1
|
de Fátima Lazameth-Diniz N, da Silva Queiroz AO, da Silva Fernandes F, Ennes JFV, de Sousa NSO, Cortez ACA, da Silva Batista J, Canto ESM, Cruz KS, Jackisch-Matsuura AB, Fernandes OCC, de Andrade SL, de Souza ÉS, Frickmann H, de Souza JVB. Feline Cryptococcosis due to Cryptococcus gattii VGII (Recently Renamed as C. deuterogattii) in an FIV-Positive Cat With Demodicosis From Manaus, Central Amazon, Brazil. Case Rep Vet Med 2025; 2025:8368783. [PMID: 40444257 PMCID: PMC12122165 DOI: 10.1155/crve/8368783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025] Open
Abstract
This case report documents the diagnosis and successful treatment of cryptococcosis caused by Cryptococcus gattii VGII in a 20-month-old male domestic shorthair cat from Manaus, Brazil, which was concurrently infected with feline immunodeficiency virus (FIV) and diagnosed with demodicosis. The cat presented with mucopurulent nasal discharge, cutaneous lesions on the neck, and a subcutaneous mass between the shoulder blades. Laboratory investigations, including fine-needle aspiration cytology, fungal culture, and PCR-RFLP genotyping, confirmed the presence of C. gattii VGII. The cat was treated with fluconazole (10 mg/kg/day) and topical fluralaner-moxidectin, resulting in complete clinical resolution of all lesions and associated symptoms. This report underscores the significance of considering cryptococcosis as a differential diagnosis in immunocompromised cats presenting with cutaneous or respiratory symptoms. Additionally, it highlights the importance of recognizing the Amazon region as an area of environmental prevalence of C. gattii VGII, reinforcing the need for awareness regarding its impact on animal health.
Collapse
Affiliation(s)
| | | | - Flávia da Silva Fernandes
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, State of Amazonas, Brazil
| | - João Fernando Vieira Ennes
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, State of Amazonas, Brazil
| | | | - Ana Claudia Alves Cortez
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, State of Amazonas, Brazil
| | - Jacqueline da Silva Batista
- Coordenação de Biodiversidade (COBIO), Instituto Nacional de Pesquisas da Amazonia, Manaus, State of Amazonas, Brazil
| | - Eveleise Samira Martins Canto
- Laboratório de Micologia e Bioensaios (LAMIB), Universidade Federal do Oeste do Para, Santarém, State of Pará, Brazil
| | - Kátia Santana Cruz
- Medical Mycology Laboratory, Fundacão de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, State of Amazonas, Brazil
| | - Ani Beatriz Jackisch-Matsuura
- Laboratório de Diversidade Microbiana com Importância para Saúde, Instituto Leonidas e Maria Deane Fiocruz Amazonia, Manaus, State of Amazonas, Brazil
| | - Ormezinda Celeste Cristo Fernandes
- Laboratório de Diversidade Microbiana com Importância para Saúde, Instituto Leonidas e Maria Deane Fiocruz Amazonia, Manaus, State of Amazonas, Brazil
| | - Suanni Lemos de Andrade
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, State of Amazonas, Brazil
| | - Érica Simplício de Souza
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, State of Amazonas, Brazil
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine, Rostock, Germany
| | | |
Collapse
|
2
|
Salazar-Hamm P, Torres-Cruz TJ. The Impact of Climate Change on Human Fungal Pathogen Distribution and Disease Incidence. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:140-152. [DOI: 10.1007/s40588-024-00224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
|
3
|
Acheson ES, Otterstatter M, Galanis E. Forest Disturbance and Disease: Exploring the Effects of Tree Harvesting Area on Cryptococcus gattii sensu lato Infection Risk, Vancouver Island, Canada, 1998-2014. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77009. [PMID: 37466219 DOI: 10.1289/ehp12396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND The disturbance of colonized trees and soil, such as through forestry activities, has been proposed to disperse soil- and tree-inhabiting fungal pathogens. Cryptococcus gattii sensu lato is one such pathogen that was detected on Vancouver Island, British Columbia, Canada, beginning in 1999 and caused human and animal illness. OBJECTIVES Our aim was to determine if C. gattii s.l. human case incidence on Vancouver Island was correlated with the intensity of landscape-level tree harvesting occurring near human settlement areas. METHODS We created buffers around human settlement areas with radii increments of 2.5km, from 2.5 to 20km, and summed the area of annual tree harvests occurring within each buffer zone. We then performed Spearman rank-order correlation to measure the association between case incidence and annual tree harvest intensity at each radius from 1998 through 2014. RESULTS The incidence of C. gattii was positively correlated with tree harvesting intensity only at distances of 7.5km (r=0.66, p=0.004) and 10km (r=0.64, p=0.005) from human settlement areas. As annual tree harvesting area increased between 1999 and 2003, so did annual C. gattii incidence in humans, before both plateaued around 2002 and decreased after 2007. DISCUSSION Our findings suggest that tree harvesting plays a role in the spread of C. gattii on Vancouver Island. This may be due to tree cutting or soil disturbance facilitating the aerosolization of spores to increase infection risk. This research also illustrates the contribution that geographic information systems can make to public health research on environmental disturbance and disease outbreaks. https://doi.org/10.1289/EHP12396.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Otterstatter
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Eleni Galanis
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. J Appl Microbiol 2021; 131:2095-2113. [PMID: 33556223 DOI: 10.1111/jam.15032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
After cardiovascular diseases, infectious diseases are the second most common cause of death worldwide. Although these infections are caused mainly by viruses or bacteria, a systematically growing prevalence of human and animal opportunistic fungal infections is noticeable worldwide. More attention is being paid to this problem, especially due to the growing frequency of recalcitrant and recurrent mycoses. The latter are classically divided into superficial, which are the most common type, subcutaneous, and systemic. This work discusses opportunistic fungal pathogens without proven horizontal transmission between different animal species including humans and microsporidia as spore-forming unicellular parasites related to fungi; however, with a yet undetermined taxonomic position. The review also mentions aetiological agents, risk factors, epidemiology, geographical distribution, and finally symptoms characteristic for individual disease entities. This paper provides insight into fungal infections from a global perspective and simultaneously draws attention to emerging pathogens, whose prevalence is continuously increasing. Finally, this work also takes into consideration the correct nomenclature of fungal disease entities and the importance of secondary metabolites in the pathogenesis of fungal infections.
Collapse
Affiliation(s)
- S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
5
|
Teman SJ, Gaydos JK, Norman SA, Huggins JL, Lambourn DM, Calambokidis J, Ford JKB, Hanson MB, Haulena M, Zabek E, Cottrell P, Hoang L, Morshed M, Garner MM, Raverty S. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. DISEASES OF AQUATIC ORGANISMS 2021; 146:129-143. [PMID: 34672263 DOI: 10.3354/dao03630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and nervous systems of humans and other animals. C. gattii emerged in temperate North America in 1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in Washington and British Columbia between 1997 and 2016. Species affected included harbor porpoises Phocoena phocoena (n = 26), Dall's porpoises Phocoenoides dalli (n = 14), and Pacific white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identified in an adult male Dall's porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded, uninfected odontocetes revealed that risk factors for infection were species (Dall's porpoises), age class (adult animals), and season (winter). This study suggests that mycoses are an emerging source of mortality for odontocetes, and that outbreaks may be associated with anthropogenic environmental disturbance.
Collapse
Affiliation(s)
- Sarah J Teman
- The SeaDoc Society, Karen C. Drayer Wildlife Health Center - Orcas Island Office, UC Davis School of Veterinary Medicine, Eastsound, WA 98245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Edwards HM, Cogliati M, Kwenda G, Fisher MC. The need for environmental surveillance to understand the ecology, epidemiology and impact of Cryptococcus infection in Africa. FEMS Microbiol Ecol 2021; 97:6312494. [PMID: 34196370 PMCID: PMC8536938 DOI: 10.1093/femsec/fiab093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our understanding of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii has been greatly enhanced by use of genome sequencing technologies. Found ubiquitously as saprotrophs in the environment, inhalation of infectious spores from these pathogens can lead to the disease cryptococcosis. Individuals with compromised immune systems are at particular risk, most notably those living with HIV/AIDS. Genome sequencing in combination with laboratory and clinical studies has revealed diverse lineages with important differences in their observed frequency, virulence and clinical outcomes. However, to date, genomic analyses have focused primarily on clinical isolates that represent only a subset of the diversity in the environment. Enhanced genomic surveillance of these yeasts in their native environments is needed in order to understand their ecology, biology and evolution and how these influence the epidemiology and pathophysiology of clinical disease. This is particularly relevant on the African continent from where global cryptococcal diversity may have originated, yet where environmental sampling and sequencing has been sparse despite harbouring the largest population at risk from cryptococcosis. Here, we review what scientifically and clinically relevant insights have been provided by analysis of environmental Cryptococcus isolates to date and argue that with further sampling, particularly in Africa, many more important discoveries await.
Collapse
Affiliation(s)
- Hannah M Edwards
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, PO Box 50110, Lusaka, Zambia
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
7
|
van Rhijn N, Bromley M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J Fungi (Basel) 2021; 7:367. [PMID: 34067211 PMCID: PMC8151111 DOI: 10.3390/jof7050367] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human activities have significantly impacted the environment and are changing our climate in ways that will have major consequences for ourselves, and endanger animal, plant and microbial life on Earth. Rising global temperatures and pollution have been highlighted as potential drivers for increases in infectious diseases. Although infrequently highlighted, fungi are amongst the leading causes of infectious disease mortality, resulting in more than 1.5 million deaths every year. In this review we evaluate the evidence linking anthropomorphic impacts with changing epidemiology of fungal disease. We highlight how the geographic footprint of endemic mycosis has expanded, how populations susceptible to fungal infection and fungal allergy may increase and how climate change may select for pathogenic traits and indirectly contribute to the emergence of drug resistance.
Collapse
Affiliation(s)
| | - Michael Bromley
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
8
|
Barreto L, Velásquez G, Mendoza M, Camacho E, Goncalves E, Rodríguez S, Niño-Vega GA. Geographical distribution and ecological niche modeling of the etiological agents of human sporotrichosis in Venezuela. Braz J Microbiol 2020; 52:63-71. [PMID: 32696418 DOI: 10.1007/s42770-020-00306-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/20/2020] [Indexed: 11/27/2022] Open
Abstract
The geographical distribution and ecological niche of the two circulating species of the Sporothrix genus in Venezuela was established. For this, 68 isolates of Sporothrix spp. from patients of different regions of the country were analyzed. A molecular taxonomy analysis was conducted using a fragment of the calmodulin gene (CAL), and ITS regions, confirming the presence of S. schenckii (62%) and S. globosa (38%). Computational models of ecological niche for each species were obtained by the maximum entropy method using the MaxEnt software, which predicted the best environmental conditions for the presence of the two species. These models predict that the main variables influencing the presence of S. schenckii were altitude and annual mean temperature, while for S. globosa, the more influent variable was the land use, with 82% of S. globosa located at urban areas vs 56% for S. schenckii. The results here presented could contribute to understand the specific environmental factors that might modulate the occurrence of Sporothrix spp. as well as its transmission. To our knowledge, our analyses show for the first time Sporothrix spp.-specific ecological niche data, a valuable tool to promote evidence-based public health policymaking within endemic areas of sporotrichosis.
Collapse
Affiliation(s)
- Laura Barreto
- Centro de Microbiología y Biología Celular, Laboratorio de Micología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- Instituto de Formación Docente Salomé Ureña, Santiago, República Dominicana
| | - Grisel Velásquez
- Unidad de Sistemas de Información Geográfica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Mireya Mendoza
- Laboratorio de Micología, Instituto de Biomedicina "Dr. Jacinto Convit", Caracas, Venezuela
| | - Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Estefany Goncalves
- Laboratorio de Ecología Geográfica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sabrina Rodríguez
- Centro de Microbiología y Biología Celular, Laboratorio de Micología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
9
|
Chayakulkeeree M, Tangkoskul T, Waywa D, Tiengrim S, Pati N, Thamlikitkul V. Impact of iron chelators on growth and expression of iron-related genes of Cryptococcus species. J Mycol Med 2019; 30:100905. [PMID: 31706700 DOI: 10.1016/j.mycmed.2019.100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200μg/mL to 6.25 or 12.5μg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.
Collapse
Affiliation(s)
- M Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - T Tangkoskul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - D Waywa
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - S Tiengrim
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - N Pati
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - V Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
10
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
11
|
Cogliati M, Desnos-Ollivier M, McCormick-Smith I, Rickerts V, Ferreira-Paim K, Meyer W, Boekhout T, Hagen F, Theelen B, Inácio J, Alonso B, Colom MF, Trilles L, Montagna MT, De Donno A, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Trovato L, Dipineto L, Akcaglar S, Mlinaric-Missoni E, Bertout S, Vencá ACF, Sampaio AC, Criseo G, Ranque S, Çerikçioğlu N, Marchese A, Vezzulli L, Ilkit M, Pasquale V, Polacheck I, Lockhart SR. Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genet Biol 2019; 129:16-29. [PMID: 30953839 PMCID: PMC12041884 DOI: 10.1016/j.fgb.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
A total of 476 European isolates (310 Cryptococcus neoformans var. grubii, 150 C. neoformans var. neoformans, and 16 C. gattii species complex) from both clinical and environmental sources were analyzed by multi-locus sequence typing. Phylogenetic and population genetic analyses were performed. Sequence analysis identified 74 sequence types among C. neoformans var. neoformans (VNIV), 65 among C. neoformans var. grubii (56 VNI, 8 VNII, 1 VNB), and 5 among the C. gattii species complex (4 VGI and 1 VGIV) isolates. ST23 was the most frequent genotype (22%) among VNI isolates which were mostly grouped in a large clonal cluster including 50% of isolates. Among VNIV isolates, a predominant genotype was not identified. A high percentage of autochthonous STs were identified in both VNI (71%) and VNIV (96%) group of isolates. The 16 European C. gattii species complex isolates analyzed in the present study originated all from the environment and all belonged to a large cluster endemic in the Mediterranean area. Population genetic analysis confirmed that VNI group of isolates were characterized by low variability and clonal expansion while VNIV by a higher variability and a number of recombination events. However, when VNI and VNIV environmental isolates were compared, they showed a similar population structure with a high percentage of shared mutations and the absence of fixed mutations. Also linkage disequilibrium analysis reveals differences between clinical and environmental isolates showing a key role of PLB1 allele combinations in host infection as well as the key role of LAC1 allele combinations for survival of the fungus in the environment. The present study shows that genetic comparison of clinical and environmental isolates represents a first step to understand the genetic characteristics that cause the shift of some genotypes from a saprophytic to a parasitic life style.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | - Marie Desnos-Ollivier
- Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses & Antifungal, CNRS UMR2000, Paris, France
| | | | | | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Institute of Biodiversity and Ecosystem Dynamic (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Instituto de Investigación Sanitaria Gregorio Marañón (IisGM), Hospital Gegorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | - Aristea Velegraki
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Cristina Macci
- National Research Council, Research Institute on Terrestrial Ecosystems (IRET), Pisa, Italy
| | | | | | | | | | - Sebastien Bertout
- Unité Mixte Internationale "Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses", Université de Montpellier, Montpellier, France
| | - Ana C F Vencá
- Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Ana C Sampaio
- Universidade de Trás-os-Montes e Alto Douro, CITAB, Quinta dos Prados, Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Stéphane Ranque
- Aix-Marseille University, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | | | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS Policlinico San Martino Genova, Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | - Macit Ilkit
- University of Çukurova Sarıçam, Adana, Turkey
| | | | | | | |
Collapse
|
12
|
Cryptococcus gattii VGII isolated from native forest and river in Northern Brazil. Braz J Microbiol 2019; 50:495-500. [PMID: 30852797 DOI: 10.1007/s42770-019-00066-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. In the northern region of Brazil, this disease is caused by Cryptococcus neoformans genotype VNI and Cryptococcus gattii genotype VGII. However, few environmental studies have been conducted in this large tropical area. AIMS This study was performed to isolate, genotype, and determine the frequency of cryptococcal agents in environmental samples near Manaus, Amazonas, Brazil. METHODS A total of 970 environmental samples (290 from soil, 290 from decaying plants, 5 from insects, 280 from the Negro river, and 105 from small streams within the city of Manaus) were collected and plated on Niger seed agar. In addition, 20 sub-cultures obtained from each positive sample were analyzed by PCR-RFLP (URA5) and PCR for genotyping and determination of mating type. RESULTS Six samples were positive for isolates from the C. gattii species complex. Of those, three samples were from Adolpho Ducke Forest Reserve and three were from the Negro river. All isolates were C. gattii genotype VGII (mating type MATα). CONCLUSION Genotype VGII proved to be the most important genotype found in the environmental samples. The genotype VGII has been described as one of the most virulent and less susceptible to antifungals and responsible for important outbreaks. This is the first study to demonstrate isolation of C. gattii (VGII) from the Negro river.
Collapse
|
13
|
Acheson ES, Galanis E, Bartlett K, Mak S, Klinkenberg B. Searching for clues for eighteen years: Deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol 2018; 56:129-144. [PMID: 28525610 DOI: 10.1093/mmy/myx037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| | - Eleni Galanis
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4.,School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Karen Bartlett
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4
| | - Brian Klinkenberg
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| |
Collapse
|
14
|
Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 2018; 113:e170554. [PMID: 29641639 PMCID: PMC5888000 DOI: 10.1590/0074-02760170554] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection caused by the encapsulated
yeasts Cryptococcus neoformans and C. gattii,
acquired from the environment. In Latin America, as occurring
worldwide, C. neoformans causes more than 90% of the cases of
cryptococcosis, affecting predominantly patients with HIV, while C.
gattii generally affects otherwise healthy individuals. In this
region, cryptococcal meningitis is the most common presentation, with
amphotericin B and fluconazole being the antifungal drugs of choice. Avian
droppings are the predominant environmental reservoir of C.
neoformans, while C. gattii is associated with
several arboreal species. Importantly, C. gattii has a high
prevalence in Latin America and has been proposed to be the likely origin of
some C. gattii populations in North America. Thus, in the
recent years, significant progress has been made with the study of the basic
biology and laboratory identification of cryptococcal strains, in understanding
their ecology, population genetics, host-pathogen interactions, and the clinical
epidemiology of this important mycosis in Latin America.
Collapse
Affiliation(s)
- Carolina Firacative
- Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jairo Lizarazo
- Internal Medicine Department, Hospital Universitario Erasmo Meoz, Universidad de Pamplona, Cúcuta, Colombia
| | - María Teresa Illnait-Zaragozí
- Diagnosis and Reference Centre, Bacteriology-Mycology Department Research, Tropical Medicine Institute Pedro Kourí, Havana, Cuba
| | | | | |
Collapse
|
15
|
Abstract
Cryptococcus is among the most common invasive fungal pathogens globally and is one of the leading causes of acquired immunodeficiency virus-related deaths. Cryptococcus neoformans and Cryptococcus gattii are the most clinically relevant species and account for most cryptococcal disease. Pulmonary manifestations can range from mild symptoms to life-threatening infection. Treatment is tailored based on the severity of pulmonary infection, the presence of disseminated or central nervous system disease, and patient immune status. Amphotericin B and flucytosine followed by fluconazole remain the standard agents for the treatment of severe cryptococcal infection.
Collapse
Affiliation(s)
- Kate Skolnik
- Division of Respirology, Department of Internal Medicine, Rockyview General Hospital, University of Calgary, Respirology Offices, 7007 14th Street Southwest, Calgary, Alberta T2V 1P9, Canada
| | - Shaunna Huston
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Room 4AA08, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology and Infectious Diseases, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada; Department of Internal Medicine, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Cogliati M, Puccianti E, Montagna MT, De Donno A, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Trovato L, Dipineto L, Rickerts V, Akcaglar S, Mlinaric-Missoni E, Bertout S, Vencà AC, Sampaio AC, Criseo G, Ranque S, Çerikçioğlu N, Marchese A, Vezzulli L, Ilkit M, Desnos-Ollivier M, Pasquale V, Polacheck I, Scopa A, Meyer W, Ferreira-Paim K, Hagen F, Boekhout T, Dromer F, Varma A, Kwon-Chung KJ, Inácio J, Colom MF. Fundamental niche prediction of the pathogenic yeastsCryptococcus neoformansandCryptococcus gattiiin Europe. Environ Microbiol 2017; 19:4318-4325. [DOI: 10.1111/1462-2920.13915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute; Università degli Studi di Milano; Milano Italy
| | - Erika Puccianti
- Dip. Scienze Biomediche per la Salute; Università degli Studi di Milano; Milano Italy
| | | | | | | | | | - Aristea Velegraki
- Medical School National and Kapodistrian University of Athens; Athens Greece
| | | | | | - Cristina Macci
- Istituto per lo Studio degli Ecosistemi (ISE), National Research Council (CNR); Pisa Italy
| | | | | | | | | | | | - Sebastien Bertout
- Unité Mixte Internationale “Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses”; Université de Montpellier; Montpellier France
| | - Ana C.F. Vencà
- Instituto de Higiene e Medicina Tropical; Lisbon Portugal
| | - Ana C. Sampaio
- Universidade de Trás-os-Montes e Alto Douro, CITAB; Vila Real Quinta dos Prados Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Italy
| | | | | | - Anna Marchese
- Sezione di Microbiologia del DISC; Università di Genova-IRCCS San Martino IST Genova; Genova Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV); Università di Genova; Genova Italy
| | - Macit Ilkit
- University of Çukurova Sarıçam; Adana Turkey
| | | | | | | | - Antonio Scopa
- Università degli Studi della Basilicata; Potenza Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital; University of Sydney/Westmead Millennium Institute; Westmead NSW Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital; University of Sydney/Westmead Millennium Institute; Westmead NSW Australia
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious-Diseases; Canisius-Wilhelmina Hospital; Nijmegen The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Institute for Biodiversity and Ecosystem Dynamic Institute; University of Amsterdam; Amsterdam The Netherlands
| | - Françoise Dromer
- Institut Pasteur, CNRS; Unité de Mycologie Moléculaire; Paris France
| | - Ashok Varma
- National Institute of Allergy and Infectious Diseases; Bethesda MD USA
| | | | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton UK
| | | |
Collapse
|
17
|
Emerging Fungal Infections in the Pacific Northwest: The Unrecognized Burden and Geographic Range of Cryptococcus gattii and Coccidioides immitis. Microbiol Spectr 2017; 4. [PMID: 27337452 DOI: 10.1128/microbiolspec.ei10-0016-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both Cryptococcus gattii and Coccidioides can cause debilitating diseases if not identified early. It is imperative that clinicians recognize these diseases and begin treatment quickly when necessary. In order to have these two mycoses in their differential diagnosis, clinicians, microbiologists, and public health officials must be aware of the expanding geographic boundary in the case of Coccidioides immitis and the new emergence in the case of C. gattii. Accordingly, there is now mandatory reporting for cases of C. gattii and C. immitis in both Washington and Oregon, and the Centers for Disease Control and Prevention keeps a repository of available isolates. Through the One Health initiative, clinicians, veterinarians, and public health officials are collaborating to better understand the emergence and expanding geographic range of these extremely important fungal diseases.
Collapse
|
18
|
Uejio CK, Mak S, Manangan A, Luber G, Bartlett KH. Climatic Influences on Cryptococcus gattii [corrected] Populations, Vancouver Island, Canada, 2002-2004. Emerg Infect Dis 2016; 21:1989-96. [PMID: 26484590 PMCID: PMC4622228 DOI: 10.3201/eid2111.141161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vancouver Island, Canada, reports the world's highest incidence of Cryptococcus gattii infection among humans and animals. To identify key biophysical factors modulating environmental concentrations, we evaluated monthly concentrations of C. gatti in air, soil, and trees over a 3-year period. The 2 study datasets were repeatedly measured plots and newly sampled plots. We used hierarchical generalized linear and mixed effect models to determine associations. Climate systematically influenced C. gattii concentrations in all environmental media tested; in soil and on trees, concentrations decreased when temperatures were warmer. Wind may be a key process that transferred C. gattii from soil into air and onto trees. C. gattii results for tree and air samples were more likely to be positive during periods of higher solar radiation. These results improve the understanding of the places and periods with the greatest C. gattii colonization. Refined risk projections may help susceptible persons avoid activities that disturb the topsoil during relatively cool summer days.
Collapse
|
19
|
Mak S, Vélez N, Castañeda E, Escandón P. The Fungus among Us: Cryptococcus neoformans and Cryptococcus gattii Ecological Modeling for Colombia. J Fungi (Basel) 2015; 1:332-344. [PMID: 29376914 PMCID: PMC5753128 DOI: 10.3390/jof1030332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
The environmental isolation of Cryptococcus spp. is typically a difficult undertaking. Collecting samples in the field is costly in terms of travel, personnel time and materials. Furthermore, the recovery rate of Cryptococcus spp. may be very low, thereby requiring a large number of samples to be taken without any guarantee of success. Ecological niche modeling is a tool that has traditionally been used to forecast the distribution of plant and animal of species for biodiversity and conservation purposes. Here, we use it in a public health application to produce risk area maps for cryptococcal disease in Colombia. The Genetic Algorithm for Ruleset Production (GARP) was used to create models for Cryptococcus neoformans (C. neoformans) and Cryptococcus gattii (C. gattii), based on environmental sampling and clinical records data recorded since 1987. These maps could be used to focus public health messaging related to cryptococcal disease, and it enables us to characterize the ecological niche for Cryptococcus in Colombia. We found that the OPEN ACCESS J. Fungi 2015, 1 333 ecological niche for C. gattii in Colombia is quite diverse, establishing itself in sub-tropical and temperate ecoregions within the country. This suggests that C. gattii is highly adaptive to different ecological conditions in Colombia and different regions of the world.
Collapse
Affiliation(s)
- Sunny Mak
- Public Health Analytics, British Columbia Centre for Disease Control, 655 West 12th Avenue,Vancouver, BC V5Z 4R4, Canada.
| | - Nórida Vélez
- Grupo de Microbiología, Instituto Nacional de Salud, Av. Calle 26 No. 51-20, Bogotá, D.C. 111321, Colombia.
| | - Elizabeth Castañeda
- Grupo de Microbiología, Instituto Nacional de Salud, Av. Calle 26 No. 51-20, Bogotá, D.C. 111321, Colombia.
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Av. Calle 26 No. 51-20, Bogotá, D.C. 111321, Colombia.
| |
Collapse
|
20
|
Sánchez-Montes S, Espinosa-Martínez DV, Ríos-Muñoz CA, Berzunza-Cruz M, Becker I. Leptospirosis in Mexico: Epidemiology and Potential Distribution of Human Cases. PLoS One 2015; 10:e0133720. [PMID: 26207827 PMCID: PMC4514770 DOI: 10.1371/journal.pone.0133720] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leptospirosis is widespread in Mexico, yet the potential distribution and risk of the disease remain unknown. METHODOLOGY/PRINCIPAL FINDINGS We analysed morbidity and mortality according to age and gender based on three sources of data reported by the Ministry of Health and the National Institute of Geography and Statics of Mexico, for the decade 2000-2010. A total of 1,547 cases were reported in 27 states, the majority of which were registered during the rainy season, and the most affected age group was 25-44 years old. Although leptospirosis has been reported as an occupational disease of males, analysis of morbidity in Mexico showed no male preference. A total number of 198 deaths were registered in 21 states, mainly in urban settings. Mortality was higher in males (61.1%) as compared to females (38.9%), and the case fatality ratio was also increased in males. The overall case fatality ratio in Mexico was elevated (12.8%), as compared to other countries. We additionally determined the potential disease distribution by examining the spatial epidemiology combined with spatial modeling using ecological niche modeling techniques. We identified regions where leptospirosis could be present and created a potential distribution map using bioclimatic variables derived from temperature and precipitation. Our data show that the distribution of the cases was more related to temperature (75%) than to precipitation variables. Ecological niche modeling showed predictive areas that were widely distributed in central and southern Mexico, excluding areas characterized by extreme climates. CONCLUSIONS/SIGNIFICANCE In conclusion, an epidemiological surveillance of leptospirosis is recommended in Mexico, since 55.7% of the country has environmental conditions fulfilling the criteria that favor the presence of the disease.
Collapse
Affiliation(s)
- Sokani Sánchez-Montes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Deborah V. Espinosa-Martínez
- Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César A. Ríos-Muñoz
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Berzunza-Cruz
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
21
|
Beardsley J, Thanh LT, Day J. A Model CNS Fungal Infection: Cryptococcal Meningitis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Crabol Y, Lortholary O. Invasive mold infections in solid organ transplant recipients. SCIENTIFICA 2014; 2014:821969. [PMID: 25525551 PMCID: PMC4261198 DOI: 10.1155/2014/821969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/03/2014] [Indexed: 05/13/2023]
Abstract
Invasive mold infections represent an increasing source of morbidity and mortality in solid organ transplant recipients. Whereas there is a large literature regarding invasive molds infections in hematopoietic stem cell transplants, data in solid organ transplants are scarcer. In this comprehensive review, we focused on invasive mold infection in the specific population of solid organ transplant. We highlighted epidemiology and specific risk factors for these infections and we assessed the main clinical and imaging findings by fungi and by type of solid organ transplant. Finally, we attempted to summarize the diagnostic strategy for detection of these fungi and tried to give an overview of the current prophylaxis treatments and outcomes of these infections in solid organ transplant recipients.
Collapse
Affiliation(s)
- Yoann Crabol
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Infectiologie Necker Pasteur, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Olivier Lortholary
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Infectiologie Necker Pasteur, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, APHP, 75015 Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, CNRS URA3012, 75015 Paris, France
| |
Collapse
|
23
|
Samy AM, van de Sande WWJ, Fahal AH, Peterson AT. Mapping the potential risk of mycetoma infection in Sudan and South Sudan using ecological niche modeling. PLoS Negl Trop Dis 2014; 8:e3250. [PMID: 25330098 PMCID: PMC4199553 DOI: 10.1371/journal.pntd.0003250] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/06/2014] [Indexed: 11/23/2022] Open
Abstract
In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected tropical conditions due to the efforts of the mycetoma consortium. This same consortium formulated knowledge gaps that require further research. One of these gaps was that very few data are available on the epidemiology and transmission cycle of the causative agents. Previous work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma case distributions. Here, we map risk of mycetoma infection across Sudan and South Sudan using ecological niche modeling (ENM). For this study, records of mycetoma cases were obtained from the scientific literature and GIDEON; Acacia records were obtained from the Global Biodiversity Information Facility. We developed ENMs based on digital GIS data layers summarizing soil characteristics, land-surface temperature, and greenness indices to provide a rich picture of environmental variation across Sudan and South Sudan. ENMs were calibrated in known endemic districts and transferred countrywide; model results suggested that risk is greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under diverse environmental conditions. We compared niches of mycetoma and Acacia trees, and could not reject the null hypothesis of niche similarity. This study revealed contributions of different environmental factors to mycetoma infection risk, identified suitable environments and regions for transmission, signaled a potential mycetoma-Acacia association, and provided steps towards a robust risk map for the disease. WHO has recognized mycetoma as one of the neglected tropical diseases (NTDs) worldwide. Studies indicate infections from soil or possibly mediated by thorn pricks, but no detailed studies have investigated effects of soil type and Acacia distributions on mycetoma in Sudan. Here, we investigated risk factors associated with mycetoma infections in Sudan using ecological niche modeling (ENM), integrating mycetoma case records, Acacia records, and geospatial data summarizing soil, land-surface temperature, and greenness. ENMs calibrated in endemic districts were transferred across Sudan, and suggested that greatest risk was in a belt across central Sudan. Mycetoma infections occur under diverse environmental conditions; we found significant niche similarity between Acacia and mycetoma. Model predictions were amply corroborated by a preliminary assessment of a much larger mycetoma case-occurrence data base. Our results revealed contributions of different environmental factors to mycetoma risk, raised hypotheses of a causal mycetoma-Acacia association, and provide steps towards a robust predictive risk map for the disease in Sudan.
Collapse
Affiliation(s)
- Abdallah M. Samy
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
- * E-mail: ,
| | - Wendy W. J. van de Sande
- Erasmus Medical Center, Department of Medical Microbiology and Infectious diseases, Rotterdam, The Netherlands
| | | | - A. Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
24
|
Rabinowitz PM, Kock R, Kachani M, Kunkel R, Thomas J, Gilbert J, Wallace R, Blackmore C, Wong D, Karesh W, Natterson B, Dugas R, Rubin C. Toward proof of concept of a one health approach to disease prediction and control. Emerg Infect Dis 2014; 19. [PMID: 24295136 PMCID: PMC3840882 DOI: 10.3201/eid1912.130265] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A One Health approach considers the role of changing environments with regard to infectious and chronic disease risks affecting humans and nonhuman animals. Recent disease emergence events have lent support to a One Health approach. In 2010, the Stone Mountain Working Group on One Health Proof of Concept assembled and evaluated the evidence regarding proof of concept of the One Health approach to disease prediction and control. Aspects examined included the feasibility of integrating human, animal, and environmental health and whether such integration could improve disease prediction and control efforts. They found evidence to support each of these concepts but also identified the need for greater incorporation of environmental and ecosystem factors into disease assessments and interventions. The findings of the Working Group argue for larger controlled studies to evaluate the comparative effectiveness of the One Health approach.
Collapse
|
25
|
Qian Q, Zhao J, Fang L, Zhou H, Zhang W, Wei L, Yang H, Yin W, Cao W, Li Q. Mapping risk of plague in Qinghai-Tibetan Plateau, China. BMC Infect Dis 2014; 14:382. [PMID: 25011940 PMCID: PMC4227279 DOI: 10.1186/1471-2334-14-382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Qinghai-Tibetan Plateau of China is known to be the plague endemic region where marmot (Marmota himalayana) is the primary host. Human plague cases are relatively low incidence but high mortality, which presents unique surveillance and public health challenges, because early detection through surveillance may not always be feasible and infrequent clinical cases may be misdiagnosed. METHODS Based on plague surveillance data and environmental variables, Maxent was applied to model the presence probability of plague host. 75% occurrence points were randomly selected for training model, and the rest 25% points were used for model test and validation. Maxent model performance was measured as test gain and test AUC. The optimal probability cut-off value was chosen by maximizing training sensitivity and specificity simultaneously. RESULTS We used field surveillance data in an ecological niche modeling (ENM) framework to depict spatial distribution of natural foci of plague in Qinghai-Tibetan Plateau. Most human-inhabited areas at risk of exposure to enzootic plague are distributed in the east and south of the Plateau. Elevation, temperature of land surface and normalized difference vegetation index play a large part in determining the distribution of the enzootic plague. CONCLUSIONS This study provided a more detailed view of spatial pattern of enzootic plague and human-inhabited areas at risk of plague. The maps could help public health authorities decide where to perform plague surveillance and take preventive measures in Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Quan Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- Institute of Health Service and Medical Information, Beijing, China
| | - Jian Zhao
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Hang Zhou
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lan Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Hong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Wenwu Yin
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wuchun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
26
|
Harris JR, Galanis E, Lockhart SR. Cryptococcus gattii Infections and Virulence. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-013-0170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Abstract
The most important emerging and rare fungal pathogens in solid organ transplant recipients are the Zygomycetes, Scedosporium, Fusarium, and the dark molds. Factors affecting the emergence of these fungi include the combination of intensive immunosuppressive regimens with increasingly widespread use of long-term azole antifungal therapy; employment of aggressive diagnostic approaches (eg, sampling of bronchoalveolar lavage fluid); and changes in patients' interactions with the environment. This article reviews the epidemiology, microbiology, and clinical impact of emerging fungal infections in solid organ transplant recipients, and provides up-to-date recommendations on their treatment.
Collapse
Affiliation(s)
- Shmuel Shoham
- Transplant and Oncology Infectious Diseases Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Mortenson JA, Bartlett KH, Wilson RW, Lockhart SR. Detection of Cryptococcus gattii in selected urban parks of the Willamette Valley, Oregon. Mycopathologia 2013; 175:351-5. [PMID: 23354596 PMCID: PMC11921823 DOI: 10.1007/s11046-013-9614-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Human and animal infections of the fungus Cryptococcus gattii have been recognized in Oregon since 2006. Transmission is primarily via airborne environmental spores and now thought to be locally acquired due to infection in non-migratory animals and humans with no travel history. Previous published efforts to detect C. gattii from tree swabs and soil samples in Oregon have been unsuccessful. This study was conducted to determine the presence of C. gattii in selected urban parks of Oregon cities within the Willamette Valley where both human and animal cases of C. gattii have been diagnosed. Urban parks were sampled due to spatial and temporal overlap of humans, companion animals and wildlife. Two of 64 parks had positive samples for C. gattii. One park had a positive tree and the other park, 60 miles away, had positive bark mulch samples from a walkway. Genotypic subtypes identified included C. gattii VGIIa and VGIIc, both considered highly virulent in murine host models.
Collapse
|
29
|
Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii. Appl Environ Microbiol 2013; 79:2979-88. [PMID: 23435895 DOI: 10.1128/aem.03697-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungus Cryptococcus contributes a large global burden of infectious death in both HIV-infected and healthy individuals. As Cryptococcus is an opportunistic pathogen, much of the evolutionary pressure shaping virulence occurs in environments in contact with plants and soil. The present studies investigated inoculation of intact seeds of the common weed Arabidopsis thaliana with fungal cells over a 21-day period. C. gattii was the more virulent plant pathogen, resulting in disrupted germination as well as increased stem lodging, fungal burden, and plant tissue colocalization. C. neoformans was a less virulent plant pathogen but exhibited prolonged tissue residence within the cuticle and vascular spaces. Arabidopsis mutants of the PRN1 gene, which is involved in abiotic and biotic signaling affecting phenylalanine-derived flavonoids, showed altered susceptibility to cryptoccocal infections, suggesting roles for this pathway in cryptococcal defense. The fungal virulence factor laccase was also implicated in plant pathogenesis, as a cryptococcal lac1Δ strain was less virulent than wild-type fungi and was unable to colonize seedlings. In conclusion, these studies expand knowledge concerning the ecological niche of Cryptococcus by demonstrating the pathogenic capacity of the anamorphic form of cryptococcal cells against healthy seedlings under physiologically relevant conditions. In addition, an important role of laccase in plant as well as human virulence may suggest mechanisms for laccase retention and optimization during evolution of this fungal pathogen.
Collapse
|
30
|
Amirpour Haredasht S, Barrios M, Farifteh J, Maes P, Clement J, Verstraeten WW, Tersago K, Van Ranst M, Coppin P, Berckmans D, Aerts JM. Ecological niche modelling of bank voles in Western Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:499-514. [PMID: 23358234 PMCID: PMC3635158 DOI: 10.3390/ijerph10020499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 11/23/2022]
Abstract
The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ(2) tests, p < 10(-6)). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole's population.
Collapse
Affiliation(s)
- Sara Amirpour Haredasht
- Measure, Model & Manage Bioresponses (M3-BIORES), Biosystems Department, KU Leuven, Kasteelpark Arenberg 30, Leuven B-3001, Belgium; E-Mails: (S.A.H.); (D.B.)
| | - Miguel Barrios
- M3-BIORES, Biosystems Department, KU Leuven, Willem de Croylaan 34, Leuven B-3001, Belgium; E-Mails: (M.B.); (J.F.); (W.W.V.); (P.C.)
| | - Jamshid Farifteh
- M3-BIORES, Biosystems Department, KU Leuven, Willem de Croylaan 34, Leuven B-3001, Belgium; E-Mails: (M.B.); (J.F.); (W.W.V.); (P.C.)
| | - Piet Maes
- National Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium; E-Mails: (P.M.); (J.C.); (M.V.R.)
| | - Jan Clement
- National Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium; E-Mails: (P.M.); (J.C.); (M.V.R.)
| | - Willem W. Verstraeten
- M3-BIORES, Biosystems Department, KU Leuven, Willem de Croylaan 34, Leuven B-3001, Belgium; E-Mails: (M.B.); (J.F.); (W.W.V.); (P.C.)
- Royal Netherlands Meteorological Institute (KNMI), Climate Observations, PO Box 201, De Bilt NL-3730 AE, The Netherlands
- Eindhoven University of Technology, Applied Physics, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Katrien Tersago
- Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium; E-Mail:
| | - Marc Van Ranst
- National Reference Laboratory for Hantavirus Infections, Laboratory of Clinical Virology, Rega Institute, KU Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium; E-Mails: (P.M.); (J.C.); (M.V.R.)
| | - Pol Coppin
- M3-BIORES, Biosystems Department, KU Leuven, Willem de Croylaan 34, Leuven B-3001, Belgium; E-Mails: (M.B.); (J.F.); (W.W.V.); (P.C.)
| | - Daniel Berckmans
- Measure, Model & Manage Bioresponses (M3-BIORES), Biosystems Department, KU Leuven, Kasteelpark Arenberg 30, Leuven B-3001, Belgium; E-Mails: (S.A.H.); (D.B.)
| | - Jean-Marie Aerts
- Measure, Model & Manage Bioresponses (M3-BIORES), Biosystems Department, KU Leuven, Kasteelpark Arenberg 30, Leuven B-3001, Belgium; E-Mails: (S.A.H.); (D.B.)
| |
Collapse
|
31
|
Upadhya R, Campbell LT, Donlin MJ, Aurora R, Lodge JK. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress. PLoS One 2013; 8:e55110. [PMID: 23383070 PMCID: PMC3557267 DOI: 10.1371/journal.pone.0055110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023] Open
Abstract
The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Leona T. Campbell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maureen J. Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Cryptococcus gattii: a Review of the Epidemiology, Clinical Presentation, Diagnosis, and Management of This Endemic Yeast in the Pacific Northwest. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.clinmicnews.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Chowdhary A, Rhandhawa HS, Prakash A, Meis JF. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: an update. Crit Rev Microbiol 2011; 38:1-16. [PMID: 22133016 DOI: 10.3109/1040841x.2011.606426] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An overview of work done to-date in India on environmental prevalence, population structure, seasonal variations and antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii is presented. The primary ecologic niche of both pathogens is decayed wood in trunk hollows of a wide spectrum of host trees, representing 18 species. Overall, C. neoformans showed a higher environmental prevalence than that of C. gattii which was not found in the avian habitats. Apart from their arboreal habitat, both species were demonstrated in soil and air in close vicinity of their tree hosts. In addition, C. neoformans showed a strong association with desiccated avian excreta. An overwhelming number of C. neoformans strains belonged to genotype AFLP1/VNI, var. grubii (serotype A), whereas C. gattii strains were genotype AFLP4/VGI, serotype B. All of the environmental strains of C. neoformans and C. gattii were mating type α (MATα). Contrary to the Australian experience, Eucalyptus trees were among the epidemiologically least important and, therefore, the hypothesis of global spread of C. gattii through Australian export of infected Eucalyptus seeds is rebutted. Reference is made to long-term colonization of an abandoned, old timber beam of sal wood (Shorea robusta) by a melanin positive (Mel(+)) variant of Cryptococcus laurentii that was pathogenic to laboratory mice.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, India
| | | | | | | |
Collapse
|
34
|
Byrnes EJ, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect 2011; 13:895-907. [PMID: 21684347 PMCID: PMC3318971 DOI: 10.1016/j.micinf.2011.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023]
Abstract
Infectious fungi are among a broad group of microbial pathogens that has and continues to emerge concomitantly due to the global AIDS pandemic as well as an overall increase of patients with compromised immune systems. In addition, many pathogens have been emerging and re-emerging, causing disease in both individuals who have an identifiable immune defect and those who do not. The fungal pathogen Cryptococcus gattii can infect individuals with and without an identifiable immune defect, with a broad geographic range including both endemic areas and emerging outbreak regions. Infections in patients and animals can be severe and often fatal if untreated. We review the molecular epidemiology, population structure, clinical manifestations, and ecological niche of this emerging pathogen.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Karen H. Bartlett
- School of Environmental Health, University of British Columbia, Vancouver, BC, Canada
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
A decade of experience: Cryptococcus gattii in British Columbia. Mycopathologia 2011; 173:311-9. [PMID: 21960040 DOI: 10.1007/s11046-011-9475-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/02/2011] [Indexed: 12/31/2022]
Abstract
It has been over a decade since Cryptococcus gattii was first recognized as the causative organism of an outbreak of cryptococcosis on Vancouver Island, British Columbia. A number of novel observations have been associated with the study of this emergent pathogen. A novel genotype of C. gattii, VGIIa was described as the major genotype associated with clinical disease. Minor genotypes, VGIIb and VGI, are also responsible for disease in British Columbians, in both human and animal populations. The clinical major genotype VGIIa and minor genotype VGIIb are identical to C. gattii isolated from the environment of Vancouver Island. There is more heterogeneity in VGI, and a clear association with the environment is not apparent. Between 1999 and 2010, there have been 281 cases of C. gattii cryptococcosis. Risk factors for infection are reported to be age greater than 50 years, history of smoking, corticosteroid use, HIV infection, and history of cancer or chronic lung disease. The major C. gattii genotype VGIIa is as virulent in mice as the model Cryptococcus, H99 C. neoformans, although the outbreak strain produces a less protective inflammatory response in C57BL/6 mice. The minor genotype VGIIb is significantly less virulent in mouse models. Cryptococcus gattii is found associated with native trees and soil on Vancouver Island. Transiently positive isolations have been made from air and water. An ecological niche for this organism is associated within a limited biogeoclimatic zone characterized by daily average winter temperatures above freezing.
Collapse
|
36
|
Abstract
Infections caused by the emerging pathogen Cryptococcus gattii are increasing in frequency in North America. During the past decade, interest in the pathogen has continued to grow, not only in North America but also in other areas of the world where infections have recently been documented. This review synthesizes existing data and raises issues that remain to be addressed.
Collapse
Affiliation(s)
- Julie Harris
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA 30309 USA.
| | | | | |
Collapse
|
37
|
Chaturvedi V, Chaturvedi S. Cryptococcus gattii: a resurgent fungal pathogen. Trends Microbiol 2011; 19:564-71. [PMID: 21880492 DOI: 10.1016/j.tim.2011.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/19/2011] [Accepted: 07/29/2011] [Indexed: 01/20/2023]
Abstract
Cryptococcus gattii and Cryptococcus neoformans are causal agents of cryptococcosis, which manifests as pneumonia and meningitis. C. gattii has recently received widespread attention owing to outbreaks in British Columbia, Canada and the US Pacific Northwest. The biology of this tree-dwelling yeast is relatively unexplored, and there are few clues about how it causes infections in humans and animals. In this review, we summarize recent discoveries about C. gattii genetics and its ecological niche and highlight areas ripe for future exploration. Increased focus on epidemiology, ecological modeling and host-pathogen interactions is expected to yield a better understanding of this enigmatic yeast, and ultimately lead to better measures for its control.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.
| | | |
Collapse
|
38
|
Stevens KB, Pfeiffer DU. Spatial modelling of disease using data- and knowledge-driven approaches. Spat Spatiotemporal Epidemiol 2011; 2:125-33. [PMID: 22748172 DOI: 10.1016/j.sste.2011.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of spatial modelling in animal and public health is three-fold: describing existing spatial patterns of risk, attempting to understand the biological mechanisms that lead to disease occurrence and predicting what will happen in the medium to long-term future (temporal prediction) or in different geographical areas (spatial prediction). Traditional methods for temporal and spatial predictions include general and generalized linear models (GLM), generalized additive models (GAM) and Bayesian estimation methods. However, such models require both disease presence and absence data which are not always easy to obtain. Novel spatial modelling methods such as maximum entropy (MAXENT) and the genetic algorithm for rule set production (GARP) require only disease presence data and have been used extensively in the fields of ecology and conservation, to model species distribution and habitat suitability. Other methods, such as multicriteria decision analysis (MCDA), use knowledge of the causal factors of disease occurrence to identify areas potentially suitable for disease. In addition to their less restrictive data requirements, some of these novel methods have been shown to outperform traditional statistical methods in predictive ability (Elith et al., 2006). This review paper provides details of some of these novel methods for mapping disease distribution, highlights their advantages and limitations, and identifies studies which have used the methods to model various aspects of disease distribution.
Collapse
Affiliation(s)
- Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK.
| | | |
Collapse
|
39
|
Abstract
Cryptococcus gattii recently emerged as the causative agent of cryptococcosis in healthy individuals in western North America, despite previous characterization of the fungus as a pathogen in tropical or subtropical regions. As a foundation to study the genetics of virulence in this pathogen, we sequenced the genomes of a strain (WM276) representing the predominant global molecular type (VGI) and a clinical strain (R265) of the major genotype (VGIIa) causing disease in North America. We compared these C. gattii genomes with each other and with the genomes of representative strains of the two varieties of Cryptococcus neoformans that generally cause disease in immunocompromised people. Our comparisons included chromosome alignments, analysis of gene content and gene family evolution, and comparative genome hybridization (CGH). These studies revealed that the genomes of the two representative C. gattii strains (genotypes VGI and VGIIa) are colinear for the majority of chromosomes, with some minor rearrangements. However, multiortholog phylogenetic analysis and an evaluation of gene/sequence conservation support the existence of speciation within the C. gattii complex. More extensive chromosome rearrangements were observed upon comparison of the C. gattii and the C. neoformans genomes. Finally, CGH revealed considerable variation in clinical and environmental isolates as well as changes in chromosome copy numbers in C. gattii isolates displaying fluconazole heteroresistance. Isolates of Cryptococcus gattii are currently causing an outbreak of cryptococcosis in western North America, and most of the cases occurred in the absence of coinfection with HIV. This pattern is therefore in stark contrast to the current global burden of one million annual cases of cryptococcosis, caused by the related species Cryptococcus neoformans, in the HIV/AIDS population. The genome sequences of two outbreak-associated major genotypes of C. gattii reported here provide insights into genome variation within and between cryptococcal species. These sequences also provide a resource to further evaluate the epidemiology of cryptococcal disease and to evaluate the role of pathogen genes in the differential interactions of C. gattii and C. neoformans with immunocompromised and immunocompetent hosts.
Collapse
|
40
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Datta K, Bartlett KH, Marr KA. Cryptococcus gattii: Emergence in Western North America: Exploitation of a Novel Ecological Niche. Interdiscip Perspect Infect Dis 2009; 2009:176532. [PMID: 19266091 PMCID: PMC2648661 DOI: 10.1155/2009/176532] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/17/2008] [Indexed: 12/15/2022] Open
Abstract
The relatively uncommon fungal pathogen Cryptococcus gattii recently emerged as a significant cause of cryptococcal disease in human and animals in the Pacific Northwest of North America. Although genetic studies indicated its possible presence in the Pacific Northwest for more than 30 years, C. gattii as an etiological agent was largely unknown in this region prior to 1999. The recent emergence may have been encouraged by changing conditions of climate or land use and/or host susceptibility, and predictive ecological niche modeling indicates a potentially wider spread. C. gattii can survive wide climatic variations and colonize the environment in tropical, subtropical, temperate, and dry climates. Long-term climate changes, such as the significantly elevated global temperature in the last 100 years, influence patterns of disease among plants and animals and create niche microclimates habitable by emerging pathogens. C. gattii may have exploited such a hitherto unrecognized but clement environment in the Pacific Northwest to provide a wider exposure and risk of infection to human and animal populations.
Collapse
Affiliation(s)
- Kausik Datta
- School of Medicine, Johns Hopkins University, 720 Rutland Avenue, Room 1064, Ross Building, Baltimore, MD 21205, USA
| | - Karen H. Bartlett
- School of Environmental Health, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Kieren A. Marr
- School of Medicine, Johns Hopkins University, 720 Rutland Avenue, Room 1064, Ross Building, Baltimore, MD 21205, USA
| |
Collapse
|