1
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
2
|
Stacpoole PW. Clinical physiology and pharmacology of GSTZ1/MAAI. Biochem Pharmacol 2023; 217:115818. [PMID: 37742772 DOI: 10.1016/j.bcp.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein I summarize the physiological chemistry and pharmacology of the bifunctional enzyme glutathione transferase zeta 1 (GSTZ1)/ maleylacetoacetate isomerase (MAAI) relevant to human physiology, drug metabolism and disease. MAAI is integral to the catabolism of the amino acids phenylalanine and tyrosine. Genetic or pharmacological inhibition of MAAI can be pathological in animals. However, to date, no clinical disease consequences are unequivocally attributable to inborn errors of this enzyme. MAAI is identical to the zeta 1 family isoform of GST, which biotransforms the investigational drug dichloroacetate (DCA) to the endogenous compound glyoxylate. DCA is a mechanism-based inhibitor of GSTZ1 that significantly reduces its rate of metabolism and increases accumulation of potentially harmful tyrosine intermediates and of the heme precursor δ-aminolevulinic acid (δ-ALA). GSTZ1 is most abundant in rodent and human liver, with its concentration several fold higher in cytoplasm than in mitochondria. Its activity and protein expression are dependent on the age of the host and the intracellular level of chloride ions. Gene association studies have linked GSTZ1 or its protein product to various physiological traits and pathologies. Haplotype variations in GSTZ1 influence the rate of DCA metabolism, enabling a genotyping strategy to allow potentially safe, precision-based drug dosing in clinical trials.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Departments of Medicine and Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32601, USA.
| |
Collapse
|
3
|
Schoenmann N, Tannenbaum N, Hodgeman RM, Raju RP. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166769. [PMID: 37263447 PMCID: PMC10776176 DOI: 10.1016/j.bbadis.2023.166769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Dichloroacetate (DCA) is a naturally occurring xenobiotic that has been used as an investigational drug for over 50 years. Originally found to lower blood glucose levels and alter fat metabolism in diabetic rats, this small molecule was found to serve primarily as a pyruvate dehydrogenase kinase inhibitor. Pyruvate dehydrogenase kinase inhibits pyruvate dehydrogenase complex, the catalyst for oxidative decarboxylation of pyruvate to produce acetyl coenzyme A. Several congenital and acquired disease states share a similar pathobiology with respect to glucose homeostasis under distress that leads to a preferential shift from the more efficient oxidative phosphorylation to glycolysis. By reversing this process, DCA can increase available energy and reduce lactic acidosis. The purpose of this review is to examine the literature surrounding this metabolic messenger as it presents exciting opportunities for future investigation and clinical application in therapy including cancer, metabolic disorders, cerebral ischemia, trauma, and sepsis.
Collapse
Affiliation(s)
- Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Nicholas Tannenbaum
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ryan M Hodgeman
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
4
|
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, Dzeja PP, Polyzos KA, Gisterå A, Trauelsen M, Schwartz TW, Dib L, Herrmann J, Monaco C, Matic L, Gonçalves I, Ketelhuth DFJ. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res 2023; 119:1524-1536. [PMID: 36866436 PMCID: PMC10318388 DOI: 10.1093/cvr/cvad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque. CONCLUSIONS We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Martin Berg
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
| | - Jangming Sun
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Roland Baumgartner
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ilona Kareinen
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Mayo Clinic Metabolomics Core, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Petras P Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Konstantinos A Polyzos
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lea Dib
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, 200, First St. SW Rochester, MN 55905, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
| | - Isabel Gonçalves
- Cardiovascular Research Translational Studies, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, 20 502, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Carl-Bertil Laurells gata 9, 21 428, Malmö, Sweden
| | - Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Instutet,BioClinicum, Solnavägen 30, Solna, 17 164, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws vej 21, 5000 Odense, Denmark
| |
Collapse
|
5
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
7
|
Lajin B, Braeuer S, Borovička J, Goessler W. Is the water disinfection by-product dichloroacetic acid biosynthesized in the edible mushroom Russula nigricans? CHEMOSPHERE 2021; 281:130819. [PMID: 33991903 DOI: 10.1016/j.chemosphere.2021.130819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
We report the first halogen speciation analysis study by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry (HPLC-ICPMS/MS) in the fruiting bodies of various mushroom species. Non-targeted speciation analysis revealed the occurrence of dichloroacetic acid (DCAA) in the edible mushroom Russula nigricans. Multiple samples of this mushroom (n = 5) collected from different geographic non-industrial regions in two different countries confirmed the consistent presence of this species at a relatively narrow concentration range (23-37 mg kg-1), whereas no other chlorinated acetic acid (e.g. chloroacetic acid and trichloroacetic acid) was detected. Neither DCAA nor any other chlorinated acetic acid were detected in any of the other mushroom species investigated in the present study, including seven different mushroom species of the same genus Russula, even though all mushrooms were collected from the same non-industrial geographic regions. Together with the previously reported biological activities of DCAA, these findings collectively suggest biosynthesis of this compound as an explanation for its dominant presence in R. nigricans, and constitute the first example of the dominant natural occurrence of this compound over other chlorinated acetic acids in a living organism. This may warrant a change in our view of the occurrence of dichloroacetic acid in nature, where primarily considered as a pollutant arising from water disinfection.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria.
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria; Atomic & Mass Spectrometry Research Unit, Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Jan Borovička
- Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068, Husinec-Řež, Czech Republic; Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500, Prague 6, Czech Republic
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| |
Collapse
|
8
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
9
|
Chen G, Jiang N, Villalobos Solis MI, Kara Murdoch F, Murdoch RW, Xie Y, Swift CM, Hettich RL, Löffler FE. Anaerobic Microbial Metabolism of Dichloroacetate. mBio 2021; 12:e00537-21. [PMID: 33906923 PMCID: PMC8092247 DOI: 10.1128/mbio.00537-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dichloroacetate (DCA) commonly occurs in the environment due to natural production and anthropogenic releases, but its fate under anoxic conditions is uncertain. Mixed culture RM comprising "Candidatus Dichloromethanomonas elyunquensis" strain RM utilizes DCA as an energy source, and the transient formation of formate, H2, and carbon monoxide (CO) was observed during growth. Only about half of the DCA was recovered as acetate, suggesting a fermentative catabolic route rather than a reductive dechlorination pathway. Sequencing of 16S rRNA gene amplicons and 16S rRNA gene-targeted quantitative real-time PCR (qPCR) implicated "Candidatus Dichloromethanomonas elyunquensis" strain RM in DCA degradation. An (S)-2-haloacid dehalogenase (HAD) encoded on the genome of strain RM was heterologously expressed, and the purified HAD demonstrated the cofactor-independent stoichiometric conversion of DCA to glyoxylate at a rate of 90 ± 4.6 nkat mg-1 protein. Differential protein expression analysis identified enzymes catalyzing the conversion of DCA to acetyl coenzyme A (acetyl-CoA) via glyoxylate as well as enzymes of the Wood-Ljungdahl pathway. Glyoxylate carboligase, which catalyzes the condensation of two molecules of glyoxylate to form tartronate semialdehyde, was highly abundant in DCA-grown cells. The physiological, biochemical, and proteogenomic data demonstrate the involvement of an HAD and the Wood-Ljungdahl pathway in the anaerobic fermentation of DCA, which has implications for DCA turnover in natural and engineered environments, as well as the metabolism of the cancer drug DCA by gut microbiota.IMPORTANCE Dichloroacetate (DCA) is ubiquitous in the environment due to natural formation via biological and abiotic chlorination processes and the turnover of chlorinated organic materials (e.g., humic substances). Additional sources include DCA usage as a chemical feedstock and cancer drug and its unintentional formation during drinking water disinfection by chlorination. Despite the ubiquitous presence of DCA, its fate under anoxic conditions has remained obscure. We discovered an anaerobic bacterium capable of metabolizing DCA, identified the enzyme responsible for DCA dehalogenation, and elucidated a novel DCA fermentation pathway. The findings have implications for the turnover of DCA and the carbon and electron flow in electron acceptor-depleted environments and the human gastrointestinal tract.
Collapse
Affiliation(s)
- Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Nannan Jiang
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert Waller Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Yongchao Xie
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cynthia M Swift
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
10
|
Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021. [PMID: 33806179 DOI: 10.3390/cancers13071518.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
|
11
|
Jeong KY, Sim JJ, Park MH, Kim HM. Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13071518. [PMID: 33806179 PMCID: PMC8037473 DOI: 10.3390/cancers13071518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary This study was to prove the changes in cancer-specific metabolism caused by the introduction of lactate calcium salt into human colorectal cancer cells from the viewpoint of remodeling in anaerobic glycolysis and the tricarboxylic acid cycle under hypoxia. An influx of lactate calcium salt-induced enzymatic activation of lactate dehydrogenase B reacting to lactate followed by the decrease in the transcriptional activation of hypoxia-inducible factor-1α to suppress the expression of the oncogenes. Thereby, it was possible to induce anti-cancer effects on the colorectal cancer xenograft animal model. Abstract Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
- Correspondence: (K.-Y.J.); (H.M.K.)
| | - Jae-Jun Sim
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Min Hee Park
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University 191 Hambangmoe-Ro, Yeonsu-Gu, Incheon 21936, Korea
- Correspondence: (K.-Y.J.); (H.M.K.)
| |
Collapse
|
12
|
Wood CM, Pane EF, Heigenhauser GJF. Dichloroacetate reveals the presence of metabolic inertia at the start of exercise in rainbow trout (Oncorhynchus mykiss, Walbaum 1792). JOURNAL OF FISH BIOLOGY 2020; 97:1242-1246. [PMID: 32657450 DOI: 10.1111/jfb.14461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
A lag in the increase in oxygen consumption (MO2 ) occurs at the start of sustainable exercise in trout. Waterborne dichloroacetate (0.58 and 3.49 mmol l-1 ), a compound which activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase in muscle, accelerates the increase in MO2 during the first 10 min of sustainable exercise when velocity is elevated to 75% critical swimming speed in a swim tunnel. There are no effects on MO2 thereafter or at rest. This indicates that a delay in PDH activation ("metabolic inertia") contributes to the lag phenomenon.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric F Pane
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
13
|
Squirewell EJ, Smeltz MG, Rowland-Faux L, Horne LP, Stacpoole PW, James MO. Effects of Multiple Doses of Dichloroacetate on GSTZ1 Expression and Activity in Liver and Extrahepatic Tissues of Young and Adult Rats. Drug Metab Dispos 2020; 48:1217-1223. [PMID: 32873593 DOI: 10.1124/dmd.120.000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.
Collapse
Affiliation(s)
- Edwin J Squirewell
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Marci G Smeltz
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Laura Rowland-Faux
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Lloyd P Horne
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Peter W Stacpoole
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Margaret O James
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020; 77:2527-2542. [PMID: 31970423 PMCID: PMC11104865 DOI: 10.1007/s00018-019-03438-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Ma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Sergio Rorsales-Corral
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | |
Collapse
|
15
|
Li X, Liu J, Hu H, Lu S, Lu Q, Quan N, Rousselle T, Patel MS, Li J. Dichloroacetate Ameliorates Cardiac Dysfunction Caused by Ischemic Insults Through AMPK Signal Pathway-Not Only Shifts Metabolism. Toxicol Sci 2020; 167:604-617. [PMID: 30371859 DOI: 10.1093/toxsci/kfy272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), regulates substrate metabolism in the heart. AMP-activated protein kinase (AMPK) is an age-related energy sensor that protects the heart from ischemic injury. This study aims to investigate whether DCA can protect the heart from ischemic injury through the AMPK signaling pathway. Young (3-4 months) and aged (20-24 months) male C57BL/6J mice were subjected to ligation of the left anterior descending coronary artery (LAD) for an in vivo ischemic model. The systolic function of the hearts was significantly decreased in both young and aged mice after 45 min of ischemia and 24 h of reperfusion. DCA treatment significantly improved cardiac function in both young and aged mice. The myocardial infarction analysis demonstrated that DCA treatment significantly reduced the infarction size caused by ischemia/reperfusion (I/R) in both young and aged mice. The isolated-cardiomyocyte experiments showed that DCA treatment ameliorated contractile dysfunction and improved the intracellular calcium signal of cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. These cardioprotective functions of DCA can be attenuated by inhibiting AMPK activation. Furthermore, the metabolic measurements with an ex vivo working heart system demonstrated that the effects of DCA treatment on modulating the metabolic shift response to ischemia and reperfusion stress can be attenuated by inhibiting AMPK activity. The immunoblotting results showed that DCA treatment triggered cardiac AMPK signaling pathway by increasing the phosphorylation of AMPK's upstream kinase liver kinase B1 (LKB1) under both sham operations and I/R conditions. Thus, except from modulating metabolism in hearts, the cardioprotective function of DCA during I/R was mediated by the LKB1-AMPK pathway.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jia Liu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Haiyan Hu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Shaoxin Lu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Qingguo Lu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Nanhu Quan
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Thomas Rousselle
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Mulchand S Patel
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo New York 14203
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
16
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
17
|
Smeltz MG, Hu Z, Zhong G, Jahn SC, Rowland-Faux L, Horne LP, Stacpoole PW, James MO. Mitochondrial Glutathione Transferase Zeta 1 Is Inactivated More Rapidly by Dichloroacetate than the Cytosolic Enzyme in Adult and Juvenile Rat Liver. Chem Res Toxicol 2019; 32:2042-2052. [PMID: 31524376 DOI: 10.1021/acs.chemrestox.9b00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dichloroacetate (DCA) has potential for treating mitochondrial disorders and cancer by activating the mitochondrial pyruvate dehydrogenase complex. Repeated dosing of DCA results in reduced drug clearance due to inactivation of glutathione transferase ζ1 (GSTZ1), its metabolizing enzyme. We investigated the time-course of inactivation of GSTZ1 in hepatic cytosol and mitochondria after one oral dose of 100 mg/kg DCA to female Sprague-Dawley rats aged 4 weeks (young) and 52 weeks (adult) as models for children and adults, respectively. GSTZ1 activity with both DCA and an endogenous substrate, maleylacetone (MA), as well as GSTZ1 protein expression were rapidly reduced in cytosol from both ages following DCA treatment. In mitochondria, loss of GSTZ1 protein and activity with DCA were even more rapid. The cytosolic in vivo half-lives of the loss of GSTZ1 activity with DCA were 1.05 ± 0.03 and 0.82 ± 0.02 h (mean ± S.D., n = 6) for young and adult rats, respectively, with inactivation significantly more rapid in adult rats, p < 0.001. The mitochondrial inactivation half-lives were similar in young (0.57 ± 0.02 h) and adult rats (0.54 ± 0.02 h) and were significantly (p < 0.0001) shorter than cytosolic inactivation half-lives. By 24 h after DCA administration, activity and expression remained at 10% or less than control values. The in vitro GSTZ1 inactivation half-lives following incubation with 2 mM DCA in the presence of physiological chloride (Cl-) concentrations (cytosol = 44 mM, mitochondria = 1-2 mM) exhibited marked differences between subcellular fractions, being 3 times longer in the cytosol than in the mitochondria, regardless of age, suggesting that the lower Cl- concentration in mitochondria explained the faster degradation of GSTZ1. These results demonstrate for the first time that rat mitochondrial GSTZ1 is more readily inactivated by DCA than cytosolic GSTZ1, and cytosolic GSTZ1 is inactivated more rapidly in adult than young rats.
Collapse
|
18
|
Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel) 2019; 11:cancers11081210. [PMID: 31434295 PMCID: PMC6721567 DOI: 10.3390/cancers11081210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
Sodium dichloroacetate (DCA) is an investigational medicinal product which has a potential anticancer preparation as a metabolic regulator in cancer cells’ mitochondria. Inhibition of pyruvate dehydrogenase kinases by DCA keeps the pyruvate dehydrogenase complex in the active form, resulting in decreased lactic acid in the tumor microenvironment. This literature review displays the preclinical research data on DCA’s effects on the cell pyruvate dehydrogenase deficiency, pyruvate mitochondrial oxidative phosphorylation, reactive oxygen species generation, and the Na+–K+–2Cl− cotransporter expression regulation in relation to gender. It presents DCA pharmacokinetics and the hepatocarcinogenic effect, and the safety data covers the DCA monotherapy efficacy for various human cancer xenografts in vivo in male and female animals. Preclinical cancer researchers report the synergistic effects of DCA combined with different drugs on cancer by reversing resistance to chemotherapy and promoting cell apoptosis. Researchers note that female and male animals differ in the mechanisms of cancerogenesis but often ignore studying DCA’s effects in relation to gender. Preclinical gender-related differences in DCA pharmacology, pharmacological mechanisms, and the elucidation of treatment efficacy in gonad hormone dependency could be relevant for individualized therapy approaches so that gender-related differences in treatment response and safety can be proposed.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania.
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 55 Pamplona, Spain.
| |
Collapse
|
19
|
Stacpoole PW, Martyniuk CJ, James MO, Calcutt NA. Dichloroacetate-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:211-238. [PMID: 31208525 DOI: 10.1016/bs.irn.2019.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dichloroacetate (DCA) has been the focus of research by both environmental toxicologists and biomedical scientists for over 50 years. As a product of water chlorination and a metabolite of certain industrial chemicals, DCA is ubiquitous in our biosphere at low μg/kg body weight daily exposure levels without obvious adverse effects in humans. As an investigational drug for numerous congenital and acquired diseases, DCA is administered orally or parenterally, usually at doses of 10-50mg/kg per day. As a therapeutic, its principal mechanism of action is to inhibit pyruvate dehydrogenase kinase (PDK). In turn, PDK inhibits the key mitochondrial energy homeostat, pyruvate dehydrogenase complex (PDC), by reversible phosphorylation. By blocking PDK, DCA activates PDC and, consequently, the mitochondrial respiratory chain and ATP synthesis. A reversible sensory/motor peripheral neuropathy is the clinically limiting adverse effect of chronic DCA exposure and experimental data implicate the Schwann cell as a toxicological target. It has been postulated that stimulation of PDC and respiratory chain activity by DCA in normally glycolytic Schwann cells causes uncompensated oxidative stress from increased reactive oxygen species production. Additionally, the metabolism of DCA interferes with the catabolism of the amino acids phenylalanine and tyrosine and with heme synthesis, resulting in accumulation of reactive molecules capable of forming adducts with DNA and proteins and also resulting in oxidative stress. Preliminary evidence in rodent models of peripheral neuropathy suggest that DCA-induced neurotoxicity may be mitigated by naturally occurring antioxidants and by a specific class of muscarinic receptor antagonists. These findings generate a number of testable hypotheses regarding the etiology and treatment of DCA peripheral neuropathy.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Margaret O James
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Alves A, Mamede A, Alves M, Oliveira P, Rocha S, Botelho M, Maia C. Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment? Curr Cancer Drug Targets 2018; 19:26-40. [DOI: 10.2174/1568009618666180430144441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequently detected primary malignant liver tumor, representing a worldwide public health problem due to its high morbidity and mortality rates. The HCC is commonly detected in advanced stage, precluding the use of treatments with curative intent. For this reason, it is crucial to find effective therapies for HCC. Cancer cells have a high dependence of glycolysis for ATP production, especially under hypoxic environment. Such dependence provides a reliable possible strategy to specifically target cancer cells based on the inhibition of glycolysis. HCC, such as other cancer types, presents a clinically well-known upregulation of several glycolytic key enzymes and proteins, including glucose transporters particularly glucose transporter 1 (GLUT1). Such enzymes and proteins constitute potential targets for therapy. Indeed, for some of these targets, several inhibitors were already reported, such as 2-Deoxyglucose, Imatinib or Flavonoids. Although the inhibition of glycolysis presents a great potential for an anticancer therapy, the development of glycolytic inhibitors as a new class of anticancer agents needs to be more explored. Herein, we propose to summarize, discuss and present an overview on the different approaches to inhibit the glycolytic metabolism in cancer cells, which may be very effective in the treatment of HCC.
Collapse
Affiliation(s)
- A.P. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - A.C. Mamede
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.G. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - P.F. Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - S.M. Rocha
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.F. Botelho
- Biophysics Unit, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C.J. Maia
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| |
Collapse
|
21
|
Stacpoole PW, Shuster J, Thompson JLPS, Prather RA, Lawson LA, Zou B, Buchsbaum R, Nixon SJ. Development of a novel observer reported outcome tool as the primary efficacy outcome measure for a rare disease randomized controlled trial. Mitochondrion 2018; 42:59-63. [PMID: 29129554 PMCID: PMC6587967 DOI: 10.1016/j.mito.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022]
Abstract
We developed an Observer-Reported Outcome (ObsRO) survey instrument to be applied in a multicenter, placebo-controlled, crossover randomized controlled trial of dichloroacetate in children with pyruvate dehydrogenase complex deficiency. The instrument quantifies a subject's at-home level of functionality, as reported by a parent/caregiver, who were instrumental in providing the clinical descriptors and domains that formed the instrument's content. Feasibility testing of the ObsRO tool showed it to be easy to use and comprehensive in capturing the major clinical functional limitations of affected children and requires less than 5min for a parent/caregiver to complete daily.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Diabetes and Metabolism) and Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32610, United States.
| | - Jonathan Shuster
- Department of Health Outcomes and Policy, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - John L P Seamus Thompson
- Department of Biostatistics and Neurology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Robert A Prather
- Department of Psychiatry (Division of Addiction Research) and Biobehavioral Core, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - Lee Ann Lawson
- Department of Medicine (Division of Endocrinology, Diabetes and Metabolism), University of Florida, College of Medicine, Gainesville, FL, United States
| | - Baiming Zou
- Department of Biostatistics, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - Richard Buchsbaum
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Sara Jo Nixon
- Department of Psychiatry (Division of Addiction Research) and Biobehavioral Core, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
22
|
Zhong G, James MO, Smeltz MG, Jahn SC, Langaee T, Simpson P, Stacpoole PW. Age-Related Changes in Expression and Activity of Human Hepatic Mitochondrial Glutathione Transferase Zeta1. Drug Metab Dispos 2018; 46:1118-1128. [PMID: 29853471 DOI: 10.1124/dmd.118.081810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glutathione transferase zeta1 (GSTZ1) catalyzes glutathione (GSH)-dependent dechlorination of dichloroacetate (DCA), an investigational drug with therapeutic potential in metabolic disorders and cancer. GSTZ1 is expressed in both hepatic cytosol and mitochondria. Here, we examined the ontogeny and characterized the properties of human mitochondrial GSTZ1. GSTZ1 expression and activity with DCA were determined in 103 human hepatic mitochondrial samples prepared from livers of donors aged 1 day to 84 years. DNA from each sample was genotyped for three common GSTZ1 functional single nucleotide polymorphisms. Expression of mitochondrial GSTZ1 protein increased in an age-dependent manner to a plateau after age 21 years. Activity with DCA correlated with expression, after taking into account the somewhat higher activity of samples that were homo- or heterozygous for GSTZ1A. In samples from livers with the GSTZ1C variant, apparent enzyme kinetic constants for DCA and GSH were similar for mitochondria and cytosol after correcting for the loss of GSH observed in mitochondrial incubations. In the presence of 38 mM chloride, mitochondrial GSTZ1 exhibited shorter half-lives of inactivation compared with the cytosolic enzyme (P = 0.017). GSTZ1 protein isolated from mitochondria was shown by mass spectrometry to be identical to cytosolic GSTZ1 protein in the covered primary protein sequence. In summary, we report age-related development in the expression and activity of human hepatic mitochondrial GSTZ1 does not have the same pattern as that reported for cytosolic GSTZ1. Some properties of cytosolic and mitochondrial GSTZ1 differed, but these were not related to differences in amino acid sequence or post-translationally modified residues.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Margaret O James
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Marci G Smeltz
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Stephan C Jahn
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Taimour Langaee
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Pippa Simpson
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Peter W Stacpoole
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| |
Collapse
|
23
|
Stacpoole PW. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 2017; 109:3871192. [PMID: 29059435 DOI: 10.1093/jnci/djx071] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
24
|
A Mechanism-Based Pharmacokinetic Enzyme Turnover Model for Dichloroacetic Acid Autoinhibition in Rats. J Pharm Sci 2017; 106:1396-1404. [PMID: 28163135 DOI: 10.1016/j.xphs.2017.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Dichloroacetic acid (DCA), a halogenated organic acid, is a pyruvate dehydrogenase kinase inhibitor that has been used to treat congenital or acquired lactic acidosis and is currently in early-phase clinical trials for cancer treatment. DCA was found to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta 1 (GSTZ1-1), resulting in nonlinear kinetics and abnormally high accumulation ratio after repeated dosing. In this analysis, a semi-mechanistic pharmacokinetic enzyme turnover model was developed for the first time to capture DCA autoinhibition, gastrointestinal region-dependent absorption, and time-dependent change in bioavailability in rats. The maximum rate constant for DCA-induced GSTZ1-1 inactivation is estimated to be 0.96/h, which is 110 times that of the rate constant for GSTZ1-1 natural degradation (0.00875/h). The model-predicted DCA concentration that corresponds to 50% of maximum enzyme inhibition (EC50) is 4.32 mg/L. The constructed pharmacokinetic enzyme turnover model, when applied to human data, could be used to predict the accumulation of DCA after repeated oral dosing, guide selection of dosing regimens in clinical studies, and facilitate clinical development of DCA.
Collapse
|
25
|
James MO, Jahn SC, Zhong G, Smeltz MG, Hu Z, Stacpoole PW. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol Ther 2016; 170:166-180. [PMID: 27771434 DOI: 10.1016/j.pharmthera.2016.10.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dichloroacetate (DCA) has several therapeutic applications based on its pharmacological property of inhibiting pyruvate dehydrogenase kinase. DCA has been used to treat inherited mitochondrial disorders that result in lactic acidosis, as well as pulmonary hypertension and several different solid tumors, the latter through its ability to reverse the Warburg effect in cancer cells and restore aerobic glycolysis. The main clinically limiting toxicity is reversible peripheral neuropathy. Although administration of high doses to rodents can result in liver cancer, there is no evidence that DCA is a human carcinogen. In all studied species, including humans, DCA has the interesting property of inhibiting its own metabolism upon repeat dosing, resulting in alteration of its pharmacokinetics. The first step in DCA metabolism is conversion to glyoxylate catalyzed by glutathione transferase zeta 1 (GSTZ1), for which DCA is a mechanism-based inactivator. The rate of GSTZ1 inactivation by DCA is influenced by age, GSTZ1 haplotype and cellular concentrations of chloride. The effect of DCA on its own metabolism complicates the selection of an effective dose with minimal side effects.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States.
| | - Stephan C Jahn
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Guo Zhong
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Marci G Smeltz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Zhiwei Hu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Peter W Stacpoole
- Department of Medicine, University of Florida, Gainesville, FL 32610-0226, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
26
|
Transport of haloacids across biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3061-3070. [PMID: 27668346 DOI: 10.1016/j.bbamem.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022]
Abstract
Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium. Phylogenetic analysis of these haloacids transporters and other monocarboxylate transporters reveals their evolutionary relationships. Haloacids transporters are not studied to the extent that they deserve compared with their great application potentials, thus future inter-discipline research are desired to better characterize their transport mechanisms for potential applications in both environmental and clinical fields.
Collapse
|
27
|
Moreno-Sánchez R, Marín-Hernández Á, Del Mazo-Monsalvo I, Saavedra E, Rodríguez-Enríquez S. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj 2016; 1861:3221-3236. [PMID: 27538376 DOI: 10.1016/j.bbagen.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exceedingly high therapeutic/experimental doses of metabolic drugs such as oxamate, aminooxyacetate (AOA) and dichloroacetate (DCA) are required to diminish growth, glycolysis and oxidative phosphorylation (OxPhos) of different cancer cells. To identify the mechanisms of action of these drugs on cancer energy metabolism, a systematic analysis of their specificities was undertaken. METHODS Hepatocarcinoma AS-30D cells were treated with the inhibitors and glycolysis and OxPhos enzyme activities, metabolites and fluxes were analyzed. Kinetic modeling of glycolysis was used to identify the regulatory mechanisms. RESULTS Oxamate (i) not only inhibited LDH, but also PYK and ENO activities inducing an increase in the cytosolic NAD(P)H, Fru1,6BP and DHAP levels in AS-30D cells; (ii) it slightly inhibited HPI, ALD and Glc6PDH; and (iii) it inhibited pyruvate-driven OxPhos in isolated heart mitochondria. AOA (i) strongly inhibited both AAT and AlaT, and 2-OGDH and glutamate-driven OxPhos; and (ii) moderately affected GAPDH and TPI. DCA slightly affected pyruvate-driven OxPhos and Glc6PDH. Kinetic modeling of cancer glycolysis revealed that oxamate inhibition of LDH, PYK and ENO was insufficient to achieve glycolysis flux inhibition. To do so, HK, HPI, TPI and GAPDH have to be also inhibited by the accumulated Fru1,6BP and DHAP induced by oxamate. CONCLUSION Oxamate, AOA, and DCA are not specific drugs since they inhibit several enzymes/transporters of the glycolytic and OxPhos pathways through direct interaction or indirect mechanisms. GENERAL SIGNIFICANCE These data explain why oxamate or AOA, through their multisite inhibitory actions on glycolysis or OxPhos, may be able to decrease the proliferation of cancer cells.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico.
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | - Isis Del Mazo-Monsalvo
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | | |
Collapse
|
28
|
James MO, Stacpoole PW. Pharmacogenetic considerations with dichloroacetate dosing. Pharmacogenomics 2016; 17:743-53. [PMID: 27143230 DOI: 10.2217/pgs-2015-0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The investigational drug dichloroacetate (DCA) is a metabolic regulator that has been successfully used to treat acquired and congenital metabolic diseases and, recently, solid tumors. Its clinical use has revealed challenges in selecting appropriate doses. Chronic administration of DCA leads to inhibition of DCA metabolism and potential accumulation to levels that result in side effects. This is because conversion of DCA to glyoxylate is catalyzed by one enzyme, glutathione transferase zeta 1 (GSTZ1-1), which is inactivated by DCA. SNPs in the GSTZ1 gene result in expression of polymorphic variants of the enzyme that differ in activity and rates of inactivation by DCA under physiological conditions: these properties lead to considerable variation between people in the pharmacokinetics of DCA.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, USA
| | - Peter W Stacpoole
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610-0485, USA.,Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0485, USA
| |
Collapse
|
29
|
Shroads AL, Coats BS, Langaee T, Shuster JJ, Stacpoole PW. Chloral hydrate, through biotransformation to dichloroacetate, inhibits maleylacetoacetate isomerase and tyrosine catabolism in humans. Drug Metab Pers Ther 2015; 30:49-55. [PMID: 25283137 DOI: 10.1515/dmdi-2014-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chloral hydrate (CH), a sedative and metabolite of the environmental contaminant trichloroethylene, is metabolized to trichloroacetic acid, trichloroethanol, and possibly dichloroacetate (DCA). DCA is further metabolized by glutathione transferase zeta 1 (GSTZ1), which is identical to maleylacetoacetate isomerase (MAAI), the penultimate enzyme in tyrosine catabolism. DCA inhibits its own metabolism through depletion/inactivation of GSTZ1/MAAI with repeated exposure, resulting in lower plasma clearance of the drug and the accumulation of the urinary biomarker maleylacetone (MA), a metabolite of tyrosine. It is unknown if GSTZ1/MAAI may participate in the metabolism of CH or any of its metabolites and, therefore, affect tyrosine catabolism. Stable isotopes were utilized to determine the biotransformation of CH, the kinetics of its major metabolites, and the influence, if any, of GSTZ1/MAAI. METHODS Eight healthy volunteers (ages 21-40 years) received a dose of 1 g of CH (clinical dose) or 1.5 μg/kg (environmental) for five consecutive days. Plasma and urinary samples were analyzed by gas chromatography-mass spectrometry. RESULTS Plasma DCA (1.2-2.4 μg/mL), metabolized from CH, was measured on the fifth day of the 1 g/day CH dosage but was undetectable in plasma at environmentally relevant doses. Pharmacokinetic measurements from CH metabolites did not differ between slow and fast GSTZ1 haplotypes. Urinary MA levels increased from undetectable to 0.2-0.7 μg/g creatinine with repeated CH clinical dose exposure. Kinetic modeling of a clinical dose of 25 mg/kg DCA administered after 5 days of 1 g/day CH closely resembled DCA kinetics obtained in previously naïve individuals. CONCLUSIONS These data indicate that the amount of DCA produced from clinically relevant doses of CH, although insufficient to alter DCA kinetics, is sufficient to inhibit MAAI and tyrosine catabolism, as evidenced by the accumulation of urinary MA.
Collapse
|
30
|
Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:129031. [PMID: 26301238 PMCID: PMC4537706 DOI: 10.1155/2015/129031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
Dichloroacetate (DCA) is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2) cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.
Collapse
|
31
|
Pajuelo-Reguera D, Alán L, Olejár T, Ježek P. Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells. Int J Oncol 2015; 46:2409-18. [PMID: 25846762 DOI: 10.3892/ijo.2015.2953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/11/2015] [Indexed: 11/06/2022] Open
Abstract
Dichloroacetate (DCA) is beneficial in cancer therapy because it induces apoptosis and decreases cancer growth in vitro and in vivo without affecting non-cancer cells. DCA stimulates the activity of the enzyme pyruvate dehydrogenase by inhibiting pyruvate dehydrogenase kinase. Consequently, DCA promotes oxidative phosphorylation after glycolysis. Therefore, DCA produces changes in energy metabolism that could affect the mitochondrial network and mitophagy. This investigation determined the effects of DCA treatment on mitophagy in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were cultured and distributed into 3 groups: control, NH4Cl and chloroquine. Each group was treated with DCA at 0, 5, 30 and 60 mM for 16 h. Samples were analyzed for cell viability, mtDNA copy number, mitochondrial network morphology and expression of key proteins involved in mitochondrial dynamics, such as LC3b, FIS1, OPA1, PARKIN and PINK1. In all groups, DCA caused a decrease in cell viability, an induction of autophagy in a dose-dependent manner and a decrease in Tim23, FIS1 and PARKIN protein expression, leading to profound morphological changes in the mitochondrial network resulting in shorter and more fragmented filaments. However, TFAM protein levels remained unchanged. Similarly, the mitochondrial copy number was not significantly different among the treatment groups. In conclusion, DCA induces mitophagy and remodeling of the mitochondrial network. In this remodeling, DCA induces a decrease in the expression of key proteins involved in protein degradation and mitochondrial dynamics but does not significantly affect the mtDNA density. Blocking late phase autophagy increases the effects of DCA, suggesting that autophagy protects the cell, at least partially, against DCA.
Collapse
Affiliation(s)
- David Pajuelo-Reguera
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lukáš Alán
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Olejár
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Ježek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
32
|
Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 2015; 20:635-43. [PMID: 25766095 DOI: 10.1016/j.drudis.2015.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and how restoration of mitochondrial function could be exploited for cancer therapeutics.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
33
|
Jahn SC, Rowland-Faux L, Stacpoole PW, James MO. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age. Biochem Biophys Res Commun 2015; 459:463-8. [PMID: 25748576 DOI: 10.1016/j.bbrc.2015.02.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023]
Abstract
We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology.
Collapse
Affiliation(s)
- Stephan C Jahn
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Laura Rowland-Faux
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Peter W Stacpoole
- Department of Medicine, University of Florida, Gainesville, FL 32610-0226, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States.
| |
Collapse
|
34
|
Pandey T, Chhetri G, Chinta R, Kumar B, Singh DB, Tripathi T, Singh AK. Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803. FEBS Open Bio 2014; 5:1-7. [PMID: 25685659 PMCID: PMC4309839 DOI: 10.1016/j.fob.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 01/17/2023] Open
Abstract
A novel class of glutathione S-transferase (GST) is reported. This GST catalyzes dichloroacetate (DCA) degradation and hydroperoxide reactions. Functionally this GST is similar to zeta and theta/alpha classes but structurally very different. In contrast to other bacterial GSTs, this GST exists as a monomer in solution. First report of DCA degradation by any bacterial GST and has potential biotechnological applications.
We report a novel class of glutathione S-transferase (GST) from the model cyanobacterium Synechocystis PCC 6803 (sll1545) which catalyzes the detoxification of the water pollutant dichloroacetate and also shows strong glutathione-dependent peroxidase activity representing the classical activities of zeta and theta/alpha class respectively. Interestingly, sll1545 has very low sequence and structural similarity with these classes. This is the first report of dichloroacetate degradation activity by any bacterial GST. Based on these results we classify sll1545 to a novel GST class, rho. The present data also indicate potential biotechnological and industrial applications of cyanobacterial GST in dichloroacetate-polluted areas.
Collapse
Affiliation(s)
- Tripti Pandey
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Gaurav Chhetri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ramesh Chinta
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bijay Kumar
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
35
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
36
|
Shroads AL, Coats BS, McDonough CW, Langaee T, Stacpoole PW. Haplotype variations in glutathione transferase zeta 1 influence the kinetics and dynamics of chronic dichloroacetate in children. J Clin Pharmacol 2014; 55:50-5. [PMID: 25079374 DOI: 10.1002/jcph.371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/24/2014] [Indexed: 11/12/2022]
Abstract
Dichloroacetate (DCA) is biotransformed by glutathione transferase zeta 1 (GSTZ1), a bifunctional enzyme that, as maleylacetoacetate isomerase (MAAI), catalyzes the penultimate step in tyrosine catabolism. DCA inhibits GSTZ1/MAAI, leading to delayed plasma drug clearance and to accumulation of potentially toxic tyrosine intermediates. Haplotype variability in GSTZ1 influences short-term DCA kinetics in healthy adults, but the impact of genotype in children treated chronically with DCA is unknown. Drug kinetics was studied in 17 children and adolescents with congenital mitochondrial diseases administered 1,2-(13) C-DCA. Plasma drug half-life and trough levels varied 3-6-fold, depending on GSTZ1/MAAI haplotype and correlated directly with urinary maleylacetone, a substrate for MAAI. However, chronic DCA exposure did not lead to progressive accumulation of plasma drug concentration; instead, kinetics parameters plateaued, consistent with the hypothesis that equipoise is established between the inhibitory effect of DCA on GSTZ1/MAAI and new enzyme synthesis. GSTZ1/MAAI haplotype variability affects DCA kinetics and biotransformation. However, these differences appear to be stable in most individuals and are not associated with DCA plasma accumulation or drug-associated toxicity in young children.
Collapse
Affiliation(s)
- A L Shroads
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
37
|
Pandey A, Vimal D, Chandra S, Saini S, Narayan G, Kar Chowdhuri D. Long-term dietary exposure to low concentration of dichloroacetic acid promoted longevity and attenuated cellular and functional declines in aged Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9628. [PMID: 24535708 PMCID: PMC4082589 DOI: 10.1007/s11357-014-9628-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Dichloroacetic acid (DCA), a water disinfection by-product, has attained emphasis due to its prospect for clinical use against different diseases including cancer along with negative impact on organisms. However, these reports are based on the toxicological as well clinical data using comparatively higher concentrations of DCA without much of environmental relevance. Here, we evaluate cellular as well as organismal effects of DCA at environmentally and mild clinically relevant concentrations (0.02-20.0 μg/ml) using an established model organism, Drosophila melanogaster. Flies were fed on food mixed with test concentrations of DCA for 12-48 h to examine the induction of reactive oxygen species (ROS) generation, oxidative stress (OS), heat shock genes (hsps) and cell death along with organismal responses. We also examined locomotor performance, ROS generation, glutathione (GSH) depletion, expression of GSH-synthesizing genes (gclc and gclm), and hsps at different days (0, 10, 20, 30, 40, 50) of the age in flies after prolonged DCA exposure. We observed mild OS and induction of antioxidant defense system in 20.0 μg/ml DCA-exposed organism after 24 h. After prolonged exposure to DCA, exposed organism exhibited improved survival, elevated expression of hsp27, gclc, and gclm concomitant with lower ROS generation and GSH depletion and improved locomotor performance. Conversely, hsp27 knockdown flies exhibited reversal of the above end points. The study provides evidence for the attenuation of cellular and functional decline in aged Drosophila after prolonged DCA exposure and the effect of hsp27 modulation which further incites studies towards the therapeutic application of DCA.
Collapse
Affiliation(s)
- Ashutosh Pandey
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
- />Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - Divya Vimal
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Swati Chandra
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Sanjay Saini
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Gopeshwar Narayan
- />Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - Debapratim Kar Chowdhuri
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| |
Collapse
|
38
|
Norman P. Pulmonary arterial hypertension: a rare disease that encourages the development of multiple treatments. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.924851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Zhong G, Li W, Gu Y, Langaee T, Stacpoole PW, James MO. Chloride and other anions inhibit dichloroacetate-induced inactivation of human liver GSTZ1 in a haplotype-dependent manner. Chem Biol Interact 2014; 215:33-9. [PMID: 24632415 DOI: 10.1016/j.cbi.2014.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 11/16/2022]
Abstract
The in vivo elimination rate of dichloroacetate (DCA), an investigational drug; is determined by the rate of its biotransformation to glyoxylate, catalyzed by glutathione transferase ζ1 (GSTZ1). DCA is a mechanism-based inactivator of GSTZ1, thus elimination of DCA is slowed with repeated dosing. We observed that chloride, a physiologically important anion, attenuated DCA-induced GSTZ1 inactivation in human liver cytosol in a concentration and GSTZ1 haplotype-dependent way. In the absence of chloride, incubation with 0.5mM DCA resulted in inactivation of GSTZ1 with a half-life of 0.4h (samples with the KRT haplotype) to 0.5h (EGT haplotype). At the hepatic physiological chloride concentration, 38mM, samples with the EGT haplotype retained more activity (80%) following a 2-h incubation with 0.5mM DCA than those possessing the KRT haplotype (55%). The chloride concentration that protected 50% of the GSTZ1 activity following 2-h incubation with 0.5mM DCA (EC50) was 15.0±3.1mM (mean±S.D., n=3) for EGT samples and 36.2±2.2mM for KRT samples. Bromide, iodide and sulfite also protected GSTZ1 from inactivation by DCA, however fluoride, sulfate, carbonate, acetate, cyanide did not. Protection by bromide varied by GSTZ1 haplotype: EC50 was 1.3±0.3mM for the EGT haplotype and 5.0±0.60mM for the KRT haplotype. The EC50 values for iodide and sulfite in liver cytosol samples with EGT haplotype were respectively 0.14±0.06mM and 9.6±1.1mM (mean±S.D., n=3). Because the in vivo half-life of DCA is determined by the fraction of active GSTZ1 in the liver, identifying factors that regulate GSTZ1 activity is important in determining appropriate DCA dosing in humans.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Wenjun Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Yuan Gu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Taimour Langaee
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL 32610-0486, United States
| | - Peter W Stacpoole
- Department of Medicine, University of Florida, Gainesville, FL 32610-0226, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0226, United States
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States.
| |
Collapse
|
40
|
Boone CD, Zhong G, Smeltz M, James MO, McKenna R. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a). Acta Crystallogr F Struct Biol Commun 2014; 70:187-9. [PMID: 24637752 PMCID: PMC3936459 DOI: 10.1107/s2053230x13033591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
Glutathione transferase zeta 1 (GSTZ1-1) is a homodimeric enzyme found in the cytosol and mitochondrial matrix of the liver and other tissues. It catalyzes the glutathione-dependent isomerization of maleylacetoacetate to fumarylacetoacetate in the tyrosine catabolic pathway and can metabolize small halogenated carboxylic acids. GSTZ1a-1a crystals diffracted to a resolution of 3.1 Å and belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°, with a calculated Matthews coefficient of 2.1 Å(3) Da(-1) assuming a dimer in the crystallographic asymmetric unit. Refinement of the structure is currently in progress.
Collapse
Affiliation(s)
- Christopher D. Boone
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| | - Guo Zhong
- Department of Medicinal Chemistry, University of Florida, PO Box 100485, Gainesville, FL 32610, USA
| | - Marci Smeltz
- Department of Medicinal Chemistry, University of Florida, PO Box 100485, Gainesville, FL 32610, USA
| | - Margaret O. James
- Department of Medicinal Chemistry, University of Florida, PO Box 100485, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| |
Collapse
|
41
|
Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 2013; 32:452-64. [PMID: 24297161 DOI: 10.1007/s10637-013-0047-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/31/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recurrent malignant brain tumors (RMBTs) carry a poor prognosis. Dichloroacetate (DCA) activates mitochondrial oxidative metabolism and has shown activity against several human cancers. DESIGN We conducted an open-label study of oral DCA in 15 adults with recurrent WHO grade III - IV gliomas or metastases from a primary cancer outside the central nervous system. The primary objective was detection of a dose limiting toxicity for RMBTs at 4 weeks of treatment, defined as any grade 4 or 5 toxicity, or grade 3 toxicity directly attributable to DCA, based on the National Cancer Institute's Common Toxicity Criteria for Adverse Events, version 4.0. Secondary objectives involved safety, tolerability and hypothesis-generating data on disease status. Dosing was based on haplotype variation in glutathione transferase zeta 1/maleylacetoacetate isomerase (GSTZ1/MAAI), which participates in DCA and tyrosine catabolism. RESULTS Eight patients completed at least 1 four week cycle. During this time, no dose-limiting toxicities occurred. No patient withdrew because of lack of tolerance to DCA, although 2 subjects experienced grade 0-1 distal parasthesias that led to elective withdrawal and/or dose-adjustment. All subjects completing at least 1 four week cycle remained clinically stable during this time and remained on DCA for an average of 75.5 days (range 26-312). CONCLUSIONS Chronic, oral DCA is feasible and well-tolerated in patients with recurrent malignant gliomas and other tumors metastatic to the brain using the dose range established for metabolic diseases. The importance of genetic-based dosing is confirmed and should be incorporated into future trials of chronic DCA administration.
Collapse
|
42
|
Lauritzen MH, Laustsen C, Butt SA, Magnusson P, Søgaard LV, Ardenkjær-Larsen JH, Åkeson P. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium. NMR IN BIOMEDICINE 2013; 26:1496-500. [PMID: 23794521 DOI: 10.1002/nbm.2982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 05/07/2023]
Abstract
A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized (13)C-labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β-oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [(13)C]bicarbonate signal in cardiac hyperpolarized [1-(13)C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1-(13)C]pyruvate. No [(13)C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [(13)C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [(13)C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [(13)C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle.
Collapse
Affiliation(s)
- Mette Hauge Lauritzen
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | | | | | | | | |
Collapse
|
43
|
Maisenbacher HW, Shroads AL, Zhong G, Daigle AD, Abdelmalak MM, Samper IS, Mincey BD, James MO, Stacpoole PW. Pharmacokinetics of Oral Dichloroacetate in Dogs. J Biochem Mol Toxicol 2013; 27:522-5. [DOI: 10.1002/jbt.21518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Guo Zhong
- Medicinal Chemistry; University of Florida; Gainesville FL 32610 USA
| | - Adam D. Daigle
- Small Animal Clinical Sciences; University of Florida; Gainesville FL 32610 USA
| | | | - Ivan Sosa Samper
- Small Animal Clinical Sciences; University of Florida; Gainesville FL 32610 USA
| | - Brandy D. Mincey
- Small Animal Clinical Sciences; University of Florida; Gainesville FL 32610 USA
| | - Margaret O. James
- Medicinal Chemistry; University of Florida; Gainesville FL 32610 USA
| | | |
Collapse
|
44
|
Abdelmalak M, Lew A, Ramezani R, Shroads AL, Coats BS, Langaee T, Shankar MN, Neiberger RE, Subramony S, Stacpoole PW. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab 2013; 109:139-43. [PMID: 23611579 PMCID: PMC3751427 DOI: 10.1016/j.ymgme.2013.03.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
We followed 8 patients (4 males) with biochemically and/or molecular genetically proven deficiencies of the E1α subunit of the pyruvate dehydrogenase complex (PDC; 3 patients) or respiratory chain complexes I (1 patient), IV (3 patients) or I+IV (1 patient) who received oral dichloroacetate (DCA; 12.5 mg/kg/12 h) for 9.7 to 16.5 years. All subjects originally participated in randomized controlled trials of DCA and were continued on an open-label chronic safety study. Patients (1 adult) ranged in age from 3.5 to 40.2 years at the start of DCA administration and are currently aged 16.9 to 49.9 years (mean ± SD: 23.5 ± 10.9 years). Subjects were either normal or below normal body weight for age and gender. The 3 PDC deficient patients did not consume high fat (ketogenic) diets. DCA maintained normal blood lactate concentrations, even in PDC deficient children on essentially unrestricted diets. Hematological, electrolyte, renal and hepatic status remained stable. Nerve conduction either did not change or decreased modestly and led to reduction or temporary discontinuation of DCA in 3 patients, although symptomatic worsening of peripheral neuropathy did not occur. We conclude that chronic DCA administration is generally well-tolerated in patients with congenital causes of lactic acidosis and is effective in maintaining normal blood lactate levels, even in PDC-deficient children not consuming strict ketogenic diets.
Collapse
Affiliation(s)
- Monica Abdelmalak
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Alicia Lew
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Ryan Ramezani
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Albert L. Shroads
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Bonnie S. Coats
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Taimour Langaee
- Center for Pharmacogenomics, College of Pharmacy, University of Florida College of Medicine, Gainesville, FL 32610
| | - Meena N. Shankar
- Clinical Research Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Richard E. Neiberger
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610
| | - S.H. Subramony
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Peter W. Stacpoole
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
45
|
Abstract
Over the last 15 years, some 16 open and controlled clinical trials for potential treatments of mitochondrial diseases have been reported or are in progress, and are summarized and reviewed herein. These include trials of administering dichloroacetate (an activator of pyruvate dehydrogenase complex), arginine or citrulline (precursors of nitric oxide), coenzyme Q10 (CoQ10; part of the electron transport chain and an antioxidant), idebenone (a synthetic analogue of CoQ10), EPI-743 (a novel oral potent 2-electron redox cycling agent), creatine (a precursor of phosphocreatine), combined administration (of creatine, α-lipoate, and CoQ10), and exercise training (to increase muscle mitochondria). These trials have included patients with various mitochondrial disorders, a selected subcategory of mitochondrial disorders, or specific mitochondrial disorders (Leber hereditary optic neuropathy or mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). The trial designs have varied from open-label/uncontrolled, open-label/controlled, or double-blind/placebo-controlled/crossover. Primary outcomes have ranged from single, clinically-relevant scores to multiple measures. Eight of these trials have been well-controlled, completed trials. Of these only 1 (treatment with creatine) showed a significant change in primary outcomes, but this was not reproduced in 2 subsequent trials with creatine with different patients. One trial (idebenone treatment of Leber hereditary optic neuropathy) did not show significant improvement in the primary outcome, but there was significant improvement in a subgroup of patients. Despite the paucity of benefits found so far, well-controlled clinical trials are essential building blocks in the continuing search for more effective treatment of mitochondrial disease, and current trials based on information gained from these prior experiences are in progress. Because of difficulties in recruiting sufficient mitochondrial disease patients and the relatively large expense of conducting such trials, advantageous strategies include crossover designs (where possible), multicenter collaboration, and the selection of very few, clinically relevant, primary outcomes.
Collapse
Affiliation(s)
- Douglas S Kerr
- Center for Inherited Disorders of Energy Metabolism, Case Western Reserve University, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-6004, USA.
| |
Collapse
|
46
|
Luft FC. Finding a job for dichloroacetate. J Mol Med (Berl) 2012; 91:329-31. [PMID: 23263789 DOI: 10.1007/s00109-012-0989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenbergerweg 80, 13125 Berlin, Germany.
| |
Collapse
|
47
|
DeBrosse SD, Okajima K, Zhang S, Nakouzi G, Schmotzer CL, Lusk-Kopp M, Frohnapfel MB, Grahame G, Kerr DS. Spectrum of neurological and survival outcomes in pyruvate dehydrogenase complex (PDC) deficiency: lack of correlation with genotype. Mol Genet Metab 2012; 107:394-402. [PMID: 23021068 DOI: 10.1016/j.ymgme.2012.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a relatively common mitochondrial disorder that primarily presents with neurological manifestations and lactic acidemia. We analyzed the clinical outcomes and neurological features of 59 consented symptomatic subjects (27 M, 32 F), who were confirmed to have PDC deficiency with defined mutations in one of the genes of PDC (PDHA1, n = 53; PDHB, n = 4; DLAT, n = 2), including 47 different mutations, of which 22 were novel, and for whom clinical records and/or structured interviews were obtained. 39% of these subjects (23/59) have died. Of these, 91% (21/23) died before age 4 years, 61% (14/23) before 1 year, and 43% (10/23) before 3 months. 56% of males died compared with 25% of females. Causes of death included severe lactic acidosis, respiratory failure, and infection. In subjects surviving past 6 months, a broad range of intellectual outcomes was observed. Of 42 subjects whose intellectual abilities were professionally evaluated, 19% had normal or borderline intellectual ability (CQ/IQ ≥ 70), 10% had mild intellectual disability (ID) (CQ/IQ 55-69), 17% had moderate ID (CQ/IQ 40-54), 24% had severe ID (CQ/IQ 25-39) and 33% had profound ID (CQ/IQ<25). Assessment by parents was comparable. Of 10 subjects who reached age 12 years, 9 had had professional IQ assessments, and only 4 had IQs ≥ 70 (only 2 of these 4 had assessments after age 12 years). The average outcome for females was severe-to-profound ID, whereas that of males was mild-to-moderate ID. Of subjects for whom specific neurological data were available, the majority had hypotonia (89%), and hypertonia or mixed hyper-/hypotonia (49%) were common. Seizures (57%), microcephaly (49%), and structural brain abnormalities including ventriculomegaly (67%) and agenesis, dysgenesis, or hypoplasia of the corpus callosum (55%) were common. Leigh syndrome was found in only 35%. Structural brain abnormalities were more common in females, and Leigh syndrome was more common in males. In a subgroup of 16 ambulatory subjects >3.5 years in whom balance was evaluated, ataxia was found in 13. Peripheral neuropathy was documented in 2 cases but not objectively evaluated in most subjects. Outcomes of this population with genetically confirmed PDC deficiency are heterogeneous and not distinctive. Correlations between specific genotypes and outcomes were not established. Although more females survive, related to the prevalence of X-linked PDHA1 mutations, symptomatic surviving females are generally more severely impaired cognitively and have a different pattern of neurological impairment compared to males. Neonatal or infant onset of symptoms was associated with poor outcomes. Males with PDHA1 mutations and low fibroblast PDC activity were less likely to survive beyond infancy. Recurrence rate in siblings of subjects with PDHA1 mutation was less than 5%. Paradoxically, in this retrospective review, potential factors considered possibly relevant to development, such as in vitro PDC activity, specific mutations, use of ketogenic diets, supplements, or medications, were generally not confirmed to be significantly correlated with objective outcomes of survival or neuro-cognitive function. Therefore, the basis of variability of these outcomes remains largely undetermined.
Collapse
|
48
|
Abstract
Considerable research has been conducted on mitochondrial biology as it pertains to aging. However, relatively little attention has been accorded the pyruvate dehydrogenase complex (PDC) relative to how we grow old and acquire age-related diseases. The purpose of this review is threefold: first, to describe the physiological chemistry of the PDC and define its place in normal cellular bioenergetics; second, to compare and contrast the pathogenesis and clinical features of congenital PDC deficiency with discrete examples of age-associated dysfunction of the complex; and third, to summarize recent findings in Caenorhabditis elegans that shed additional new light on the significance of the PDC to the aging process.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Departments of Medicine (Division of Endocrinology and Metabolism) and Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
49
|
Xue X, You S, Zhang Q, Wu Y, Zou GZ, Wang PC, Zhao YL, Xu Y, Jia L, Zhang X, Liang XJ. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol Pharm 2012; 9:634-44. [PMID: 22289032 DOI: 10.1021/mp200571k] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor resistance to chemotherapy is the major obstacle to employ cisplatin, one of the broadly used chemotherapeutic drugs, for effective treatment of various tumors in the clinic. Most acknowledged mechanisms of cancer resistance to cisplatin focus on increased nuclear DNA repair or detoxicity of cisplatin. We previously demonstrated that there was a unique metabolic profile in cisplatin-resistant (CP-r) human epidermoid adenocarcinoma KB-CP 20 and hepatoma BEL 7404-CP 20 cancer cells. In this study, we further defined hyperpolarized mitochondrial membrane potentials (Δψ(m)) in CP-r KB-CP 20 and BEL 7404-CP 20 cells compared to the cisplatin-sensitive (CP-s) KB-3-1 and BEL 7404 cells. Based on the mitochondrial dysfunction, mitaplatin was designed with two mitochondrial-targeting moieties [dichloroacetate (DCA) units] to the axial positions of a six-coordinate Pt(IV) center to sensitize cisplatin resistance. It was found that mitaplatin induced more apoptosis in CP-r KB-CP 20 and BEL 7404-CP 20 cells than that of cisplatin, DCA and cisplatin/DCA compared on an equal molar basis. There was more platinum accumulation in mitaplatin-treated CP-r cells due to enhanced transmembrane permeability of lipophilicity, and mitaplatin also showed special targeting to mitochondria. Moreover, in the case of treatment with mitaplatin, the dramatic collapse of Δψ(m) was shown in a dose-dependent manner, which was confirmed by FACS and confocal microscopic measurements. Reduced glucose utilization of CP-r cells was detected with specifically inhibited phosphorylation of pyruvate dehydrogenase (PDH) at Ser-232, Ser-293, and Ser-300 of the E1α subunit when treated with mitaplatin, which was indicated to modulate the abnormal glycolysis of resistant cells. The present study suggested novel mitochondrial mechanism of mitaplatin circumventing cisplatin resistance toward CP-r cells as a carrier across membrane to produce CP-like cytotoxicity and DCA-like mitochondria-dependent apoptosis. Therefore, mitochondria targeting compounds would be more vulnerable and selective to overcome cisplatin resistance due to the unique metabolic properties of CP-r cancer cells.
Collapse
Affiliation(s)
- Xue Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li W, Gu Y, James MO, Hines RN, Simpson P, Langaee T, Stacpoole PW. Prenatal and postnatal expression of glutathione transferase ζ 1 in human liver and the roles of haplotype and subject age in determining activity with dichloroacetate. Drug Metab Dispos 2011; 40:232-9. [PMID: 22028318 DOI: 10.1124/dmd.111.041533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glutathione transferase ζ 1 (GSTZ1), also known as maleylacetoacetate isomerase, catalyzes the penultimate step of tyrosine catabolism and metabolizes several α-halocarboxylic acids, including dichloroacetic acid (DCA), an investigational drug used for lactic acidosis and, recently, solid tumors. Age-related differences have been suggested in DCA pharmacotoxicology, but no information is available on GSTZ1 ontogeny in humans. Here, we investigated the cytosolic GSTZ1 developmental expression pattern and the influence of haplotype on GSTZ1 activity with DCA by using human livers from donors between 10 weeks gestation and 74 years. GSTZ1 expression was very low in fetal livers (<2 pmol of GSTZ1/mg cytosol). The expression began to increase after birth in an age-dependent manner until age 7 years. GSTZ1 was then sustained at stable, yet variable, levels (median, 20.0 pmol/mg cytosol; range, 4.8-47.3 pmol/mg cytosol) until age 74 years. GSTZ1 activity with DCA was strongly associated with haplotype and expression level. Samples homozygous or heterozygous for GSTZ1A exhibited ∼3-fold higher DCA dechlorinating activity than samples carrying other alleles at a given level of expression. The correlations (r²) between activity and expression were 0.90 and 0.68, respectively, for GSTZ1A carriers (n = 11) and noncarriers (n = 61). GSTZ1 is expressed in mitochondria in addition to cytosol. The GSTZ1A allele exhibited similar effects in the mitochondrial fraction by conferring a higher activity with DCA. In summary, we report a neonatal onset and an age-related increase in GSTZ1 protein expression during human liver development. Haplotype influenced GSTZ1 activity with DCA but not protein expression.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA
| | | | | | | | | | | | | |
Collapse
|