1
|
Murakami Y, Ikuta S, Fukuda W, Akasaka N, Maruyama JI, Shinma S, Fukusaki E, Fujiwara S. Identification and enzymatic properties of arginine decarboxylase from Aspergillus oryzae. Appl Environ Microbiol 2024; 90:e0029424. [PMID: 38624200 PMCID: PMC11107147 DOI: 10.1128/aem.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.
Collapse
Affiliation(s)
- Yui Murakami
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Soichiro Ikuta
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Naoki Akasaka
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Laboratory for Circular Bioeconomy Development, Office of Society-Academia Collaboration for Innovation, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Shinma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
2
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
3
|
Ami Y, Kodama N, Umeda M, Nakamura H, Shirasawa H, Koyanagi T, Kurihara S. Levilactobacillus brevis with High Production of Putrescine Isolated from Blue Cheese and Its Application. Int J Mol Sci 2023; 24:ijms24119668. [PMID: 37298617 DOI: 10.3390/ijms24119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.
Collapse
Affiliation(s)
- Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Narumi Kodama
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Masahiro Umeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hanae Nakamura
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hideto Shirasawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
4
|
Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. BIOLOGY 2023; 12:biology12020248. [PMID: 36829524 PMCID: PMC9952912 DOI: 10.3390/biology12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis No. 173; Leuconostoc mesenteroides No. 225; Liquorilactobacillus uvarum No. 245). The antimicrobial properties of the untreated and fermented Spirulina against a variety of pathogenic and opportunistic strains were tested. The highest concentrations of L-Glu (3841 mg/kg) and GABA (2396 mg/kg) were found after 48 h of SSF with No. 173 and No. 244 strains, respectively. The LAB strain used for biotreatment and the process conditions, as well as the interaction of these factors, had statistically significant effects on the GABA concentration in Spirulina (p ≤ 0.001, p = 0.019 and p = 0.011, respectively). In all cases, the SSF of Spirulina had a higher total BA content than SMF. Most of the fermented Spirulina showed exceptional antimicrobial activity against Staphylococcus aureus but not against the other pathogenic bacteria. The ratios of BA/GABA and BA/L-Glu ranged from 0.5 to 62 and from 0.31 to 10.7, respectively. The GABA content was correlated with putrescine, cadaverine, histamine, tyramine, spermidine and spermine contents. The L-glutamic acid concentration showed positive moderate correlations with tryptamine, putrescine, spermidine and spermine. To summarize, while high concentrations of desirable compounds are formed during fermentation, the formation of non-desirable compounds (BAs) must also be considered due to the similar mechanism of their synthesis as well as the possibility of obtaining high concentrations in the end products.
Collapse
|
5
|
Polak T, Mejaš R, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Cigić B. Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods 2021; 10:foods10112840. [PMID: 34829121 PMCID: PMC8618307 DOI: 10.3390/foods10112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
Collapse
Affiliation(s)
- Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Rok Mejaš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
- Correspondence: ; Tel.: +386-1-320-37-84; Fax: +386-1-256-57-82
| |
Collapse
|
6
|
Tuck CJ, Malakar S, Barrett JS, Muir JG, Gibson PR. Naturally-occurring dietary salicylates in the genesis of functional gastrointestinal symptoms in patients with irritable bowel syndrome: Pilot study. JGH OPEN 2021; 5:871-878. [PMID: 34386594 PMCID: PMC8341183 DOI: 10.1002/jgh3.12578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Background and Aim An elimination‐rechallenge dietary approach targeting naturally‐occurring bioactive chemicals has been proposed to alleviate functional gastrointestinal symptoms. A major focus of this approach is salicylates. This study aimed to address the potential role of dietary salicylates in the induction of symptoms in patients with irritable bowel syndrome (IBS). Methods A pilot, double‐blind, randomized, cross‐over trial of 2‐week low‐ versus high‐salicylate diets (6.6 and 27.9 g/day salicylate, respectively) was undertaken. All foods were provided containing minimal quantities of other potential food triggers. Gastrointestinal and extraintestinal symptoms were measured daily using a 100‐mm visual‐analogue‐scale. Results Ten participants with IBS completed the study, including one with known aspirin‐sensitivity. Overall, no differences in symptoms were observed (P = 0.625; Friedman test). However, clear symptom provocation was seen in the aspirin‐sensitive participant, with all abdominal symptoms and tiredness worsening during the high‐salicylate diet. A similar trend was seen in another participant, where abdominal symptoms gradually worsened during the high‐salicylate diet. Conclusions These results provide some evidence that food‐related salicylates may influence the genesis of symptoms in a subset of patients with IBS. A larger cohort is needed to determine the incidence of salicylate‐sensitivity and further evaluate the diet as a potential therapeutic target. The protocol was registered at www.anzctr.org.au (ACTRN12620001250921).
Collapse
Affiliation(s)
- Caroline J Tuck
- Department of Gastroenterology Alfred Hospital and Monash University Melbourne Victoria Australia.,Present address: La Trobe University Melbourne Victoria Australia
| | - Sreepurna Malakar
- Department of Gastroenterology Alfred Hospital and Monash University Melbourne Victoria Australia.,Present address: Chemwatch Melbourne Victoria Australia
| | - Jacqueline S Barrett
- Department of Gastroenterology Alfred Hospital and Monash University Melbourne Victoria Australia.,Present address: Diet Solutions Melbourne Victoria Australia
| | - Jane G Muir
- Department of Gastroenterology Alfred Hospital and Monash University Melbourne Victoria Australia
| | - Peter R Gibson
- Department of Gastroenterology Alfred Hospital and Monash University Melbourne Victoria Australia
| |
Collapse
|
7
|
Allwood JG, Wakeling LT, Bean DC. Fermentation and the microbial community of Japanese koji and miso: A review. J Food Sci 2021; 86:2194-2207. [PMID: 34056716 DOI: 10.1111/1750-3841.15773] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022]
Abstract
Miso is a well-known traditional Japanese fermented food, with a characteristic savory flavor and aroma, known predominately as the seasoning in miso soup. Miso production involves a two-stage fermentation, where first a mold, such as Aspergillus oryzae, is inoculated onto a substrate to make koji. A subsequent fermentation, this time by bacteria and yeast, occurs when the koji is added to a salt and soybean mash, with the miso left to ferment for up to 2 years. The microbial community of miso is considered essential to the development of the unique taste, texture, and nutritional profile of miso. Despite the importance of microorganisms in the production of miso, very little research has been undertaken to characterize and describe the microbial process. In this review, we provide an overview of the two-stage fermentation process, describe what is currently known about the microbial communities involved and consider any potential health benefits associated with the consumption of miso, along with food safety concerns. As the popularity of miso continues to expand globally and is produced under new environmental conditions, understanding the microbiological processes involved will assist to ensure that global production of miso is safe as well as delicious.
Collapse
Affiliation(s)
- Joanne G Allwood
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| | - Lara T Wakeling
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| | - David C Bean
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen Campus, Ballarat, Victoria, Australia
| |
Collapse
|
8
|
Antioxidant Effect of Wheat Germ Extracts and Their Antilipidemic Effect in Palmitic Acid-Induced Steatosis in HepG2 and 3T3-L1 Cells. Foods 2021; 10:foods10051061. [PMID: 34065831 PMCID: PMC8151358 DOI: 10.3390/foods10051061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Wheat germ (WG) is a by-product of wheat milling and comprises many bioactive compounds. This study aimed to compare the antioxidant and antilipidemic effects of different WG extracts (WGEs) by analyzing candidate bioactive compounds such as carotenoids, tocopherols, γ-oryzanol, and biogenic amines by reversed-phase high-performance liquid chromatography. Antioxidant activity was determined using the ABTS, DPPH, and FRAP assays. The antilipidemic effect was evaluated in palmitic acid-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. Cellular lipid accumulation was assessed by Oil Red O staining and a cellular triglyceride content assay. All analyzed WGEs showed significant antioxidant potential, although some bioactive compounds, such as carotenoids, tocopherols, and γ-oryzanol, were the highest in the ethanol extract. Correlation analysis revealed the antioxidant potential of all identified biogenic amines except for spermidine. Ethanol and n-hexane extracts significantly inhibited cellular lipid accumulation in cell models. These results suggest that WGEs exhibit promising antioxidant potential, with a variety of bioactive compounds. Collectively, the findings of this study suggest that bioactive compounds in WGEs attenuate plasma lipid and oxidation levels. In conclusion, WG can be used as a natural antioxidant and nutraceutical using appropriate solvents and extraction methods.
Collapse
|
9
|
Serba E, Tadzhibova P, Rimareva L, Overchenko M, Ignatova N, Volkova G. Bioconversion of soy under the influence of Aspergillus oryzae strains producing hydrolytic enzymes. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-52-58] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction. The fungus Aspergillus oryzae is widely used in the production of fermented soy-based products. However, there is little data on how its genetic characteristics affect the biochemical and fractional composition of protein substances during fermentation and the quality of fermented products. This study aimed to investigate the conversion of soy meal under the influence of two A. oryzae strains with different morphological and cultural properties during the production of a fermented soy sauce.
Study objects and methods. The study used two A. oryzae strains, RCAM 01133 and RCAM 01134, which were isolated from the industrial F-931 strain (Russian Collection of Industrial Microorganisms), a producer of hydrolytic enzymes. Micromycetes were cultivated by a solid-phase method on soy meal, followed by dry fermentation. The results were analyzed with regard to accumulation of amine nitrogen, bound and free amino acids, proteins and carbohydrates.
Results and discussion. The cultivation of micromycetes resulted in a 35–38% increase in protein, a tenfold increase in free amino acids, and a 1.5–1.7 fold decrease in polysaccharides. The contents of essential amino acids in the fermented soy sauce were 1.7 and 1.2 times as high as in the initial medium (soy meal) and in the reference protein, respectively. Fermentation enhanced the biological value of proteins, increasing the amino acid scores of phenylalanine (7.3–7.7 times), phenylalanine (2 times), as well as valine, threonine, tryptophan, and lysine. The contents of protein and essential amino acids were slightly higher in the sauce with the RCAM 01133 strain.
Conclusion. Fermenting soy materials with the RCAM 01133 strain of A. oryzae is an alternative way to produce food ingredients with good sensory properties containing carbohydrates and biologically complete protein in easily digestible forms.
Collapse
Affiliation(s)
- Elena Serba
- Russian Scientific Research Institute of Food Biotechnology
| | | | | | | | | | - Galina Volkova
- Russian Scientific Research Institute of Food Biotechnology
| |
Collapse
|
10
|
Health-Promoting Effects of Dietary Polyamines. Med Sci (Basel) 2021; 9:medsci9010008. [PMID: 33562765 PMCID: PMC7930991 DOI: 10.3390/medsci9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this paper is to summarize the latest information on the various aspects of polyamines and their health benefits. In recent years, attempts to treat cancer by reducing elevated polyamines levels in cancer cells have been made, with some advancing to clinical trials. However, it has been reported since 2009 that polyamines extend the healthy life span of animals by inducing autophagy, protecting the kidneys and liver, improving cognitive function, and inhibiting the progression of heart diseases. As such, there is conflicting information regarding the relationship between polyamines and health. However, attempts to treat cancer by decreasing intracellular polyamines levels are a coping strategy to suppress the proliferation-promoting effects of polyamines, and a consensus is being reached that polyamine intake does not induce cancer in healthy individuals. To provide further scientific evidence for the health-promoting effects of polyamines, large-scale clinical studies involving multiple groups are expected in the future. It is also important to promote basic research on polyamine intake in animals, including elucidation of the polyamine balance between food, intestinal bacteria, and biosynthesis.
Collapse
|
11
|
Takahashi F, Hashimoto Y, Kaji A, Sakai R, Kawate Y, Okamura T, Kitagawa N, Okada H, Nakanishi N, Majima S, Senmaru T, Ushigome E, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Habitual Miso (Fermented Soybean Paste) Consumption Is Associated with a Low Prevalence of Sarcopenia in Patients with Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2020; 13:E72. [PMID: 33379405 PMCID: PMC7824379 DOI: 10.3390/nu13010072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance is a risk of sarcopenia, and the presence of sarcopenia is high in patients with type 2 diabetes (T2DM). It has been reported that habitual miso soup consumption was associated with lower insulin resistance. However, the association between habitual miso consumption and the presence of sarcopenia in patients with T2DM, especially sex difference, was unclear. In this cross-sectional study, 192 men and 159 women with T2DM were included. Habitual miso consumption was defined as consuming miso soup regularly. Having both low skeletal muscle mass index (<28.64% for men, <24.12% for women) and low adjusted hand grip strength (<51.26% for men, <35.38% for women) was defined as sarcopenia. The proportions of sarcopenia were 8.7% in men and 22.6% in women. The proportions of habitual miso consumption were 88.0% in men and 83.6% in women. Among women, the presence of sarcopenia was lower in the group with habitual miso consumption (18.8% versus 42.3%, p = 0.018); however, there was no association between habitual miso consumption and the presence of sarcopenia in men. Habitual miso consumption was negatively associated with the presence of sarcopenia in women (adjusted odds ratio (OR), 0.20 (95% confidence interval (CI): 0.06-0.62), p = 0.005) but not in men. This study indicated that habitual miso consumption was associated with the presence of sarcopenia in women but not in men.
Collapse
Affiliation(s)
- Fuyuko Takahashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Ryosuke Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yuka Kawate
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Department of Diabetology, Kameoka Municipal Hospital, 1-1 Noda, Shinochoshino, Kameoka-City, Kyoto 621-8585, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi 570-8540, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| |
Collapse
|
12
|
Karayigit B, Colak N, Ozogul F, Gundogdu A, Inceer H, Bilgiçli N, Ayaz FA. The biogenic amine and mineral contents of different milling fractions of bread and durum wheat (Triticum L.) cultivars. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
14
|
Jabłońska-Ryś E, Sławińska A, Stachniuk A, Stadnik J. Determination of biogenic amines in processed and unprocessed mushrooms from the Polish market. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Reis GCL, Guidi LR, Fernandes C, Godoy HT, Gloria MBA. UPLC-UV Method for the Quantification of Free Amino Acids, Bioactive Amines, and Ammonia in Fresh, Cooked, and Canned Mushrooms. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods 2020; 9:foods9050547. [PMID: 32369919 PMCID: PMC7278799 DOI: 10.3390/foods9050547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
Collapse
|
17
|
|
18
|
Katagiri R, Sawada N, Goto A, Yamaji T, Iwasaki M, Noda M, Iso H, Tsugane S. Association of soy and fermented soy product intake with total and cause specific mortality: prospective cohort study. BMJ 2020; 368:m34. [PMID: 31996350 PMCID: PMC7190045 DOI: 10.1136/bmj.m34] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the association between several types of soy products and all cause and cause specific mortality. DESIGN Population based cohort study. SETTING Japan Public Health Centre-based Prospective Study, which includes 11 public health centre areas in Japan. PARTICIPANTS 92 915 participants (42 750 men and 50 165 women) aged 45 to 74 years. EXPOSURES Intake of total soy products, fermented soy products (natto and miso), non-fermented soy products, and tofu from a five year survey questionnaire. MAIN OUTCOME MEASURES All cause and cause specific mortality (cancer, total cardiovascular disease, heart disease, cerebrovascular disease, respiratory disease, and injury) obtained from residential registries and death certificates. RESULTS During 14.8 years of follow-up, 13 303 deaths were identified. In the multivariable adjusted models, intake of total soy products was not significantly associated with total mortality. Compared with the lowest fifth of total soy product intake, the hazard ratios in the highest fifth were 0.98 (95% confidence interval 0.91 to 1.06, Ptrend=0.43) in men and 0.98 (0.89 to 1.08, Ptrend=0.46) in women. Intake of fermented soy products was inversely associated with all cause mortality in both sexes (highest versus lowest fifth: 0.90 (0.83 to 0.97), Ptrend=0.05 in men, and 0.89 (0.80 to 0.98), Ptrend=0.01 in women). Natto showed significant and inverse associations with total cardiovascular disease related mortality in both sexes. CONCLUSIONS In this study a higher intake of fermented soy was associated with a lower risk of mortality. A significant association between intake of total soy products and all cause mortality was not, however, observed. The findings should be interpreted with caution because the significant association of fermented soy products might be attenuated by unadjusted residual confounding.
Collapse
Affiliation(s)
- Ryoko Katagiri
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Atsushi Goto
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Ichikawa, Chiba, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Centre, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
19
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
20
|
Hou Y, He W, Hu S, Wu G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 2019; 51:1153-1165. [PMID: 31197570 DOI: 10.1007/s00726-019-02751-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022]
Abstract
Dietary polyamines and amino acids (AAs) are crucial for human growth, development, reproduction, and health. However, the scientific literature shows large variations in polyamine and AA concentrations among major staple foods of plant origin, and there is a scarcity of information regarding their complete composition of AAs. To provide a much-needed database, we quantified polyamines, agmatine, and AAs in select plant-source foods. On the dry matter basis, total polyamines were most abundant in corn grains, followed by soybeans, sweet potatoes, pistachio nuts, potatoes, peanuts, wheat flour and white rice in descending order. Glutamine was the most abundant AA in pistachio nuts, wheat flour and white rice, arginine in peanuts, leucine in corn grains, glutamate in soybeans, and asparagine in potatoes and sweet potatoes. Glutamine was the second most abundant AA in corn grains, peanuts, potatoes, and soybeans, arginine in pistachio nuts, proline in wheat flour, and glutamate in sweet potatoes and white rice. Free AAs represented ≤ 3.1% of total AAs in corn grains, peanuts, pistachio nuts, soybeans, wheat flour and white rice, but 34.4% and 28.5% in potatoes and sweet potatoes, respectively. Asparagine accounted for 32.3%, 17.5%, and 19.4% of total free AAs in potatoes, sweet potatoes, and white rice, respectively. The content of histidine, glycine, lysine, tryptophan, methionine, cysteine, and threonine was relatively low in corn grains, potatoes, sweet potatoes, and white rice. All of the analyzed plant-source foods lacked taurine, creatine, carnosine and anserine (antioxidants that are abundant in meats and also present in milk), and contained little 4-hydroxyproline. Proper proportions of plant- and animal-source products are likely most desirable for optimizing human nutrition and health.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenliang He
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Shengdi Hu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
21
|
Vázquez-Luna A, García-García F, Caudillo Contreras DI, Rivadeneyra-Domínguez E, Díaz-Sobac R. Effect of orange juice and tryptamine on the behavior and c-fos expression of Wistar rats. Metab Brain Dis 2019; 34:519-525. [PMID: 30604026 DOI: 10.1007/s11011-018-0365-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022]
Abstract
Recent reports have shown that commercial orange juice is rich in biogenic amines. Consumption of foods containing large amounts of biogenic amines increase hypertensive crisis and high levels of histamine and tyramine, which have been implicated as causative agents in a number of food poisoning episodes. In addition, accumulation of tryptamine in plasma may be associated with mood disorders. The aim of this study was to determine whether chronic administration of orange juice extract and tryptamine affects the behavior and c-fos expression in the rat. For this purpose, Wistar male rats were injected with saline solution, tryptamine or orange juice extract. Sucrose preference test and elevated plus maze were evaluated to determine hedonic and anxiety behavior, respectively. Rats treated with orange juice extract showed increased anxiety behavior and sucrose consumption, similar to those treated with tryptamine. In addition, dorsal raphe nucleus, accumbens nucleus, and hippocampus showed an increase of c-fos positive cells in rats treated with orange juice extract. In conclusion, the chronic and lengthy consumption of orange juice or their derivatives in the diet could be a factor responsible to induce mood disorders and may promote excess caloric consumption.
Collapse
Affiliation(s)
- Alma Vázquez-Luna
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Castelazo Ayala s/n, Industrial-Animas, 91192, Xalapa, Ver, CP, Mexico.
| | - Fabio García-García
- Instituto de Ciencias de la Salud, Universidad Vearcruzana, Av. Castelazo Ayala s/n, Industrial-Animas, 91192, Xalapa, Ver, CP, Mexico
| | - Diana I Caudillo Contreras
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Castelazo Ayala s/n, Industrial-Animas, 91192, Xalapa, Ver, CP, Mexico
| | - Eduardo Rivadeneyra-Domínguez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Calle de la Pérgola s/n, Col. Centro, Xalapa, Ver, Mexico
| | - Rafael Díaz-Sobac
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Castelazo Ayala s/n, Industrial-Animas, 91192, Xalapa, Ver, CP, Mexico
| |
Collapse
|
22
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
23
|
Yamamoto N, Shoji M, Hoshigami H, Watanabe K, Watanabe K, Takatsuzu T, Yasuda S, Igoshi K, Kinoshita H. Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2019; 38:97-104. [PMID: 31384521 PMCID: PMC6663512 DOI: 10.12938/bmfh.18-017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/03/2019] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS), such as hydroxyl and superoxide anion radicals, are highly reactive molecules derived from the metabolism of oxygen. ROS play positive roles in cell
physiology, but they may also damage cell membranes and DNA, inducing oxidation that causes membrane lipid peroxidation and decreases membrane fluidity. Soymilk yogurt, which is soymilk
fermented using lactic acid bacteria (LAB), is an excellent food item with numerous functional substances with antioxidant effects. In this study, the antioxidative activities of soymilk
yogurt were investigated. Sixteen of the 26 tested LAB strains solidified soymilk. In antioxidant capacity tests for bacterial cells, Leuconostoc mesenteroides MYU 60 and
Pediococcus pentosaceus MYU 759 showed the highest values in the oxygen radical antioxidant capacity (ORAC) and hydroxyl radical antioxidant capacity (HORAC) tests,
respectively. The supernatant of soymilk yogurt made with Lactobacillus gasseri MYU 1 showed the highest ORAC and HORAC values. L. mesenteroides MYU 60,
Lactobacillus plantarum MYU 74, Lactobacillus reuteri MYU 220, and P. pentosaceus MYU 759 showed significantly high N-acetylcysteine
equivalent values compared with the control in a total ROS reducing assay (p<0.05). These strains were selected, and a comet assay was performed, which exhibited decreased values in all
selected strains compared with the control, indicating DNA protection. An acidic exopolysaccharide produced by P. pentosaceus MYU 759 showed high antioxidant capacity. The
antioxidant substances produced by LAB fermentation may be exopolysaccharides, antioxidant peptides, and isoflavone aglycones. Soymilk yogurt can be used as a functional food useful for
various diseases related to oxidation.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Momoka Shoji
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-shi, Miyagi, Japan
| | - Hiroki Hoshigami
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-shi, Miyagi, Japan
| | - Kohei Watanabe
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-shi, Miyagi, Japan
| | - Kohei Watanabe
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Tappei Takatsuzu
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Shin Yasuda
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Keiji Igoshi
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Hideki Kinoshita
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| |
Collapse
|
24
|
Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018; 7:foods7120205. [PMID: 30558197 PMCID: PMC6306728 DOI: 10.3390/foods7120205] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Low-histamine diets are currently used to reduce symptoms of histamine intolerance, a disorder in histamine homeostasis that increases plasma levels, mainly due to reduced diamine-oxidase (DAO) activity. These diets exclude foods, many of them of plant origin, which patients associate with the onset of the symptomatology. This study aimed to review the existing data on histamine and other biogenic amine contents in nonfermented plant-origin foods, as well as on their origin and evolution during the storage or culinary process. The only plant-origin products with significant levels of histamine were eggplant, spinach, tomato, and avocado, each showing a great variability in content. Putrescine has been found in practically all plant-origin foods, probably due to its physiological origin. The high contents of putrescine in certain products could also be related to the triggering of the symptomatology by enzymatic competition with histamine. Additionally, high spermidine contents found in some foods should also be taken into account in these diets, because it can also be metabolized by DAO, albeit with a lower affinity. It is recommended to consume plant-origin foods that are boiled or are of maximum freshness to reduce biogenic amine intake.
Collapse
|
25
|
Agmatine Production by Aspergillus oryzae Is Elevated by Low pH during Solid-State Cultivation. Appl Environ Microbiol 2018; 84:AEM.00722-18. [PMID: 29802188 DOI: 10.1128/aem.00722-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained <0.01 mM agmatine. Agmatine was also produced in ethanol-free rice syrup prepared with A. oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pHs to 3.0, 3.5, and 3.2, respectively, resulting in a further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol · min-1 · μg-1) at pH 3.0 at 30°C; homogenate from a submerged culture exhibited an extremely low activity (<0.3 pmol · min-1 · μg-1) under all conditions tested. These observations indicated that efficient agmatine production in ethanol-free rice syrup is achieved by an unidentified low-pH-dependent ADC induced during solid-state cultivation of A. oryzae, even though A. oryzae lacks ADC orthologs and instead possesses four ornithine decarboxylases (ODC1 to ODC4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH < 4.0), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production.IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study, we first demonstrated that l-arginine was a feasible substrate for agmatine production by the fungus Aspergillus oryzae RW. We observed that the productivity of agmatine by A. oryzae RW was elevated at low pH only during solid-state cultivation. A. oryzae is utilized in the production of various Asian fermented foods. The saccharification conditions optimized in the current study could be employed not only in the production of an agmatine-containing ethanol-free rice syrup but also in the production of many types of fermented foods, such as soy sauce (shoyu), rice vinegar, etc., as well as for use as novel therapeutic agents and nutraceuticals.
Collapse
|
26
|
Biogenic amine formation and bacterial contribution in Cheonggukjang, a Korean traditional fermented soybean food. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Handa AK, Fatima T, Mattoo AK. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease. Front Chem 2018; 6:10. [PMID: 29468148 PMCID: PMC5807879 DOI: 10.3389/fchem.2018.00010] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Biogenic amines-polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants-exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources-vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.
Collapse
Affiliation(s)
- Avtar K. Handa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tahira Fatima
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service (ARS-USDA), Beltsville, MD, United States
| |
Collapse
|
28
|
Plasticizing Effects of Polyamines in Protein-Based Films. Int J Mol Sci 2017; 18:ijms18051026. [PMID: 28489025 PMCID: PMC5454938 DOI: 10.3390/ijms18051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022] Open
Abstract
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components.
Collapse
|
29
|
Kobayashi K, Horii Y, Watanabe S, Kubo Y, Koguchi K, Hoshi Y, Matsumoto KI, Soda K. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto). Biosci Biotechnol Biochem 2017; 81:587-594. [PMID: 28052719 DOI: 10.1080/09168451.2016.1270738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023]
Abstract
Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Yuichiro Horii
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Satoshi Watanabe
- a Food Research Center , Niigata Agricultural Research Institute , Kamo , Japan
| | - Yuji Kubo
- b Industrial Technology Institute of Ibaraki Prefecture , Ibarakimachi , Japan
| | - Kumiko Koguchi
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Yoshihiro Hoshi
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Ken-Ichi Matsumoto
- c Industrial Technology Center of Tochigi Prefecture , Utsunomiya , Japan
| | - Kuniyasu Soda
- d Department of Cardiovascular Research Institute, Saitama Medical Center , Jichi Medical University , Saitama , Japan
| |
Collapse
|
30
|
Okumura S, Teratani T, Fujimoto Y, Zhao X, Tsuruyama T, Masano Y, Kasahara N, Iida T, Yagi S, Uemura T, Kaido T, Uemoto S. Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats. Liver Transpl 2016; 22:1231-44. [PMID: 27102080 DOI: 10.1002/lt.24471] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Polyamines are essential for cell growth and differentiation. They play important roles in protection from liver damage and promotion of liver regeneration. However, little is known about the effect of oral exogenous polyamine administration on liver damage and regeneration. This study investigated the impact of polyamines (spermidine and spermine) on ischemia/reperfusion injury (IRI) and liver regeneration. We used a rat model in which a 70% hepatectomy after 40 minutes of ischemia was performed to mimic the clinical condition of living donor partial liver transplantation (LT). Male Lewis rats were separated into 2 groups: a polyamine group given polyamines before and after operation as treatment and a vehicle group given distilled water as placebo. The levels of serum aspartate aminotransferase and alanine aminotransferase at 6, 24, and 48 hours after reperfusion were significantly lower in the polyamine group compared with those in the vehicle group. Polyamine treatment reduced the expression of several proinflammatory cytokines and chemokines at 6 hours after reperfusion. Histological analysis showed significantly less necrosis and apoptosis in the polyamine group at 6 hours after reperfusion. Sinusoidal endothelial cells were also well preserved in the polyamine group. In addition, the regeneration of the remnant liver at 24, 48, and 168 hours after reperfusion was significantly accelerated, and the Ki-67 labeling index and the expressions of proliferating cell nuclear antigen and phosphorylated retinoblastoma protein at 24 hours after reperfusion were significantly higher in the polyamine group compared with those in the vehicle group. In conclusion, perioperative oral polyamine administration attenuates liver IRI and promotes liver regeneration. It might be a new therapeutic option to improve the outcomes of partial LT. Liver Transplantation 22 1231-1244 2016 AASLD.
Collapse
Affiliation(s)
- Shinya Okumura
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Takumi Teratani
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Yasuhiro Fujimoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan.,Department of Surgery, Shizuoka Municipal Hospital, Shizuoka, Japan
| | - Xiangdong Zhao
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Masano
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Naoya Kasahara
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Taku Iida
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Tadahiro Uemura
- Transplant Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Toshimi Kaido
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Akasaka N, Higashikubo H, Ishii Y, Sakoda H, Fujiwara S. Polyamines in brown rice vinegar function as potent attractants for the spotted wing drosophila. J Biosci Bioeng 2016; 123:78-83. [PMID: 27591976 DOI: 10.1016/j.jbiosc.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
Vinegar produced by acetic acid bacteria is used as an attractant for fruit flies. Apple cider vinegar (ACV) and brown rice vinegar (BRV) are used as lures to detect Drosophila suzukii (also known as the spotted wing drosophila [SWD], a newly emerging invasive pest of soft-skinned fruits) and to capture Drosophila melanogaster, respectively. In the present study, we evaluated the attractiveness of BRV and ACV to SWD in laboratory trapping experiments using an upturned microcentrifuge tube with a pipette tip as a trap. We transferred SWD (approximately 20, 7-10 days old) to a glass vial containing a trap baited with BRV or ACV and counted the captured flies. BRV attracted more flies (52.88 ± 9.75%) than ACV (35.78 ± 7.47%) in 6 h. Based on high-performance liquid chromatography, we found that BRV contained greater amounts of putrescine (12.36 ± 0.44 μM) and spermidine (35.08 ± 4.34 μM) than ACV (putrescine, 0.31 ± 0.067 μM; spermidine, not detected). The attractiveness of ACV supplemented with putrescine (12 μM) and spermidine (35 μM) (68.56 ± 4.69%) was significantly higher than that of ACV, indicating that the enhanced attractiveness of BRV to SWD was accomplished by the additive effects of polyamines and other known attractive volatiles, such as acetic acid and acetoin. BRV is expected to be a powerful tool for the efficient management of SWD.
Collapse
Affiliation(s)
- Naoki Akasaka
- Division of Bioscience Products, Marukan Vinegar Co. Ltd., 5-6 Koyo-cho West, Higashinada-ku, Kobe, Hyogo 658-0033, Japan; Institute of Applied Microbiology, Marukan Vinegar Co. Ltd., 5-6 Koyo-cho West, Higashinada-ku, Kobe, Hyogo 658-0033, Japan
| | - Haruka Higashikubo
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yuri Ishii
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hisao Sakoda
- Division of Bioscience Products, Marukan Vinegar Co. Ltd., 5-6 Koyo-cho West, Higashinada-ku, Kobe, Hyogo 658-0033, Japan; Institute of Applied Microbiology, Marukan Vinegar Co. Ltd., 5-6 Koyo-cho West, Higashinada-ku, Kobe, Hyogo 658-0033, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan; Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
32
|
Spizzirri UG, Picci N, Restuccia D. Extraction Efficiency of Different Solvents and LC-UV Determination of Biogenic Amines in Tea Leaves and Infusions. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:8715287. [PMID: 27555979 PMCID: PMC4983384 DOI: 10.1155/2016/8715287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/03/2016] [Indexed: 06/01/2023]
Abstract
Biogenic amines (BAs), that is, spermine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine, and serotonin, have been determined in several samples of tea leaves, tea infusions, and tea drinks by LC-UV method after derivatization with dansyl chloride. Different extraction solvents have been tested and TCA 5% showed better analytical performances in terms of linearity, recovery percentages, LOD, LOQ, and repeatability than HCl 0.1 M and HClO4 0.1 M and was finally exploited for the quantitative determination of BAs in all samples. In tea leaves total BAs concentration ranged from 2.23 μg g(-1) to 11.24 μg g(-1) and PUT (1.05-2.25 μg g(-1)) and SPD (1.01-1.95 μg g(-1)) were always present, while SER (nd-1.56 μg g(-1)), HIS (nd-2.44 μg g(-1)), and SPM (nd-1.64 μg g(-1)) were detected more rarely. CAD and PHE were determined in few samples at much lower concentrations while none of the samples contained TYR. Tea infusions showed the same trend with total BAs concentrations never exceeding 80.7 μg L(-1). Black teas showed higher amounts of BAs than green teas and organic and decaffeinated samples always contained much lower BAs levels than their conventional counterparts.
Collapse
Affiliation(s)
- U. Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Italy
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Italy
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
33
|
Hussain A, Zhang M, Üçpunar HK, Svensson T, Quillery E, Gompel N, Ignell R, Grunwald Kadow IC. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines. PLoS Biol 2016; 14:e1002454. [PMID: 27145030 PMCID: PMC4856413 DOI: 10.1371/journal.pbio.1002454] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/07/2016] [Indexed: 11/29/2022] Open
Abstract
The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly’s high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans. Polyamines are beneficial nutrients for reproduction, cognition, and lifespan. This study reveals that insects are highly attracted to them and identify their sources through an ancient class of ionotropic receptors on their smell and taste organs. Animals, including humans, evaluate food by its smell and taste. Odors and tastes not only signal the presence of food, they also reveal details about the type and amount of nutrients contained in it. A preference for certain foods frequently reflects the specific metabolic needs of an animal. Among the important but less known compounds that animals consume with their diet are polyamines. These pungent smelling molecules are essential for reproduction, development, and cognition. Interestingly, they are also produced by the cell and body, but their levels decline with age. A diet high in polyamines can improve age-related memory deficits and loss of fertility. We have used the model fly Drosophila melanogaster to unravel if and how animals detect polyamines in their food and environment, and which role this detection plays in their food choice behavior. Polyamine levels are particularly high in the fly’s favorite food and egg-laying substrate, overripe and decaying fruit. We found that food supplemented with polyamines indeed improves the reproductive success of a fly couple. We show that Drosophila is highly attracted to polyamines and uses them to identify promising egg-laying and feeding sites. It detects them through an ancient clade of receptor proteins on its olfactory and taste organs. We speculate that other animals can also detect polyamines and use their smell and taste to identify sources of these beneficial nutrients.
Collapse
Affiliation(s)
- Ashiq Hussain
- Sensory Neurogenetics Research Group, Max-Planck Institute of Neurobiology, Munich, Germany
| | - Mo Zhang
- Sensory Neurogenetics Research Group, Max-Planck Institute of Neurobiology, Munich, Germany
| | - Habibe K. Üçpunar
- Sensory Neurogenetics Research Group, Max-Planck Institute of Neurobiology, Munich, Germany
| | - Thomas Svensson
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Elsa Quillery
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Nicolas Gompel
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ilona C. Grunwald Kadow
- Sensory Neurogenetics Research Group, Max-Planck Institute of Neurobiology, Munich, Germany
- * E-mail:
| |
Collapse
|
34
|
Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila. PLoS Biol 2016; 14:e1002455. [PMID: 27145127 PMCID: PMC4856363 DOI: 10.1371/journal.pbio.1002455] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.
Collapse
|
35
|
Assis D, Menezes L, Lima A, Klein R, Heneine L, Ornellas C, Figueiredo T, Cançado S. Avaliação da qualidade interna de ovos de consumo pela pesquisa do teor de aminas bioativas. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-7962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Com o objetivo de avaliar a qualidade dos ovos de consumo pela pesquisa dos níveis de aminas bioativas, foram coletados, pelos serviços de inspeção oficiais, 224 amostras de ovos provenientes de cinco regiões distintas do estado de Minas Gerais, durante o período de um ano. As aminas biogênicas (putrescina, cadaverina, feniletilamina, histamina e tiramina) e as poliaminas (espermidina e espermina) foram pesquisadas por cromatografia líquida de alta eficiência e detecção ultravioleta (CLAE/UV) após derivação pré-coluna com cloreto de dansila. Os resultados demonstraram que a putrescina estava presente, em baixas concentrações, em todas as amostras de gema e de albúmen. As demais aminas também foram detectadas, porém em menor frequência, e a espermina somente foi encontrada em uma amostra de albúmen. Foi concluído que os ovos de consumo produzidos no estado de Minas Gerais não são uma fonte considerável de poliaminas, importantes para o crescimento e a proliferação celular, e os baixos teores de aminas biogênicas, formadas pela descarboxilação de aminoácidos por enzimas bacterianas, não representam riscos à saúde do consumidor, o que indica que o ovo apresenta boa qualidade, tomando por base o critério de aminas bioativas.
Collapse
Affiliation(s)
| | | | - A.L. Lima
- Universidade Federal de Minas Gerais, Brasil
| | | | | | | | | | | |
Collapse
|
36
|
Esatbeyoglu T, Ehmer A, Chaize D, Rimbach G. Quantitative Determination of Spermidine in 50 German Cheese Samples on a Core-Shell Column by High-Performance Liquid Chromatography with a Photodiode Array Detector Using a Fully Validated Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2105-2111. [PMID: 26915410 DOI: 10.1021/acs.jafc.6b00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the current study, the spermidine (8) contents of 51 German and 9 international cheese samples (from France, Ireland, Italy, The Netherlands, and Switzerland) were analyzed by a modified and fully validated method using high-performance liquid chromatography with photodiode array detection. After precolumn derivatization of biogenic amines with dansyl chloride (11), the compounds were separated on a Kinetex C18 column and detected at λ = 254 nm. This method for compound 8 analysis in cheese was validated for the first time according to U.S. Food and Drug Administration (FDA) guidelines for bioanalytical method validation with regard to selectivity, precision, accuracy, recovery, linearity, lower limit of detection (LOD), lower limit of quantitation (LOQ), standard solution stability, short- and long-term stability, freeze-thaw stability, and benchtop stability. The detector response was linear from 0.002 to 8 mg/L 8 (R(2) > 0.999). Low LOD and LOQ values of 1 and 2 μg/L, respectively, reflected the high sensitivity of the method. The intra- and interday recoveries of the 8-spiked cheese samples ranged between 87.7 and 102.6%. This validated method was selective, accurate, and precise and was successfully applied for the quantitative analysis of compound 8 in 60 cheese samples. Furthermore, the simultaneous detection of eight additional biogenic amines is possible but not validated.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel , D-24118 Kiel, Germany
| | - Andreas Ehmer
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel , D-24118 Kiel, Germany
| | - Delphine Chaize
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel , D-24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel , D-24118 Kiel, Germany
| |
Collapse
|
37
|
Kobayashi K, Shimojo S, Watanabe S. Contribution of a Fermentation Process using Bacillus subtilis (natto) to High Polyamine Contents of Natto, a Traditional Japanese Fermented Soy Food. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Sayaka Shimojo
- Food Research Center, Niigata Agricultural Research Institute
| | | |
Collapse
|
38
|
Gibson PR, Varney J, Malakar S, Muir JG. Food components and irritable bowel syndrome. Gastroenterology 2015; 148:1158-74.e4. [PMID: 25680668 DOI: 10.1053/j.gastro.2015.02.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Ingestion of food has long been linked with gut symptoms, and there is increasing interest in using diet in the management of patients with irritable bowel syndrome (IBS). The West has developed an intense interest in specialized, restrictive diets, such as those that target multiple food groups, avoid gluten, or reduce fermentable oligo-, di-, and mono-saccharides and polyols. However, most gastroenterologists are not well educated about diets or their effects on the gut. It is important to understand the various dietary approaches, their putative mechanisms, the evidence that supports their use, and the benefits or harm they might produce. The concepts behind, and delivery of, specialized diets differ from those of pharmacologic agents. High-quality research is needed to determine the efficacy of different dietary approaches and the place of specific strategies.
Collapse
Affiliation(s)
- Peter R Gibson
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Victoria, Australia.
| | - Jane Varney
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Sreepurna Malakar
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Jane G Muir
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Figueiredo TC, Assis DCS, Menezes LDM, Oliveira DD, Lima AL, Souza MR, Heneine LGD, Cançado SV. Effects of packaging, mineral oil coating, and storage time on biogenic amine levels and internal quality of eggs. Poult Sci 2014; 93:3171-8. [PMID: 25306463 DOI: 10.3382/ps.2014-04268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was carried out with the aim of evaluating the effects of mineral oil application on eggshells and the use of plastic packages with lids on the physical-chemical and microbiological quality and biogenic amine contents of eggs stored under refrigeration for up to 125 d. A total of 1,920 eggs from 46-wk-old Hyline W36 laying hens were randomly distributed into 4 groups soon after classification: (i) 480 eggs were stored in pulp carton tray packages; (ii) 480 eggs were stored in plastic packages with lids; (iii) 480 eggs were stored in carton packages after the application of mineral oil; and (iv) 480 eggs were stored in plastic packages with lids after the application of mineral oil. The internal quality was measured by Haugh units, by the counts of mesophilic and psychrotrophic microorganisms, by the most probable number of total and thermal-tolerant coliforms, by the counts of molds and yeasts, by the analysis of Salmonella spp. and Staphylococcus spp., and by the levels of biogenic amines in the egg yolk and albumen. The application of mineral oil to the eggshell resulted in higher Haugh unit values throughout storage, and the use of plastic packages altered the internal quality. The application of mineral oil and the use of packaging had no effects on the microbiological and biogenic amine results. Microbiological analyses showed the absence of Salmonella spp., Staphylococcus aureus, thermal-tolerant coliforms, and fungi. However, the highest counts of mesophilic (1.1 × 10(7) cfu/g) and psychrotrophic (6.7 × 10(7) cfu/g) microorganisms were recorded. The highest values of biogenic amines detected and quantified were putrescine (2.38 mg/kg) and cadaverine (7.27 mg/kg) in the egg yolk and putrescine (1.95 mg/kg), cadaverine (2.83 mg/kg), and phenylethylamine (2.57 mg/kg) in the albumen. Despite these results, the biogenic amine levels recorded were considered low and would not be harmful to consumer health.
Collapse
Affiliation(s)
- T C Figueiredo
- Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 30123-970, Brazil
| | - D C S Assis
- Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 30123-970, Brazil
| | - L D M Menezes
- Instituto Mineiro de Agropecuária, Rodovia Américo Gianetti, 4001, Belo Horizonte, CEP: 31.630-901, Brazil
| | - D D Oliveira
- Aviário Santo Antônio, Rua Conde Pereira Carneiro, 80, Belo Horizonte, 30510-010, Brazil
| | - A L Lima
- Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 30123-970, Brazil
| | - M R Souza
- Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 30123-970, Brazil
| | - L G D Heneine
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, 30510-010, Brazil
| | - S V Cançado
- Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 30123-970, Brazil
| |
Collapse
|
40
|
Buyukuslu N, Hizli H, Esin K, Garipagaoglu M. A Cross-Sectional Study: Nutritional Polyamines in Frequently Consumed Foods of the Turkish Population. Foods 2014; 3:541-557. [PMID: 28234336 PMCID: PMC5302244 DOI: 10.3390/foods3040541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022] Open
Abstract
Putrescine, spermidine and spermine are the most abundant polycationic natural amines found in nearly all organisms. They are involved in regulation of gene expression, translation, cell proliferation and differentiation. They can be supplied by the endogenous synthesis inside the cell or by the intake from exogenous sources. There is a growing body of literature associated with the effects of bioactive amines on health and diseases, but limited information about polyamine content in foods is available. In the present study, the polyamine content of frequently consumed foods in a typical Turkish diet was estimated for adults, including tea, bread and yoghurt. The estimation of daily intake was defined as 93,057 nmol/day putrescine, 33,122 nmol/day spermidine, 13,685 nmol/day spermine. The contribution of foods to daily intake was: dairy products (47.32%), vegetables and grains (21.09%) and wheat products (12.75%).
Collapse
Affiliation(s)
- Nihal Buyukuslu
- Department of Nutrition and Dietetics, School of Health Sciences, Istanbul Medipol University, Beykoz/Istanbul, 34810, Turkey.
| | - Hilal Hizli
- Department of Nutrition and Dietetics, School of Health Sciences, Istanbul Medipol University, Beykoz/Istanbul, 34810, Turkey.
| | - Kubra Esin
- Department of Nutrition and Dietetics, School of Health Sciences, Istanbul Medipol University, Beykoz/Istanbul, 34810, Turkey.
| | - Muazzez Garipagaoglu
- Department of Nutrition and Dietetics, School of Health Sciences, Istanbul Medipol University, Beykoz/Istanbul, 34810, Turkey.
| |
Collapse
|
41
|
Sowndhararajan K, Paul S, Kwon GS, Hwang CW, Kang SC. Protective effect of polyamine extract of salt stressed and sprouted soybean seeds against ethanol-induced gastric ulcer in rats. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0096-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Rêgo I, Menezes L, Figueiredo T, Oliveira D, Rocha J, Lara L, Lima A, Souza M, Cançado S. Bioactive amines and microbiological quality in pasteurized and refrigerated liquid whole egg. Poult Sci 2014; 93:1018-22. [DOI: 10.3382/ps.2013-03694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS One 2013; 8:e66735. [PMID: 23840524 PMCID: PMC3686689 DOI: 10.1371/journal.pone.0066735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.
Collapse
|
44
|
Yamamoto T, Hinoi E, Fujita H, Iezaki T, Takahata Y, Takamori M, Yoneda Y. The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. Br J Pharmacol 2012; 166:1084-96. [PMID: 22250848 DOI: 10.1111/j.1476-5381.2012.01856.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Although naturally occurring polyamines are indispensable for a variety of cellular events in eukaryotic cells, little attention has been paid to their physiological and pathological significance in bone remodelling to date. In this study, we evaluated the pharmacological properties of several natural polyamines on the functionality and integrity of bone in both in vitro and in vivo experiments. EXPERIMENTAL APPROACH Mice were subjected to ovariectomy (OVX) and subsequent oral supplementation with either spermidine or spermine for determination of the bone volume together with different parameters regarding bone formation and resorption by histomorphometric analyses in vivo. Pre-osteoclasts were cultured with receptor activator of NF-κB ligand (RANKL), with or without spermidine and spermine to determine cellular maturation by tartrate-resistant acid phosphatase (TRAP) staining and cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide reduction in vitro. KEY RESULTS Spermidine or spermine, given in drinking water for 28 days, significantly prevented the increased osteoclast surface/bone surface ratio and the reduced bone volume following OVX in mice. Either spermidine or spermine significantly inhibited the increased number of multinucleated TRAP-positive cells in osteoclasts cultured with RANKL in a concentration-dependent manner without affecting cell survival. CONCLUSIONS AND IMPLICATIONS The natural polyamines spermidine and spermine prevented OVX-induced bone loss through the disruption of differentiation and maturation of osteoclasts, rather than affecting osteoblasts. The supplementation with these natural polyamines could be beneficial for the prophylaxis as well as therapy of metabolic bone diseases such as post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Tomomi Yamamoto
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Özdestan Ö, Alpözen E, Güven G, Üren A. Monitoring of Biogenic Amines in Kumru: A Traditional Fermented Cereal Food. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2012. [DOI: 10.1080/10942912.2010.511754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Galgano F, Caruso M, Condelli N, Favati F. Focused review: agmatine in fermented foods. Front Microbiol 2012; 3:199. [PMID: 22701114 PMCID: PMC3369198 DOI: 10.3389/fmicb.2012.00199] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/15/2012] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are ubiquitous substances considered to be bioregulators of numerous cell functions; they take part in cell growth, division, and differentiation. These biogenic amines are also involved in tissue repair and in intracellular signaling; in fact, because of their polycationic character, they interact to a large extent with membrane phospholipids and may play an important role in the regulation of membrane-linked enzymes. The intracellular polyamine content derives from the simultaneous regulation of the synthesis, catabolism, uptake, and elimination of the polyamines; furthermore, PAs are present in all cell types at different concentrations, but the highest levels are found in rapid-turnover tissues. In addition to spermidine, spermine, and putrescine, also agmatine (AGM), deriving from arginine and identified in mammals in the 1990s, is a polyamine and several studies have reported its potentially positive role in the production of secretagogues, and in neuronal, vascular, metabolic, and therapeutic functions. Because of the low arginine decarboxylase (ADC) activity in mammalians, the amounts of AGM found in their tissues can be only minimally ascribed to an endogenous de novo synthesis by ADC, while a substantial quantity of AGM may be of dietary origin. Several food products contain only small amounts of polyamines, while higher concentrations can be found in fermented foods. PAs could also be considered as indicators of freshness in fish and meat products; as these moieties are produced during food storage, it would seem to confirm the main role of microorganisms in their synthesis. In particular, high levels of AGM are present in alcoholic beverages, such as wine, beer, sake, which would seem to confirm the role of yeasts in AGM production. Although many biological functions have been attributed to polyamines, high levels of these compounds in foodstuffs can have toxicological effects; however, no safe level for the intake of polyamines in a diet has yet been established. In this paper the presence of AGM in different foodstuffs is discussed, also taking into account the various factors affecting its presence and concentration.
Collapse
Affiliation(s)
- Fernanda Galgano
- Department of Biology, Biotechnology and Defense Agro-Forestry, University of Basilicata Potenza, Italy
| | | | | | | |
Collapse
|
47
|
Bandeira CM, Evangelista WP, Gloria MBA. Bioactive amines in fresh, canned and dried sweet corn, embryo and endosperm and germinated corn. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Iezaki T, Hinoi E, Yamamoto T, Ishiura R, Ogawa S, Yoneda Y. Amelioration by the Natural Polyamine Spermine of Cartilage and Bone Destruction in Rats With Collagen-Induced Arthritis. J Pharmacol Sci 2012; 119:107-11. [DOI: 10.1254/jphs.11241sc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
49
|
Rabie MA, Siliha H, el-Saidy S, el-Badawy AA, Malcata FX. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Rigueira JCS, Rodrigues MI, Gloria MBA. Optimization of the analytical extraction of polyamines from milk. Talanta 2011; 86:195-9. [DOI: 10.1016/j.talanta.2011.08.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/08/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|