1
|
Hunter R, Wilson T, Lucas S, Scieszka D, Bleske B, Ottens A, Ashley R, Pace C, Kanagy N, Campen M. Characterization of Mild Delayed Gestational Hypertension in Rats Following Ozone Exposure. Cardiovasc Toxicol 2024; 24:843-851. [PMID: 38963633 DOI: 10.1007/s12012-024-09887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
The contribution of air pollution-induced cardiopulmonary damage on the development of hypertensive disorders of pregnancy and other adverse outcomes of pregnancy has gained increased attention as epidemiological data continue to highlight spatiotemporal pregnancy trends related to air pollution exposure. However clinical mechanistic data surrounding gestational complications remain sparse, necessitating the need for the use of animal models to study these types of complications of pregnancy. The current study seeks to examine the real-time effects of mid-gestational ozone exposure on maternal blood pressure and body temperature through the use of radiotelemetry in a rat model. The exposure resulted in acute depression of heart rate and core body temperature as compared to control animals. Ozone-exposed animals also presented with a slight but significant increase in arterial blood pressure which was perpetuated until term. The data presented here illustrates the feasibility of murine models to assess cardiovascular complications caused by inhaled toxicants during the window of pregnancy.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Thomas Wilson
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Andrew Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ryan Ashley
- New Mexico State University, Las Cruces, NM, 88003, USA
| | - Carolyn Pace
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Nancy Kanagy
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
2
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
3
|
Bhujel B, Oh S, Hur W, Lee S, Chung HS, Lee H, Park JH, Kim JY. Effect of Exposure to Particulate Matter on the Ocular Surface in an Experimental Allergic Eye Disease Mouse Model. Bioengineering (Basel) 2024; 11:498. [PMID: 38790364 PMCID: PMC11118833 DOI: 10.3390/bioengineering11050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In response to the escalating concern over the effect of environmental factors on ocular health, this study aimed to investigate the impact of air pollution-associated particulate matter (PM) on ocular allergy and inflammation. C57BL/6 mice were sensitized with ovalbumin (OVA) topically and aluminum hydroxide via intraperitoneal injection. Two weeks later, the mice were challenged with OVA and exposed to PM. Three groups-naive, OVA, and OVA-sensitized with PM exposure (OVA + PM) groups-were induced to an Allergic Eye disease (AED) model. Parameters including clinical signs, histological changes, inflammatory cell infiltration, serum OVA-specific immunoglobulins E (IgE) levels, mast cells degranulation, cellular apoptosis and T-cell cytokines were studied. The results demonstrate that exposure with PM significantly exacerbates ocular allergy, evidenced by increased eye-lid edema, mast cell degranulation, inflammatory cytokines (IL-4, IL-5 and TNF-α), cell proliferation (Ki67), and serum IgE, polymorphonuclear leukocytes (PMN), and apoptosis and reduced goblet cells. These findings elucidate the detrimental impact of PM exposure on exacerbating the severity of AED. Noticeably, diminished goblet cells highlight disruptions in ocular surface integrity, while increased PMN infiltration with an elevated production of IgE signifies a systemic allergic response with inflammation. In conclusion, this study not only scientifically substantiates the association between air pollution, specifically PM, and ocular health, but also underscores the urgency for further exploration and targeted interventions to mitigate the detrimental effects of environmental pollutants on ocular surfaces.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seheon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Woojune Hur
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seorin Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | | | - Jae Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| |
Collapse
|
4
|
Ahmed Z, Chaudhary F, Agrawal DK. Epidemiology, Mechanisms and Prevention in the Etiology of Environmental Factor-Induced Cardiovascular Diseases. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2024; 8:59-69. [PMID: 38911615 PMCID: PMC11192553 DOI: 10.26502/jesph.96120206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cardiovascular diseases are a significant cause of mortality worldwide, and their prevalence can be amplified by a range of environmental factors. This review article critically evaluated the published information on the epidemiology and pathophysiological mechanisms of various environmental factors such as air indoor and outdoor air pollution, water pollution, climate change, and soil pollution. Preventative measures to mitigate these effects including public health responses are discussed with gaps in our knowledge for future studies.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Fihr Chaudhary
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
5
|
Cha J, Choi SY, Rha SW, Choi BG, Byun JK, Hyun S, Lee MW, Kang J, Chu W, Park EJ, Kang DO, Choi CU, Kim SW, Jeong MH, Park S. Long-term air pollution exposure is associated with higher incidence of ST-elevation myocardial infarction and in-hospital cardiogenic shock. Sci Rep 2024; 14:4976. [PMID: 38424210 PMCID: PMC10904831 DOI: 10.1038/s41598-024-55682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Previous studies have reported the association between myocardial infarction (MI) and air pollution (AP). However, limited information is available regarding the long-term effects of AP on the relative incidence rates of ST-elevation MI (STEMI) and Non-ST-elevation MI (NSTEMI). We investigated the association between long-term exposure to AP and the incidence of STEMI. Between January 2006 and December 2015, a total of 45,619 eligible patients with Acute Myocardial Infarction (AMI) were enrolled in the Korea Acute MI Registry (KAMIR) and KAMIR-National Institutes of Health. Mixed-effect regression models were used to examine the association between the annual average ambient AP before MI onset and the incidence of STEMI, and to evaluate the association of AP with the incidence of in-hospital cardiogenic shock. After mixed-effect regression model analysis, particulate matter (PM) 10 µm or less in diameter (PM10) was associated with increased incidence of STEMI compared with NSTEMI (odds ratio [OR] 1.009, 95% Confidence Interval [CI] 1.002-1.016; p = 0.012). For in-hospital cardiogenic shock complication, PM10 and SO2 were associated with increased risk, PM10 (OR 1.033, 95% CI 1.018-1.050; p < 0.001), SO2 (OR 1.104, 95% CI 1.006-1.212; p = 0.037), respectively. Policy-level strategies and clinical efforts to reduce AP exposure are necessary to prevent the incidence of STEMI and severe cardiovascular complications.
Collapse
Affiliation(s)
- Jinah Cha
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Se Yeon Choi
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seung-Woon Rha
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Byoung Geol Choi
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jae Kyeong Byun
- Cardiovascular Research Institution, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sujin Hyun
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Seoul, 02841, Republic of Korea
| | - Min Woo Lee
- Research Institute of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeho Kang
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Wonsang Chu
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Eun Jin Park
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Dong Oh Kang
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Cheol Ung Choi
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Suhng Wook Kim
- School of Health and Environmental Science, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Soohyung Park
- Department of Cardiology, Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea.
| |
Collapse
|
6
|
Hunter R, Wilson T, Lucas S, Scieszka D, Bleske B, Ottens A, Ashley R, Pace C, Kanagy N, Campen MJ. Characterization of Mild Delayed Gestational Hypertension in Rats Following Ozone Exposure. RESEARCH SQUARE 2024:rs.3.rs-3977101. [PMID: 38464279 PMCID: PMC10925442 DOI: 10.21203/rs.3.rs-3977101/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The contribution of air pollution induced cardio-pulmonary damage on the development of hypertensive disorders of pregnancy and other adverse outcomes of pregnancy has gained increased attention as epidemiological data continues to highlight spatiotemporal pregnancy trends related to air pollution exposure. However clinical mechanistic data surrounding gestational complications remains sparse, necessitating the need for the use of animal models to study these types of complications of pregnancy. The current study seeks to examine the real-time effects of mid-gestational ozone exposure on maternal blood pressure and body temperature through the use of radiotelemetry in a rat model. The exposure resulted in acute depression of heart rate and core body temperature as compared to control animals. Ozone exposed animals also presented with a slight but significant increase in arterial blood pressure which was perpetuated until term. The data presented here illustrates the feasibility of murine models to assess cardiovascular complications caused by inhaled toxicants during the window of pregnancy.
Collapse
|
7
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
9
|
Templeton S, McVeigh CM, Nguyen C, Hunter R, Scieszka D, Herbert GW, Barr EB, Liu R, Gu H, Bleske BE, Campen MJ, Bolt AM. Acute inhalation of tungsten particles results in early signs of cardiac injury. Toxicol Lett 2023; 384:52-62. [PMID: 37442282 PMCID: PMC10528412 DOI: 10.1016/j.toxlet.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Epidemiological studies have established that exposure to tungsten increases the risk of developing cardiovascular diseases. However, no studies have investigated how tungsten affects cardiac function or the development of cardiovascular disease. Inhalation of tungsten particulates is relevant in occupational settings, and inhalation of particulate matter has a known causative role in driving cardiovascular disease. This study examined if acute inhalation to tungsten particulates affects cardiac function and leads to heart tissue alterations. Female BALB/c mice were exposed to Filtered Air or 1.5 ± 0.23 mg/m3 tungsten particles, using a whole-body inhalation chamber, 4 times over the course of two weeks. Inhalation exposure resulted in mild pulmonary inflammation characterized by an increased percentage and number of macrophages and metabolomic changes in the lungs. Cardiac output was significantly decreased in the tungsten-exposed group. Additionally, A', an indicator of the amount of work required by the atria to fill the heart was elevated. Cardiac gene expression analysis revealed, tungsten exposure increased expression of pro-inflammatory cytokines, markers of remodeling and fibrosis, and oxidative stress genes. These data strongly suggest exposure to tungsten results in cardiac injury characterized by early signs of diastolic dysfunction. Functional findings are in parallel, demonstrating cardiac oxidative stress, inflammation, and early fibrotic changes. Tungsten accumulation data would suggest these cardiac changes are driven by systemic consequences of pulmonary damage.
Collapse
Affiliation(s)
- Sage Templeton
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Charlotte M McVeigh
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Colin Nguyen
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Russell Hunter
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - David Scieszka
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Guy W Herbert
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Edward B Barr
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Rui Liu
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Barry E Bleske
- The University of New Mexico College of Pharmacy, Department of Pharmacy Practice and Administrative Sciences, Albuquerque, NM 87131, USA
| | - Matthew J Campen
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Alicia M Bolt
- The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, USA.
| |
Collapse
|
10
|
Hahad O, Rajagopalan S, Lelieveld J, Sørensen M, Kuntic M, Daiber A, Basner M, Nieuwenhuijsen M, Brook RD, Münzel T. Noise and Air Pollution as Risk Factors for Hypertension: Part II-Pathophysiologic Insight. Hypertension 2023; 80:1384-1392. [PMID: 37073733 PMCID: PMC10330112 DOI: 10.1161/hypertensionaha.123.20617] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Traffic noise and air pollution are environmental stressors found to increase risk for cardiovascular events. The burden of disease attributable to environmental stressors and cardiovascular disease globally is substantial, with a need to better understand the contribution of specific risk factors that may underlie these effects. Epidemiological observations and experimental evidence from animal models and human controlled exposure studies suggest an essential role for common mediating pathways. These include sympathovagal imbalance, endothelial dysfunction, vascular inflammation, increased circulating cytokines, activation of central stress responses, including hypothalamic and limbic pathways, and circadian disruption. Evidence also suggests that cessation of air pollution or noise through directed interventions alleviates increases in blood pressure and intermediate surrogate pathways, supporting a causal link. In the second part of this review, we discuss the current understanding of mechanisms underlying and current gaps in knowledge and opportunities for new research.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Mette Sørensen
- Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Mathias Basner
- Department of Psychiatry, Unit for Experimental Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiolog ´ıa y Salud Pu ´blica (CIBERESP), Madrid, Spain
- Center for Urban Research, RMIT University, Melbourne VIC, Australia
| | - Robert D. Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
11
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Malinski T, Mason RP. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution. Biomed Pharmacother 2023; 162:114629. [PMID: 37027984 DOI: 10.1016/j.biopha.2023.114629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
AIMS Inhalation of air pollution small particle matter (PM) is a leading cause of cardiovascular (CV) disease. Exposure to PMs causes endothelial cell (EC) dysfunction as evidenced by nitric oxide (NO) synthase uncoupling, vasoconstriction and inflammation. Eicosapentaenoic acid (EPA) has been shown to mitigate PM-induced adverse cardiac changes in patients receiving omega-3 fatty acid supplementation. We set out to determine the pro-inflammatory effects of multiple PMs (urban and fine) on pulmonary EC NO bioavailability and protein expression, and whether EPA restores EC function under these conditions. METHODS AND RESULTS We pretreated pulmonary ECs with EPA and then exposed them to urban or fine air pollution PMs. LC/MS-based proteomic analysis to assess relative expression levels. Expression of adhesion molecules was measured by immunochemistry. The ratio of NO to peroxynitrite (ONOO-) release, an indication of eNOS coupling, was measured using porphyrinic nanosensors following calcium stimulation. Urban/fine PMs also modulated 9/12 and 13/36 proteins, respectively, linked to platelet and neutrophil degranulation pathways and caused > 50% (p < 0.001) decrease in the stimulated NO/ONOO- release ratio. EPA treatment altered expression of proteins involved in these inflammatory pathways, including a decrease in peroxiredoxin-5 and an increase in superoxide dismutase-1. EPA also increased expression of heme oxygenase-1 (HMOX1), a cytoprotective protein, by 2.1-fold (p = 0.024). EPA reduced elevations in sICAM-1 levels by 22% (p < 0.01) and improved the NO/ONOO- release ratio by > 35% (p < 0.05). CONCLUSION These cellular changes may contribute to anti-inflammatory, cytoprotective and lipid changes associated with EPA treatment during air pollution exposure.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Elucida Research LLC, Beverly, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA.
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Li J, Liu F, Liang F, Yang Y, Lu X, Gu D. Air pollution exposure and vascular endothelial function: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28525-28549. [PMID: 36702984 DOI: 10.1007/s11356-023-25156-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Vascular endothelial dysfunction is an early stage to cardiovascular diseases (CVDs), but whether air pollution exposure has an effect on it remains unknown. We conducted a systematic review and meta-analysis to summarize epidemiological evidence between air pollution and endothelial dysfunction. We searched the database of PubMed, EMBASE, the Cochrane Library, and Web of Science up to November 10, 2022. Fixed and random effect models were used to pool the effect change or percent change (% change) and 95% confidence interval (95% CI) of vascular function associated with particulate matter (PM) and gaseous pollutants. I2 statistics, funnel plot, and Egger's test were used to evaluate heterogeneity and publication bias. There were 34 articles included in systematic review, and 25 studies included in meta-analysis. For each 10 µg/m3 increment in short-term PM2.5 exposure, augmentation index (AIx) and pulse wave velocity (PWV) increased by 2.73% (95% CI: 1.89%, 3.57%) and 0.56% (95% CI: 0.22%, 0.89%), and flow-mediated dilation (FMD) decreased by 0.17% (95% CI: - 0.33%, - 0.00%). For each 10 µg/m3 increment in long-term PM2.5 exposure, FMD decreased by 0.99% (95% CI: - 1.41%, - 0.57%). The associations between remaining pollutants and outcomes were not statistically significant. The effect of short-term PM2.5 exposure on FMD change was stronger in population with younger age, lower female proportion, higher mean body mass index and higher PM2.5 exposure. Cardiac or vasoactive medication might attenuate this effect. Our study provides evidence that PM2.5 exposure had adverse impact on vascular endothelial function, indicating the importance of air quality improvement for early CVD prevention.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fangchao Liu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fengchao Liang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxin Yang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Xiangfeng Lu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Dongfeng Gu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Virani S, Thurston GD, Lavie CJ. PM2.5 and Cardiovascular Health Risks. Curr Probl Cardiol 2023; 48:101670. [PMID: 36828043 DOI: 10.1016/j.cpcardiol.2023.101670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
PM2.5 is a frequently studied particulate matter metric, due to its wide range of identified overall adverse health effects, particularly cardiovascular health risks. However, there are no clear clinical practice guidelines for air pollution in regard to the prevention of cardiovascular health risks, since most of the current medical guidelines for CVD focus on metabolic risk factors such as hyperlipidemia or diabetes. We sought to determine the relationship between PM2.5 and cardiovascular disease, cardiovascular events, and all-cause mortality by performing a systematic review and meta-analysis. We searched Ovid MEDLINE, Ovid Embase, Ovid Cochrane Database of Systematic Reviews, Scopus, and Web of Science from the database inception to December 2022 for studies that reported an association between PM2.5 and cardiovascular disease, cardiovascular events, and all-cause mortality. We used the DerSimonian & Laird random-effects method to pool hazard ratios or risk ratios separately from the included studies. Of the total 18 prospective studies, 7,300,591 individuals were followed for a median follow-up of 9 years. Compared to low long-term exposure to PM 2.5 levels, an increase in exposure to PM 2.5 levels resulted in an increase in all-cause mortality (HR 1.08 95% CI of 1.05-1.11, P < 0.05). Similarly, when compared to a low long-term exposure to PM 2.5 levels, an increase in exposure to PM 2.5 levels resulted in an increase in cardiovascular disease (HR 1.09, 95% CI of 1.00-1.18, P < 0.05) and an increase in cardiovascular disease mortality (HR 1.12, 95% CI of 1.07-1.18, P < 0.05). Increased exposure to PM 2.5 levels is significantly associated with an increased risk of all-cause mortality, cardiovascular disease, and cardiovascular disease mortality. Although federal primary and secondary standards are in place, those standards are not low enough to prevent CVD health effects. Clinicians should emphasize PM2.5 as a modifiable CV risk factors for their patients to potentially reduce the development of CV complications. A clinical action guideline is needed specifically for air pollution effects on CVD, and how to mitigate them.
Collapse
Affiliation(s)
| | | | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX; The Aga Khan University, Karachi, Pakistan; Baylor College of Medicine, Houston, TX
| | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| |
Collapse
|
14
|
Liu Y, Ning N, Sun T, Guan H, Liu Z, Yang W, Ma Y. Association between solid fuel use and nonfatal cardiovascular disease among middle-aged and older adults: Findings from The China Health and Retirement Longitudinal Study (CHARLS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159035. [PMID: 36191716 DOI: 10.1016/j.scitotenv.2022.159035] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Few studies have been conducted on the association between domestic solid fuel combustion and incident nonfatal cardiovascular disease (CVD). We assessed the prospective association between domestic fuel type and incident nonfatal CVD among Chinese adults aged ≥45 years. METHODS This was a prospective cohort study using data from the China Longitudinal Study of Health and Retirement (CHARLS) that recruited 8803 participants ≥45 years in 2013. Household fuel types were assessed based on self-reports, including solid fuel (coal, crop residue, or wood fuel) and clean fuel (central heating, solar power, natural gas, liquefied petroleum gas, electricity, or marsh gas). Nonfatal CVD was defined as self-reported physician-diagnosed nonfatal CVD. We established Cox proportional hazard regression models with age as the time scale and strata by sex to evaluate the hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS After a median follow-up of five years, 970 (11.02 %) nonfatal CVD cases were documented, including 423 (9.96 %) in males and 547 (12.01 %) in females. Participants with exposure to solid fuel for cooking and clean fuel for heating [HR (95 % CI):2.01 (1.36-2.96)], solid fuel for heating and clean fuel for cooking [HR (95 % CI):1.45 (1.06-1.99)], and solid fuel for both heating and cooking [HR (95 % CI):1.43 (1.07-1.92)] had an elevated nonfatal CVD risk compared to users of cleaner fuel for both cooking and heating. Those whom self-reported switching from solid fuels to cleaner fuels for cooking had significantly decreased nonfatal CVD risk [HR (95 % CI):0.76 (0.58-0.99)] than participants who did not switch to cleaner fuels. CONCLUSIONS Exposure to domestic solid fuel burning for cooking or heating is associated with an elevated nonfatal CVD risk. Notably, switching cooking fuels from solid to cleaner fuels is related to a reduced risk of nonfatal CVD.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ting Sun
- School of Nursing, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongcai Guan
- School of Public Health, Peking University, Beijing, China
| | - Zuyun Liu
- School of Public Health and the Second Affiliated Hospital, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Ossoli A, Cetti F, Gomaraschi M. Air Pollution: Another Threat to HDL Function. Int J Mol Sci 2022; 24:ijms24010317. [PMID: 36613760 PMCID: PMC9820244 DOI: 10.3390/ijms24010317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have consistently demonstrated a positive association between exposure to air pollutants and the incidence of cardiovascular disease, with the strongest evidence for particles with a diameter < 2.5 μm (PM2.5). Therefore, air pollution has been included among the modifiable risk factor for cardiovascular outcomes as cardiovascular mortality, acute coronary syndrome, stroke, heart failure, and arrhythmias. Interestingly, the adverse effects of air pollution are more pronounced at higher levels of exposure but were also shown in countries with low levels of air pollution, indicating no apparent safe threshold. It is generally believed that exposure to air pollution in the long-term can accelerate atherosclerosis progression by promoting dyslipidemia, hypertension, and other metabolic disorders due to systemic inflammation and oxidative stress. Regarding high density lipoproteins (HDL), the impact of air pollution on plasma HDL-cholesterol levels is still debated, but there is accumulating evidence that HDL function can be impaired. In particular, the exposure to air pollution has been variably associated with a reduction in their cholesterol efflux capacity, antioxidant and anti-inflammatory potential, and ability to promote the release of nitric oxide. Further studies are needed to fully address the impact of various air pollutants on HDL functions and to elucidate the mechanisms responsible for HDL dysfunction.
Collapse
|
16
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
17
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
18
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
19
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
20
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
21
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
22
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
23
|
Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol 2020; 17:656-672. [PMID: 32382149 PMCID: PMC7492399 DOI: 10.1038/s41569-020-0371-2] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Air pollution is well recognized as a major risk factor for chronic non-communicable diseases and has been estimated to contribute more to global morbidity and mortality than all other known environmental risk factors combined. Although air pollution contains a heterogeneous mixture of gases, the most robust evidence for detrimental effects on health is for fine particulate matter (particles ≤2.5 µm in diameter (PM2.5)) and ozone gas and, therefore, these species have been the main focus of environmental health research and regulatory standards. The evidence to date supports a strong link between the risk of cardiovascular events and all-cause mortality with PM2.5 across a range of exposure levels, including to levels below current regulatory standards, with no 'safe' lower exposure levels at the population level. In this comprehensive Review, the empirical evidence supporting the effects of air pollution on cardiovascular health are examined, potential mechanisms that lead to increased cardiovascular risk are described, and measures to reduce this risk and identify key gaps in our knowledge that could help address the increasing cardiovascular morbidity and mortality associated with air pollution are discussed.
Collapse
Affiliation(s)
- Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert D Brook
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shyam Biswal
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Münzel T, Steven S, Frenis K, Lelieveld J, Hahad O, Daiber A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid Redox Signal 2020; 33:581-601. [PMID: 32245334 DOI: 10.1089/ars.2020.8090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: According to the World Health Organization, noncommunicable diseases are the globally leading cause of mortality. Recent Advances: About 71% of 56 million deaths that occurred worldwide are due to noncommunicable cardiovascular risk factors, including tobacco smoking, unhealthy diets, lack of physical activity, overweight, arterial hypertension, diabetes, and hypercholesterolemia, which can be either avoided or substantially reduced. Critical Issues: Thus, it is estimated that 80% of premature heart disease, stroke, and diabetes can be prevented. More recent evidence indicates that environmental stressors such as noise and air pollution contribute significantly to the global burden of cardiovascular disease. In the present review, we focus primarily on important environmental stressors such as transportation noise and air pollution. We discuss the pathophysiology of vascular damage caused by these environmental stressors, with emphasis on early subclinical damage of the vasculature such as endothelial dysfunction and the role of oxidative stress. Future Directions: Lower legal thresholds and mitigation measures should be implemented and may help to prevent vascular damage.
Collapse
Affiliation(s)
- Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Sebastian Steven
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Omar Hahad
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| |
Collapse
|
25
|
Nitrogen Dioxide Inhalation Exposures Induce Cardiac Mitochondrial Reactive Oxygen Species Production, Impair Mitochondrial Function and Promote Coronary Endothelial Dysfunction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155526. [PMID: 32751709 PMCID: PMC7432061 DOI: 10.3390/ijerph17155526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023]
Abstract
Traffic air pollution is a major health problem and is recognized as an important risk factor for cardiovascular (CV) diseases. In a previous experimental study, we showed that diesel exhaust (DE) exposures induced cardiac mitochondrial and CV dysfunctions associated with the gaseous phase. Here, we hypothesized that NO2 exposures to levels close to those found in DE induce a mitochondrial reactive oxygen species (ROS) production, which contribute to an endothelial dysfunction, an early indicator for numerous CV diseases. For this, we studied the effects of NO2 on ROS production and its impacts on the mitochondrial, coronary endothelial and cardiac functions, after acute (one single exposure) and repeated (three h/day, five days/week for three weeks) exposures in Wistar rats. Acute NO2 exposure induced an early but reversible mitochondrial ROS production. This event was isolated since neither mitochondrial function nor endothelial function were impaired, whereas cardiac function assessment showed a reversible left ventricular dysfunction. Conversely, after three weeks of exposure this alteration was accompanied by a cardiac mitochondrial dysfunction highlighted by an alteration of adenosine triphosphate (ATP) synthesis and oxidative phosphorylation and an increase in mitochondrial ROS production. Moreover, repeated NO2 exposures promoted endothelial dysfunction of the coronary arteries, as shown by reduced acetylcholine-induced vasodilatation, which was due, at least partially, to a superoxide-dependent decrease of nitric oxide (NO) bioavailability. This study shows that NO2 exposures impair cardiac mitochondrial function, which, in conjunction with coronary endothelial dysfunction, contributes to cardiac dysfunction. Together, these results clearly identify NO2 as a probable risk factor in ischemic heart diseases.
Collapse
|
26
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
27
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
28
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
29
|
Du Y, Wang WL, He T, Sun YX, Lv XT, Wu QY, Hu HY. Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134881. [PMID: 31710900 DOI: 10.1016/j.scitotenv.2019.134881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/04/2023]
Abstract
During unplanned indirect potable reuse, treated wastewater that contains effluent organic matter (EOM) enters the drinking water source, resulting in different toxicity from natural organic matter (NOM) in surface water during chlorination. This study found that, during chlorination, EOM formed more total organic halogen (TOX) and highly toxic nitrogenous disinfection byproducts (DBPs) like dichloroacetonitrile and trichloronitromethane than NOM did. Oxidative stress including both reactive oxygen species (ROS) and reactive nitrogen species (RNS) in Chinese hamster ovary (CHO) cells substantially increased when exposed to chlorinated EOM and chlorinated NOM. The excessive ROS damaged biological macromolecules including DNA, RNA to form 8-hydroxy-(deoxy)guanosine and proteins to form protein carbonyls. Impaired macromolecule further triggered cell cycle arrest at the S and G2 phases, led to cell apoptosis and eventual necrosis. Cytotoxicity and genotoxicity of chlorinated EOM were both higher than those of chlorinated NOM. Adding the blocker L-buthionine-sulfoximine of intracellular antioxidant glutathione demonstrating that oxidative stress might be responsible for toxicity. ROS was further identified to be the main cause of toxicity induction. These findings highlight the risk from chlorinated EOM in the case of unplanned indirect potable reuse, because it showed higher level of cytotoxicity and genotoxicity than chlorinated NOM via inducing more ROS in mammalian cells.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Ying-Xue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao-Tong Lv
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2054-2070. [PMID: 30336830 DOI: 10.1016/j.jacc.2018.07.099] [Citation(s) in RCA: 713] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Fine particulate matter <2.5 μm (PM2.5) air pollution is the most important environmental risk factor contributing to global cardiovascular (CV) mortality and disability. Short-term elevations in PM2.5 increase the relative risk of acute CV events by 1% to 3% within a few days. Longer-term exposures over several years increase this risk by a larger magnitude (∼10%), which is partially attributable to the development of cardiometabolic conditions (e.g., hypertension and diabetes mellitus). As such, ambient PM2.5 poses a major threat to global public health. In this review, the authors provide an overview of air pollution and health, including assessment of exposure, impact on CV outcomes, mechanistic underpinnings, and impact of air pollution reduction strategies to mitigate CV risk. The review concludes with future challenges, including the inextricable link between air pollution and climate change, and calls for large-scale trials to allow the promulgation of formal evidence-based recommendations to lower air pollution-induced health risks.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.
| | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio
| | - Robert D Brook
- Michigan Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Early Proteome Shift and Serum Bioactivity Precede Diesel Exhaust-induced Impairment of Cardiovascular Recovery in Spontaneously Hypertensive Rats. Sci Rep 2019; 9:6885. [PMID: 31053794 PMCID: PMC6499793 DOI: 10.1038/s41598-019-43339-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Single circulating factors are often investigated to explain air pollution-induced cardiovascular dysfunction, yet broader examinations of the identity and bioactivity of the entire circulating milieu remain understudied. The purpose of this study was to determine if exposure-induced cardiovascular dysfunction can be coupled with alterations in both serum bioactivity and the circulating proteome. Two cohorts of Spontaneously Hypertensive Rats (SHRs) were exposed to 150 or 500 μg/m3 diesel exhaust (DE) or filtered air (FA). In Cohort 1, we collected serum 1 hour after exposure for proteomics analysis and bioactivity measurements in rat aortic endothelial cells (RAECs). In Cohort 2, we assessed left ventricular pressure (LVP) during stimulation and recovery from the sympathomimetic dobutamine HCl, one day after exposure. Serum from DE-exposed rats had significant changes in 66 serum proteins and caused decreased NOS activity and increased VCAM-1 expression in RAECs. While rats exposed to DE demonstrated increased heart rate at the start of LVP assessments, heart rate, systolic pressure, and double product fell below baseline in DE-exposed rats compared to FA during recovery from dobutamine, indicating dysregulation of post-exertional cardiovascular function. Taken together, a complex and bioactive circulating milieu may underlie air pollution-induced cardiovascular dysfunction.
Collapse
|
32
|
Du Y, Wu QY, Lv XT, Wang QP, Lu Y, Hu HY. Exposure to solar light reduces cytotoxicity of sewage effluents to mammalian cells: Roles of reactive oxygen and nitrogen species. WATER RESEARCH 2018; 143:570-578. [PMID: 30015097 DOI: 10.1016/j.watres.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Sewage effluents can contain hundreds of toxic pollutants, making them a risk to humans when involved in drinking water. It is therefore important to evaluate the cytotoxicity of sewage effluents to mammalian cells. Solar light might influence the water quality of sewage effluents after their discharge into lakes or rivers, altering their cytotoxicity. In this study, natural solar light was found to lower the cytotoxicity of sewage effluents to Chinese hamster ovary (CHO) cells. Cytotoxicity of different samples decreased by 31%-65% after 12 h of simulated irradiation. Ultraviolet in sunlight was the major contributor to the cytotoxicity reduction. Aquatic reactive oxygen species (ROS), including singlet oxygen, superoxide anions, hydrogen peroxide, and hydroxyl radicals, were generated in the effluents under irradiation and they contributed to part of cytotoxicity reduction. Pollutants in sewage effluents induced cytotoxicity by simultaneously elevating the levels of intracellular ROS and intracellular reactive nitrogen species (RNS) in CHO cells. Solar light and the aquatic ROS formed under irradiation reduced the cytotoxicity because the transformed pollutants in sewage effluents increased lower intracellular ROS and RNS levels. These results help reveal the detoxification mechanism of sewage effluents in natural environment.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Xiao-Tong Lv
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiu-Ping Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Institute, Shenzhen 518055, PR China.
| |
Collapse
|
33
|
Münzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, Rajagopalan S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J 2018; 39:3543-3550. [PMID: 30124840 PMCID: PMC6174028 DOI: 10.1093/eurheartj/ehy481] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022] Open
Abstract
Ambient air pollution is a leading cause of non-communicable disease globally. The largest proportion of deaths and morbidity due to air pollution is now known to be due to cardiovascular disorders. Several particulate and gaseous air pollutants can trigger acute events (e.g. myocardial infarction, stroke, heart failure). While the mechanisms by which air pollutants cause cardiovascular events is undergoing continual refinement, the preponderant evidence support rapid effects of a diversity of pollutants including all particulate pollutants (e.g. course, fine, ultrafine particles) and gaseous pollutants such as ozone, on vascular function. Indeed alterations in endothelial function seem to be critically important in transducing signals and eventually promoting cardiovascular disorders such as hypertension, diabetes, and atherosclerosis. Here, we provide an updated overview of the impact of particulate and gaseous pollutants on endothelial function from human and animal studies. The evidence for causal mechanistic pathways from both animal and human studies that support various hypothesized general pathways and their individual and collective impact on vascular function is highlighted. We also discuss current gaps in knowledge and evidence from trials evaluating the impact of personal-level strategies to reduce exposure to fine particulate matter (PM2.5) and impact on vascular function, given the current lack of definitive randomized evidence using hard endpoints. We conclude by an exhortation for formal inclusion of air pollution as a major risk factor in societal guidelines and provision of formal recommendations to prevent adverse cardiovascular effects attributable to air pollution.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Tommaso Gori
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sadeer Al-Kindi
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| | - John Deanfield
- UCL Institute of Cardiovascular Science, 170 Tottenham Court Road, London, UK
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
34
|
Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation. Cardiovasc Toxicol 2018; 17:384-392. [PMID: 26965709 DOI: 10.1007/s12012-016-9364-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological studies suggest that an increase of diesel exhaust particles (DEP) in ambient air corresponds to an increase in hospital-recorded myocardial infarctions within 48 h after exposure. Among the many theories to explain this data are endothelial dysfunction and translocation of DEP into vasculature. The mechanisms for such DEP-induced vascular permeability remain unknown. One of the major mechanisms underlying the effects of DEP is suggested to be oxidative stress. Experiments have shown that DEP induce the generation of reactive oxygen species (ROS), such as superoxide anion and H2O2 in the HUVEC tube cells. Transcription factor Nrf2 is translocated to the cell nucleus, where it activates transcription of the antioxidative enzyme HO-1 and sequentially induces the release of vascular permeability factor VEGF-A. Furthermore, a recent study shows that DEP-induced intracellular ROS may cause the release of pro-inflammatory TNF-α and IL-6, which may induce endothelial permeability as well by promoting VEGF-A secretion independently of HO-1 activation. These results demonstrated that the adherens junction molecule, VE-cadherin, becomes redistributed from the membrane at cell-cell borders to the cytoplasm in response to DEP, separating the plasma membranes of adjacent cells. DEP were occasionally found in endothelial cell cytoplasm and in tube lumen. In addition, the induced ROS is cytotoxic to the endothelial tube-like HUVEC. Acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. Nevertheless, high-dose DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. In summary, exposure to DEP affects parameters influencing vasculature permeability and viability, i.e., oxidative stress and its upregulated antioxidative and pro-inflammatory responses, which sequentially induce vascular permeability factor, VEGF-A release and disrupt cell-cell junction integrity. While exposure to a low dose of DEP actin triggers cytoskeleton depolarization, reduces PI3K/Akt activity, and induces a p53/Mdm2 feedback loop, a high dose causes apoptosis by depleting Mdm2. Addition of ROS scavenger N-acetyl cysteine suppresses DEP-induced oxidative stress efficiently and reduces subsequent damages by increasing endogenous glutathione.
Collapse
|
35
|
Brinchmann BC, Skuland T, Rambøl MH, Szoke K, Brinchmann JE, Gutleb AC, Moschini E, Kubátová A, Kukowski K, Le Ferrec E, Lagadic-Gossmann D, Schwarze PE, Låg M, Refsnes M, Øvrevik J, Holme JA. Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Part Fibre Toxicol 2018; 15:21. [PMID: 29751765 PMCID: PMC5948689 DOI: 10.1186/s12989-018-0257-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-inflammatory reactions, a central step on the path to atherosclerosis. Results Exposure-relevant concentrations of DEP (0.12 μg/cm2) applied on the epithelial side of an alveolar 3D tri-culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation. Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors. Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 μg/cm2) induced low to moderate increases in IL-1α, IL-1β, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects, there was no straight-forward link between chemical composition and biological effects. Conclusion Lipophilic and semi-lipophilic chemicals seemed to detach from DEP, translocate through alveolar epithelial cells and trigger pro-inflammatory reactions in endothelial cells at exposure-relevant concentrations. These effects appeared to be triggered by AhR agonists, and involve PAR-2 signaling. Electronic supplementary material The online version of this article (10.1186/s12989-018-0257-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.,Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Mia H Rambøl
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Krisztina Szoke
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Eric Le Ferrec
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| |
Collapse
|
36
|
Wilson SJ, Miller MR, Newby DE. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress. Antioxid Redox Signal 2018; 28:819-836. [PMID: 28540736 DOI: 10.1089/ars.2017.7174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. CRITICAL ISSUES Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. FUTURE DIRECTIONS Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.
Collapse
Affiliation(s)
- Simon J Wilson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Mark R Miller
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
37
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
38
|
Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol 2017; 70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress occurs whenever the release of reactive oxygen species (ROS) exceeds endogenous antioxidant capacity. In this paper, we review the specific role of several cardiovascular risk factors in promoting oxidative stress: diabetes, obesity, smoking, and excessive pollution. Specifically, the risk of developing heart failure is higher in patients with diabetes or obesity, even with optimal medical treatment, and the increased release of ROS from cardiac mitochondria and other sources likely contributes to the development of cardiac dysfunction in this setting. Here, we explore the role of different ROS sources arising in obesity and diabetes, and the effect of excessive ROS production on the development of cardiac lipotoxicity. In parallel, contaminants in the air that we breathe pose a significant threat to human health. This paper provides an overview of cigarette smoke and urban air pollution, considering how their composition and biological effects have detrimental effects on cardiovascular health.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Adult and Pediatric Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany.
| | - Mark R Miller
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
39
|
Klein SG, Cambier S, Hennen J, Legay S, Serchi T, Nelissen I, Chary A, Moschini E, Krein A, Blömeke B, Gutleb AC. Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part Fibre Toxicol 2017; 14:7. [PMID: 28264691 PMCID: PMC5339948 DOI: 10.1186/s12989-017-0186-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During the last 250 years, the level of exposure to combustion-derived particles raised dramatically in western countries, leading to increased particle loads in the ambient air. Among the environmental particles, diesel exhaust particulate matter (DEPM) plays a special role because of its omnipresence and reported effects on human health. During recent years, a possible link between air pollution and the progression of atherosclerosis is recognized. A central effect of DEPM is their impact on the endothelium, especially of the alveolar barrier. In the present study, a complex 3D tetraculture model of the alveolar barrier was used in a dose-controlled exposure scenario with realistic doses of DEPM to study the response of endothelial cells. RESULTS Tetracultures were exposed to different doses of DEPM (SRM2975) at the air-liquid-interface. DEPM exposure did not lead to the mRNA expression of relevant markers for endothelial inflammation such as ICAM-1 or E-selectin. In addition, we observed neither a significant change in the expression levels of the genes relevant for antioxidant defense, such as HMOX1 or SOD1, nor the release of pro-inflammatory second messengers, such as IL-6 or IL-8. However, DEPM exposure led to strong nuclear translocation of the transcription factor Nrf2 and significantly altered expression of CYP1A1 mRNA in the endothelial cells of the tetraculture. CONCLUSION In the present study, we demonstrated the use of a complex 3D tetraculture system together with a state-of-the-art aerosol exposure equipment to study the effects of in vivo relevant doses of DEPM on endothelial cells in vitro. To the best of our knowledge, this study is the first that focuses on indirect effects of DEPM on endothelial cells of the alveolar barrier in vitro. Exposure to DEPM led to significant activation and nuclear translocation of the transcription factor Nrf2 in endothelial cells. The considerably low doses of DEPM had a low but measurable effect, which is in line with recent data from in vivo studies.
Collapse
Affiliation(s)
- Sebastian G. Klein
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Jennifer Hennen
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Inge Nelissen
- VITO NV, Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Andreas Krein
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | - Brunhilde Blömeke
- Department of Environmental Toxicology, University Trier, Universitätsring 15, 54296 Trier, Germany
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41, rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| |
Collapse
|
40
|
Potential Harmful Effects of PM2.5 on Occurrence and Progression of Acute Coronary Syndrome: Epidemiology, Mechanisms, and Prevention Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080748. [PMID: 27463723 PMCID: PMC4997434 DOI: 10.3390/ijerph13080748] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
The harmful effects of particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and its association with acute coronary syndrome (ACS) has gained increased attention in recent years. Significant associations between PM2.5 and ACS have been found in most studies, although sometimes only observed in specific subgroups. PM2.5-induced detrimental effects and ACS arise through multiple mechanisms, including endothelial injury, an enhanced inflammatory response, oxidative stress, autonomic dysfunction, and mitochondria damage as well as genotoxic effects. These effects can lead to a series of physiopathological changes including coronary artery atherosclerosis, hypertension, an imbalance between energy supply and demand to heart tissue, and a systemic hypercoagulable state. Effective strategies to prevent the harmful effects of PM2.5 include reducing pollution sources of PM2.5 and population exposure to PM2.5, and governments and organizations publicizing the harmful effects of PM2.5 and establishing air quality standards for PM2.5. PM2.5 exposure is a significant risk factor for ACS, and effective strategies with which to prevent both susceptible and healthy populations from an increased risk for ACS have important clinical significance in the prevention and treatment of ACS.
Collapse
|
41
|
Aragon M, Erdely A, Bishop L, Salmen R, Weaver J, Liu J, Hall P, Eye T, Kodali V, Zeidler-Erdely P, Stafflinger JE, Ottens AK, Campen MJ. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor. Toxicol Sci 2016; 150:488-98. [PMID: 26801584 PMCID: PMC4966280 DOI: 10.1093/toxsci/kfw015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9(-/-)mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9(-/-)mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose-response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36.
Collapse
Affiliation(s)
- Mario Aragon
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Aaron Erdely
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Lindsey Bishop
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Rebecca Salmen
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - John Weaver
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Jim Liu
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Pamela Hall
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| | - Tracy Eye
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Vamsi Kodali
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Patti Zeidler-Erdely
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508
| | - Jillian E Stafflinger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131
| |
Collapse
|
42
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
44
|
Thompson LC, Holland NA, Snyder RJ, Luo B, Becak DP, Odom JT, Harrison BS, Brown JM, Gowdy KM, Wingard CJ. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol 2015; 310:L142-54. [PMID: 26589480 DOI: 10.1152/ajplung.00384.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Ryan J Snyder
- NanoHealth Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina; and
| | - Bin Luo
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Daniel P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Jillian T Odom
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Benjamin S Harrison
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Jared M Brown
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina;
| |
Collapse
|
45
|
Maurer MM, Donohoe GC, Maleki H, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry. J Proteomics 2015; 130:85-93. [PMID: 26375203 DOI: 10.1016/j.jprot.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Mounting evidence suggests that pulmonary exposure to nanoparticles (NPs) has a toxic effect on biological systems. A number of studies have shown that exposure to NPs result in systemic inflammatory response, oxidative stress, and leukocyte adhesion. However, significant knowledge gaps exist for understanding the key molecular mechanisms responsible for altered microvasculature function. Utilizing comprehensive LC-MS/MS and comparative proteomic analysis strategies, important proteins related to TiO2 NP exposure in rat plasma have been identified. Molecular pathway analysis of these proteins revealed 13 canonical pathways as being significant (p ≤ 0.05), but none were found to be significantly up or down-regulated (z>|2|). This work lays the foundation for future research that will monitor relative changes in protein abundance in plasma and tissue as a function of post-exposure time and TiO2 NP dosage to further elucidate mechanisms of pathway activation as well as to decipher other affected pathways.
Collapse
Affiliation(s)
- Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Carroll McBride
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
46
|
Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, Campen MJ. Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. Toxicol Sci 2015; 146:244-53. [PMID: 25962394 DOI: 10.1093/toxsci/kfv093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.
Collapse
Affiliation(s)
- Michael L Paffett
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Katherine E Zychowski
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington and
| | - Sarah Robertson
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - John M Weaver
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Selita N Lucas
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico,
| |
Collapse
|
47
|
Schisler JC, Ronnebaum SM, Madden M, Channell M, Campen M, Willis MS. Endothelial inflammatory transcriptional responses to an altered plasma exposome following inhalation of diesel emissions. Inhal Toxicol 2015; 27:272-80. [PMID: 25942053 DOI: 10.3109/08958378.2015.1030481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. OBJECTIVES Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate (1) major responsive transcripts and (2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. METHODS We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from six healthy human subjects exposed to 100 μg/m(3) diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24 h-post exposure. RESULTS Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h conditions. Novel pathways related to FOXO transcription factors and secreted extracellular factors were also identified in the microarray analysis. CONCLUSIONS These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation and provide a novel pathway to explain the well-reported extrapulmonary toxicity of ambient air pollutants.
Collapse
Affiliation(s)
- Jonathan C Schisler
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, NC , USA
| | | | | | | | | | | |
Collapse
|
48
|
Campen M, Robertson S, Lund A, Lucero J, McDonald J. Engine exhaust particulate and gas phase contributions to vascular toxicity. Inhal Toxicol 2015; 26:353-60. [PMID: 24730681 DOI: 10.3109/08958378.2014.897776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiovascular health effects of near-roadway pollution appear more substantial than other sources of air pollution. The underlying cause of this phenomenon may simply be concentration-related, but the possibility remains that gases and particulate matter (PM) may physically interact and further enhance systemic vascular toxicity. To test this, we utilized a common hypercholesterolemic mouse model (Apolipoprotein E-null) exposed to mixed vehicle emission (MVE; combined gasoline and diesel exhausts) for 6 h/d × 50 d, with additional permutations of removing PM by filtration and also removing gaseous species from PM by denudation. Several vascular bioassays, including matrix metalloproteinase-9 protein, 3-nitrotyrosine and plasma-induced vasodilatory impairments, highlighted that the whole emissions, containing both particulate and gaseous components, was collectively more potent than MVE-derived PM or gas mixtures, alone. Thus, we conclude that inhalation of fresh whole emissions induce greater systemic vascular toxicity than either the particulate or gas phase alone. These findings lend credence to the hypothesis that the near-roadway environment may have a more focused public health impact due to gas-particle interactions.
Collapse
Affiliation(s)
- Matthew Campen
- College of Pharmacy, University of New Mexico , Albuquerque, NM , USA
| | | | | | | | | |
Collapse
|
49
|
Minarchick VC, Stapleton PA, Fix NR, Leonard SS, Sabolsky EM, Nurkiewicz TR. Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci 2014; 144:77-89. [PMID: 25481005 DOI: 10.1093/toxsci/kfu256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular dysfunction following CeO2 NP exposure. Rats were exposed to CeO2 NP (primary diameter: 4 ± 1 nm, surface area: 81.36 m(2)/g) by intratracheal instillation, intravenous injection, or gastric gavage. Mesenteric arterioles were harvested 24 h post-exposure and vascular function was assessed using an isolated arteriole preparation. Endothelium-dependent and independent function and vascular smooth muscle (VSM) signaling (soluble guanylyl cyclase [sGC] and cyclic guanosine monophosphate [cGMP]) were assessed. Reactive oxygen species (ROS) generation and nitric oxide (NO) production were analyzed. Compared with controls, endothelium-dependent and independent dilation were impaired following intravenous injection (by 61% and 45%) and gastric gavage (by 63% and 49%). However, intravenous injection resulted in greater microvascular impairment (16% and 35%) compared with gastric gavage at an identical dose (100 µg). Furthermore, sGC activation and cGMP responsiveness were impaired following pulmonary, intravenous, and gastric CeO2 NP treatment. Finally, nanoparticle exposure resulted in route-dependent, increased ROS generation and decreased NO production. These results indicate that CeO2 NP exposure route differentially impairs microvascular function, which may be mechanistically linked to decreased NO production and subsequent VSM signaling. Fully understanding the mechanisms behind CeO2 NP in vivo effects is a critical step in the continued therapeutic development of this nanoparticle.
Collapse
Affiliation(s)
- Valerie C Minarchick
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Phoebe A Stapleton
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Natalie R Fix
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Stephen S Leonard
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Edward M Sabolsky
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Timothy R Nurkiewicz
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
50
|
Weldy CS, Liu Y, Liggitt HD, Chin MT. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS One 2014; 9:e88582. [PMID: 24533117 PMCID: PMC3922927 DOI: 10.1371/journal.pone.0088582] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022] Open
Abstract
Exposure to fine particulate air pollution (PM2.5) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM2.5 during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM2.5, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (≈300 µg/m3 PM2.5, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE ‘reprograms’ the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease.
Collapse
Affiliation(s)
- Chad S Weldy
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America ; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Yonggang Liu
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - H Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael T Chin
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America ; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|