong S, Flanagan L, Uchida N, Cummings BJ, Anderson AJ. Neutrophils Induce Astroglial Differentiation and Migration of Human Neural Stem Cells via C1q and C3a Synthesis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1069-1085. [PMID: 28687659 DOI: 10.4049/jimmunol.1600064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2017] [Indexed: 12/23/2022]
Abstract
Inflammatory processes play a key role in pathophysiology of many neurologic diseases/trauma, but the effect of immune cells and factors on neurotransplantation strategies remains unclear. We hypothesized that cellular and humoral components of innate immunity alter fate and migration of human neural stem cells (hNSC). In these experiments, conditioned media collected from polymorphonuclear leukocytes (PMN) selectively increased hNSC astrogliogenesis and promoted cell migration in vitro. PMN were shown to generate C1q and C3a; exposure of hNSC to PMN-synthesized concentrations of these complement proteins promoted astrogliogenesis and cell migration. Furthermore, in vitro, Abs directed against C1q and C3a reversed the fate and migration effects observed. In a proof-of-concept in vivo experiment, blockade of C1q and C3a transiently altered hNSC migration and reversed astroglial fate after spinal cord injury. Collectively, these data suggest that modulation of the innate/humoral inflammatory microenvironment may impact the potential of cell-based therapies for recovery and repair following CNS pathology.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Hal X Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Katja M Piltti
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Francisca Benavente
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Samuel Hong
- Bridges to Stem Cell Research Program, California State University, Fullerton, Fullerton, CA 92834; and
| | - Lisa Flanagan
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697
| | | | - Brian J Cummings
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
18
|
Liu T, Zeng X, Sun F, Hou H, Guan Y, Guo D, Ai H, Wang W, Zhang G. EphB4 Regulates Self-Renewal, Proliferation and Neuronal Differentiation of Human Embryonic Neural Stem Cells in Vitro. Cell Physiol Biochem 2017; 41:819-834. [DOI: 10.1159/000459693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: EphB4 belongs to the largest family of Eph receptor tyrosine kinases. It contributes to a variety of pathological progresses of cancer malignancy. However, little is known about its role in neural stem cells (NSCs). This study examined whether EphB4 is required for proliferation and differentiation of human embryonic neural stem cells (hNSCs) in vitro. Methods: We up- and down-regulated EphB4 expression in hNSCs using lentiviral over-expression and shRNA knockdown constructs and then investigated the influence of EphB4 on the properties of hNSCs. Results: Our results show that shRNA-mediated EphB4 reduction profoundly impaired hNSCs self-renewal and proliferation. Furthermore, detection of differentiation revealed that knockdown of EphB4 inhibited hNSCs differentiation towards a neuronal lineage and promoted hNSCs differentiation to glial cells. In contrast, EphB4 overexpression promoted hNSCs self-renewal and proliferation, further induced hNSCs differentiation towards a neuronal lineage and inhibited hNSCs differentiation to glial cells. Moreover, we found that EphB4 regulates cell proliferation mediated by the Abl-CyclinD1 pathway. Conclusion: These studies provide strong evidence that fine tuning of EphB4 expression is crucial for the proliferation and neuronal differentiation of hNSCs, suggesting that EphB4 might be an interesting target for overcoming some of the therapeutic limitations of neuronal loss in brain diseases.
Collapse
|
19
|
Dorsemans AC, Couret D, Hoarau A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Diabetes, adult neurogenesis and brain remodeling: New insights from rodent and zebrafish models. NEUROGENESIS 2017; 4:e1281862. [PMID: 28439518 DOI: 10.1080/23262133.2017.1281862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 12/24/2022]
Abstract
The prevalence of diabetes rapidly increased during the last decades in association with important changes in lifestyle. Diabetes and hyperglycemia are well-known for inducing deleterious effects on physiologic processes, increasing for instance cardiovascular diseases, nephropathy, retinopathy and foot ulceration. Interestingly, diabetes also impairs brain morphology and functions such as (1) decreased neurogenesis (proliferation, differentiation and cell survival), (2) decreased brain volumes, (3) increased blood-brain barrier leakage, (4) increased cognitive impairments, as well as (5) increased stroke incidence and worse neurologic outcomes following stroke. Importantly, diabetes is positively associated with a higher risk to develop Alzheimer disease. In this context, we aim at reviewing the impact of diabetes on neural stem cell proliferation, newborn cell differentiation and survival in a homeostatic context or following stroke. We also report the effects of hyper- and hypoglycemia on the blood-brain barrier physiology through modifications of tight junctions and transporters. Finally, we discuss the implication of diabetes on cognition and behavior.
Collapse
Affiliation(s)
- Anne-Claire Dorsemans
- Université de La Réunion, INSERM, UMR Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, INSERM, UMR Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Saint-Pierre, France
| | - Anaïs Hoarau
- Université de La Réunion, INSERM, UMR Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Saint-Pierre, France
| | | | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| |
Collapse
|
20
|
Richa R, Yadawa AK, Chaturvedi CM. Hyperglycemia and high nitric oxide level induced oxidative stress in the brain and molecular alteration in the neurons and glial cells of laboratory mouse, Mus musculus. Neurochem Int 2016; 104:64-79. [PMID: 28011166 DOI: 10.1016/j.neuint.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
Chronic hyperglycemia (glucotoxicity) is reported to have detrimental effects on various brain functions leading to neurodegenerative changes. However, the effect of hyperglycemia in combination with high nitric oxide (NO) level (reported to be increased during glucotoxicity), on brain functions is not clear yet. The present study was designed to investigate the effects of hyperglycemic drug Streptozotocin (STZ) and NO donor Sodium nitroprusside (SNP) on the brain of laboratory mouse, Mus musculus. Effects of these conditions were studied on the markers of oxidative stress, NF-κB signalling and the markers of neuronal and glial cell activation/inflammation. Results indicate increased level of MDA and altered antioxidant enzymes activity in both the treated groups compared to control but high levels of AGEs, AOPP and AR activity (markers of diabetic complications) were observed in STZ group only. On the other hand, while STZ group showed decreased IL-6 level, it was increased in SNP group but IFN-ϒ level increased in both the treated groups compared to control. Further, in addition to alterations in the expressions of iNOS, IKKβ, IKBα and NF-κB subunits (RelA-p65/RelB-p50) observed in the neurons and glial cells of different brain regions (hypothalamus, basolateral amygdala and cerebral cortex), enhanced expression of microglial CD11b and astrocytic GFAP was also found in both the treated groups compared to control. Present findings led us to conclude that both hyperglycemia and high NO level causes oxidative stress in addition to molecular alteration in the neurons and glial cells. It is suggested that high blood glucose and NO level induced oxidative stress may lead to neuroinflammation possibly via NF-κB signalling.
Collapse
Affiliation(s)
- Rashmi Richa
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
21
|
Shukla S, Shariat-Madar Z, Walker LA, Tekwani BL. Mechanism for neurotropic action of vorinostat, a pan histone deacetylase inhibitor. Mol Cell Neurosci 2016; 77:11-20. [PMID: 27678157 DOI: 10.1016/j.mcn.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
In this study we investigated the neurotrophic actions of vorinostat (suberoylanilide hydroxamic acid, SAHA), a class I and class II HDAC inhibitor, on the differentiation of Neuroscreen-1 (NS-1) cells. NS-1 cell is a subclone of the rat pheochromocytoma cell line (PC 12). Vorinostat independently induced neurite outgrowth in NS-1 cells. The NS-1 cells were further interrogated for the effects of vorinostat on intracellular neurotrophin signaling pathways, to understand its mechanism of neurotrophic action. Selective inhibitors of MEK1/2 (PD98059 and U0126), phosphoinositide 3-kinase (PI3K) (LY294002) and tyrosine kinase A (TrkA) (GW441756) were employed for these interrogations. Our results suggest that neurite outgrowth mediated by both nerve growth factor (NGF), an intrinsic neurotrophin, and vorinostat were blocked by the inhibitors of MEK1/2 & PI3K. Vorinostat induced phosphorylation of ERK1/2 occurs at 2h post treatment. Phosphorylation of ERK was abolished in presence of U0126, further confirming the role of ERK pathway in vorinostat-induced differentiation of NS-1 cells. Vorinostat-induced neurite outgrowth also involves the activation of upstream extracellular kinase TrkA, as both vorinostat mediated neurite outgrowth and activation of ERK were attenuated in presence of the TrkA inhibitor, GW441756. Vorinostat also stimulated hyperacetylation of α-tubulin and histones H3/H4 in NS-1 cells. The results suggest that vorinostat exerts a positive effect on the neuritogenesis via activation of MEK1/2 & PI3K pathways involving an upstream kinase, TrkA. Bioactive small molecules with neurotrophic and neuritogenic actions, like vorinostat identified in the present study, hold great promise as therapeutic agents for treatment of neurodegenerative diseases and neuronal injuries by virtue of their ability to stimulate neuritic outgrowth.
Collapse
Affiliation(s)
- Surabhi Shukla
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
22
|
Tanaka M, Yoneyama M, Shiba T, Yamaguchi T, Ogita K. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse. J Pharmacol Sci 2016; 131:162-71. [PMID: 27426918 DOI: 10.1016/j.jphs.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Thrombin-activated protease-activated receptor (PAR)-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs) derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP) SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Tatsuo Shiba
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
23
|
Fantetti KN, Gray EL, Ganesan P, Kulkarni A, O'Donnell LA. Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain. J Neuroinflammation 2016; 13:107. [PMID: 27178303 PMCID: PMC4867982 DOI: 10.1186/s12974-016-0571-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In the developing brain, self-renewing neural stem/progenitor cells (NSPC) give rise to neuronal and glial lineages. NSPC survival and differentiation can be altered by neurotropic viruses and by the anti-viral immune response. Several neurotropic viruses specifically target and infect NSPCs, in addition to inducing neuronal loss, which makes it difficult to distinguish between effects on NSPCs that are due to direct viral infection or due to the anti-viral immune response. METHODS We have investigated the impact of anti-viral immunity on NSPCs in measles virus (MV)-infected neonates. A neuron-restricted viral infection model was used, where NSPCs remain uninfected. Thus, an anti-viral immune response was induced without the confounding issue of NSPC infection. Two-transgenic mouse lines were used: CD46+ mice express the human isoform of CD46, the MV entry receptor, under the control of the neuron-specific enolase promoter; CD46+/IFNγ-KO mice lack the key anti-viral cytokine IFNγ. Multi-color flow cytometry and Western Blot analysis were used to quantify effects on NSPC, neuronal, and glial cell number, and quantify effects on IFNγ-mediated signaling and cell markers, respectively. RESULTS Flow cytometric analysis revealed that NSPCs were reduced in CD46+/IFNγ-KO mice at 3, 7, and 10 days post-infection (dpi), but were unaffected in CD46+ mice. Early neurons showed the greatest cell loss at 7 dpi in both genotypes, with no effect on mature neurons and glial cells. Thus, IFNγ protected against NSPC loss, but did not protect young neurons. Western Blot analyses on hippocampal explants showed reduced nestin expression in the absence of IFNγ, and reduced doublecortin and βIII-tubulin in both genotypes. Phosphorylation of STAT1 and STAT2 occurred independently of IFNγ in the hippocampus, albeit with distinct regulation of activation. CONCLUSIONS This is the first study to demonstrate bystander effects of anti-viral immunity on NSPC function. Our results show IFNγ protects the NSPC population during a neonatal viral CNS infection. Significant loss of NSPCs in CD46+/IFNγ-KO neonates suggests that the adaptive immune response is detrimental to NSPCs in the absence of IFNγ. These results reveal the importance and contribution of the anti-viral immune response to neuropathology and may be relevant to other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Erica L Gray
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Priya Ganesan
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Apurva Kulkarni
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Lauren A O'Donnell
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
24
|
Zhu W, Li J, Liu Y, Xie K, Wang L, Fang J. Mesencephalic astrocyte-derived neurotrophic factor attenuates inflammatory responses in lipopolysaccharide-induced neural stem cells by regulating NF-κB and phosphorylation of p38-MAPKs pathways. Immunopharmacol Immunotoxicol 2016; 38:205-13. [PMID: 27075782 DOI: 10.3109/08923973.2016.1168433] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new evolutionary conserved neurotrophic factor (NTF), has been reported to protect midbrain dopaminergic neurons of neurodegenerative diseases such as Parkinson's disease (PD) model. Neural stem cells (NSCs) can play a role as the therapeutic tool in neurodegenerative diseases, but the inflammatory responses of central nervous system (CNS) appear to harm this function. Although studies have previously demonstrated the protective effect of MANF on neurons of CNS, it is lacking in making great efforts on the function of MANF on NSCs. The aim of this study was to investigate the antiinflammatory responses and signaling mechanisms of MANF on lipopolysaccharide (LPS)-induced NSCs. In the results, MANF decreased the proinflammatory cytokines of IL-1β, TNF-α, and IFN-γ induced by LPS by regulating NF-κB and phosphorylation of p38-mitogen-activated protein kinases (MAPKs) pathways, neither p-JNK nor p-ERK signaling. These findings suggest that MANF can facilitate to protect the inflammatory responses of NSCs, and provide beneficial function for the application of NSCs in the therapy.
Collapse
Affiliation(s)
- Wei Zhu
- a Laboratory of Molecular Medicine, School of Life Sciences and Technology , Tongji University , Shanghai , China
| | - Jie Li
- a Laboratory of Molecular Medicine, School of Life Sciences and Technology , Tongji University , Shanghai , China
| | - Yigang Liu
- b Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Kun Xie
- a Laboratory of Molecular Medicine, School of Life Sciences and Technology , Tongji University , Shanghai , China
| | - Le Wang
- a Laboratory of Molecular Medicine, School of Life Sciences and Technology , Tongji University , Shanghai , China
| | - Jianmin Fang
- a Laboratory of Molecular Medicine, School of Life Sciences and Technology , Tongji University , Shanghai , China
| |
Collapse
|
25
|
Effects of addictive drugs on adult neural stem/progenitor cells. Cell Mol Life Sci 2015; 73:327-48. [PMID: 26468052 DOI: 10.1007/s00018-015-2067-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.
Collapse
|
26
|
Yoneyama M, Shiba T, Yamaguchi T, Ogita K. Possible involvement of caspases in proliferation of neocortical neural stem/progenitor cells in the developing mouse brain. Biol Pharm Bull 2015; 37:1699-703. [PMID: 25273393 DOI: 10.1248/bpb.b14-00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caspases are well-known enzymes that work as initiators and effectors of apoptosis. To elucidate the role of caspases in neurodevelopment, we sought to determine if caspases are involved in the proliferation of neural stem/progenitor cells (NPCs) in the developing mouse brain. Labeling with 5-bromo-2'-deoxyuridine (BrdU) from days 14 to 18 of pregnant mice revealed that the 18-d old fetus had many BudU-positive cells in its brain. Double-labeling revealed that active caspase-3 was co-localized with these BrdU-positive cells in the neocortex, hippocampus, and subventricular zone of the fetal brain. Active caspase-3 was detected in cultures of NPCs derived from the neocortex of 15-d old fetuses during culture periods. Importantly, the pan-caspase inhibitor z-VAD-FMK was effective at completely inhibiting neurosphere formation by the NPCs. These results suggest the possibility that the caspase cascade is essential for the proliferation of neocortical NPCs in the developing mouse brain.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | | | | | | |
Collapse
|
27
|
Chen MM, Zhao GW, He P, Jiang ZL, Xi X, Xu SH, Ma DM, Wang Y, Li YC, Wang GH. Improvement in the neural stem cell proliferation in rats treated with modified "Shengyu" decoction may contribute to the neurorestoration. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:9-19. [PMID: 25704929 DOI: 10.1016/j.jep.2015.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood". The modified "Shengyu" decoction (MSD) used in the present study was designed to treat traumatic brain injury (TBI) on the basis of the "Shengyu" decoction, in which additional four herbs were added. Many ingredients in these herbs have been demonstrated to be effective for the treatment of brain injury. The present study was performed to evaluate the neurorestorative effect and the underlying mechanisms of MSD on the rat brain after a TBI. MATERIALS AND METHODS TBI was induced in the right cerebral cortex of adult rats using Feeney's weight-drop method. Intragastrical administration of MSD (1.0 ml/200 g) was begun 6h after TBI. The neurological functions and neuronal loss in the cortex and hippocampus were determined. The levels of nerve growth-related factors GDNF, NGF, NCAM, TN-C, and Nogo-A and the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+) immunoreactive cells in the brain ipsilateral to TBI were also measured. Moreover, the influences of MSD on these variables were observed at the same time. RESULTS We found that treatment with MSD in TBI rats ameliorated the neurological functions and alleviated neuronal loss. MSD treatment elevated the expression of GDNF, NGF, NCAM, and TN-C, and inhibited the expression of Nogo-A. Moreover, MSD treatment increased the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), and BrdU(+)/NeuN(+) immunoreactive cells in the cortex and hippocampus. CONCLUSION The present results suggest that MSD treatment in TBI rats could improve the proliferation of neural stem/progenitor cells and differentiation into neurons, which may facilitate neural regeneration and tissue repair and thus contribute to the recovery of neurological functions. These effects of modified "Shengyu" decoction may provide a foundation for the use of MSD as a prescription of medicinal herbs in the traditional medicine to treat brain injuries in order to improve the neurorestoration.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guang-Wei Zhao
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China; Department of Neurology, The People׳s Hospital of Gaocheng, Hebei 052160, China
| | - Peng He
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China.
| | - Xin Xi
- Department of Neurosurgery and Chinese Medicine, The People׳s Hospital of Nantong, Jiangsu 226001, China
| | - Shi-Hui Xu
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Dong-Ming Ma
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Yong Wang
- Department of Neurosurgery and Chinese Medicine, The People׳s Hospital of Nantong, Jiangsu 226001, China
| | - Yong-Cai Li
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China.
| | - Guo-Hua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
28
|
Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 2015; 7:126-136. [PMID: 25621112 PMCID: PMC4300923 DOI: 10.4252/wjsc.v7.i1.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.
Collapse
|
29
|
Hu BY, Liu XJ, Qiang R, Jiang ZL, Xu LH, Wang GH, Li X, Peng B. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1243-55. [PMID: 25046825 DOI: 10.1016/j.jep.2014.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng, the root of Panax ginseng C.A. Meyer, is a traditional medicinal herb that has been widely used in Asia for the treatment of many diseases through its effects of reinforcing vitality, strengthening the bodily resistance to pathogenic factors, engendering body liquids and allaying thirst, relieving uneasiness of the body and mind and benefiting intelligence, reducing body weight and prolonging life. Ginsenosides are the most important biologically active substances in ginseng. Many reports have suggested that ginsenosides could exert prominent neuroprotective and neurotrophic effects, promote neural stem/progenitor cell (NSC) proliferation and promote neurite outgrowth and neuronal network formation. The present study aimed to investigate whether treatment with ginsenosides could facilitate NSC proliferation in the hippocampal formation after traumatic brain injury (TBI) and contribute to the recovery of neurological functions including learning and memory. MATERIALS AND METHODS The modified Feeney׳s method was used to induce a TBI in rats. Ginseng total saponins (GTS) were treated intraperitoneally twice a day for 1 week after the TBI. The neurological functions, morphology of the hippocampus, expression of nerve growth-related factors and number of NSCs in the hippocampal formation ipsilateral to the trauma were determined. RESULTS We determined 1) GTS (5-80 mg/kg) treatment after a TBI improved the recovery of neurological functions, including learning and memory, and reduced cell loss in the hippocampal area. The effects of GTS at 20, 40, 60, and 80 mg/kg were better than the effects of GTS at 5 and 10 mg/kg. 2) GTS treatment (20 mg/kg) after a TBI increased the expression of NGF, GDNF and NCAM, inhibited the expression of Nogo-A, Nogo-B, TN-C, and increased the number of BrdU/nestin positive NSCs in the hippocampal formation. CONCLUSIONS GTS treatment in rats after a TBI alleviated the secondary brain injury and ameliorated the neurological functions with an effective dose limit of 5-80 mg/kg. GTS regulated the expression of nerve growth-related factors and improved the proliferation of neural stem/progenitor cells, which might facilitate neural regeneration and tissue repair, and might contribute to the recovery of neurological functions, including learning and memory. These effects of GTS might provide a foundation for the use of ginseng as a medicinal herb to enhance intelligence, reduce the aging process and prolong life in the traditional medicine.
Collapse
Affiliation(s)
- Bao-Ying Hu
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Xian-Jin Liu
- Department of Infectious Diseases, The Third People׳s Hospital of Nantong, 99 Central Qingnian Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Ren Qiang
- Department of Infectious Diseases, The Third People׳s Hospital of Nantong, 99 Central Qingnian Road, Chongchuan District, Jiangsu, Nantong 226001, China.
| | - Zheng-Lin Jiang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China.
| | - Li-Hua Xu
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Xia Li
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Bin Peng
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| |
Collapse
|
30
|
Sun L, Qiang R, Yang Y, Jiang ZL, Wang GH, Zhao GW, Ren TJ, Jiang R, Xu LH. L-serine treatment may improve neurorestoration of rats after permanent focal cerebral ischemia potentially through improvement of neurorepair. PLoS One 2014; 9:e93405. [PMID: 24671106 PMCID: PMC3966884 DOI: 10.1371/journal.pone.0093405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
The present study was conducted to clarify whether treatment with L-serine can improve the brain repair and neurorestoration of rats after permanent middle cerebral artery occlusion (pMCAO). After pMCAO, the neurological functions, brain lesion volume, and cortical injury were determined. GDNF, NGF, NCAM L1, tenascin-C, and Nogo-A levels were measured. Proliferation and differentiation of the neural stem cells (NSCs) and proliferation of the microvessels in the ischemic boundary zone of the cortex were evaluated. Treatment with L-serine (168 mg/kg body weight, i.p.) began 3 h after pMCAO and was repeated every 12 h for 7 days or until the end of the experiment. L-Serine treatment: 1) reduced the lesion volume and neuronal loss; 2) improved the recovery of neurological functions; 3) elevated the expression of nerve growth-related factors; and 4) facilitated the proliferation of endogenous NSCs and microvessels activated after pMCAO and increased the number of new-born neurons. 5) D-cycloserine, an inhibitor of serine hydroxymethyltransferase, blunted the effects of L-serine on NSC proliferation, differentiation, microvascular proliferation. In conclusions, L-serine treatment in pMCAO rats can reduce brain injury and facilitate neurorestoration which is partly associated with the improvement of proliferation of NSCs and microvessels, reconstruction of neurovascular units and resultant neurorepair. The effects of L-serine on endogenous NSC proliferation and microvascular proliferation are partly mediated by the action of L-serine as a substrate for the production of one-carbon groups used for purine and pyrimidine synthesis and modulation of the expression of some nerve growth-related factors.
Collapse
Affiliation(s)
- Li Sun
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Ren Qiang
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Jiangsu, China
| | - Yao Yang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
- * E-mail: (ZLJ); (YY)
| | - Zheng-Lin Jiang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
- Department of Neurology, Affiliated Hospital, Nantong University, Jiangsu, China
- * E-mail: (ZLJ); (YY)
| | - Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Guang-Wei Zhao
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
- Department of Neurology, Affiliated Hospital, Nantong University, Jiangsu, China
| | - Tao-Jie Ren
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
- Department of Neurology, Affiliated Hospital, Nantong University, Jiangsu, China
| | - Rui Jiang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Li-Hua Xu
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| |
Collapse
|
31
|
Nemati R, Mehdizadeh S, Nabipour I, Salimipour H, Iranpour D, Assadi M. Radiolabeled neurogenesis marker imaging: a revolution in the neurological diseases management? Med Hypotheses 2013; 82:215-8. [PMID: 24365279 DOI: 10.1016/j.mehy.2013.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/11/2013] [Accepted: 11/30/2013] [Indexed: 11/17/2022]
Abstract
A reduced rate of neurogenesis occurs in the adult brain of patients with neurological diseases, with the rate of new neuron proliferation not sufficient to replace neuron loss. Neurogenesis can be induced by several factors, including basic fibroblast growth factor, epidermal growth factor, and brain-derived neurotrophic factor. Neurogenesis determination is a valuable parameter for determining disease progression and monitoring various treatments. Currently, neurogenesis detection is possible by invasive methods, such as bromodeoxyuridine (BrdU) cell labeling and immunohistological analysis of immature neuron markers. However, these are not compatible with alive model examination. Neurogenesis detection by noninvasive methods, such as radiolabeling of specific antibodies and scintigraphy imaging, could shed light on immature neuronal markers. We propose that brain scintigraphy after radiolabeling of a specific antibody of an immature neuronal marker is a useful new modality for neurogenesis detection and that it would aid the management of neurological diseases.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Mehdizadeh
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hooman Salimipour
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Darioush Iranpour
- Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
32
|
Yoneyama M, Ogita K. Activation of neuronal regeneration signal following neuronal degeneration-involvement of microglia. Nihon Yakurigaku Zasshi 2013; 142:17-21. [PMID: 23842223 DOI: 10.1254/fpj.142.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
34
|
Jafari M, Haist V, Baumgärtner W, Wagner S, Stein VM, Tipold A, Wendt H, Potschka H. Impact of Theiler's virus infection on hippocampal neuronal progenitor cells: differential effects in two mouse strains. Neuropathol Appl Neurobiol 2013; 38:647-64. [PMID: 22288387 DOI: 10.1111/j.1365-2990.2012.01256.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Disease-associated alterations in hippocampal neurogenesis are discussed as an important factor contributing to long-term consequences of central nervous system diseases. Therefore, the study aimed to determine the impact of Theiler's murine encephalomyelitis virus infection on hippocampal cell proliferation, neuronal progenitor cells and neurogenesis as well as the influence of microglia on respective disease-associated alterations. METHODS The impact of the infection was evaluated in two mouse strains which differ in the disease course, with an acute polioencephalitis followed by virus elimination in C57BL/6 mice and a chronic demyelinating disease in SJL/J mice. RESULTS Infection with the low neurovirulent BeAn strain did not exert significant acute effects regardless of the mouse strain. In the chronic phase, the number of neuronal progenitor cells and early postmitotic neurones was significantly reduced in infected SJL/J mice, whereas no long-term alterations were observed in C57BL/6 mice. A contrasting course of microglia activation was observed in the two mouse strains, with an early increase in the number of activated microglia cells in SJL/J mice and a delayed increase in C57BL/6 mice. Quantitative analysis did not confirm a correlation between the number of activated microglia and the number of neuronal progenitor cells and early postmitotic neurones. However, flow cytometric analyses revealed alterations in the functional state of microglial cells which might have affected the generation of neuronal progenitor cells. CONCLUSIONS Theiler's murine encephalomyelitis virus infection can exert delayed effects on the hippocampal neuronal progenitor population with long-term alterations evident 3 months following infection. These alterations proved to depend on strain susceptibility and might contribute to detrimental consequences of virus encephalitis such as cognitive impairment.
Collapse
Affiliation(s)
- M Jafari
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
36
|
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 2012; 46:299-308. [PMID: 23116540 DOI: 10.1016/j.npep.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.
Collapse
Affiliation(s)
- J O Malva
- Laboratory of Biochemistry and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
37
|
Peterson LJ, Flood PM. Oxidative stress and microglial cells in Parkinson's disease. Mediators Inflamm 2012; 2012:401264. [PMID: 22544998 PMCID: PMC3321615 DOI: 10.1155/2012/401264] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 12/22/2022] Open
Abstract
Significant evidence has now been accumulated that microglial cells play a central role in the degeneration of DA neurons in animal models of PD. The oxidative stress response by microglial cells, most notably the activity of the enzyme NADPH oxidase, appears to play a central role in the pathology of PD. This oxidative stress response occurs in microglia through the activation of the ERK signaling pathway by proinflammatory stimuli, leading to the phosphorylation and translocation of the p47(phox) and p67(phox) cytosolic subunits, the activation of membrane-bound PHOX, and the production of ROS. Therapeutic anti-inflammatories which prevent DA neurodegeneration in PD, including anti-inflammatory cytokines, morphinan compounds, NADPH oxidase inhibitors, NF-κB inhibitors, and β2-AR agonists, all function to inhibit the activation of the PHOX in microglial cells. These observations suggest a central role for the oxidative stress response in microglial cells as a mediator or regulator of DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Lynda J. Peterson
- North Carolina Oral Health Institute, The University of North Carolina at Chapel Hill, CB#7454, Chapel Hill, NC 27599-7454, USA
| | - Patrick M. Flood
- North Carolina Oral Health Institute, The University of North Carolina at Chapel Hill, CB#7454, Chapel Hill, NC 27599-7454, USA
| |
Collapse
|
38
|
Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI. Neural stem cells: therapeutic potential for neurodegenerative diseases. Br Med Bull 2012; 104:7-19. [PMID: 22988303 DOI: 10.1093/bmb/lds024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Neural stem cells (NSCs) from specific brain areas or developed from progenitors of different sources are of therapeutic potential for neurodegenerative diseases. SOURCES OF DATA Treatment strategies involve the (i) transplantation of exogenous NSCs; (ii) pharmacological modulations of endogenous NSCs and (iii) modulation of endogenous NSCs via the transplantation of exogenous NSCs. AREAS OF AGREEMENT There is a consensus about the therapeutic potential of transplanted NSCs. The ability of NSCs to home into areas of central nervous system injury allows their delivery by intravenous injection. There is also a general agreement about the neuroprotective mechanisms of NSCs involving a 'bystander effect'. AREAS OF CONTROVERSY Individual laboratories may be using phenotypically diverse NSCs, since these cells have been differentiated by a variety of neurotrophins and/or cultured on different ECM proteins, therefore differing in the expression of neuronal markers. GROWING POINTS Optimization of the dose, delivery route, timing of administration of NSCs, their interactions with the immune system and combination therapies in conjunction with tissue engineered neural prostheses are under investigation. AREAS TIMELY FOR DEVELOPING RESEARCH In-depth understanding of the biological properties of NSCs, including mechanisms of therapy, safety, efficacy and elimination from the organism. These areas are central for further use in cell therapy. CAUTIONARY NOTE: As long as critical safety and efficacy issues are not resolved, we need to be careful in translating NSC therapy from animal models to patients.
Collapse
Affiliation(s)
- Galit Gincberg
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
39
|
Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 2011; 4:28. [PMID: 21708025 PMCID: PMC3142219 DOI: 10.1186/1756-6606-4-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/24/2022] Open
Abstract
Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired.
Collapse
Affiliation(s)
- Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Lerna Uzasci
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Zhaohui Chen
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Carol Anderson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Myoung-Hwa Lee
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Mario A Bianchet
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Robert Cotter
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| |
Collapse
|