1
|
Zhang L, Yao T, Luo J, Yi H, Han X, Pan W, Xue Q, Liu X, Fu J, Zhang A. ChemNTP: Advanced Prediction of Neurotoxicity Targets for Environmental Chemicals Using a Siamese Neural Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22646-22656. [PMID: 39661815 DOI: 10.1021/acs.est.4c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Environmental chemicals can enter the human body through various exposure pathways, potentially leading to neurotoxic effects that pose significant health risks. Many such chemicals have been identified as neurotoxic, but the molecular mechanisms underlying their toxicity, including specific binding targets, remain unclear. To address this, we developed ChemNTP, a predictive model for identifying neurotoxicity targets of environmental chemicals. ChemNTP integrates a comprehensive representation of chemical structures and biological targets, improving upon traditional methods that are limited to single targets and mechanisms. By leveraging these structural representations, ChemNTP enables rapid screening across 199 potential neurotoxic targets or key molecular initiating events (MIEs). The model demonstrates robust predictive performance, achieving an area under the receiver operating characteristic curve (AUCROC) of 0.923 on the test set. Additionally, ChemNTP's attention mechanism highlights critical residues in binding targets and key functional groups or atoms in molecules, offering insights into the structural basis of interactions. Experimental validation through in vitro enzyme activity assays and molecular docking confirmed the binding of eight polybrominated diphenyl ethers (PBDEs) to acetylcholinesterase (AChE). We also provide a user-friendly software interface to facilitate the rapid identification of neurotoxicity targets for emerging environmental pollutants, with potential applications in studying MIEs for more types of toxicity.
Collapse
Affiliation(s)
- Lingjing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Tingji Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hang Yi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxiao Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
2
|
Hu C, Xu Y, Wang M, Cui S, Zhang H, Lu L. Bisphenol analogues induce thyroid dysfunction via the disruption of the thyroid hormone synthesis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165711. [PMID: 37487893 DOI: 10.1016/j.scitotenv.2023.165711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Bisphenol analogues are widely used in industrial and daily-use consumer products having imperfect thyroid hormones (THs) structures. Widespread exposure interferes with thyroid-related health outcomes in human. The mechanisms of disruption on TH synthesis and subsequent thyroid dysfunction by different bisphenol analogues remain unclear. Here, we evaluated bisphenol-induced thyroid endocrine disruption in C57BL/6 mice at doses of 0.002, 0.02, 2, and 20 mg/kg body weight/day (BW/d) for five consecutive weeks. Administration of 20 mg/kg BW/d bisphenol S (BPS) and 2 mg/kg BW/d tetrabromobisphenol S (TBBPS) significantly increased serum thyrotropin (TSH) levels to 1.21-fold and 1.20-fold of control group, respectively, indicating that bisphenols induced thyroid dysfunction in mice. Height of the thyroid follicle epithelium significantly increased to 1.27-, 1.24-, 1.26-, and 1.36-fold compared to control group with BPA, BPS, TBBPA, and TBBPS at 20 mg/kg BW/d, respectively, indicating impairment of the thyroid gland structure, and TBBPS showed potent effect. Exposure to bisphenol analogues of 0.02 mg/kg BW/d downregulated the protein expression levels of thyrotropin receptor, the sodium/iodide symporter, thyroperoxidase. The TH-dependent effects were further determined using the T-Screen assay at 10-11 M to 10-5 M concentrations. Bisphenol analogues significantly decreased TH-dependent GH3 cell proliferation, indicating the antagonistic activity of bisphenol analogues. The gene responsible for THs synthesis of thyrotropin releasing hormone receptor and TSH were upregulated, but downregulation of thyroid receptor β was observed. Our results suggest that bisphenol analogues distinctly induce thyroid dysfunction via TH synthesis, implying adverse effect of bisphenol analogues on TH homeostasis and subsequent physiological processes.
Collapse
Affiliation(s)
- Chao Hu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingmin Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
4
|
Derakhshan A, Shu H, Broeren MAC, Kortenkamp A, Lindh CH, Demeneix B, Peeters RP, Bornehag CG, Korevaar TIM. Association of endocrine disrupting chemicals exposure with human chorionic gonadotropin concentrations in pregnancy. ENVIRONMENT INTERNATIONAL 2023; 178:108091. [PMID: 37459690 DOI: 10.1016/j.envint.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Human chorionic gonadotropin (hCG) is produced by the placenta and plays an essential role in the maintenance of pregnancy. Endocrine disrupting chemicals (EDCs) have the potential to interfere with functions related to the production and secretion of hCG; however associations between exposure to EDCs and hCG concentrations in humans remain to be elucidated. OBJECTIVES To investigate the association of urinary, serum and plasma concentrations of EDCs during pregnancy with serum hCG concentrations. METHODS We utilized data form the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. We investigated the association of 26 EDCs measured in early pregnancy urine or blood with serum hCG concentrations using multi-variable adjusted linear regression models per EDC and Weighted Quantile Sum (WQS) regression with repeated holdout validation for the EDCs mixture. RESULTS In 2,039 included women, higher exposure to bisphenol A was associated with lower hCG (beta [95% CI]: -0.06 [-0.11 to -0.002]) while higher triclosan exposure was associated with a higher hCG (0.02 [0.003 to 0.04]). Higher exposure to several phthalates, including mono-ethyl and mono-butyl phthalates (MEP and MBP) as well as metabolites of di-2-ethylhexyl phthalate (DEHP) was associated with a lower hCG (beta [95% CI] for sum of DEHP metabolites: -0.13 [-0.19 to -0.07]). Likewise, higher exposure to several polychlorinated biphenyls (PCBs) was associated with a lower hCG. In the WQS regression, each quartile increase in the EDCs mixture was associated with -0.27 lower hCG (95% CI: -0.34 to -0.19). DISCUSSION Higher exposure to several EDCs during pregnancy was associated with a lower hCG; and despite the small effect sizes, still indicating that the exposure may negatively affect production or secretion of hCG by the placenta. Our results provide the impetus for future experimental studies to investigate the placenta as a target organ for adverse effects of EDCs.
Collapse
Affiliation(s)
- Arash Derakhshan
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands
| | - Huan Shu
- Department of Public Health, Karlstad University, Sweden
| | - Maarten A C Broeren
- Laboratory of Clinical Chemistry and Haematology, Máxima Medical Centre, Veldhoven, De Run 4600, The Netherlands
| | - Andreas Kortenkamp
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University, London, Uxbridge, UK
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Barbara Demeneix
- Laboratoire d'Evolution des Régulations Endocriniennes, CNRS/Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75005 Paris, France
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands
| | - Carl-Gustaf Bornehag
- Department of Public Health, Karlstad University, Sweden; Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 15, 3051 GE Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Soulen BK, Divine LM, Venables BJ, Roberts AP. Persistent organic pollutant exposure and associations with gene expression in northern fur seals (Callorhinus ursinus) from St. Paul Island, Alaska. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105789. [PMID: 36332419 DOI: 10.1016/j.marenvres.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Persistent organic pollutants (POPs) are highly lipophilic compounds that accumulate at increased concentrations in high tropic level organisms like marine mammals. Marine mammals' reliance on blubber makes them susceptible to accumulating POPs at potentially toxic concentrations. In this study, we analyzed POP concentrations, (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and methoxylated-BDE (MeOBDE), in the blubber of 16 subsistence harvested sub-adult, male northern fur seals as well as assessed changes in mRNA gene expression of nine relevant biomarkers including the aryl hydrocarbon receptor, thyroid receptor-α, and adiponectin. PBDE and MeOBDE concentrations were significantly lower than PCB and OCP concentrations. A negative relationship was observed between percent lipid in the blubber and contaminant concentrations, both individual and sum. Expression changes in eight biomarkers were correlated with individual and sum contaminant concentrations. This study shows that contaminant concentrations measured are correlated to changes in expression of genes from different physiological systems, metabolism and endocrine, that are important for the regulation of blubber metabolism. Northern fur seals are reliant on blubber as an energy source during times of low food intake. Potential contaminant induced changes in blubber metabolism pathways could have significant impacts on the health of individuals during critical periods.
Collapse
Affiliation(s)
- Brianne K Soulen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA.
| | - Lauren M Divine
- Aleut Community of St. Paul Island Ecosystem Conservation Office, St. Paul, Pribilof Islands, Alaska, USA
| | - Barney J Venables
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA
| | - Aaron P Roberts
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
6
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|
7
|
Pinson A, Sevrin E, Chatzi C, Le Gac B, Thiry M, Westbrook GL, Parent AS. Induction of Oxidative Stress and Alteration of Synaptic Gene Expression in Newborn Hippocampal Granule Cells after Developmental Exposure to Aroclor 1254. Neuroendocrinology 2022; 113:1248-1261. [PMID: 36257292 PMCID: PMC10110769 DOI: 10.1159/000527576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.
Collapse
Affiliation(s)
- Anneline Pinson
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Elena Sevrin
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin Le Gac
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and tissular biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Brennan E, Kumar N, Drage DS, Cunningham TK, Sathyapalan T, Mueller JF, Atkin SL. A case-control study of polychlorinated biphenyl association with metabolic and hormonal outcomes in polycystic ovary syndrome. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:86-105. [PMID: 35895927 DOI: 10.1080/26896583.2022.2043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of environmental pollutants with a long half-life that sequester in fat. Women with polycystic ovarian syndrome (PCOS) may represent a sensitive subgroup to endogenous exposure to PCBs because of associated weight gain. Seven PCB congeners were compared in age, ethnicity, and BMI matched women with (n = 29) and without (n = 30) PCOS and related to metabolic outcomes, and steroid and thyroid hormone levels. PCB118, PCB138, PCB153, and PCB180 were detected in all serum samples but geometric mean did not differ between cases and controls. PCBs correlated with increasing concentrations of each other (p < .01), increasing age (p < .01) and decreasing lneGFR (p < .05). lnPCB118 correlated with increasing Free-T4 (p = .028). lnPCB158, lnPCB180, and ln∑PCB correlated with increasing lnSHBG (p = .044). In regression modeling, although not significant, PCB118 positively associated with lnSHBG in controls (p = .0504) but not in cases; estradiol inversely associated with PCB138 in controls (p = .055) and ∑PCB in cases (p = .051). No significant associations were observed between metabolic endpoints, and steroid and thyroid hormone levels. The results presented do not suggest the PCOS cases in this cohort are at adverse risk compared to age, ethnicity, and BMI matched controls.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| | - Nitya Kumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| | - Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Qld, Australia
| | | | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, University of Hull, UK
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Qld, Australia
| | - Stephen L Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| |
Collapse
|
9
|
Aslam I, Baqar M, Qadir A, Mumtaz M, Li J, Zhang G. Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. INDOOR AIR 2021; 31:1417-1426. [PMID: 33459414 DOI: 10.1111/ina.12788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study is the pioneer assessment of the PCBs in indoor dust particles (from air conditioners) of an urbanized megacity from South Asian. The ∑35 PCB concentration ranged from 0.27 to 152.9 ng/g (mean: 24.84 ± 22.10 ng/g). The tri- and tetra-PCBs were dominant homologues, contributing 57.36% of the total PCB concentrations. The mean levels of Σ8 -dioxin-like (DL), Σ6 -indicator PCBs and WHO2005 -TEQ for DL-PCBs were 2.22 ± 2.55 ng/g, 9.49 ± 8.04 ng/g and 4.77 ± 4.89 pg/g, respectively. The multiple linear regression indicated a significant correlation of dusting frequency (p = 1.06 × 10-04) and age of the house (p = 1.02 × 10-06) with PCB concentrations in indoor environment. The spatial variation of PCB profile revealed relatively higher concentrations from sites near to illegal waste burning spots, electrical locomotive workshops, and grid stations. Human health risk assessment of PCBs for adults and toddlers through all three exposure routes (ie, inhalation, ingestion, and dermal contact) demonstrated that toddlers were vulnerable to high cancer risk (4.32 × 10-04 ), while adults were susceptible from low to moderate levels of risk (3.16 × 10-05 ). Therefore, comprehensive investigations for PCBs in the indoor settings, focusing particularly on the sensitive populations with relationship to the electronic devices, transformers, and illegal waste burning sites, are recommended.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Zoeller RT. Endocrine disrupting chemicals and thyroid hormone action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:401-417. [PMID: 34452692 DOI: 10.1016/bs.apha.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid hormones (predominantly thyroxine, T4, and triiodothyronine, T3) are essential for normal development and for adult physiology. There are several challenges, however, that make identifying chemicals that produce adverse effects by interfering with the thyroid system difficult. First, individual variability in serum concentrations of thyroid hormones represent only about 10% of the population reference range that is considered to be "normal." This means that populations studies evaluating the relationship between chemical exposure and serum thyroid hormones must be large enough to overcome this internal variance. In addition, we know that there are chemicals that do not produce changes in thyroid hormone levels, but nevertheless impact thyroid signaling in target tissues. A good example is that of polychlorinated biphenyls (PCBs). PCB exposure during development are clearly associated with cognitive deficits in humans. But PCB exposure isn't uniformly associated with a reduction in serum thyroid hormone in human populations despite mechanistic studies showing that PCBs reduce serum T4 in animals. In contrast, perchlorate is a chemical that inhibits iodide uptake, thereby reducing thyroid hormone synthesis and serum hormone levels. Human studies have been variable in identifying a relationship between thyroid hormone and perchlorate exposure, but studies also show that dietary iodine, cigarette smoking and other factors can modify this relationship. The conclusion is that identifying chemicals that interfere with thyroid hormone could depend on in vitro analysis of chemicals that interact with different proteins important for thyroid hormone to function properly.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, University of Massachusetts Amherst, Amherst, MA, United States; School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
11
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Genome-wide DNA methylation differences and polychlorinated biphenyl (PCB) exposure in a US population. Epigenetics 2021; 16:338-352. [PMID: 32660331 PMCID: PMC7901541 DOI: 10.1080/15592294.2020.1795605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs), an endocrine-disrupting compound, is ubiquitous despite decades-old bans on the manufacture and use of PCBs. Increased exposure to PCBs is associated with adverse health consequences throughout life, including type 2 diabetes and cancer. PCB exposure is also associated with alterations in epigenetic marks and gene transcription, which could lead to adverse health outcomes, but many of these are population-specific. To further investigate the association between PCB and epigenetic marks, DNA methylation was measured at 787,684 CpG sites in 641 peripheral blood samples from the Michigan Polybrominated Biphenyl (PBB) Registry. 1345 CpGs were associated with increased total PCB level after controlling for age, sex, and 24 surrogate variables (FDR < 0.05). These CpGs were enriched in active promoter and transcription associated regions (p < 0.05), and in regions around the binding sites for transcription factors involved in xenobiotic metabolism and immune function (FDR < 0.05). PCB exposure also associated with proportions of CD4T, NK, and granulocyte cell types, and with the neutrophil to lymphocyte ratio (NLR) (p < 0.05), and the estimated effect sizes of PCB on the epigenome were correlated with the effect sizes previously reported in an epigenome-wide study of C-reactive protein (r = 0.29; p = 2.22e-5), supporting previous studies on the association between PCB and immune dysfunction. These results indicate that PCB exposure is associated with differences in epigenetic marks in active regions of the genome, and future work should investigate whether these may mediate the association between PCB and health consequences.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - Dawayland O. Cobb
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Metrecia L. Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - M. Elizabeth Marder
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Michele Marcus
- Departments of Epidemiology and Department of Pediatrics Emory University School of Medicine, Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alicia K. Smith
- Departments of Gynecology and Obstetrics & Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Urbani C, Mattiello A, Ferri G, Raggi F, Russo D, Marconcini G, Cappellani D, Manetti L, Marcocci C, Cardarelli F, Bogazzi F. PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt. Mol Cell Endocrinol 2021; 520:111090. [PMID: 33242503 DOI: 10.1016/j.mce.2020.111090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants involved in human tumorigenesis. PCB153 is a ubiquitous non-dioxin-like PCB with proliferative and anti-apoptotic effects. To explore the impact of PCB153 in the survival of pituitary cells, we exposed murine pituitary primary cells to PCB153 10 μM for 24 h. Apoptosis was assessed by RT-qPCR, Western-blot, immunoprecipitation, caspase activity, and immunofluorescence. We found that PCB153 decreased pituitary apoptosis through both the extrinsic and intrinsic pathways. PCB153 reduced the level of the pro-apoptotic protein p38-MAPK. Otherwise, PCB153 activated PI3K/Akt and Erk1/2 pathways and enhanced the expression and nuclear translocation of NF-κB. Cotreatments with specific inhibitors revealed that only PI3K/Akt changed the caspase-3 expression and NF-κB activation induced by PCB153. Also, PCB153 decreased the expression of the pro-apoptotic and pro-senescent cyclins p53 and p21. In summary, exposure to PCB153 leads to a downregulation of apoptosis in the pituitary driven by a PI3K/Akt-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Mattiello
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Francesco Raggi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Dania Russo
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Giulia Marconcini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Daniele Cappellani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Luca Manetti
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
| |
Collapse
|
13
|
Colson TLL, de Solla SR, Langlois VS. Bioaccumulation and physiological responses of the turtle Chelydra serpentina exposed to polychlorinated biphenyls during early life stages. CHEMOSPHERE 2021; 263:128146. [PMID: 33297133 DOI: 10.1016/j.chemosphere.2020.128146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Despite the North American production ban of polychlorinated biphenyls (PCBs), PCBs are ubiquitous in the environment and in wildlife tissues. Chelydra serpentina serpentina (common snapping turtle) have been used as environmental indicators of PCB pollution upwards of 40 years given their high site fidelity and high trophic position. Despite their long use as indicators of PCB contamination, the effects of PCBs in reptiles remain largely unknown. In this study, we performed two experiments to assess i) bioaccumulation and ii) toxicity of PCBs to 1-month-old C. s. serpentina, to aid in interpretation of PCB burdens. Food pellets were spiked at an environmentally relevant concentration (0.45 μg/g) of the PCB mixture Aroclor 1254 to model hepatic bioaccumulation and depuration, through feeding, for 31 days and clean food for 50 days, respectively. No significant differences in PCB concentrations were observed in liver tissue over the course of the experiment, suggesting that juvenile turtles can likely metabolize low environmentally occurring concentrations of PCBs. Additionally, a dose-response experiment, performed to determine hepatic toxicity and bioaccumulation in juvenile C. s. serpentina, showed a 1.8-fold increase in hepatic expression of cyp1a when fed A1254-spiked pellets (12.7 μg/g; range 0-12.7 μg/g). This gene induction correlates with the significant increase of group 3 PCB congeners measured in the turtle liver, which are known to be metabolized by CYP1A. This study indicates that C. s. serpentina may be a good environmental indicator for PCBs, while more research is needed to assess the effects of body burdens in wild C. s. serpentina.
Collapse
Affiliation(s)
- Tash-Lynn L Colson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - Shane R de Solla
- School of Environmental Studies, Queen's University, Kingston, ON, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Valerie S Langlois
- School of Environmental Studies, Queen's University, Kingston, ON, Canada; Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec, QC, Canada.
| |
Collapse
|
14
|
Sarin H. Pressure regulated basis for gene transcription by delta-cell micro-compliance modeled in silico: Biphenyl, bisphenol and small molecule ligand models of cell contraction-expansion. PLoS One 2020; 15:e0236446. [PMID: 33021979 PMCID: PMC7537880 DOI: 10.1371/journal.pone.0236446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular diameter, lipophilicity and hydrophilicity exclusion affinity limits exist for small molecule carrier-mediated diffusion or transport through channel pores or interaction with the cell surface glycocalyx. The molecular structure lipophilicity limit for non-specific carrier-mediated transmembrane diffusion through polarity-selective transport channels of the cell membrane is Lexternal structure ∙ Hpolar group-1 of ≥ 1.07. The cell membrane channel pore size is > 0.752 and < 0.758 nm based on a 3-D ellipsoid model (biphenyl), and within the molecular diameter size range 0.744 and 0.762 nm based on a 2-D elliptical model (alkanol). The adjusted van der Waals diameter (vdWD, adj; nm) for the subset of halogenated vapors is predictive of the required MAC for anesthetic potency at an initial (-) Δ Cmicro effect. The molecular structure L ∙ Hpolar group-1 for Neu5Ac is 0.080, and the L ∙ Hpolar group-1 interval range for the cell surface glycocalyx hydrophilicity barrier interaction is 0.101 (Saxitoxin, Stx; Linternal structure ∙ Hpolar group-1) - 0.092 (m-xylenediamine, Lexternal structure · Hpolar group). Differential predictive effective pressure mapping of gene activation or repression reveals that p-dioxin exposure results in activation of AhR-Erβ (Arnt)/Nrf-2, Pparδ, Errγ (LxRα), Dio3 (Dio2) and Trα limbs, and due to high affinity Dio2 and Dio3 (OH-TriCDD, Lext · H-1: 1.91–4.31) exothermy-antagonism (Δ contraction) with high affinity T4/rT3-TRα-mediated agonism (Δ expansion). co-planar PCB metabolite exposure (Lext · H-1: 1.95–3.91) results in activation of AhR (Erα/β)/Nrf2, Rev-Erbβ, Errα, Dio3 (Dio2) and Trα limbs with a Δ Cmicro contraction of 0.89 and Δ Cmicro expansion of 1.05 as compared to p-dioxin. co-, ortho-planar PCB metabolite exposure results in activation of Car/PxR, Pparα (Srebf1,—Lxrβ), Arnt (AhR-Erβ), AR, Dio1 (Dio2) and Trβ limbs with a Δ Cmicro contraction of 0.73 and Δ Cmicro expansion of 1.18 (as compared to p-dioxin). Bisphenol A exposure (Lext struct ∙ H-1: 1.08–1.12, BPA–BPE, Errγ; BPAF, Lext struct ∙ H-1: 1.23, CM Erα, β) results in increased duration at Peff for Timm8b (Peff 0.247) transcription and in indirect activation of the AhR/Nrf-2 hybrid pathway with decreased duration at Peff 0.200 (Nrf1) and increased duration at Peff 0.257 (Dffa). The Bpa/Bpaf convergent pathway Cmicro contraction-expansion response increase in the lower Peff interval is 0.040; in comparison, small molecule hormone Δ Cmicro contraction-expansion response increases in the lower Peff intervals for gene expression ≤ 0.168 (Dex· GR) ≥ 0.156 (Dht · AR), with grade of duration at Peff (min·count) of 1.33x105 (Dex/Cort) and 1.8–2.53x105 (Dht/R1881) as compared to the (-) coupled (+) Δ CmicroPeff to 0.136 (Wnt5a, Esr2) with applied DES (1.86x106). The subtype of trans-differentiated cell as a result of an applied toxin or toxicant is predictable by delta-Cmicro determined by Peff mapping. Study findings offer additional perspective on the basis for pressure regulated gene transcription by alterations in cell micro-compliance (Δ contraction-expansion, Cmicro), and are applicable for the further predictive modeling of gene to gene transcription interactions, and small molecule modulation of cell effective pressure (Peff) and its potential.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lühmann K, Lille-Langøy R, Øygarden L, Kovacs KM, Lydersen C, Goksøyr A, Routti H. Environmental Pollutants Modulate Transcriptional Activity of Nuclear Receptors of Whales In Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5629-5639. [PMID: 32212695 DOI: 10.1021/acs.est.9b06952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study reports the transcriptional activity of fin (Balaenoptera physalus) and blue whale (Balaenoptera musculus) peroxisome proliferator-activated receptor γ (PPARG), glucocorticoid receptor (GR), and thyroid hormone receptor β (THRB), when exposed to 14 persistent organic pollutants (so-called "legacy" persistent organic pollutants (POPs)) and a synthetic mixture of POPs, using GAL4-UAS-based in vitro luciferase reporter gene assays. Polychlorinated biphenyls (PCBs) had both agonistic and antagonistic effects on PPARG and GR, and mainly antagonistic, except for PCB153, effects on THRB. 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites had mainly antagonistic effects on all of the receptors, except for o,p'-DDT. Given that the ligand-binding domain (LBD) of PPARG is the same in killer whales, white whales, polar bears, and humans, and that GR-LBD is identical in killer whales and minke whales and that the LBD of THRB is the same in killer whales, white whales, and humans, it is likely that the results of this study are representative for these other species as well. It is important to note that several environmental pollutants modulated the transcriptional activity of tested nuclear receptors at environmentally relevant concentrations for whales.
Collapse
Affiliation(s)
- Katharina Lühmann
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Roger Lille-Langøy
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Lene Øygarden
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| |
Collapse
|
16
|
Heiger-Bernays WJ, Tomsho KS, Basra K, Petropoulos ZE, Crawford K, Martinez A, Hornbuckle KC, Scammell MK. Human health risks due to airborne polychlorinated biphenyls are highest in New Bedford Harbor communities living closest to the harbor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135576. [PMID: 31785914 PMCID: PMC7015809 DOI: 10.1016/j.scitotenv.2019.135576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 04/14/2023]
Abstract
In response to concerns raised by communities surrounding the New Bedford Harbor Superfund site, we completed a field and modeling study that concluded the harbor is the primary source of polychlorinated biphenyls (PCBs) in air around the harbor. The follow-up question from residents was whether the PCBs measured in air pose a risk to their health. The US Environmental Protection Agency focuses their site-specific, risk-based decisions for site clean-up on cancers. We focused our assessment on the non-cancer effects on the thyroid based on the congener specific patterns and concentrations of PCBs measured in air near and distant to the harbor. Human and animal studies of PCB-induced effects on the thyroid provide evidence to support our analysis. Drawing from the published toxicological data, we used a Margin of Exposure (MOE) approach to derive a human-equivalent concentration in air associated with human health effects on the thyroid. Based on the MOEs calculated herein, evaluation of the MOE indicates that changes in thyroid hormone levels are possible among people living adjacent to the Harbor. Changes in thyroid hormone levels are more likely among people who live near the harbor compared to residents living in areas distant from the harbor. This risk assessment documents potential health risks associated with proximity to a marine Superfund Site using site-specific ambient air PCB congener data.
Collapse
Affiliation(s)
- Wendy J Heiger-Bernays
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States.
| | - Kathryn Scott Tomsho
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Komal Basra
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Zoe E Petropoulos
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Kathryn Crawford
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Andres Martinez
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, 4105 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, 4105 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, IA 52242, United States
| | - Madeleine K Scammell
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| |
Collapse
|
17
|
Mortensen ÅK, Mæhre S, Kristiansen K, Heimstad ES, Gabrielsen GW, Jenssen BM, Sylte I. Homology modeling to screen for potential binding of contaminants to thyroid hormone receptor and transthyretin in glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2020.100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Ochiai M, Iida M, Agusa T, Takaguchi K, Fujii S, Nomiyama K, Iwata H. Effects of 4-Hydroxy-2,3,3',4',5-Pentachlorobiphenyl (4-OH-CB107) on Liver Transcriptome in Rats: Implication in the Disruption of Circadian Rhythm and Fatty Acid Metabolism. Toxicol Sci 2019; 165:118-130. [PMID: 29788408 DOI: 10.1093/toxsci/kfy123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have been detected in tissues of both wild animals and humans. Several previous studies have suggested adverse effects of OH-PCBs on the endocrine and nervous systems in mammals. However, there have been no studies on transcriptome analysis of the effects of OH-PCBs, and thus, the whole picture and mechanisms underlying the adverse effects induced by OH-PCBs are still poorly understood. We therefore investigated the mRNA expression profile in the liver of adult male Wistar rats treated with 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) to explore the genes responsive to OH-PCBs and to understand the potential effects of the chemical. Next-generation RNA sequencing analysis revealed changes in the expression of genes involved in the circadian rhythm and fatty acid metabolism, such as nuclear receptor subfamily 1, group D, member 1, aryl hydrocarbon receptor nuclear translocator-like protein 1, cryptochrome circadian clock 1, and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase, in 4-OH-CB107-treated rats. In addition, biochemical analysis of the plasma revealed a dose-dependent increase in the leucine aminopeptidase, indicating the onset of liver damage. These results suggest that OH-PCB exposure may induce liver injury as well as disrupt the circadian rhythm and peroxisome proliferator-activated receptor-related fatty acid metabolism.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Midori Iida
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
- Department of Bioscience and Bioinformatics, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-0067, Japan
| | - Tetsuro Agusa
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Kumamoto 862-8502, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-0067, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
19
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
20
|
Curtis SW, Terrell ML, Jacobson MH, Cobb DO, Jiang VS, Neblett MF, Gerkowicz SA, Spencer JB, Marder ME, Barr DB, Conneely KN, Smith AK, Marcus M. Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. Environ Health 2019; 18:75. [PMID: 31443693 PMCID: PMC6708149 DOI: 10.1186/s12940-019-0509-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Michigan residents were directly exposed to endocrine-disrupting compounds, polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB). A growing body of evidence suggests that exposure to certain endocrine-disrupting compounds may affect thyroid function, especially in people exposed as children, but there are conflicting observations. In this study, we extend previous work by examining age of exposure's effect on the relationship between PBB exposure and thyroid function in a large group of individuals exposed to PBB. METHODS Linear regression models were used to test the association between serum measures of thyroid function (total thyroxine (T4), total triiodothyronine (T3), free T4, free T3, thyroid stimulating hormone (TSH), and free T3: free T4 ratio) and serum PBB and PCB levels in a cross-sectional analysis of 715 participants in the Michigan PBB Registry. RESULTS Higher PBB levels were associated with many thyroid hormones measures, including higher free T3 (p = 0.002), lower free T4 (p = 0.01), and higher free T3: free T4 ratio (p = 0.0001). Higher PCB levels were associated with higher free T4 (p = 0.0002), and higher free T3: free T4 ratio (p = 0.002). Importantly, the association between PBB and thyroid hormones was dependent on age at exposure. Among people exposed before age 16 (N = 446), higher PBB exposure was associated with higher total T3 (p = 0.01) and free T3 (p = 0.0003), lower free T4 (p = 0.04), and higher free T3: free T4 ratio (p = 0.0001). No significant associations were found among participants who were exposed after age 16. No significant associations were found between TSH and PBB or PCB in any of the analyses conducted. CONCLUSIONS This suggests that both PBB and PCB are associated with thyroid function, particularly among those who were exposed as children or prenatally.
Collapse
Affiliation(s)
- Sarah W Curtis
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Metrecia L Terrell
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Melanie H Jacobson
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Dawayland O Cobb
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Victoria S Jiang
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Michael F Neblett
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Sabrina A Gerkowicz
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Jessica B Spencer
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - M Elizabeth Marder
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Dana Boyd Barr
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
| | - Alicia K Smith
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA.
| | - Michele Marcus
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Kassotis CD, Kollitz EM, Hoffman K, Sosa JA, Stapleton HM. Thyroid receptor antagonism as a contributory mechanism for adipogenesis induced by environmental mixtures in 3T3-L1 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:431-444. [PMID: 30802659 PMCID: PMC6456385 DOI: 10.1016/j.scitotenv.2019.02.273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/17/2019] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that indoor house dust extracts could induce adipogenesis in pre-adipocytes, suggesting a potential role for indoor contaminant mixtures in metabolic health. Herein, we investigated the potential role of thyroid receptor beta (TRβ) antagonism in adipogenic effects (dust-induced triglyceride accumulation and pre-adipocyte proliferation) following exposure to environmental mixtures (indoor house dust extracts). Concentrations of specific flame retardants were measured in extracts, and metabolic health information was collected from residents (n = 137). 90% of dust extracts exhibited significant adipogenic activity, >60% via triglyceride accumulation, and >70% via pre-adipocyte proliferation. Triglyceride accumulation was positively correlated with concentrations of each of twelve flame retardants, despite most being independently inactive; this suggests a putative role for co-exposures or mixtures. We further reported a positive correlation between dust-induced triglyceride accumulation and serum thyroid stimulating hormone concentrations, negative correlations with serum free triiodothyronine and thyroxine concentrations, and a positive and significant association between dust-induced triglyceride accumulation and residents' body mass index (BMI). We hypothesized that inhibition of TR antagonism might counteract these effects, and both addition of a TR agonist and siRNA knock-down of TR resulted in decreased dust-induced triglyceride accumulation in a subset of samples, bolstering this as a contributory mechanism. These results highlight a contributory role of environmental TR antagonism as a putative factor in metabolic health, suggesting that further research should evaluate this mechanism and determine whether in vitro adipogenic activity could have utility as a biomarker for metabolic health in residents.
Collapse
Affiliation(s)
| | - Erin M. Kollitz
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Julie Ann Sosa
- Department of Surgery, University of California at San Francisco, San Francisco, CA, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708
- Corresponding Author Post-Publication and person to whom reprints requests should be addressed: Heather M. Stapleton, PhD, Nicholas School of the Environment, Duke University, A207B Levine Science Research Center, 450 Research Drive, Durham, NC 27708, Phone: 919-613-8717,
| |
Collapse
|
22
|
Colter BT, Garber HF, Fleming SM, Fowler JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL, MacDougall MC, Stegman M, Taylor KR, Curran CP. Ahr and Cyp1a2 genotypes both affect susceptibility to motor deficits following gestational and lactational exposure to polychlorinated biphenyls. Neurotoxicology 2019; 65:125-134. [PMID: 29409959 DOI: 10.1016/j.neuro.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.
Collapse
Affiliation(s)
- Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Helen Frances Garber
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Sheila M Fleming
- Department of Psychology and Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jocelyn Phillips Fowler
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Gregory D Harding
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Amy Ashworth Howes
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Anna L Lang
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | | | - Melinda Stegman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Kelsey Rae Taylor
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA.
| |
Collapse
|
23
|
Guo Z, Xie HQ, Zhang P, Luo Y, Xu T, Liu Y, Fu H, Xu L, Valsami-Jones E, Boksa P, Zhao B. Dioxins as potential risk factors for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2018; 121:906-915. [PMID: 30347373 DOI: 10.1016/j.envint.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) has emerged as a major public health concern due to its fast-growing prevalence in recent decades. Environmental factors are thought to contribute substantially to the variance in ASD. Interest in environmental toxins as causes of ASD has arisen due to the high sensitivity of the developing human brain to toxic chemicals, particularly to dioxin and certain dioxin-like compounds (dioxins). As a group of typical persistent organic pollutants, dioxins have been found to exert adverse effects on human brain development. In this paper, we review the evidence for association of exposure to dioxins with neurodevelopmental abnormalities related to ASD based on both human epidemiological and animal studies. It has been documented that exposure to dioxins during critical developmental periods increased risk for ASD. This notion has been demonstrated in different populations exposed to high or background level of dioxins. Furthermore, the effects and mechanisms of action of dioxins relevant to the pathophysiology and pathogenesis of ASD are summarized, describing potential underlying mechanisms linking dioxin exposure with ASD onset. Further studies focusing on effects of prenatal/perinatal exposure to individual dioxin congeners or to mixtures of dioxins on ASD-associated behavioral and neurobiological consequences in animal models, and on the mechanisms of actions of dioxins, are needed in order to better understand how dioxin exposure might contribute to increased risk for ASD.
Collapse
Affiliation(s)
- Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eugenia Valsami-Jones
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK
| | - Patricia Boksa
- Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, QC, Canada; Neuroscience Division, Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
25
|
Catanese MC, Vandenberg LN. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control. Horm Behav 2018; 101:113-124. [PMID: 29107581 PMCID: PMC5938171 DOI: 10.1016/j.yhbeh.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Collapse
Affiliation(s)
- Mary C Catanese
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA
| | - Laura N Vandenberg
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
26
|
Klinefelter K, Hooven MK, Bates C, Colter BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez A, Ludwig CP, Curran CP. Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 2017; 29:112-127. [PMID: 29197979 DOI: 10.1007/s00335-017-9728-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Klinefelter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chloe Bates
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Alexandra Dailey
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Clare Pickering Ludwig
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.
| |
Collapse
|
27
|
Catanese MC, Vandenberg LN. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. Endocrinology 2017; 158:516-530. [PMID: 28005399 PMCID: PMC5460783 DOI: 10.1210/en.2016-1723] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
Abstract
Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications.
Collapse
Affiliation(s)
- Mary C. Catanese
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003; and
| | - Laura N. Vandenberg
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003; and
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
28
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
29
|
Dirinck E, Dirtu AC, Malarvannan G, Covaci A, Jorens PG, Van Gaal LF. A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:421. [PMID: 27089353 PMCID: PMC4847083 DOI: 10.3390/ijerph13040421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (HO-PCBs) interfere with thyroid hormone action both in vitro and in vivo. However, epidemiologic studies on the link between PCB exposure and thyroid function have yielded discordant results, while very few data are available for HO-PCBs. OBJECTIVES Our study aimed at investigating the relationship between clinically available markers of thyroid metabolism and serum levels of both PCBs and HO-PCBs. SUBJECTS AND METHODS In a group of 180 subjects, thyroid-stimulating hormone (TSH) and free thyroxin (fT4), 29 PCBs (expressed both in lipid weight and in wet weight) and 18 HO-PCBs were measured in serum. RESULTS In regression models, adjusted for gender, age, current smoking behavior, BMI and total lipid levels, serum levels of 3HO-PCB118 and 3HO-PCB180, and PCB95(lw), PCB99(lw) and PCB149(lw) were independent, significant predictors of fT4. A stepwise, multiple regression with gender, age, current smoking behavior, BMI and total lipid levels and all five previously identified significant compounds retained age, BMI, PCB95(lw), PCB99(lw) and 3HO-PCB180 as significant predictors of fT4. TSH levels were not predicted by serum levels of any of the PCBs or HO-PCBs. CONCLUSIONS Our study indicates that in vivo, circulating fT4 levels can be linked to serum levels of several PCBs and hydroxylated PCB metabolites.
Collapse
Affiliation(s)
- Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium.
| | - Alin C Dirtu
- Toxicology Centre, University of Antwerp, Wilrijk 2610, Belgium.
| | | | - Adrian Covaci
- Toxicology Centre, University of Antwerp, Wilrijk 2610, Belgium.
| | - Philippe G Jorens
- Department of Clinical Pharmacology, Antwerp University Hospital, University of Antwerp, Edegem 2650, Belgium.
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium.
| |
Collapse
|
30
|
Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:256-64. [PMID: 26311476 PMCID: PMC4786988 DOI: 10.1289/ehp.1409535] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/22/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. OBJECTIVES We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. METHODS We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. DISCUSSION In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. CONCLUSIONS We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
Collapse
Affiliation(s)
| | - Donald E. Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Chung-Ho Lin
- Department of Forestry, School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | | | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
31
|
Harley JR, Bammler TK, Farin FM, Beyer RP, Kavanagh TJ, Dunlap KL, Knott KK, Ylitalo GM, O'Hara TM. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1990-1999. [PMID: 26730740 PMCID: PMC5290708 DOI: 10.1021/acs.est.5b04396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic.
Collapse
Affiliation(s)
- John R. Harley
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive Room 194, Fairbanks, Alaska 99775-6160, United States
| | - Theo K. Bammler
- Center for Ecogenetics and Environmental Health, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE #100, Seattle, Washington 98105 United States
| | - Federico M. Farin
- Center for Ecogenetics and Environmental Health, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE #100, Seattle, Washington 98105 United States
| | - Richard P. Beyer
- Center for Ecogenetics and Environmental Health, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE #100, Seattle, Washington 98105 United States
| | - Terrance J. Kavanagh
- Center for Ecogenetics and Environmental Health, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE #100, Seattle, Washington 98105 United States
| | - Kriya L. Dunlap
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive Room 194, Fairbanks, Alaska 99775-6160, United States
| | - Katrina K. Knott
- Memphis Zoo, 2000 Prentiss Place, Memphis, Tennessee 38112, United States
| | - Gina M. Ylitalo
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E. Seattle, Washington 98112-2013, United States
| | - Todd M. O'Hara
- Department of Veterinary Medicine, University of Alaska, Fairbanks, 901 Koyukuk Dr, Fairbanks, Alaska 99775-7750, United States
| |
Collapse
|
32
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1364] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
33
|
Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology 2015; 156:4458-73. [PMID: 26465197 DOI: 10.1210/en.2015-1375] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Danh C Vu
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chung-Ho Lin
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Cynthia L Besch-Williford
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Lisa Pinatti
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Erma Z Drobnis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Michelle A Williams
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
34
|
Su PH, Chen HY, Chen SJ, Chen JY, Liou SH, Wang SL. Thyroid and growth hormone concentrations in 8-year-old children exposed in utero to dioxins and polychlorinated biphenyls. J Toxicol Sci 2015; 40:309-19. [DOI: 10.2131/jts.40.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Pen-Hua Su
- School of Medicine, Chung Shan Medical University, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taiwan
| | - Hsiao-Yen Chen
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan
| | - Suh-Jen Chen
- Department of Pediatrics, Chung Shan Medical University Hospital, Taiwan
| | - Jia-Yuh Chen
- School of Medicine, Chung Shan Medical University, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taiwan
| | - Saou-Hsing Liou
- The Department of Public Health, China Medical University, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan
| | - Shu-Li Wang
- The Department of Public Health, China Medical University, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan
| |
Collapse
|
35
|
Liu C, Li L, Ha M, Qi S, Duan P, Yang K. The PI3K/Akt and ERK pathways elevate thyroid hormone receptor β1 and TRH receptor to decrease thyroid hormones after exposure to PCB153 and p,p'-DDE. CHEMOSPHERE 2015; 118:229-238. [PMID: 25278044 DOI: 10.1016/j.chemosphere.2014.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/26/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
PCBs and DDT cause the disturbance of thyroid hormone (TH) homeostasis in humans and animals. To test the hypothesis that the PI3K/Akt and MAPK pathways would play significant roles in TH imbalance caused by PCBs and DDT, Sprague-Dawley rats were dosed with PCB153 and p,p'-DDE intraperitoneally for 5 consecutive days, and human thyroid follicular epithelial (Nthy-ori 3-1 cell line) were treated with PCB153 and p,p'-DDE for different time. Results showed that serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3) and thyroid stimulating hormone (TSH) were decreased, whereas serum free triiodothyronine (FT3) and thyrotropin releasing hormone (TRH) were not changed. The PI3K/Akt and ERK pathways were activated in vivo and in vitro after the treatment with PCB153 and p,p'-DDE. Moreover, TH receptor β1 (TRβ1) was elevated after the activation of the PI3K/Akt pathway and was depressed after the inhibition of the PI3K/Akt pathway; TRH receptor (TRHr) was increased after the activation of the ERK pathway and was decreased after the inhibition of the ERK pathway. Though TH receptor α1 (TRα1) level was increased in the hypothalamus, TRα1 and TSHr were not influenced by the status of signaling pathways in in vitro study. Taken together, after exposure to PCB153 and p,p'-DDE, activated PI3K/Akt and ERK pathways disrupt the hypothalamic-pituitary-thyroid (HPT) axis via TRβ1 and TRHr and then decrease TH levels, and that would be a potential mechanism by which PCBs and DDT disturb TH homeostasis.
Collapse
Affiliation(s)
- Changjiang Liu
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Key Lab of Birth Defects and Reproductive Health of National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, PR China
| | - Lianbing Li
- Key Lab of Birth Defects and Reproductive Health of National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, PR China
| | - Mei Ha
- Chongqing Three Gorges Medical College, Chongqing 400020, PR China
| | - Suqin Qi
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Peng Duan
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Kedi Yang
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
36
|
Gabrielsen KM, Krokstad JS, Villanger GD, Blair DAD, Obregon MJ, Sonne C, Dietz R, Letcher RJ, Jenssen BM. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 136:413-23. [PMID: 25460663 DOI: 10.1016/j.envres.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 05/03/2023]
Abstract
Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies.
Collapse
Affiliation(s)
| | - Julie Stene Krokstad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Division of Mental Health, Department of Child Development and Mental Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0473 Oslo, Norway
| | - David A D Blair
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3; Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Maria-Jesus Obregon
- Instituto de Investigaciones Biomedicas, Centro Mixto from CSIC-UAM, 28029 Madrid, Spain
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, P.O. Box 358, DK-4000, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, P.O. Box 358, DK-4000, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3; Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
37
|
Wadzinski TL, Geromini K, McKinley Brewer J, Bansal R, Abdelouahab N, Langlois MF, Takser L, Zoeller RT. Endocrine disruption in human placenta: expression of the dioxin-inducible enzyme, CYP1A1, is correlated with that of thyroid hormone-regulated genes. J Clin Endocrinol Metab 2014; 99:E2735-43. [PMID: 25299844 PMCID: PMC4255108 DOI: 10.1210/jc.2014-2629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is essential for normal development; therefore, disruption of TH action by a number of industrial chemicals is critical to identify. Several chemicals including polychlorinated biphenyls are metabolized by the dioxin-inducible enzyme CYP1A1; some of their metabolites can interact with the TH receptor. In animals, this mechanism is reflected by a strong correlation between the expression of CYP1A1 mRNA and TH-regulated mRNAs. If this mechanism occurs in humans, we expect that CYP1A1 expression will be positively correlated with the expression of genes regulated by TH. OBJECTIVE The objective of the study was to test the hypothesis that CYP1A1 mRNA expression is correlated with TH-regulated mRNAs in human placenta. METHODS One hundred sixty-four placental samples from pregnancies with no thyroid disease were obtained from the GESTE study (Sherbrooke, Québec, Canada). Maternal and cord blood TH levels were measured at birth. The mRNA levels of CYP1A1 and placental TH receptor targets [placental lactogen (PL) and GH-V] were quantitated by quantitative PCR. RESULTS CYP1A1 mRNA abundance varied 5-fold across 132 placental samples that had detectable CYP1A1 mRNA. CYP1A1 mRNA was positively correlated with PL (r = 0.64; P < .0001) and GH-V (P < .0001, r = 0.62) mRNA. PL and GH-V mRNA were correlated with each other (r = 0.95; P < .0001), suggesting a common activator. The mRNAs not regulated by TH were not correlated with CYP1A1 expression. CONCLUSIONS CYP1A1 mRNA expression is strongly associated with the expression of TH-regulated target gene mRNAs in human placenta, consistent with the endocrine-disrupting action of metabolites produced by CYP1A1.
Collapse
Affiliation(s)
- Thomas L Wadzinski
- Department of Biology (T.L.W., K.G., J.M.B., R.B., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Department of Pediatrics (T.L.W.), Baystate Medical Center, Springfield, Massachusetts 01199; and Department of Pediatrics (N.A., L.T.), Faculty of Medicine, and Department of Medicine (M.-F.L.), Endocrinology Service, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Qéubec, Canada J1H SN4
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bansal R, Tighe D, Danai A, Rawn DFK, Gaertner DW, Arnold DL, Gilbert ME, Zoeller RT. Polybrominated diphenyl ether (DE-71) interferes with thyroid hormone action independent of effects on circulating levels of thyroid hormone in male rats. Endocrinology 2014; 155:4104-12. [PMID: 25060363 PMCID: PMC4164921 DOI: 10.1210/en.2014-1154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0-30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology.
Collapse
Affiliation(s)
- Ruby Bansal
- Department of Biology (R.B., D.T., A.D., T.Z.) and Molecular and Cellular Biology Program (T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Bureau of Chemical Safety, Food Directorate, Health Products, and Food Branch (D.F.K.R., D.W.G., D.L.A.), Health Canada, Ottawa, Ontario, Canada K1A 0K9; and Toxicity Assessment Division (M.E.G.), US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Evans NP, Bellingham M, Sharpe RM, Cotinot C, Rhind SM, Kyle C, Erhard H, Hombach-Klonisch S, Lind PM, Fowler PA. Reproduction Symposium: does grazing on biosolids-treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds? J Anim Sci 2014; 92:3185-98. [PMID: 24948646 DOI: 10.2527/jas.2014-7763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biosolids (processed human sewage sludge), which contain low individual concentrations of an array of contaminants including heavy metals and organic pollutants such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and polychlorinated dibenzodioxins/polychlorinated dibenzofurans known to cause physiological disturbances, are increasingly being used as an agricultural fertilizer. This could pose a health threat to both humans and domestic and wild animal species. This review summarizes results of a unique model, used to determine the effects of exposure to mixtures of environmentally relevant concentrations of pollutants, in sheep grazed on biosolids-treated pastures. Pasture treatment results in nonsignificant increases in environmental chemical (EC) concentrations in soil. Whereas EC concentrations were increased in some tissues of both ewes and their fetuses, concentrations were low and variable and deemed to pose little risk to consumer health. Investigation of the effects of gestational EC exposure on fetal development has highlighted a number of issues. The results indicate that gestational EC exposure can adversely affect gonadal development (males and females) and that these effects can impact testicular morphology, ovarian follicle numbers and health, and the transcriptome and proteome in adult animals. In addition, EC exposure can be associated with altered expression of GnRH, GnRH receptors, galanin receptors, and kisspeptin mRNA within the hypothalamus and pituitary gland, gonadotroph populations within the pituitary gland, and regional aberrations in thyroid morphology. In most cases, these anatomical and functional differences do not result in altered peripheral hormone concentrations or reproductive function (e.g., lambing rate), indicating physiological compensation under the conditions tested. Physiological compensation is also suggested from studies that indicate that EC effects may be greater when exposure occurs either before or during gestation compared with EC exposure throughout life. With regard to human and animal health, this body of work questions the concept of safe individual concentration of EC when EC exposure typically occurs as complex mixtures. It suggests that developmental EC exposure may affect many different physiological systems, with some sex-specific differences in EC sensitivity, and that EC effects may be masked under favorable physiological conditions.
Collapse
Affiliation(s)
- N P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH
| | - M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH
| | - R M Sharpe
- MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - C Cotinot
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - S M Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - C Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - H Erhard
- INRA, UMR791 MoSAR/AgroParis Tech, UMR MoSAR, F-75005 Paris, France
| | - S Hombach-Klonisch
- Dept Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - P M Lind
- Dept Medical Sciences, Occupational and Environmental medicine, Uppsala University, 751 85 Uppsala, Sweden
| | - P A Fowler
- Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
40
|
|
41
|
Villanger GD, Gabrielsen KM, Kovacs KM, Lydersen C, Lie E, Karimi M, Sørmo EG, Jenssen BM. Effects of complex organohalogen contaminant mixtures on thyroid homeostasis in hooded seal (Cystophora cristata) mother-pup pairs. CHEMOSPHERE 2013; 92:828-842. [PMID: 23726007 DOI: 10.1016/j.chemosphere.2013.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Many lipid-soluble and phenolic compounds present in the complex mixture of orgaohalogen contaminants (OHCs) that arctic wildlife is exposed to have the ability to interfere with the thyroid hormone (TH) system. The aim of this study was to identify compounds that might interfere with thyroid homeostasis in 14 nursing hooded seal (Cystophora cristata) mothers and their pups (1-4d old) sampled in the West Ice in March 2008. Multivariate modelling was used to assess the potential effects of measured plasma levels of OHCs on circulating TH levels of the measured free (F) and total (T) levels of triidothyrine (T3) and thyroxine (T4). Biological factors were important in all models (e.g. age and sex). In both mothers and pups, TT3:FT3 ratios were associated with α- and β-hexachlorocyclohexane (HCH), ortho-PCBs, chlordanes and DDTs. The similarities between the modelled TT3:FT3 responses to OHC levels in hooded seal mothers and pups most probably reflects similar exposure patterns, but could also indicate interconnected TH responses. There were some differences in the modelled TH responses of mothers and pups. Most importantly, the negative relationships between many OH-PCBs (particularly 3'-OH-CB138) and TT3:FT3 ratio and the positive relationships between TT4:FT4 ratios and polybrominated diphenyl ether [PBDE]-99, -100 and 4-OH-CB107 in pups, which was not found in mothers. Although statistical associations are not evidence per se of biological cause-effect relationships, the results suggest that thyroid homeostasis is affected in hooded seals, and that the inclusion of the fullest possible OHC mixture is important when assessing TH related effects in wildlife.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ghisari M, Long M, Bonefeld-Jørgensen EC. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans. Int J Circumpolar Health 2013; 72:21113. [PMID: 23785672 PMCID: PMC3683137 DOI: 10.3402/ijch.v72i0.21113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/15/2022] Open
Abstract
Background The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene–environment interactions in relation to health risks is needed. Objectives The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. Results The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Conclusion Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.
Collapse
Affiliation(s)
- Mandana Ghisari
- Centre for Arctic Health and Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Denmark
| | | | | |
Collapse
|
43
|
Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, Sharpe RM, Evans NP, Bellingham M, Cotinot C, Mandon-Pepin B, Fowler PA, Klonisch T. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. Mol Cell Endocrinol 2013; 367:98-108. [PMID: 23291342 PMCID: PMC3581773 DOI: 10.1016/j.mce.2012.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
Abstract
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined. Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
Collapse
Key Words
- ecs, environmental chemicals
- edcs, endocrine-disrupting compounds
- nis, sodium-iodide symporter
- ft3, free triiodothyronine
- ft4, free thyroxine
- th, thyroid hormone
- tsh, thyroid stimulating hormone
- tr, thyroid hormone receptor
- ttr, transthyretin
- hpt, hypothalamic-pituitary-thyroid axis
- pcbs, polychlorinated biphenyls
- pbde, polybrominated diphenyl ether
- dehp, di(2-ethylhexyl) phthalate
- cv, coefficient of variation
- dab, 3,3′-diaminobenzidine tetrahydrochloride
- hrp, horseradish peroxidase
- rt, room temperature
- he, hematoxylin-eosin
- gnrh, gonadotropin releasing hormone
- gd, gestational day
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- endocrine disruptors
- thyroid gland
- sheep
- fetal
- sewage sludge
- development
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grossman E. Nonlegacy PCBs: pigment manufacturing by-products get a second look. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:A86-93. [PMID: 23454657 PMCID: PMC3621189 DOI: 10.1289/ehp.121-a86] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
45
|
Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013; 27:1320-46. [PMID: 23453986 DOI: 10.1016/j.tiv.2013.02.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.
Collapse
Affiliation(s)
- AlberTinka J Murk
- Wageningen University, Sub-department of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Dietrich JW, Landgrafe G, Fotiadou EH. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. J Thyroid Res 2012; 2012:351864. [PMID: 23365787 PMCID: PMC3544290 DOI: 10.1155/2012/351864] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| | - Gabi Landgrafe
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
- Klinik für Allgemein- und Visceralchirurgie, Agaplesion Bethesda Krankenhaus Wuppertal gGmbH, Hainstraße 35, 42109 Wuppertal, NRW, Germany
| | - Elisavet H. Fotiadou
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| |
Collapse
|
48
|
Liu C, Ha M, Cui Y, Wang C, Yan M, Fu W, Quan C, Zhou J, Yang K. JNK pathway decreases thyroid hormones via TRH receptor: A novel mechanism for disturbance of thyroid hormone homeostasis by PCB153. Toxicology 2012; 302:68-76. [PMID: 22889935 DOI: 10.1016/j.tox.2012.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
49
|
Long M, Krüger T, Ghisari M, Bonefeld-Jørgensen EC. Effects of selected phytoestrogens and their mixtures on the function of the thyroid hormone and the aryl hydrocarbon receptor. Nutr Cancer 2012; 64:1008-19. [PMID: 22966911 DOI: 10.1080/01635581.2012.711419] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phytoestrogens (PEs) are natural plant components, which can induce biologic responses in vertebrates by mimicking or blocking the actions of natural hormones or influencing the hormone production in the body. This study investigated the effect of different mixtures composed of food-relevant PEs on the thyroid hormone (TH) system assessing the proliferation of the 3,3',5-triiodi-L-thryonine (T3) dependent rat pituitary GH3 cells using the T-screen assay, and the effect on the aryl hydrocarbon receptor (AhR) transactivation using an AhR-luciferase reporter gene assay. Most tested PEs and their mixtures showed effect on both the TH and AhR system. Single isoflavonoid metabolites and their mixture and coumestrol induced GH3 cell growth and AhR transactivity dose-dependently. Isoflavonoid metabolites elicited an additive effect on the T3-dependent GH3 cell growth, and a synergistic effect on the AhR transactivity. In conclusion, nutrition-relevant PEs, alone and in mixture may possess endocrine-disrupting potential by interfering with TH and AhR functions, which need to be considered when assessing the effects on human health.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
50
|
Moran TB, Brannick KE, Raetzman LT. Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary. Toxicol Appl Pharmacol 2012; 265:139-45. [PMID: 22975028 DOI: 10.1016/j.taap.2012.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/22/2022]
Abstract
Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary.
Collapse
Affiliation(s)
- Tyler B Moran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|