1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
3
|
Akintunde ME, Lin YP, Krakowiak P, Pessah IN, Hertz-Picciotto I, Puschner B, Ashwood P, Van de Water J. Ex vivo exposure to polybrominated diphenyl ether (PBDE) selectively affects the immune response in autistic children. Brain Behav Immun Health 2023; 34:100697. [PMID: 38020477 PMCID: PMC10654005 DOI: 10.1016/j.bbih.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1β, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.
Collapse
Affiliation(s)
- Marjannie Eloi Akintunde
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Yan-ping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paula Krakowiak
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Irva Hertz-Picciotto
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paul Ashwood
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
- School of Medicine, Department of Microbiology and Immunology, University of California, Davis, United States
| | - Judy Van de Water
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| |
Collapse
|
4
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted Versus Observed Activity of PCB Mixtures Toward the Ryanodine Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554299. [PMID: 37662381 PMCID: PMC10473618 DOI: 10.1101/2023.08.22.554299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs, and similar compounds, towards RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A. Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Erika B. Holland
- Department of Biological Science, California State University of Long Beach, Long Beach California
| |
Collapse
|
5
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
6
|
Chen Y, Wang Z, Fang G, Miao M, Liang H, Chen Y, Luan M, Liu X, Wen S, Chen A, Yuan W. Association of prenatal exposure to polybrominated diphenyl ethers at low levels with adiposity measures in children up to 6 years. CHEMOSPHERE 2022; 303:134867. [PMID: 35595104 DOI: 10.1016/j.chemosphere.2022.134867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The effects of prenatal PBDEs exposure, especially at low levels, on childhood obesity are scarce. No previous studies have investigated the effect modification by breastfeeding on the associations of PBDEs exposure with childhood obesity. We aimed to investigate the associations of prenatal PBDEs exposure with adiposity measures in children up to 6 years, and the effect modification by breastfeeding. Participants were mother-child pairs from the Shanghai-Minhang Birth Cohort study. Nine PBDE congeners were assessed in cord blood plasma. We obtained information about child weight (0-6 years), height (0.5-6 years), arm circumference (0-6 years), and waist circumference (0-6 years) at each follow-up visit. Breastfeeding duration was collected when children were aged 1 year and was categorized as short (≤6 months) and adequate (>6 months). Multiple linear regression models were used to examine the associations of PBDE concentrations with adiposity measures of the children at each age. Generalized estimating equation (GEE) models were used to estimate the overall associations of PBDEs exposure with adiposity measures. We examined the effect modification by breastfeeding using stratified analyses and by including interaction terms into GEE models. For boys, there was a general profile of positive associations of several PBDE congeners exposure with adiposity measures. Especially, boys with higher BDE-153 concentration had higher adiposity measures at each time point. For girls, we also found positive associations of BDE-100 and -153 exposure with adiposity measures. The GEE models showed consistent patterns for BDE-153 in boys and for BDE-100 and -153 in girls. In breastfeeding-stratified analyses, stronger associations of PBDEs exposure with adiposity measures were generally found in children who were shortly breastfed. Our findings suggest that prenatal exposure to PBDEs at low levels may influence childhood adiposity measures, and the potential effects of PBDEs were attenuated by adequate breastfeeding.
Collapse
Affiliation(s)
- Yafei Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Guanghong Fang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Yao Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Min Luan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Xiaofang Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China.
| |
Collapse
|
7
|
Nephrotoxicity of Flame Retardants: An Understudied but Critical Toxic Endpoint. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Chen H, Carty RK, Bautista AC, Hayakawa KA, Lein PJ. Triiodothyronine or Antioxidants Block the Inhibitory Effects of BDE-47 and BDE-49 on Axonal Growth in Rat Hippocampal Neuron-Glia Co-Cultures. TOXICS 2022; 10:92. [PMID: 35202279 PMCID: PMC8879960 DOI: 10.3390/toxics10020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
We previously demonstrated that polybrominated diphenyl ethers (PBDEs) inhibit the growth of axons in primary rat hippocampal neurons. Here, we test the hypothesis that PBDE effects on axonal morphogenesis are mediated by thyroid hormone and/or reactive oxygen species (ROS)-dependent mechanisms. Axonal growth and ROS were quantified in primary neuronal-glial co-cultures dissociated from neonatal rat hippocampi exposed to nM concentrations of BDE-47 or BDE-49 in the absence or presence of triiodothyronine (T3; 3-30 nM), N-acetyl-cysteine (NAC; 100 µM), or α-tocopherol (100 µM). Co-exposure to T3 or either antioxidant prevented inhibition of axonal growth in hippocampal cultures exposed to BDE-47 or BDE-49. T3 supplementation in cultures not exposed to PBDEs did not alter axonal growth. T3 did, however, prevent PBDE-induced ROS generation and alterations in mitochondrial metabolism. Collectively, our data indicate that PBDEs inhibit axonal growth via ROS-dependent mechanisms, and that T3 protects axonal growth by inhibiting PBDE-induced ROS. These observations suggest that co-exposure to endocrine disruptors that decrease TH signaling in the brain may increase vulnerability to the adverse effects of developmental PBDE exposure on axonal morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA; (H.C.); (R.K.C.); (A.C.B.); (K.A.H.)
| |
Collapse
|
9
|
Zhu Q, Liu Z, Wang Y, Song E, Song Y. Endoplasmic reticulum stress manipulates autophagic response that antagonizes polybrominated diphenyl ethers quinone induced cytotoxicity in microglial BV2 cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124958. [PMID: 33450633 DOI: 10.1016/j.jhazmat.2020.124958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were widely used as flame retardants. Previously, we reported that their quinone-type metabolite (PBDEQ) induced selective autophagy, but its biological consequences remain obscure. Here, we illustrated the possible link of PBDEQ-induced autophagy with endoplasmic reticulum (ER) stress and cytotoxicity in microglial BV2 cells. We found PBDEQ increased the formation of autophagosomes, promoted autophagic degradation, suggesting an improved autophagy flux in BV2 cells. Interestingly, both pharmacologic autophagy inhibitors and autophagy-related 5 gene small interfering RNA (ATG5 siRNA) aggravated the cytotoxicity of PBDEQ, suggesting the antagonizing role of autophagy. PBDEQ induced ER stress and activated protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) axis of classic unfolded protein response (UPR) pathway, whilst ER stress inhibitor blocked PBDEQ-induced autophagy. Moreover, N-acetyl-L-cysteine (NAC) alleviated PBDEQ-induced activation of ER stress and autophagy, suggesting reactive oxygen species (ROS) were involved in regulating PBDEQ-induced ER stress and autophagy. Taken together, our results demonstrate a new mechanism of PBDEQ-associated toxicity.
Collapse
Affiliation(s)
- Qiushuang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Holland EB, Pessah IN. Non-dioxin-like polychlorinated biphenyl neurotoxic equivalents found in environmental and human samples. Regul Toxicol Pharmacol 2021; 120:104842. [PMID: 33346014 PMCID: PMC8366267 DOI: 10.1016/j.yrtph.2020.104842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/01/2022]
Abstract
Non-dioxin like polychlorinated biphenyls (NDL PCB) are recognized neurotoxicants with implications on altered neurodevelopment and neurodegeneration in exposed organisms. NDL PCB neurotoxic relative potency schemes have been developed for a single mechanism, namely activity toward the ryanodine receptor (RyR), or combined mechanisms including, but not limited to, alterations of RyR and dopaminergic pathways. We compared the applicability of the two neurotoxic equivalency (NEQ) schemes and applied each scheme to PCB mixtures found in environmental and human serum samples. A multiple mechanistic NEQ predicts higher neurotoxic exposure concentrations as compared to a scheme based on the RyR alone. Predictions based on PCB ortho categorization, versus homologue categorization, lead to a higher prediction of neurotoxic exposure concentrations, especially for the mMOA. The application of the NEQ schemes to PCB concentration data suggests that PCBs found in fish from US lakes represent a considerable NEQ exposure to fish consuming individuals, that indoor air of schools contained high NEQ concentrations representing an exposure concern when inhaled by children, and that levels already detected in the serum of adults and children may contribute to neurotoxicity. With further validation and in vivo exposure data the NEQ scheme would help provide a more inclusive measure of risk presented by PCB mixtures.
Collapse
Affiliation(s)
- E B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA.
| | - I N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Iqubal A, Ahmed M, Ahmad S, Sahoo CR, Iqubal MK, Haque SE. Environmental neurotoxic pollutants: review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41175-41198. [PMID: 32820440 DOI: 10.1007/s11356-020-10539-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/16/2020] [Indexed: 05/23/2023]
Abstract
Environmental pollutants are recognized as one of the major concerns for public health and responsible for various forms of neurological disorders. Some of the common sources of environmental pollutants related to neurotoxic manifestations are industrial waste, pesticides, automobile exhaust, laboratory waste, and burning of terrestrial waste. Among various environmental pollutants, particulate matter, ultrafine particulate matter, nanoparticles, and lipophilic vaporized toxicant (acrolein) easily cross the blood-brain barrier, activate innate immune responses in the astrocytes, microglia, and neurons, and exert neurotoxicity. Growing shreds of evidence from human epidemiological studies have correlated the environmental pollutants with neuroinflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, myelin sheath disruption, and alterations in the blood-brain barrier anatomy leading to cognitive dysfunction and poor quality of life. These environmental pollutants also considerably cause developmental neurotoxicity, exhibit teratogenic effect and mental growth retardance, and reduce IQ level. Until now, the exact mechanism of pollutant-induced neurotoxicity is not known, but studies have shown interference of pollutants with the endogenous antioxidant defense system, inflammatory pathway (Nrf2/NF-kB, MAPKs/PI3K, and Akt/GSK3β), modulation of neurotransmitters, and reduction in long-term potentiation. In the current review, various sources of pollutants and exposure to the human population, developmental neurotoxicity, and molecular mechanism of different pollutants involved in the pathogenesis of different neurological disorders have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Truong KM, Cherednichenko G, Pessah IN. Interactions of Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) With Skeletal Muscle Ryanodine Receptor Type 1. Toxicol Sci 2020; 170:509-524. [PMID: 31127943 DOI: 10.1093/toxsci/kfz120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, and p,p'-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01-10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p'-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1-10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p'-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.
Collapse
Affiliation(s)
- Kim M Truong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Gennady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| |
Collapse
|
14
|
Vuong AM, Yolton K, Braun JM, Sjodin A, Calafat AM, Xu Y, Dietrich KN, Lanphear BP, Chen A. Polybrominated diphenyl ether (PBDE) and poly- and perfluoroalkyl substance (PFAS) exposures during pregnancy and maternal depression. ENVIRONMENT INTERNATIONAL 2020; 139:105694. [PMID: 32259757 PMCID: PMC7275897 DOI: 10.1016/j.envint.2020.105694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Experimental studies in rodents suggest that polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkyl substances (PFAS) may contribute to depressive symptoms. Few studies have examined the impact of these chemicals on depression in adults. OBJECTIVE To examine the associations between serum PBDE and PFAS concentrations during pregnancy and repeated measures of depressive symptoms in women assessed from pregnancy to 8 years postpartum. METHODS This study was based on 377 women from the Health Outcomes and Measures of the Environment Study, a birth cohort in Cincinnati, OH (USA). PBDEs (BDE-28, -47, -99, -100, -153, and ∑PBDEs) and PFAS (perfluorooctanoate [PFOA], perfluorooctane sulfonate [PFOS], perfluorohexane sulfonate [PFHxS], perfluorononanoate [PFNA]) were quantified in maternal serum at 16 ± 3 weeks gestation. Depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II) at ~20 weeks gestation and up to seven times during postpartum visits (4 weeks, 1, 2, 3, 4, 5, and 8 years). We used linear mixed models to estimate covariate-adjusted associations between chemical concentrations and repeated measures of BDI-II. Multinomial logistic regression models were used to estimate the relative risk ratios of having a medium or high depression trajectory. RESULTS We found that a 10-fold increase in BDE-28 at 16 ± 3 weeks gestation was associated with significantly increased BDI-II scores (β = 2.5 points, 95% confidence interval [CI] 0.8, 4.2) from pregnancy to 8 years postpartum. Significant positive associations were also observed with BDE-47, -100, -153, and ∑PBDEs. A 10-fold increase in ∑PBDEs was associated with a 4.6-fold increased risk (95% CI 1.8, 11.8) of a high trajectory for BDI-II compared to a low trajectory. We observed no significant associations between PFAS and BDI-II scores. CONCLUSION PBDEs during pregnancy were associated with more depressive symptoms among women in this cohort.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas School of Public Health, 4700 S. Maryland Parkway, Suite 335, MS 3063, Las Vegas, NV 89119-3063, USA; Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Blockley Hall 231, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
16
|
Effects of environmental pollutants on calcium release and uptake by rat cortical microsomes. Neurotoxicology 2018; 69:266-277. [DOI: 10.1016/j.neuro.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
17
|
Hertz-Picciotto I, Schmidt RJ, Walker CK, Bennett DH, Oliver M, Shedd-Wise KM, LaSalle JM, Giulivi C, Puschner B, Thomas J, Roa DL, Pessah IN, Van de Water J, Tancredi DJ, Ozonoff S. A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117004. [PMID: 30465702 PMCID: PMC6371714 DOI: 10.1289/ehp535] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Until recently, environmental factors in autism spectrum disorder (ASD) were largely ignored. Over the last decade, altered risks from lifestyle, medical, chemical, and other factors have emerged through various study designs: whole population cohorts linked to diagnostic and/or exposure-related databases, large case-control studies, and smaller cohorts of children at elevated risk for ASD. OBJECTIVES This study aimed to introduce the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) prospective study and its goals, motivate the enhanced-risk cohort design, describe protocols and main exposures of interest, and present initial descriptive results for the study population. METHODS Families having one or more previous child with ASD were contacted before or during a pregnancy, and once the woman became pregnant, were invited to enroll. Data and biological samples were collected throughout pregnancy, at birth, and until the child's third birthday. Neurodevelopment was assessed longitudinally. The study began enrolling in 2006 and is ongoing. RESULTS As of 30 June 2018, 463 pregnant mothers have enrolled. Most mothers ([Formula: see text]) were thirty years of age or over, including 7.9% who are fourty years of age or over. The sample includes 22% Hispanic and another 25% nonHispanic Black, Asian, or multiracial participants; 24% were born outside the United States. Retention is high: 84% of participants whose pregnancies did not end in miscarriage completed the study or are still currently active. Among children evaluated at 36 months of age, 24% met criteria for ASD, and another 25% were assessed as nonASD nontypical development. CONCLUSION Few environmental studies of ASD prospectively obtain early-life exposure measurements. The MARBLES study fills this gap with extensive data and specimen collection beginning in pregnancy and has achieved excellent retention in an ethnically diverse study population. The 24% familial recurrence risk is consistent with recent reported risks observed in large samples of siblings of children diagnosed with ASD. https://doi.org/10.1289/EHP535.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Cheryl K Walker
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Obstetrics & Gynecology, School of Medicine, UC Davis, Davis, California, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
| | - McKenzie Oliver
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Kristine M Shedd-Wise
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
| | - Janine M LaSalle
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Cecilia Giulivi
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Birgit Puschner
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Jennifer Thomas
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Dorcas L Roa
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Isaac N Pessah
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Judy Van de Water
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Rheumatology and Allergy, School of Medicine, UC Davis, Davis, California, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, UC Davis, Davis, California, USA
| | - Sally Ozonoff
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Psychiatry, School of Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
18
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Polybrominated diphenyl ether (PBDE) neurotoxicity: a systematic review and meta-analysis of animal evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:269-289. [PMID: 30352012 PMCID: PMC6786272 DOI: 10.1080/10937404.2018.1514829] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A recent systematic review (SR) and meta-analysis of human studies found an association between prenatal serum polybrominated diphenyl ethers (PBDE) concentrations and a decrease in the IQ of children. A SR of experimental developmental animal PBDE-mediated neurotoxicity studies was performed in the present study. Outcomes assessed included measures related to learning, memory, and attention, which parallel the intelligence-related outcomes evaluated in the human studies SR. PubMed, Embase, and Toxline were searched for relevant experimental non-human mammalian studies. Evaluation of risk of bias (RoB) and overall body of evidence followed guidance developed by the National Toxicology Program. Animal studies using varying designs and outcomes were available for BDEs 47, 99, 153, 203, 206, and 209 and the technical mixture DE-71. Study reporting of methods and results was often incomplete leading to concerns regarding RoB. A meta-analysis of 6 Morris water maze studies showed evidence of a significant increase in last trial latency (effect size of 25.8 [CI, 20.3 to 31.2]) in PBDE-exposed animals with low heterogeneity. For most endpoints, there were unexplained inconsistencies across studies and no consistent evidence of a dose-response relationship. There is a "moderate" level of evidence that exposure to BDEs 47, 99, and 209 affects learning. For other PBDEs and other endpoints, the level of evidence was "low" or "very low". The meta-analysis led to stronger conclusions than that based upon a qualitative review of the evidence. The SR also identified RoB concerns that might be remedied by better study reporting.
Collapse
Affiliation(s)
- David C. Dorman
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kamin J. Johnson
- Predictive Safety Center, Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Ellen Mantus
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Susan Martel
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew A. Rooney
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children’s Research Institute, Seattle WA, USA
| | - Susan L. Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
19
|
The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci Rep 2018; 8:15498. [PMID: 30341338 PMCID: PMC6195506 DOI: 10.1038/s41598-018-33945-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic phytoplankton contribute to the flow of elements through marine food webs, biogeochemical cycles, and Earth's climate. Therefore, how phytoplankton die is a critical determinate of the flow and fate of nutrients. While heterotroph grazing and viral infection contribute to phytoplankton mortality, recent evidence suggests that bacteria-derived cues also control phytoplankton lysis. Here, we report exposure to nanomolar concentrations of 2,3,4,5-tetrabromopyrrole (TBP), a brominated chemical cue synthesized by marine γ-proteobacteria, resulted in mortality of seven phylogenetically-diverse phytoplankton species. A comparison of nine compounds of marine-origin containing a range of cyclic moieties and halogenation indicated that both a single pyrrole ring and increased bromination were most lethal to the coccolithophore, Emiliania huxleyi. TBP also rapidly induced the production of reactive oxygen species and the release of intracellular calcium stores, both of which can trigger the activation of cellular death pathways. Mining of the Ocean Gene Atlas indicated that TBP biosynthetic machinery is globally distributed throughout the water column in coastal areas. These findings suggest that bacterial cues play multiple functions in regulating phytoplankton communities by inducing biochemical changes associated with cellular death. Chemically-induced lysis by bacterial infochemicals is yet another variable that must be considered when modeling oceanic nutrient dynamics.
Collapse
|
20
|
Zheng J, McKinnie SMK, El Gamal A, Feng W, Dong Y, Agarwal V, Fenical W, Kumar A, Cao Z, Moore BS, Pessah IN. Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca 2+ Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5469-5478. [PMID: 29617551 PMCID: PMC6195434 DOI: 10.1021/acs.est.8b00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Contemporary sources of organohalogens produced as disinfection byproducts (DBPs) are receiving considerable attention as emerging pollutants because of their abundance, persistence, and potential to structurally mimic natural organohalogens produced by bacteria that serve signaling or toxicological functions in marine environments. Here, we tested 34 organohalogens from anthropogenic and marine sources to identify compounds active toward ryanodine receptor (RyR1), known toxicological targets of non-dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). [3H]Ryanodine ([3H]Ry) binding screening (≤2 μM) identified 10 highly active organohalogens. Further analysis indicated that 2,3-dibromoindole (14), tetrabromopyrrole (31), and 2,3,5-tribromopyrrole (34) at 10 μM were the most efficacious at enhancing [3H]Ry binding. Interestingly, these congeners also inhibited microsomal sarcoplasmic/endoplasmic reticulum (SR/ER) Ca2+ ATPase (SERCA1a). Dual SERCA1a inhibition and RyR1 activation triggered Ca2+ efflux from microsomal vesicles with initial rates rank ordered 31 > 34 > 14. Hexabromobipyrroles (25) enhanced [3H]Ry binding moderately with strong SERCA1a inhibition, whereas pyrrole (24), 2,3,4-tribromopyrrole (26), and ethyl-4-bromopyrrole-2-carboxylate (27) were inactive. Of three PBDE derivatives of marine origin active in the [3H]Ry assay, 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (18) was also a highly potent SERCA1a inhibitor. Molecular targets of marine organohalogens that are also DBPs of emerging environmental concern are likely to contribute to their toxicity.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
- Department of TCM Pharmacology, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shaun M. K. McKinnie
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Abrahim El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | | | | | - Abdhesh Kumar
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
- Department of TCM Pharmacology, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography & Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
21
|
Dingemans MML, Kock M, van den Berg M. Mechanisms of Action Point Towards Combined PBDE/NDL-PCB Risk Assessment. Toxicol Sci 2018; 153:215-24. [PMID: 27672163 DOI: 10.1093/toxsci/kfw129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels, voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several effects on developmental (reproductive) processes have also been observed, but results were more dispersed and insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated with combined exposure to both groups of compounds during early life. Additional validation studies are needed to quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.
Collapse
Affiliation(s)
- Milou M L Dingemans
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marjolijn Kock
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Chen H, Streifel KM, Singh V, Yang D, Mangini L, Wulff H, Lein PJ. From the Cover: BDE-47 and BDE-49 Inhibit Axonal Growth in Primary Rat Hippocampal Neuron-Glia Co-Cultures via Ryanodine Receptor-Dependent Mechanisms. Toxicol Sci 2018; 156:375-386. [PMID: 28003438 DOI: 10.1093/toxsci/kfw259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread environmental contaminants associated with adverse neurodevelopmental outcomes in children and preclinical models; however, the mechanisms by which PBDEs cause developmental neurotoxicity remain speculative. The structural similarity between PBDEs and nondioxin-like (NDL) polychlorinated biphenyls (PCBs) suggests shared toxicological properties. Consistent with this, both NDL PCBs and PBDEs have been shown to stabilize ryanodine receptors (RyRs) in the open configuration. NDL PCB effects on RyR activity are causally linked to increased dendritic arborization, but whether PBDEs similarly enhance dendritic growth is not known. In this study, we quantified the effects of individual PBDE congeners on not only dendritic but also axonal growth since both are regulated by RyR-dependent mechanisms, and both are critical determinants of neuronal connectivity. Neuronal-glial co-cultures dissociated from the neonatal rat hippocampus were exposed to BDE-47 or BDE-49 in the culture medium. At concentrations ranging from 20 pM to 2 µM, neither PBDE congener altered dendritic arborization. In contrast, at concentrations ≥ 200 pM, both congeners delayed neuronal polarization resulting in significant inhibition of axonal outgrowth during the first few days in vitro. The axon inhibitory effects of these PBDE congeners occurred independent of cytotoxicity, and were blocked by pharmacological antagonism of RyR or siRNA knockdown of RyR2. These results demonstrate that the molecular and cellular mechanisms by which PBDEs interfere with neurodevelopment overlap with but are distinct from those of NDL PCBs, and suggest that altered patterns of neuronal connectivity may contribute to the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Karin M Streifel
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Dongren Yang
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Linley Mangini
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine
| |
Collapse
|
23
|
Wong S, Giulivi C. Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2017; 15:614-23. [PMID: 27071785 DOI: 10.2174/1871527315666160413122624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/29/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a growing concern with more than 1 in every 68 children affected in the United States by age 8. Limited scientific advances have been made regarding the etiology of autism, with general agreement that both genetic and environmental factors contribute to this disorder. OBJECTIVE To explore the link between exposure to PBDE, mitochondrial dysfunction and autism risk. RESULTS Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD including mitochondrial dysfunction based on (i) their increased environmental abundance and human exposures, (ii) their activity towards implicated in neuronal development and synaptic plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria. CONCLUSION In this review, we propose that PBDE, and possibly other environmental exposures, during child development can induce or compound mitochondrial dysfunction, which in conjunction with a dysregulated antioxidant response, increase a child's susceptibility of autism.
Collapse
Affiliation(s)
| | - Cecilia Giulivi
- University of California, Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., 3009 VetMed3B, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Zhu Y, Tan YQ, Leung LK. Exposure to 2,2',4,4'-tetrabromodiphenyl ether at late gestation modulates placental signaling molecules in the mouse model. CHEMOSPHERE 2017; 181:289-295. [PMID: 28448910 DOI: 10.1016/j.chemosphere.2017.04.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants generally employed in manufacturing household items. Surface water may remove and carry these chemicals to the drainage upon disposal of the items, and ultimately the chemicals enter our food chain. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a PBDE congener commonly found in contaminated seafood. The placenta is the site of nutrient exchange and is responsible for reproductive hormone secretion during pregnancy. In the present study, pregnant ICR mice were given p.o. daily doses of BDE-47 at 0, 0.36, 3.6, 36 mg/kg for 4 days (from E13.5 to E16.5). Compared to the control group, increased rates of stillborn and low birth weight were observed in mice treated with 36 mg BDE-47/kg. Plasma testosterone and progesterone levels were reduced in mice treated with 36 mg BDE-47/kg. In addition, the group treated with 3.6 mg/kg of BDE-47 displayed decreased growth hormone (Gh) peptide expression in the placental tissue extracted at E17.5. As this peptide stimulates growth, the expression pattern might suggest compromised fetal development. Further analysis indicated that mitogen-activated protein kinases (MAPK) were activated in the placental tissue of the BDE-47-treatment groups. The activation of these signaling molecules might affect the hormonal and other physiological functions in the tissue.
Collapse
Affiliation(s)
- Yun Zhu
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
25
|
Uptake and biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species. Sci Rep 2017; 7:44263. [PMID: 28287149 PMCID: PMC5347160 DOI: 10.1038/srep44263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/07/2017] [Indexed: 11/30/2022] Open
Abstract
Hydroxylated- and methoxylated- polybrominated diphenyl ethers (OH-PBDEs and MeO-PBDEs) are more toxic than PBDEs and occur widely in the marine environment, and yet their origins remain controversial. In this study, four species of microalgae (Isochrysis galbana, Prorocentrum minimum, Skeletonema grethae and Thalassiosira pseudonana) were exposed to BDE-47, which is synthetic and is the predominant congener of PBDEs in the environment. By chemical analysis after incubation of 2 to 6 days, the efficiency of uptake of BDE-47 and, more importantly, the potential of undergoing biotransformation to form OH-PBDEs and MeO-PBDEs by the microalgae were investigated. Growth rates of these axenic microalgae were not affected upon exposure to environmentally relevant concentrations (0.2–20 μg BDE-47 L−1), and accumulation ranged from 0.772 ± 0.092 μg BDE-47 g−1 lipid to 215 ± 54 μg BDE-47 g−1 lipid within 2 days. Debromination of BDE-47 and formation of BDE-28 occurred in all microalgae species (0.01 to 0.87%), but biotransformation to OH-PBDEs was only found in I. galbana upon exposure to extremely high concentration. The results of this study showed that biotransformation of microalgae species is unlikely an explanation for the OH-PBDEs and MeO-PBDEs found in the marine environment.
Collapse
|
26
|
Liu H, Yang X, Yin C, Wei M, He X. Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:46-54. [PMID: 27816713 DOI: 10.1016/j.ecoenv.2016.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) exerting disrupting endocrine function. However, this mechanism has not received enough attention compared with that of hormones receptors and synthetase. Recently, we have explored the interaction between EDCs and sex hormone-binding globulin of human (hSHBG). In this study, interactions between EDCs and sex hormone-binding globulin of eight fish species (fSHBG) were investigated by employing classification methods and quantitative structure-activity relationships (QSAR). In the modeling, the relative binding affinity (RBA) of a chemical with 17β-estradiol binding to fSHBG was selected as the endpoint. Classification models were developed for two fish species, while QSAR models were established for the other six fish species. Statistical results indicated that the models had satisfactory goodness of fit, robustness and predictive ability, and that application domain covered a large number of endogenous and exogenous steroidal and non-steroidal chemicals. Additionally, by comparing the log RBA values, it was found that the same chemical may have different affinities for fSHBG from different fish species, thus species diversity should be taken into account. However, the affinity of fSHBG showed a high correlation for fishes within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes and Siluriformes), thus the fSHBG binding data for one fish species could be used to extrapolate other fish species in the same Order.
Collapse
Affiliation(s)
- Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiang-wang-miao Street, Nanjing 210042, China.
| | - Cen Yin
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Mengbi Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiao He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
27
|
Marchitti SA, Mazur CS, Dillingham CM, Rawat S, Sharma A, Zastre J, Kenneke JF. Inhibition of the Human ABC Efflux Transporters P-gp and BCRP by the BDE-47 Hydroxylated Metabolite 6-OH-BDE-47: Considerations for Human Exposure. Toxicol Sci 2016; 155:270-282. [PMID: 28031414 DOI: 10.1093/toxsci/kfw209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity. These findings suggest that some effects previously attributed to BDE-47 in biological systems may actually be due to 6-OH-BDE-47. Considerations for human exposure are discussed.
Collapse
Affiliation(s)
- Satori A Marchitti
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Christopher S Mazur
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Caleb M Dillingham
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Swati Rawat
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605
| | - Anshika Sharma
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - John F Kenneke
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605;
| |
Collapse
|
28
|
Holland EB, Feng W, Zheng J, Dong Y, Li X, Lehmler HJ, Pessah IN. An Extended Structure-Activity Relationship of Nondioxin-Like PCBs Evaluates and Supports Modeling Predictions and Identifies Picomolar Potency of PCB 202 Towards Ryanodine Receptors. Toxicol Sci 2016; 155:170-181. [PMID: 27655348 DOI: 10.1093/toxsci/kfw189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nondioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine-sensitive Ca2+ channels (RyRs) and this activation has been associated with neurotoxicity in exposed animals. RyR-active congeners follow a distinct structure-activity relationship and a quantitative structure-activity relationship (QSAR) predicts that a large number of PCBs likely activate the receptor, which requires validation. Additionally, previous structural based conclusions have been established using receptor ligand binding assays but the impact of varying PCB structures on ion channel gating behavior is not understood. We used [3H]Ryanodine ([3H]Ry) binding to assess the RyR-activity of 14 previously untested PCB congeners evaluating the predictability of the QSAR. Congeners determined to display widely varying potency were then assayed with single channel voltage clamp analysis to assess direct influences on channel gating kinetics. The RyR-activity of individual PCBs assessed in in vitro assays followed the general pattern predicted by the QSAR but binding and lipid bilayer experiments demonstrated higher potency than predicted. Of the 49 congeners tested to date, tetra-ortho PCB 202 was found to be the most potent RyR-active congener increasing channel open probability at 200 pM. Shifting meta-substitutions to the para-position resulted in a > 100-fold reduction in potency as seen with PCB 197. Non-ortho PCB 11 was found to lack activity at the receptor supporting a minimum mono-ortho substitution for PCB RyR activity. These findings expand and support previous SAR assessments; where out of the 49 congeners tested to date 42 activate the receptor demonstrating that the RyR is a sensitive and common target of PCBs.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; .,Department of Biological Sciences, California State University of Long Beach, Long Beach, California.,Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,The Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,UC Davis Center for Children's Environmental Health and Disease Prevention, Davis, California
| |
Collapse
|
29
|
Chen Y, Ma S, Li Y, Yan M, Zeng G, Zhang J, Zhang J, Tan X. Microbiological study on bioremediation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting. Appl Microbiol Biotechnol 2016; 100:9709-9718. [DOI: 10.1007/s00253-016-7798-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/06/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
|
30
|
Liu H, Yang X, Lu R. Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin. CHEMOSPHERE 2016; 156:1-7. [PMID: 27156209 DOI: 10.1016/j.chemosphere.2016.04.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) to disrupt endocrine function. However, this mechanism has not gotten enough attention, compared with that of hormone receptors and synthetase up to now, especially for the sex hormone transport process. In this study, we selected sex hormone-binding globulin (SHBG) and EDCs as a model system and the relative competing potency of a chemical with testosterone binding to SHBG (log RBA) as the endpoints, to develop classification models and quantitative structure-activity relationship (QSAR) models. With the classification model, a satisfactory model with nR09, nR10 and RDF155v as the most relevant variables was screened. Statistic results indicated that the model had the sensitivity, specificity, accuracy of 86.4%, 80.0%, 84.4% and 85.7%, 87.5%, 86.2% for the training set and validation set, respectively, highlighting a high classification performance of the model. With the QSAR model, a satisfactory model with statistical parameters, specifically, an adjusted determination coefficient (Radj(2)) of 0.810, a root mean square error (RMSE) of 0.616, a leave-one-out cross-validation squared correlation coefficient (QLOO(2)) of 0.777, a bootstrap method (QBOOT(2)) of 0.756, an external validation coefficient (Qext(2)) of 0.544 and a RMSEext of 0.859, were obtained, which implied satisfactory goodness of fit, robustness and predictive ability. The applicability domain of the current model covers a large number of structurally diverse chemicals, especially a few classes of nonsteroidal compounds.
Collapse
Affiliation(s)
- Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiang-wang-miao Street, Nanjing, 210042, China
| | - Rui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
31
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
32
|
Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 2016; 59:240-255. [PMID: 27212452 DOI: 10.1016/j.neuro.2016.05.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Timothy Shafer
- Integrated Systems Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
33
|
Isomer Separation of Polybrominated Diphenyl Ether Metabolites using nanoESI-TIMS-MS. ACTA ACUST UNITED AC 2016; 19:69-76. [PMID: 27642261 DOI: 10.1007/s12127-016-0198-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this paper, high-resolution nano-electrospray ionization-trapped ion mobility spectrometry coupled to mass spectrometry (nESI-TIMS-MS) is used for the study of hydroxylated polybrominated diphenyl ether (OH-PBDE) metabolites. In particular, experimental ion-neutral collision cross sections (CCS) were measured for five structural OH-PBDE isomers using TIMS-MS. Candidate structures were proposed for each IMS band observed in good agreement with the experimental CCS measurements (5% error). The analytical power of TIMS-MS to baseline and partially separate structural isomers of OH-BDE in binary and ternary mixtures is shown for single charge species with a mobility resolving power of RIMS ~ 400. This work provides the proof of concept for the analysis of low concentration OH-PBDE in environmental samples based on accurate collision cross section and mass measurements without the need for derivatization and pre-fractionation protocols, thus significantly reducing the cost and analysis time.
Collapse
|
34
|
Zhao H, Jiang J, Wang Y, Lehmler HJ, Buettner GR, Quan X, Chen J. Monohydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Dihydroxylated Polybrominated Biphenyls (Di-OH-PBBs): Novel Photoproducts of 2,6-Dibromophenol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14120-14128. [PMID: 26545041 PMCID: PMC4717839 DOI: 10.1021/acs.est.5b03637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hydroxylated polybromodiphenyl ethers (OH-PBDEs) are emerging aquatic pollutants, but their origins in the environment are not fully understood. There is evidence that OH-PBDEs are formed from bromophenols, but the underlying transformation processes remain unknown. Here, we investigate if the photoformation of OH-PBDEs from 2,6-dibromophenol in aqueous solution involves 2,6-bromophenoxyl radicals. After the UV irradiation of an aqueous 2,6-dibromophenol solution, HPLC-LTQ-Orbitrap MS and GC-MS analysis revealed the formation of a OH-PBDE and a dihydroxylated polybrominated biphenyl (di-OH-PBB). Both dimeric photoproducts were tentatively identified as 4'-OH-BDE73 and 4,4'-di-OH-PBB80. In addition, three debromination products (4-OH-BDE34, 4'-OH-BDE27, and 4,4'-di-OH-PBBs) were observed. Electron paramagnetic resonance spectroscopy revealed the presence of a 2,6-dibromophenoxyl radical with a six-line spectrum (a(H) (2 meta) = 3.45 G, a(H) (1 para) = 1.04 G, g = 2.0046) during irradiation of a 2,6-dibromophenol solution in water. The 2,6-dibromophenoxyl radical had a relatively long half-life (122 ± 5 μs) according to laser flash photolysis experiments. The para-para C-C and O-para-C couplings of these 2,6-dibromophenoxyl radicals are consistent with the observed formation of both dimeric OH-PBDE and di-OH-PBB photoproducts. These findings show that bromophenoxyl radical-mediated phototransformation of bromophenols is a source of OH-PBDEs and di-OH-PBBs in aqueous environments that requires further attention.
Collapse
Affiliation(s)
- Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China
| | - Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China
| | - Yanli Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA 52242, USA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program & ESR Facility, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China
| |
Collapse
|
35
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1384] [Impact Index Per Article: 138.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
36
|
Hendriks HS, Westerink RH. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol 2015; 52:248-69. [DOI: 10.1016/j.ntt.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
37
|
Subacute nicotine co-exposure has no effect on 2,2',3,5',6- pentachlorobiphenyl disposition but alters hepatic cytochrome P450 expression in the male rat. Toxicology 2015; 338:59-68. [PMID: 26463278 DOI: 10.1016/j.tox.2015.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are metabolized by cytochrome P450 2B enzymes (CYP2B) and nicotine is reported to alter CYP2B activity in the brain and liver. To test the hypothesis that nicotine influences PCB disposition, 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and its metabolites were quantified in tissues of adult male Wistar rats exposed to PCB 95 (6mg/kg/d, p.o.) in the absence or presence of nicotine (1.0mg/kg/d of the tartrate salt, s.c.) for 7 consecutive days. PCB 95 was enantioselectively metabolized to hydroxylated (OH-) PCB metabolites, resulting in a pronounced enrichment of E1-PCB 95 in all tissues investigated. OH-PCBs were detected in blood and liver tissue, but were below the detection limit in adipose, brain and muscle tissues. Co-exposure to nicotine did not change PCB 95 disposition. CYP2B1 mRNA and CYP2B protein were not detected in brain tissues but were detected in liver. Co-exposure to nicotine and PCB 95 increased hepatic CYP2B1 mRNA but did not change CYP2B protein levels relative to vehicle control animals. However, hepatic CYP2B protein in animals co-exposed to PCB 95 and nicotine were reduced compared to animals that received only nicotine. Quantification of CYP2B3, CYP3A2 and CYP1A2 mRNA identified significant effects of nicotine and PCB 95 co-exposure on hepatic CYP3A2 and hippocampal CYP1A2 transcripts. Our findings suggest that nicotine co-exposure does not significantly influence PCB 95 disposition in the rat. However, these studies suggest a novel influence of PCB 95 and nicotine co-exposure on hepatic cytochrome P450 (P450) expression that may warrant further attention due to the increasing use of e-cigarettes and related products.
Collapse
|
38
|
Human hydroxylated metabolites of BDE-47 and BDE-99 are glucuronidated and sulfated in vitro. Toxicol Lett 2015; 236:98-109. [DOI: 10.1016/j.toxlet.2015.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022]
|
39
|
Macaulay LJ, Bailey JM, Levin ED, Stapleton HM. Persisting effects of a PBDE metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behavior. Neurotoxicol Teratol 2015; 52:119-26. [PMID: 25979796 DOI: 10.1016/j.ntt.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/09/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that are widely detected in the environment, biota, and humans. In mammals, PBDEs can be oxidatively metabolized to form hydroxylated polybrominated diphenyl ethers (OH-BDEs). While studies have examined behavioral deficits or alterations induced by exposure to PBDEs in both rodents and fish, no study to date has explored behavioral effects from exposure to OH-BDEs, which have been shown to have greater endocrine disrupting potential compared to PBDEs. In the present study, zebrafish (Danio rerio) were exposed during embryonic and larval development (0-6 days post fertilization, dpf) to a PBDE metabolite, 6-hydroxy, 2,2',4,4' tetrabromodiphenyl ether (10-50 nM) and then examined for short and long-term behavioral effects. Exposed zebrafish tested as larvae (6 dpf) showed an altered swimming response to light-dark transitions, exhibiting hypoactivity in light periods compared to control fish. When fish exposed from 0-6 dpf were tested as juveniles (45 dpf), they showed an increased fear response and hyperactivity in response to tests of novel environment exploration and habituation learning. These results demonstrate that early life exposure to a PBDE metabolite can have immediate or later life (more than a month after exposure) effects on activity levels, habituation, and fear/anxiety.
Collapse
Affiliation(s)
- Laura J Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jordan M Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Gross MS, Butryn DM, McGarrigle BP, Aga DS, Olson JR. Primary role of cytochrome P450 2B6 in the oxidative metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) to hydroxylated BDEs. Chem Res Toxicol 2015; 28:672-81. [PMID: 25629761 DOI: 10.1021/tx500446c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human exposure to polybrominated diphenyl ethers (PBDEs) through various routes poses deleterious health effects. PBDEs are biotransformed into hydroxylated metabolites (OH-BDEs) via cytochrome P450s (P450s), which may add to their neurotoxic effects. This study characterizes the in vitro metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), one of the most abundant PBDE congeners found in humans, by recombinant human P450s and pooled human liver microsomes (HLMs). Ten recombinant P450s were individually incubated with BDE-100 to monitor P450-specific metabolism. P450 2B6 was found to be the predominant enzyme responsible for nearly all formation of six mono-OH-pentaBDE and two di-OH-pentaBDE metabolites. Four metabolites were identified as 3-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (3-OH-BDE-100), 5'-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (5'-OH-BDE-100), 6'-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (6'-OH-BDE-100), and 4'-hydroxy-2,2',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-103) through use of reference standards. The two remaining mono-OH-pentaBDE metabolites were hypothesized using mass spectral fragmentation characteristics of derivatized OH-BDEs, which allowed prediction of an ortho-OH-pentaBDE and a para-OH-pentaBDE positional isomer. Additional information based on theoretical boiling point calculations using COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) and experimental chromatographic retention times were used to identify the hypothesized metabolites as 2'-hydroxy-2,3',4,4',6-pentabromodiphenyl ether (2'-OH-BDE-119) and 4-hydroxy-2,2',4',5,6-pentabromodiphenyl ether (4-OH-BDE-91), respectively. Kinetic studies of BDE-100 metabolism using P450 2B6 and HLMs revealed Km values ranging from 4.9 to 7.0 μM and 6-10 μM, respectively, suggesting a high affinity toward the formation of OH-BDEs. Compared to the metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) reported in previous studies, BDE-100 appears to be more slowly metabolized by P450s due to the presence of a third ortho-substituted bromine atom.
Collapse
Affiliation(s)
- Michael S Gross
- †Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Deena M Butryn
- †Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Barbara P McGarrigle
- ‡Department of Pharmacology and Toxicology and Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Diana S Aga
- †Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - James R Olson
- ‡Department of Pharmacology and Toxicology and Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
41
|
Streifel KM, Gonzales AL, De Miranda B, Mouneimne R, Earley S, Tjalkens R. Dopaminergic neurotoxicants cause biphasic inhibition of purinergic calcium signaling in astrocytes. PLoS One 2014; 9:e110996. [PMID: 25365260 PMCID: PMC4217743 DOI: 10.1371/journal.pone.0110996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/27/2014] [Indexed: 11/18/2022] Open
Abstract
Dopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes. To test this, we examined the capacity of two dopaminergic neurotoxicants to alter ATP-dependent Ca2+ waves and transients in primary murine striatal astrocytes: MPP+, the active metabolite of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hydroxydopamine (6-OHDA). Both compounds acutely decreased ATP-induced Ca2+ transients and waves in astrocytes and blocked OAG-induced Ca2+ influx at micromolar concentrations, suggesting the transient receptor potential channel, TRPC3, as an acute target. MPP+ inhibited 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ca2+ transients similarly to the TRPC3 antagonist, pyrazole-3, whereas 6-OHDA only partly suppressed OAG-induced transients. RNAi directed against TRPC3 inhibited the ATP-induced transient as well as entry of extracellular Ca2+, which was augmented by MPP+. Whole-cell patch clamp experiments in primary astrocytes and TRPC3-overexpressing cells demonstrated that acute application of MPP+ completely blocked OAG-induced TRPC3 currents, whereas 6-OHDA only partially inhibited OAG currents. These findings indicate that MPP+ and 6-OHDA inhibit ATP-induced Ca2+ signals in astrocytes in part by interfering with purinergic receptor mediated activation of TRPC3, suggesting a novel pathway in glia that could contribute to neurotoxic injury.
Collapse
Affiliation(s)
- Karin M. Streifel
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Albert L. Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Briana De Miranda
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rola Mouneimne
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas, United States of America
| | - Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ronald Tjalkens
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
42
|
Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 2014; 230:282-94. [PMID: 24270005 PMCID: PMC4028440 DOI: 10.1016/j.toxlet.2013.11.011] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| | - Rian de Laat
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
43
|
Bonfanti P, Comelli F, Assi L, Casati L, Colciago A, Villa S, Santagostino A, Costa B, Colombo A. Responsiveness of hepatic and cerebral cytochrome P450 in rat offspring prenatally and lactationally exposed to a reconstituted PCB mixture. ENVIRONMENTAL TOXICOLOGY 2014; 29:856-866. [PMID: 22987612 DOI: 10.1002/tox.21812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/27/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
Perinatal polychlorinated biphenyl (PCB) exposures still remain a serious health concern because offspring receive PCB burden from mother during vulnerable processes of development. Since cytochrome P450 (CYP) represents a toxicological endpoint, in the present study, representing an extended investigation of a previous multitasked one, we explored the long-term responsiveness of CYP1A and CYP2B isoforms by Western blot analysis in liver and whole brain of lactating (PN12), weaning (PN21), and adult offspring (PN60) rats prenatally and lactationally exposed to a reconstituted PCB mixture (RM) of noncoplanar PCB138, 153, 180, and coplanar PCB126 congeners. We chose highly chlorinated PCBs instead of lower chlorinated one, because their recalcitrance to biotransformation makes easy their accumulation/persistence in tissues and breast milk. Dioxin-like congener PCB126 binding aryl hydrocarbon receptor (AHR) is responsible of many toxic effects. Pregnant Sprague-Dawley dams with high affinity AHR received subcutaneous injection of RM (10 mg/kg body weight) daily during gestation (days 15-19) and twice a week during breast-feeding. The results evidenced a transfer of PCBs to neonates through milk and a significant responsiveness of hepatic CYP in both mothers and offspring. In liver of exposed progeny, CYP isoforms exhibited a significant increment at PN12 (70% over control) and at PN21 (270% over control). Contrary to dams, in adult PCB offspring CYP levels showed a decline up to values similar to those of control. This transient developmental responsiveness of CYP isoforms in offspring liver reflects roughly the time course of hepatic PCB levels previously reported. Even if congeners were detected in brain, we failed in evidencing a responsiveness of CYP isoforms probably because of region-specific CYP expression in this organ. In conclusion, induction of offspring hepatic CYP is index of liver PCB burden, and despite the insensitivity of whole brain CYP we cannot exclude brain vulnerability toward PCB. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 856-866, 2014.
Collapse
Affiliation(s)
- Patrizia Bonfanti
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano Bicocca, P.zza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Westerink RHS. Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage- and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6373-6383. [PMID: 23686757 DOI: 10.1007/s11356-013-1759-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that exert neurodevelopmental and neurobehavioral effects in vivo in humans and animals. Acute in vitro neurotoxic effects include changes in cell viability, oxidative stress, and basal intracellular calcium levels. Though these acute cellular effects could partly explain the observed in vivo effects, other mechanisms, such as effects on calcium influx and neurotransmitter receptor function, likely contribute to the disturbance in neurotransmission. This concise review combines in vitro data on cell viability, oxidative stress and basal calcium levels with recent data that clearly demonstrate that (hydroxylated) PCBs and (hydroxylated) PBDEs can exert acute effects on voltage-gated Ca(2+) channels as well as on excitatory and inhibitory neurotransmitter receptors in vitro. These novel mechanisms of action are shared by NDL-PCBs, OH-PBDEs, and some other persistent organic pollutants, such as tetrabromobisphenol-A, and could have profound effects on neurodevelopment, neurotransmission, and neurobehavior in vivo.
Collapse
Affiliation(s)
- Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands,
| |
Collapse
|
45
|
BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 2014; 88:1537-48. [PMID: 24599297 DOI: 10.1007/s00204-014-1217-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/19/2014] [Indexed: 02/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.
Collapse
|
46
|
Stamou M, Wu X, Kania-Korwel I, Lehmler HJ, Lein PJ. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences. Drug Metab Dispos 2014; 42:239-44. [PMID: 24255117 PMCID: PMC3912540 DOI: 10.1124/dmd.113.054239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/19/2013] [Indexed: 01/22/2023] Open
Abstract
Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California (M.S., P.J.L.) and Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa (X.W., I.K.-K., H.-J.L.)
| | | | | | | | | |
Collapse
|
47
|
Schmidt RJ, Lyall K, Hertz-Picciotto I. Environment and Autism: Current State of the Science. CUTTING EDGE PSYCHIATRY IN PRACTICE 2014; 1:21-38. [PMID: 27453776 PMCID: PMC4955700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research into environmental risk factors for autism has grown dramatically over the past 10 years, providing evidence that non-genetic factors acting during the prenatal period may influence the underlying neurodevelopmental processes. This paper reviews the evidence on modifiable preconception and/or prenatal factors that have been associated with autism spectrum disorder (ASD), including only human studies with at least 50 cases of ASD, having a valid comparison group, conducted within the past decade, and focusing on maternal lifestyle or environmental chemicals. Consistent results have been reported for an association of higher maternal intake of certain nutrients and supplements with reduction in ASD risk, with the strongest evidence for folic acid supplements. A number of studies have demonstrated significant increases in ASD risk with estimated exposure to air pollution during the prenatal period, particularly for heavy metals and particulate matter. A few studies suggest a link with organophosphate pesticides. More rigorous ascertainment of exposure is needed for studies of substance use; most investigations adjusting for potential confounders, but relying on self-reported use, have shown no links between maternal smoking or alcohol consumption and ASD. Little research has assessed other persistent and non-persistent organic chemical pollutants, such as are found in common household or personal care products, in association with ASD specifically. More work is needed to examine fats, vitamins, and other maternal nutrients, as well as endocrine-disrupting chemicals and pesticides, in association with ASD, given sound biological plausibility and evidence regarding other neurodevelopmental outcomes. In addition, the field could be advanced by the use of large-scale epidemiologic studies, attention to critical etiologic windows and how these vary by exposure, interactions with genetic susceptibility, and a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Rebecca J Schmidt
- Assistant Professor, Department of Public Health Sciences and UC Davis MIND Institute; Scholar, Building Interdisciplinary Research Careers in Women's Health (BIRCWH), School of Medicine
| | - Kristen Lyall
- Postdoctoral research fellow in the Autism Research Training Program of the MIND Institute of UC Davis
| | - Irva Hertz-Picciotto
- Professor and Chief, Division of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine and the UC Davis MIND Institute; Director, Northern California Collaborative Center for the National Children's Study; Deputy Director, UC Davis Children's Center for Environmental Health; Principal Investigator, The CHARGE Study and The MARBLES Study
| |
Collapse
|
48
|
Westerink RH. Do we really want to REACH out to in vitro? Neurotoxicology 2013; 39:169-72. [DOI: 10.1016/j.neuro.2013.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 11/24/2022]
|
49
|
Fritsch EB, Pessah IN. Structure-activity relationship of non-coplanar polychlorinated biphenyls toward skeletal muscle ryanodine receptors in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:204-12. [PMID: 23827775 PMCID: PMC3813431 DOI: 10.1016/j.aquatox.2013.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 05/15/2023]
Abstract
Research addressing the health impacts of polychlorinated biphenyls (PCBs) has primarily focused on the effects of coplanar, or dioxin-like (DL), congeners, which is especially true for research assessing impacts in fish species. Ortho substituted non-coplanar, termed non-dioxin-like (NDL), PCBs have received less attention. In mammals, NDL PCBs enhance the activity of ryanodine receptors (RyR), calcium release channels necessary for engaging excitation-contraction (EC) coupling in striated muscle. We utilized in vitro receptor binding analysis to determine whether NDL PCB congeners detected in aquatic environments alter the activity of RyR isoform 1 (RyR1) found in the skeletal muscle of rainbow trout. Congeners 52, 95, 136, and149 were the most efficacious leading to an increase in receptor activity that was approximately 250% greater than that found under solvent control conditions. Other environmentally relevant congeners, namely PCB 153, 151 and 101, which all contain two or more chlorines in the ortho-position, enhanced receptor activity by greater than 160% of baseline. The mono-ortho congeners or the non-ortho PCB 77 had negligible impact on the RyR1. When combined, in binary or environmentally relevant mixtures, congeners shown to enhance receptor activity appeared to display additivity and when the active PCB 95 was present with the non-active congener PCB 77 the impact on receptor activity was reduced from 250% to 230%. The important role of the RyR and the demonstrated additive nature of NDL congeners toward altering channel function calls for further investigation into the ecological implications of altered RyR function in fish with high PCB burdens.
Collapse
Affiliation(s)
- Erika B Fritsch
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | |
Collapse
|
50
|
Development of a liquid chromatography–electrospray chemical ionization tandem mass spectrometry analytical method for analysis of eleven hydroxylated polybrominated diphenyl ethers. J Chromatogr A 2013; 1301:80-7. [DOI: 10.1016/j.chroma.2013.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
|