1
|
Jung KH, Argenio KL, Jackson DJ, Miller RL, Perzanowski MS, Rundle AG, Bacharier LB, Busse WW, Cohen RT, Visness CM, Gill MA, Gruchalla RS, Hershey GK, Kado RK, Sherenian MG, Liu AH, Makhija MM, Pillai DK, Rivera-Spoljaric K, Gergen PJ, Altman MC, Sandel MT, Sorkness CA, Kattan M, Lovinsky-Desir S. Home and school pollutant exposure, respiratory outcomes, and influence of historical redlining. J Allergy Clin Immunol 2024; 154:1159-1168. [PMID: 38992473 PMCID: PMC11560541 DOI: 10.1016/j.jaci.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The discriminatory and racist policy of historical redlining in the United States during the 1930s played a role in perpetuating contemporary environmental health disparities. OBJECTIVE Our objectives were to determine associations between home and school pollutant exposure (fine particulate matter [PM2.5], NO2) and respiratory outcomes (Composite Asthma Severity Index, lung function) among school-aged children with asthma and examine whether associations differed between children who resided and/or attended school in historically redlined compared to non-redlined neighborhoods. METHODS Children ages 6 to 17 with moderate-to-severe asthma (N = 240) from 9 US cities were included. Combined home and school exposure to PM2.5 and NO2 was calculated based on geospatially assessed monthly averaged outdoor pollutant concentrations. Repeated measures of Composite Asthma Severity Index and lung function were collected. RESULTS Overall, 37.5% of children resided and/or attended schools in historically redlined neighborhoods. Children in historically redlined neighborhoods had greater exposure to NO2 (median: 15.4 vs 12.1 parts per billion) and closer distance to a highway (median: 0.86 vs 1.23 km), compared to those in non-redlined neighborhoods (P < .01). Overall, PM2.5 was not associated with asthma severity or lung function. However, among children in redlined neighborhoods, higher PM2.5 was associated with worse asthma severity (P < .005). No association was observed between pollutants and lung function or asthma severity among children in non-redlined neighborhoods (P > .005). CONCLUSIONS Our findings highlight the significance of historical redlining and current environmental health disparities among school-aged children with asthma, specifically, the environmental injustice of PM2.5 exposure and its associations with respiratory health.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kira L Argenio
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tenn
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Michelle A Gill
- Department of Pediatrics, Washington University, St Louis, Mo
| | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Gurjit K Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel K Kado
- Division of Allergy and Immunology, Department of Internal Medicine, Henry Ford Health System, Sterling Heights, Mich
| | - Michael G Sherenian
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew H Liu
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Melanie M Makhija
- Division of Allergy and Immunology, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Dinesh K Pillai
- Division of Pulmonary Medicine, Children's National Medical Center, Washington, DC; Pulmonary Medicine, Pediatric Specialists of Virginia, Fairfax, Va
| | | | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Wash; Immunology Division, Benaroya Research Institute Systems, Seattle, Wash
| | - Megan T Sandel
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Christine A Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Meyer Kattan
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
2
|
Foley HB, Eckel SP, Yang T, Vigil M, Chen X, Marsit C, Farzan SF, Bastain TM, Habre R, Breton CV. EV-miRNA associated with environmental air pollution exposures in the MADRES cohort. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae019. [PMID: 39529802 PMCID: PMC11552520 DOI: 10.1093/eep/dvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Air pollution is a hazardous contaminant, exposure to which has substantial consequences for health during critical periods, such as pregnancy. MicroRNA (miRNA) is an epigenetic mechanism that modulates transcriptome responses to the environment and has been found to change in reaction to air pollution exposure. The data are limited regarding extracellular-vesicle (EV) miRNA variation associated with air pollution exposure during pregnancy and in susceptible populations who may be disproportionately exposed. This study aimed to identify EV-miRNA expression associated with ambient, residential exposure to PM2.5, PM10, NO2, O3 and with traffic-related NOx in 461 participants of the MADRES cohort, a low income, predominantly Hispanic pregnancy cohort based in Los Angeles, CA. This study used residence-based modeled air pollution data as well as Nanostring panels for EVmiRNA extracted with Qiagen exoRNeasy kits to evaluate 483 miRNA in plasma in early and late pregnancy. Average air pollution exposures were considered separately for 1-day, 1-week, and 8-week windows before blood collection in both early and late pregnancy. This study identified 63 and 66 EV-miRNA significantly associated with PM2.5 and PM10, respectively, and 2 miRNA associated with traffic-related NOX (False Discovery Rate-adjusted P-value < .05). Of 103 unique EV-miRNA associated with PM, 92% were associated with lung conditions according to HMDD (Human miRNA Disease Database) evidence. In particular, EV-miRNA previously identified with air pollution exposure also associated with PM2.5 and PM10 in this study were: miR-126, miR-16-5p, miR-187-3p, miR200b-3p, miR486-3p, and miR-582-3p. There were no significant differences in average exposures in early vs late pregnancy. Significant EV-miRNAs were only identified in late pregnancy with an 8-week exposure window, suggesting a vulnerable timeframe of exposure, rather than an acute response. These results describe a wide array of EV-miRNA for which expression is affected by PM exposure and may be in part mediating the biological response to ambient air pollution, with potential for health implications in pregnant women and their children.
Collapse
Affiliation(s)
- Helen Bermudez Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Mario Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Spatial Sciences Institute, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
3
|
Hu Y, Chavez T, Eckel SP, Yang T, Chen X, Vigil M, Pavlovic N, Lurmann F, Lerner D, Lurvey N, Grubbs B, Al-Marayati L, Toledo-Corral C, Johnston J, Dunton GF, Farzan SF, Habre R, Breton C, Bastain TM. Joint effects of traffic-related air pollution and hypertensive disorders of pregnancy on maternal postpartum depressive and anxiety symptoms. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00692-9. [PMID: 38822090 PMCID: PMC11607174 DOI: 10.1038/s41370-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Ambient air pollution has been linked to postpartum depression. However, few studies have investigated the effects of traffic-related NOx on postpartum depression and whether any pregnancy-related factors might increase susceptibility. OBJECTIVES To evaluate the association between traffic-related NOx and postpartum depressive and anxiety symptoms, and effect modification by pregnancy-related hypertension. METHODS This study included 453 predominantly low-income Hispanic/Latina women in the MADRES cohort. Daily traffic-related NOx concentrations by road class were estimated using the California LINE-source dispersion model (CALINE4) at participants' residential locations and averaged across pregnancy. Postpartum depressive and anxiety symptoms were evaluated by a validated questionnaire (Postpartum Distress Measure, PDM) at 1, 3, 6 and 12 months postpartum. Multivariate linear regressions were performed to estimate the associations at each timepoint. Interaction terms were added to the linear models to assess effect modification by hypertensive disorders of pregnancy (HDPs). Repeated measurement analyses were conducted by using mixed effect models. RESULTS We found prenatal traffic-related NOx was associated with increased PDM scores. Specifically, mothers exposed to an IQR (0.22 ppb) increase in NOx from major roads had 3.78% (95% CI: 0.53-7.14%) and 5.27% (95% CI: 0.33-10.45%) significantly higher 3-month and 12-month PDM scores, respectively. Similarly, in repeated measurement analyses, higher NOx from major roads was associated with 3.06% (95% CI: 0.43-5.76%) significantly higher PDM scores across the first year postpartum. Effect modification by HDPs was observed: higher freeway/highway and total NOx among mothers with HDPs were associated with significantly higher PDM scores at 12 months postpartum compared to those without HDPs. IMPACT This study shows that prenatal traffic-related air pollution was associated with postpartum depressive and anxiety symptoms. The study also found novel evidence of greater susceptibility among women with HDPs, which advances the understanding of the relationships between air pollution, maternal cardiometabolic health during pregnancy and postpartum mental health. Our study has potential implications for clinical intervention to mitigate the effects of traffic-related pollution on postpartum mental health disorders. The findings can also offer valuable insights into urban planning strategies concerning the implementation of emission control measures and the creation of green spaces.
Collapse
Affiliation(s)
- Yuhong Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Chavez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mario Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University, Northridge, Northridge, CA, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mao H, Lin T, Huang S, Xie Z, Jin S, Shen X, Jin Y, Ding Y. The impact of brominated flame retardants (BFRs) on pulmonary function in US adults: a cross-sectional study based on NHANES (2007-2012). Sci Rep 2024; 14:6486. [PMID: 38499858 PMCID: PMC10948772 DOI: 10.1038/s41598-024-57302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Brominated flame retardants (BFRs) are a group of chemicals widely used in various applications to prevent or slow down the spread of fire. However, they have adverse effects on human health. There is a relative scarcity of population-based studies regarding BFRs, particularly their impact on the respiratory system. This study aimed to investigate the influence of BFRs on pulmonary function using data from the National Health and Nutrition Examination Survey. The study found that elevated serum concentrations of certain BFRs were associated with pulmonary ventilatory dysfunction. Adjusted analyses revealed positive correlations between PBDE47, PBDE183, and PBDE209 concentrations and ventilatory dysfunction. The analysis of mixed BFRs showed a positive relationship with pulmonary ventilation dysfunction, with PBDE47 making the most significant contribution. Our study demonstrates that both individual and combined BFRs exposure can lead to impaired pulmonary ventilation function. These findings provide evidence of the adverse effects of BFRs on lung function, emphasizing the importance of further investigating the potential health consequences of these compounds. Further large-scale longitudinal studies are needed to investigate this relationship in the future.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shaofeng Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Xingkai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yuhong Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| | - Yi Ding
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| |
Collapse
|
5
|
de Lira-Quezada CE, González-Díaz SN, Cotera-de Lira AG, Macouzet-Sánchez C, Acuña-Ortega N, Guzman-Avilán RI, Macías-Weinmann A. The association of air pollution in respiratory allergy: Its impact in an industrial city. World Allergy Organ J 2024; 17:100867. [PMID: 38370131 PMCID: PMC10869943 DOI: 10.1016/j.waojou.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Asthma and allergic diseases have increased in recent decades and are more common in industrialized countries. Industrial areas with a considerably high number of inhabitants and vehicles can favor the presence of serious air pollution and therefore the appearance and exacerbation of respiratory allergy symptoms. The objective of this study was to determine the relationship between exposure to environmental pollutants with exacerbation of respiratory allergy. Methods A total of 240 subjects above 6 years old who lived in the metropolitan area of Monterrey, Nuevo León, Mexico, with diagnosis of allergic rhinitis and/or asthma, were included. The subject's address was registered in the database and the rhinitis control assessment test (RCAT) and the asthma control test (ACT) were applied. Environmental data were obtained from the Environmental Monitoring System (SIMA) of Nuevo León. Geolocation of industries and avenues in proximity of subject's addresses and SIMA stations were obtained through geographic information systems using ArcGis software. Results The relation between pollutants and subjects' RCAT, ACT, and spirometry results in the 14 stations was established. PM10 and forced vital capacity (FVC) had an r = 0.074 with p = 0.005, PM10 and absolute FEV1/FVC ratio presented an r = -0.102 with a p = 0.000; The distance found to be associated with a worsening of respiratory symptoms was living 165 m from a main road or 241 m from an industrial establishment. Conclusions Exposure to pollutants present in the environment are factors associated with increased symptoms in subjects with respiratory allergies.
Collapse
Affiliation(s)
- Cindy Elizabeth de Lira-Quezada
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| | - Sandra Nora González-Díaz
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Carlos Macouzet-Sánchez
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| | - Natalhie Acuña-Ortega
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| | - Rosa Ivett Guzman-Avilán
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| | - Alejandra Macías-Weinmann
- Universidad Autónoma de Nuevo León, Faculty of Medicine and Hospital Universitario "Dr. José Eleuterio González", Regional Center of Allergy and Clinical Immunology, Gonzalitos y Madero s/n Colonia Mitras Centro, Monterrey, Nuevo León, CP 64460, Mexico
| |
Collapse
|
6
|
Mao H, Xie Z, Huang S, Shen X, Jin S, Lin T, Yang Z. Analysis of the correlation between serum Klotho and FeNO: a cross-sectional study from NHANES (2007-2012). BMC Pulm Med 2024; 24:61. [PMID: 38287280 PMCID: PMC10823643 DOI: 10.1186/s12890-024-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Klotho is an anti-aging protein that has multiple functions and may play a key role in the pathogenesis and progression of chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). Fractional Exhaled Nitric Oxide (FeNO) is a non-invasive and novel biomarker that has the advantages of being simple, fast and reproducible. It can effectively assess the degree of airway inflammation in diseases such as asthma and COPD. Despite these insights, the relationship between serum Klotho levels and FeNO has not been explored yet. METHODS Leveraging data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2012, we investigated the correlation between FeNO and serum Klotho levels. This association was scrutinized both as continuous variables and within quartile distributions, utilizing the Kruskal-Wallis H test. The correlation between the two variables was assessed through Spearman rank analysis. Employing survey weight-adjusted linear regression models, we gauged the strength of these associations. RESULTS This study included 6,527 participants with a median FeNO level of 14.5 parts per billion (ppb). We found that FeNO levels varied significantly across different quartiles of Klotho protein (H = 7.985, P = 0.046). We also found a significant positive correlation between serum Klotho levels and FeNO levels in the whole population (Spearman's rho = 0.029, P = 0.019). This correlation remained significant after adjusting for covariates such as age, gender, lung function, smoking status, alcohol use, BMI, cardiovascular disease (including hypertension, heart failure, coronary heart disease, and myocardial infarction), diabetes, inflammatory markers, serum vitamin D level and BUN (P < 0.05 for all). Furthermore, this correlation was stronger at the high (K3) and super high (K4) levels of Klotho than at the low (K1) and medium (K2) levels (β = 1.979 ppb and β = 1.993 ppb for K3 and K4 vs. K1, respectively; 95% CI: 0.497 ~ 2.953 and 95% CI: 0.129 ~ 2.827, respectively; P = 0.007 and P = 0.032, respectively). The β coefficient for serum Klotho was 0.002 ppb/pg/ml. CONCLUSIONS Our study illuminates a positive correlation between serum Klotho levels and FeNO. Further study is needed to verify the causality of this association and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Xingkai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Shaofeng Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China
| | - Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 315100, Ningbo, China.
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 310030, Hangzhou, China.
| |
Collapse
|
7
|
Tsai YG, Chio CP, Yang KD, Lin CH, Yeh YP, Chang YJ, Chien JW, Wang SL, Huang SK, Chan CC. Long-term PM 2.5 exposure is associated with asthma prevalence and exhaled nitric oxide levels in children. Pediatr Res 2024:10.1038/s41390-023-02977-5. [PMID: 38263452 DOI: 10.1038/s41390-023-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Exhaled nitric oxide concentration (FENO) is a marker of airway inflammation. This study aimed to evaluate the association of air pollution exposure with FENO levels and asthma prevalence with respiratory symptoms in school children. METHODS We analyzed 4736 school children who reside in six townships near industrial areas in central Taiwan. We evaluated asthmatic symptoms, FENO, and conducted the environmental questionnaire. The personal exposure of PM2.5, NO, and SO2 was estimated using land-use regression models data on children's school and home addresses. RESULTS Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma (OR = 1.595), exercise-induced wheezing (OR = 1.726), itchy eyes (OR = 1.417), and current nasal problems (OR = 1.334) (P < 0.05). FENO levels in the absence of infection were positively correlated with age, previous wheezing, allergic rhinitis, atopic eczema, near the road, and for children with high exposure to PM2.5 (P < 0.05). An increase of 1 μg/m3 PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels for children after adjusting for potential confounding variables, including exposures to NO and SO2. CONCLUSIONS Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children. IMPACT Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma and nasal problems and itchy eyes. Long-term exposures to PM2.5 were significantly associated with FENO levels after adjusting for potential confounding variables. This is first study to assess the association between FENO levels and long-term air pollution exposures in children near coal-based power plants. An increase of 1 μg/m3 annual PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels. Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chia-Pin Chio
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, and Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, ROC
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan, ROC
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan, ROC
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
- Johns Hopkins Asthma and Allergy Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
8
|
Chen Z, Huang BZ, Sidell MA, Chow T, Eckel SP, Pavlovic N, Martinez MP, Lurmann F, Thomas DC, Gilliland FD, Xiang AH. Near-roadway air pollution associated with COVID-19 severity and mortality - Multiethnic cohort study in Southern California. ENVIRONMENT INTERNATIONAL 2021; 157:106862. [PMID: 34507232 PMCID: PMC8416551 DOI: 10.1016/j.envint.2021.106862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Air pollution exposure has been associated with increased risk of COVID-19 incidence and mortality by ecological analyses. Few studies have investigated the specific effect of traffic-related air pollution on COVID-19 severity. OBJECTIVE To investigate the associations of near-roadway air pollution (NRAP) exposure with COVID-19 severity and mortality using individual-level exposure and outcome data. METHODS The retrospective cohort includes 75,010 individuals (mean age 42.5 years, 54% female, 66% Hispanic) diagnosed with COVID-19 at Kaiser Permanente Southern California between 3/1/2020-8/31/2020. NRAP exposures from both freeways and non-freeways during 1-year prior to the COVID-19 diagnosis date were estimated based on residential address history using the CALINE4 line source dispersion model. Primary outcomes include COVID-19 severity defined as COVID-19-related hospitalizations, intensive respiratory support (IRS), intensive care unit (ICU) admissions within 30 days, and mortality within 60 days after COVID-19 diagnosis. Covariates including socio-characteristics and comorbidities were adjusted for in the analysis. RESULT One standard deviation (SD) increase in 1-year-averaged non-freeway NRAP (0.5 ppb NOx) was associated with increased odds of COVID-19-related IRS and ICU admission [OR (95% CI): 1.07 (1.01, 1.13) and 1.11 (1.04, 1.19) respectively] and increased risk of mortality (HR = 1.10, 95% CI = 1.03, 1.18). The associations of non-freeway NRAP with COVID-19 outcomes were largely independent of the effect of regional fine particulate matter and nitrogen dioxide exposures. These associations were generally consistent across age, sex, and race/ethnicity subgroups. The associations of freeway and total NRAP with COVID-19 severity and mortality were not statistically significant. CONCLUSIONS Data from this multiethnic cohort suggested that NRAP, particularly non-freeway exposure in Southern California, may be associated with increased risk of COVID-19 severity and mortality among COVID-19 infected patients. Future studies are needed to assess the impact of emerging COVID-19 variants and chemical components from freeway and non-freeway NRAP.
Collapse
Affiliation(s)
- Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Z Huang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Margo A Sidell
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | | | - Duncan C Thomas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Frank D Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States.
| |
Collapse
|
9
|
Zhang Y, Eckel SP, Berhane K, Garcia E, Muchmore P, Molshatzki NBA, Rappaport EB, Linn WS, Habre R, Gilliland FD. Long-term exposures to air pollutants affect F eNO in children: a longitudinal study. Eur Respir J 2021; 58:13993003.00705-2021. [PMID: 34503981 DOI: 10.1183/13993003.00705-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Zhang
- Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA .,Dept of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA.,Veteran Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Sandrah P Eckel
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Dept of Biostatistics, Columbia University, New York, NY, USA
| | - Erika Garcia
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Edward B Rappaport
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - William S Linn
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Iavicoli I, Fontana L, Leso V, Macrini MC, Pelclova D. Fractional Exhaled Nitric Oxide and Nanomaterial Exposure in Workplaces. Curr Med Chem 2020; 27:7200-7212. [DOI: 10.2174/0929867327666200320154545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Background:
The widespread application of engineered nanomaterials (ENMs) and the
increasing likelihood of general and occupational exposure raised concerns on their possible human
health impact. ENMs, in fact, may induce alterations in different organ systems, and particularly in
the respiratory tract. This makes it important to identify possible biomarkers of early lung effect in
exposed workers. In this regard, the possibility to use the fractional exhaled levels of nitric oxide
(FENO) in biological monitoring has attracted considerable interest.
Objective:
To comprehensively assess the role of FENO as a possible biomarker of lung effect in
ENM exposed workers.
Methods:
A systematic search was performed on Pubmed, Scopus, and ISI Web of Knowledge
databases according to the PRISMA guidelines.
Results:
Seven studies investigated FENO in workers exposed to different kinds of metal-(i.e.
silver and gold), metal oxide- (titanium and silica dioxide), and carbon-based ENMs (carbon nanotubes).
In general, no significant alterations were detected between exposed workers and controls.
Conclusions:
Definite conclusion on the function of FENO in occupational biological monitoring
cannot be extrapolated due to the limited number of available studies and the small size of investigated
populations. Additionally, the lack of environmental monitoring data and the fragmented
knowledge on ENM modes of action prevent to establish dose-response relationships. Future research
appears necessary to deeply define the possibility to employ FENO as an early biomarker of
lung effects taking in consideration possible occupational exposure issues, i.e. differently characterized
ENMs and work tasks, as well as individual influencing factors, i.e. smoking and atopy.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Carmela Macrini
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Na Bojisti 1, 120,00 Prague, Czech Republic
| |
Collapse
|
11
|
Olaniyan T, Jeebhay M, Röösli M, Naidoo RN, Künzli N, de Hoogh K, Saucy A, Badpa M, Baatjies R, Parker B, Leaner J, Dalvie MA. The association between ambient NO 2 and PM 2.5 with the respiratory health of school children residing in informal settlements: A prospective cohort study. ENVIRONMENTAL RESEARCH 2020; 186:109606. [PMID: 32371276 DOI: 10.1016/j.envres.2020.109606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND No previous epidemiological study has investigated the combined association of long-term ambient nitrogen dioxide (NO2) and particulate matter of diameter size-2.5 (PM2.5) exposure with asthma outcomes among schoolchildren in Africa. OBJECTIVES This study investigated the independent and co-pollutant association of long-term exposures to ambient air pollutants on asthma-associated outcomes in a cohort of schoolchildren in the Western Cape Province of South Africa. METHODS A total of 590 grade-4 schoolchildren residing in four informal settlements were studied. Spirometry and fractional exhaled nitric-oxide (FeNO) measurements were conducted, including a standardized questionnaire administered to caregivers at baseline and 12-months follow-up. Annual NO2 and PM2.5 levels were estimated for each child's home using land-use regression modelling. Single- and two-pollutant models were constructed to assess the independent and co-pollutant association of both air pollutants (NO2 and PM2.5) on new cases of asthma-associated outcomes adjusting-for host characteristics, indoor exposures and study area. RESULTS The annual average concentration of PM2.5 and NO2 were 10.01μg/m3 and 16.62μg/m3 respectively, across the four study areas, and were below the local Standards of 20μg/m3 and 40μg/m3, for both pollutants, respectively. In the two-pollutant-adjusted models, an interquartile range (IQR) increase of 14.2μg/m3 in NO2 was associated with an increased risk of new onset of ocular-nasal symptoms (adjusted odds ratio-aOR: 1.63, 95% CI: 1.01-2.60), wheezing (aOR: 3.57, 95% CI: 1.18-10.92), more than two or more asthma symptom score (aOR: 1.71, 95% CI: 1.02-2.86), and airway inflammation defined as FeNO > 35 ppb (aOR: 3.10, 95% CI: 1.10-8.71), independent of PM2.5 exposures. CONCLUSION This study provided evidence that ambient NO2 levels below local standards and international guidelines, independent of PM2.5 exposure, increases new cases of asthma-associated outcomes after 12-months.
Collapse
Affiliation(s)
- Toyib Olaniyan
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.
| | - Mohamed Jeebhay
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; Division of Occupational Medicine, University of Cape Town, Cape Town, South Africa.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Apolline Saucy
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Mahnaz Badpa
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Roslynn Baatjies
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 7700, South Africa.
| | - Bhawoodien Parker
- Department of Environmental Affairs and Developmental Planning, Western Cape Government, Cape Town, South Africa.
| | - Joy Leaner
- Department of Environmental Affairs and Developmental Planning, Western Cape Government, Cape Town, South Africa.
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Nguyen VN, Chavannes NH. Correlation between fractional exhaled nitric oxide and Asthma Control Test score and spirometry parameters in on-treatment-asthmatics in Ho Chi Minh City. J Thorac Dis 2020; 12:2197-2209. [PMID: 32642125 PMCID: PMC7330382 DOI: 10.21037/jtd.2020.04.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Although fractional exhaled nitric oxide (FeNO) is a reliable and easily applied marker of airway inflammation in asthma, the relationship between FeNO and indicators of asthma control [Asthma Control Test (ACT) score] and/or severity (spirometry parameters) remains unclear. This study aims to determine possible correlations between FeNO and ACT score; and between FeNO and spirometry parameters. Methods A cross-sectional study with convenience sampling was conducted among ambulatory patients in the Asthma & COPD clinic at the University Medical Center, Ho Chi Minh City from March 2016 to March 2017. Using measurement of FeNO, the ACT questionnaire and a spirometry test, correlations were determined between FeNO and the ACT score and spirometry parameters. Results Four hundred and ten asthmatic patients (mean age 42 years; 65% female) were included and analyzed; their mean time since onset of asthma was 9.5 years. All patients were treated following step 2 to 4 of GINA guidelines. Mean (SD) FeNO was 29.5 (24.4) parts per billion (ppb) and mean (SD) ACT score was 20.5 (40). A significant difference in FeNO values was found among the three groups with different asthma control levels categorized according to the ACT score (P=0.001) but was not found among the three groups with different asthma treatment levels (P=0.425). FeNO was significantly inversely correlated with the ACT score (Spearman’s r =−0.224, P<0.001) and with spirometry parameters indicate airway obstruction such as predicted FEV1, FEV1/FVC, predicted PEF and predicted FEF25–75% with Spearman’s r were −0.187; −0.143; −0.091 and −0.195, respectively (all P<0.05), whereas no correlation between FeNO and FVC—an indicator of airway restriction—was found. Conclusions In these asthmatic patients in Vietnam, an inverse correlation was found between FeNO and the ACT score and between FeNO and spirometry indicators of airway obstruction. Therefore, FeNO may be a useful tool in asthma management.
Collapse
Affiliation(s)
- Vinh Nhu Nguyen
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands.,Department of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Respiratory Functional Exploration, University Medical Center, Ho Chi Minh City, Vietnam
| | - Niels H Chavannes
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Abramson MJ, Wigmann C, Altug H, Schikowski T. Ambient air pollution is associated with airway inflammation in older women: a nested cross-sectional analysis. BMJ Open Respir Res 2020; 7:e000549. [PMID: 32209644 PMCID: PMC7206912 DOI: 10.1136/bmjresp-2019-000549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Air pollution is a risk factor for chronic obstructive pulmonary disease (COPD). Fraction of exhaled nitric oxide (FeNO) could be a useful biomarker for health effects of air pollutants. However, there were limited data from older populations with higher prevalence of COPD and other inflammatory conditions. METHODS We obtained data from the German Study on the influence of Air pollution on Lung function, Inflammation and Ageing. Spirometry and FeNO were measured by standard techniques. Air pollutant exposures were estimated following the European Study of Cohorts for Air Pollution Effects protocols, and ozone (O3) measured at the closest ground level monitoring station. Multiple linear regression models were fitted to FeNO with each pollutant separately and adjusted for potential confounders. RESULTS In 236 women (mean age 74.6 years), geometric mean FeNO was 15.2ppb. Almost a third (n=71, 30.1%) of the women had some chronic inflammatory respiratory condition. A higher FeNO concentration was associated with exposures to fine particles (PM2.5), PM2.5absorbance and respirable particles (PM10). There were no significant associations with PMcoarse, NO2, NOx, O3 or length of major roads within a 1 km buffer. Restricting the analysis to participants with a chronic inflammatory respiratory condition, with or without impaired lung function produced similar findings. Adjusting for diabetes did not materially alter the findings. There were no significant interactions between individual pollutants and asthma or current smoking. CONCLUSIONS This study adds to the evidence to reduce ambient PM2.5 concentrations as low as possible to protect the health of the general population.
Collapse
Affiliation(s)
- Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claudia Wigmann
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Hicran Altug
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Tamara Schikowski
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Dusseldorf, Nordrhein-Westfalen, Germany
| |
Collapse
|
14
|
Jiang Y, Niu Y, Xia Y, Liu C, Lin Z, Wang W, Ge Y, Lei X, Wang C, Cai J, Chen R, Kan H. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function. ENVIRONMENTAL RESEARCH 2019; 177:108620. [PMID: 31400563 DOI: 10.1016/j.envres.2019.108620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few epidemiological studies have evaluated the respiratory effects of personal exposure to nitrogen dioxide (NO2), a major traffic-related air pollutant. The biological pathway for these effects remains unknown. OBJECTIVES To evaluate the short-term effects of personal NO2 exposure on lung function, fractional exhaled nitric oxide (FeNO) and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 40 college students with four repeated measurements in Shanghai from May to October in 2016. We measured DNA methylation of the key encoding genes of inducible nitric oxide synthase (NOS2A) and arginase (ARG2). We applied linear mixed-effect models to assess the effects of NO2 on respiratory outcomes. RESULTS Personal exposure to NO2 was 27.39 ± 23.20 ppb on average. In response to a 10-ppb increase in NO2 exposure, NOS2A methylation (%5 mC) decreased 0.19 at lag 0 d, ARG2 methylation (%5 mC) increased 0.21 and FeNO levels increased 2.82% at lag 1 d; and at lag 2 d the percentage of forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow in predicted values decreased 0.12, 0.37 and 0.67, respectively. The model performance was better compared with those estimated using fixed-site measurements. These effects were robust to the adjustment for co-pollutants and weather conditions. CONCLUSIONS Our study suggests that short-term personal exposure to NO2 is associated with NOS2A hypomethylation, ARG2 hypermethylation, respiratory inflammation and lung function impairment. The use of personal measurements may better predict the respiratory effects of NO2.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
15
|
Knibbs LD, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Jalaludin B, Marks GB, Williams GM. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. ENVIRONMENT INTERNATIONAL 2018; 120:394-403. [PMID: 30125857 DOI: 10.1016/j.envint.2018.08.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Most studies of long-term air pollution exposure and children's respiratory health have been performed in urban locations with moderate pollution levels. We assessed the effect of outdoor nitrogen dioxide (NO2), as a proxy for urban air pollution, on current asthma and lung function in Australia, a low-pollution setting. We undertook a national population-based cross-sectional study of children aged 7-11 years living in 12 Australian cities. We collected information on asthma symptoms from parents via questionnaire and measured children's lung function (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) and fractional exhaled nitric oxide [FeNO]). We estimated recent NO2 exposure (last 12 months) using monitors near each child's school, and used a satellite-based land-use regression (LUR) model to estimate NO2 at each child's school and home. Our analysis comprised 2630 children, among whom the prevalence of current asthma was 14.9%. Mean (±SD) NO2 exposure was 8.8 ppb (±3.2) and 8.8 ppb (±2.3) for monitor- and LUR-based estimates, respectively. Mean percent predicted post-bronchodilator FEV1 and FVC were 101.7% (±10.5) and 98.8% (±10.5), respectively. The geometric mean FeNO concentration was 9.4 ppb (±7.1). An IQR increase in NO2 (4.0 ppb) was significantly associated with increased odds of having current asthma; odds ratios (ORs) were 1.24 (95% CI: 1.08, 1.43) and 1.54 (95% CI: 1.26, 1.87) for monitor- and LUR-based estimates, respectively. Increased NO2 exposure was significantly associated with decreased percent predicted FEV1 (-1.35 percentage points [95% CI: -2.21, -0.49]) and FVC (-1.19 percentage points [95% CI: -2.04, -0.35], and an increase in FeNO of 71% (95% CI: 38%, 112%). Exposure to outdoor NO2 was associated with adverse respiratory health effects in this population-based sample of Australian children. The relatively low NO2 levels at which these effects were observed highlight the potential benefits of continuous exposure reduction.
Collapse
Affiliation(s)
- Luke D Knibbs
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia.
| | | | - Brett G Toelle
- Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia; Sydney Local Health District, Sydney, NSW 2050, Australia
| | - Yuming Guo
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Department of Epidemiology and Biostatistics, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Lyn Denison
- ERM Services Australia, Melbourne, VIC 3000, Australia
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Population Health, South Western Sydney Local Health District, Liverpool, NSW 2170, Australia; Ingham Institute, Liverpool, NSW 2170, Australia
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia; South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Gail M Williams
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
16
|
Guo H. Comparisons of combined oxidant capacity and redox-weighted oxidant capacity in their association with increasing levels of FeNO. CHEMOSPHERE 2018; 211:584-590. [PMID: 30096571 DOI: 10.1016/j.chemosphere.2018.07.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Some ozone (O3) and nitrogen dioxides (NO2) health effects studies use Ox (sum value) as a surrogate. However, little is known about how this related to Oxwt (weighted value). OBJECTIVE We investigated the effects of redox-weighted oxidant capacity (Oxwt) on fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation, in a set of chronic obstructive pulmonary disease (COPD) patients. We also compare combined oxidant capacity (Ox) and Oxwt in their associations with increasing levels of FeNO. METHODS We measured FeNO values in 600 participants who have COPD at Shanghai Pulmonary Hospital. Ox was calculated directly by the sum of O3 and NO2. The redox-weighted oxidant capacity was calculated by denoting Oxwt as the weighted average of redox potentials. We applied generalized additive models (GAM) to investigate the impacts of Ox and Oxwt on FeNO levels, respectively. We fitted the same models for the influence of O3 and NO2 individually and jointly on FeNO levels to compare the result of Ox and Oxwt. RESULTS Oxwt were significantly linked with FeNO levels. The impact was robustest in current day after exposure, and were closely linked with the adjustment of PM2.5. A 10 μg m-3 increase in average Oxwt concentrations was linked to 0.88 (95% CI: -1.46, 3.28) increase, whereas a 10 μg m-3 increase in average Ox concentration was linked to 0.62 (95% CI: -0.79, 2.07) increase in FeNO. In two-pollutant models, an increase of 10 μg m-3 in average O3 concentrations with adjustment of NO2 was associated with 0.57 (95% CI: -1.26, 2.01) increase in FeNO. The impact estimates of Ox and Oxwt were statistically significant among males, non-smoking and elders who age above 65 years old. CONCLUSIONS This analysis demonstrated that Oxwt is used as a better indicator of atmospheric oxidative capacity as a proxy of O3 and NO2 in further epidemiological studies.
Collapse
Affiliation(s)
- Huibin Guo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
17
|
RISK EFFECTS OF NEAR-ROADWAY POLLUTANTS AND ASTHMA STATUS ON BRONCHITIC SYMPTOMS IN CHILDREN. Environ Epidemiol 2018; 2. [PMID: 30519674 PMCID: PMC6277033 DOI: 10.1097/ee9.0000000000000012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Bronchitic symptoms in children pose a significant clinical and public health burden. Exposures to criteria air pollutants affect bronchitic symptoms, especially in children with asthma. Less is known about near-roadway exposures. Methods: Bronchitic symptoms (bronchitis, chronic cough, or phlegm) in the past 12 months were assessed annually with 8 to 9 years of follow-up on 6757 children from the southern California Children’s Health Study. Residential exposure to freeway and non-freeway near-roadway air pollution was estimated using a line-source dispersion model. Mixed-effects logistic regression models were used to relate near-roadway air pollutant exposures to bronchitic symptoms among children with and without asthma. Results: Among children with asthma, a 2 SD increase in non-freeway exposures (odds ratio [OR]: 1.44; 95% confidence interval [CI]: 1.17, 1.78) and freeway exposures (OR: 1.31; 95% CI: 1.06, 1.60) were significantly associated with increased risk of bronchitic symptoms. Among children without asthma, only non-freeway exposures had a significant association (OR: 1.14; 95% CI: 1.00, 1.29). Associations were strongest among children living in communities with lower regional particulate matter. Conclusions: Near-roadway air pollution was associated with bronchitic symptoms, especially among children with asthma and those living in communities with lower regional particulate matter. Better characterization of traffic pollutants from non-freeway roads is needed since many children live in close proximity to this source.
Collapse
|
18
|
Residential Ambient Traffic in Relation to Childhood Pneumonia among Urban Children in Shandong, China: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061076. [PMID: 29799501 PMCID: PMC6025011 DOI: 10.3390/ijerph15061076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Pneumonia is a leading cause of childhood death. Few studies have investigated associations between residential ambient environmental exposures and pneumonia. In January⁻April 2015, we conducted a cross-sectional study in Shandong Province (China) and collected 9597 (response rate: 78.7%) parent-reported questionnaires for 3⁻6-year-old children from 69 urban kindergartens. We then selected 5640 children who had never changed residence since birth and examined associations between residential ambient traffic-related facilities and childhood pneumonia considering residential characteristics. Prevalence of doctor-diagnosed pneumonia during lifetime-ever was 25.9%. In the multivariate logistic regression analyses, residence close to a main traffic road (adjusted odds ratio, 95% confidence interval: 1.23, 1.08⁻1.40) and automobile 4S shop (1.76, 1.16⁻2.67) within 200 m, residence close to a filling station within 100 m (1.71, 1.10⁻2.65; reference: >200 m), as well as having a ground car park in the residential community (1.24, 1.08⁻1.42) were significantly associated with childhood pneumonia. The cumulative numbers of these traffic-related facilities had a positive dose-response relationship with the increased odds of childhood pneumonia. These associations and dose-response relationships were stronger among boys and among children with worse bedroom ventilation status during the night. Associations of residence close to the main traffic road and ground car parks in the residential community with childhood pneumonia were stronger among children living in the 1st⁻3rd floors than those living on higher floors. Similar results were found in the two-level (kindergarten-child) logistic regression analyses. Our findings indicate that living near traffic-related facilities is likely a risk factor for childhood pneumonia among urban children. The child's sex, bedroom floor level, and bedroom ventilation could modify associations of ambient traffic-related facilities with childhood pneumonia.
Collapse
|
19
|
Rice MB, Li W, Dorans KS, Wilker EH, Ljungman P, Gold DR, Schwartz J, Koutrakis P, Kloog I, Araki T, Hatabu H, San Jose Estepar R, O'Connor GT, Mittleman MA, Washko GR. Exposure to Traffic Emissions and Fine Particulate Matter and Computed Tomography Measures of the Lung and Airways. Epidemiology 2018; 29:333-341. [PMID: 29384790 PMCID: PMC6095201 DOI: 10.1097/ede.0000000000000809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Exposure to ambient air pollution has been associated with lower lung function in adults, but few studies have investigated associations with radiographic lung and airway measures. METHODS We ascertained lung volume, mass, density, visual emphysema, airway size, and airway wall area by computed tomography (CT) among 2,545 nonsmoking Framingham CT substudy participants. We examined associations of home distance to major road and PM2.5 (2008 average from a spatiotemporal model using satellite data) with these outcomes using linear and logistic regression models adjusted for age, sex, height, weight, census tract median household value and population density, education, pack-years of smoking, household tobacco exposure, cohort, and date. We tested for differential susceptibility by sex, smoking status (former vs. never), and cohort. RESULTS The mean participant age was 60.1 years (standard deviation 11.9 years). Median PM2.5 level was 9.7 µg/m (interquartile range, 1.6). Living <100 m from a major road was associated with a 108 ml (95% CI = 8, 207) higher lung volume compared with ≥400 m away. There was also a log-linear association between proximity to road and higher lung volume. There were no convincing associations of proximity to major road or PM2.5 with the other pulmonary CT measures. In subgroup analyses, road proximity was associated with lower lung density among men and higher odds of emphysema among former smokers. CONCLUSIONS Living near a major road was associated with higher average lung volume, but otherwise, we found no association between ambient pollution and radiographic measures of emphysema or airway disease.
Collapse
|
20
|
Characterization of Subgrid-Scale Variability in Particulate Matter with Respect to Satellite Aerosol Observations. REMOTE SENSING 2018. [DOI: 10.3390/rs10040623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Annesi-Maesano I, Dinh-Xuan AT. Is exhaled nitric oxide a marker of air pollution effect? Eur Respir J 2018; 47:1304-6. [PMID: 27132258 DOI: 10.1183/13993003.00521-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Sorbonne Universités, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Anh Tuan Dinh-Xuan
- Université Paris Descartes, Hôpital Cochin - Paris Centre, Assistance Publique Hôpitaux de Paris, Laboratoire de Physiologie Respiratoire, UPRES-EA 2511, Paris, France
| |
Collapse
|
22
|
Wang H, Duan H, Meng T, Yang M, Cui L, Bin P, Dai Y, Niu Y, Shen M, Zhang L, Zheng Y, Leng S. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust–Induced Lung Function Impairment in a Chinese Occupational Cohort. Toxicol Sci 2017; 162:372-382. [DOI: 10.1093/toxsci/kfx259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Haitao Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mo Yang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lianhua Cui
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Liping Zhang
- Department of Environmental Health, Faculty of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Shuguang Leng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
23
|
Alves AGF, de Azevedo Giacomin MF, Braga ALF, Sallum AME, Pereira LAA, Farhat LC, Strufaldi FL, de Faria Coimbra Lichtenfels AJ, de Santana Carvalho T, Nakagawa NK, Silva CA, Farhat SCL. Influence of air pollution on airway inflammation and disease activity in childhood-systemic lupus erythematosus. Clin Rheumatol 2017; 37:683-690. [PMID: 29098476 DOI: 10.1007/s10067-017-3893-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Exposure to fine particles may trigger pulmonary inflammation/systemic inflammation. The objective of this study was to investigate the association between daily individual exposure to air pollutants and airway inflammation and disease activity in childhood-onset systemic lupus erythematosus (cSLE) patients. A longitudinal panel study was carried out in 108 consecutive appointments with cSLE patients without respiratory diseases. Over four consecutive weeks, daily individual measures of nitrogen dioxide (NO2), fine particulate matter (PM2.5), ambient temperature, and humidity were obtained. This cycle was repeated every 2.5 months along 1 year, and cytokines of exhaled breath condensate-EBC [interleukins (IL) 6, 8, 17 and tumoral necrose factor-α (TNF-α)], fractional exhaled NO (FeNO), and disease activity parameters were collected weekly. Specific generalized estimation equation models were used to assess the impact of these pollutants on the risk of Systemic Lupus Erythematous Disease Activity Index 2000 (SLEDAI-2K) ≥ 8, EBC cytokines, and FeNO, considering the fixed effects for repetitive measurements. The models were adjusted for inflammatory indicators, body mass index, infections, medication, and weather variables. An IQR increase in PM2.5 4-day moving average (18.12 μg/m3) was associated with an increase of 0.05 pg/ml (95% CI 0.01; 0.09, p = 0.03) and 0.04 pg/ml (95% CI 0.02; 0.06, p = 0.01) in IL-17 and TNF-α EBC levels, respectively. Additionally, a short-term effect on FeNO was observed: the PM2.5 3-day moving average was associated with a 0.75 ppb increase (95% CI 0.38; 1.29, p = 0.03) in FeNO. Also, an increase of 1.47 (95% CI 1.10; 1.84) in the risk of SLEDAI-2K ≥ 8 was associated with PM2.5 7-day moving average. Exposure to inhalable fine particles increases airway inflammation/pulmonary and then systemic inflammation in cSLE patients.
Collapse
Affiliation(s)
- Andressa Guariento Ferreira Alves
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Pediatric Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Maria Fernanda de Azevedo Giacomin
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Pediatric Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Alfésio Luis Ferreira Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Santos, Brazil
| | - Adriana Maluf Elias Sallum
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Pediatric Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Luiz Alberto Amador Pereira
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Santos, Brazil
| | - Luis Carlos Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Louzada Strufaldi
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Julia de Faria Coimbra Lichtenfels
- Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Experimental Therapeutics, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Tômas de Santana Carvalho
- Department of Physiotherapy, Communication Science and Disorders, Occupational Therapy, LIM 34, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Naomi Kondo Nakagawa
- Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Department of Physiotherapy, Communication Science and Disorders, Occupational Therapy, LIM 34, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Pediatric Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Division of Rheumatology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Sylvia Costa Lima Farhat
- Pediatric Department, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil.
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Laboratory of Experimental Air Pollution, LIM05, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Outdoor Environment and Pediatric Asthma: An Update on the Evidence from North America. Can Respir J 2017; 2017:8921917. [PMID: 28239256 PMCID: PMC5292365 DOI: 10.1155/2017/8921917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023] Open
Abstract
Introduction. The evidence about the association between asthma and outdoor environmental factors has been inadequate for certain allergens. Even less is known about how these associations vary across seasons and climate regions. We reviewed recent literature from North America for research related to outdoor environmental factors and pediatric asthma, with attention to spatial-temporal variations of these associations. Method. We included indexed literature between years 2010 and 2015 on outdoor environmental factors and pediatric asthma, by searching PubMed. Results. Our search resulted in 33 manuscripts. Studies about the link between pediatric asthma and traffic-related air pollutants (TRAP) consistently confirmed the correlation between TRAP and asthma. For general air pollution, the roles of PM2.5 and CO were consistent across studies. The link between asthma and O3 varied across seasons. Regional variation exists in the role of SO2. The impact of pollen was consistent across seasons, whereas the role of polycyclic aromatic hydrocarbon was less consistent. Discussion. Recent studies strengthened the evidence about the roles of PM2.5, TRAP, CO, and pollen in asthma, while the evidence for roles of PM10-2.5, PM10, O3, NO2, SO2, and polycyclic aromatic hydrocarbon in asthma was less consistent. Spatial-temporal details of the environment are needed in future studies of asthma and environment.
Collapse
|
25
|
Liu W, Huang C, Hu Y, Fu Q, Zou Z, Sun C, Shen L, Wang X, Cai J, Pan J, Huang Y, Chang J, Sun Y, Sundell J. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. ENVIRONMENT INTERNATIONAL 2016; 92-93:284-293. [PMID: 27128713 DOI: 10.1016/j.envint.2016.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Associations of ambient air pollutants with respiratory health are inconsistent. OBJECTIVES We analyzed the associations of gestational and early life exposures to air pollutants with doctor-diagnosed asthma, allergic rhinitis, and pneumonia in children. METHODS We selected 3358 preschool children who did not alter residences after birth from a cross-sectional study in 2011-2012 in Shanghai, China. Parents reported children's respiratory health history, home environment, and family lifestyle behaviors. We collected daily concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10μm (PM10) during the child's total lifetime (2006-2012) for each district where the children lived. We analyzed the associations using logistic regression models. RESULTS After adjusting for covariates and the other studied pollutants, we found that exposure to NO2 (increment of 20μg/m(3)) during the first year of life was significantly associated with asthma [odds ratio (OR)=1.77; 95% confidence interval (CI): 1.29-2.43] and allergic rhinitis (OR=1.67; 95% CI: 1.07-2.61). Exposure to NO2 during gestation, the first two and three years, and over total lifetimewas all consistently associated with increased odds of allergic rhinitis. Quartiles of NO2 concentration during different exposure periods showed a slight dose-response relationship with the studied diseases. These diseases had significant associations with pollutant mixtures that included NO2, but had no significant association with exposures to SO2 and PM10 individually or in mixtures. CONCLUSIONS Gestational and early life exposures to ambient NO2 are risk factors for childhood respiratory diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China.
| | - Yu Hu
- Tongji Architectural Design (Group) Company Limited (TJAD), Shanghai, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Li Shen
- R&B Technology (Shanghai) Company Limited, Shanghai, China
| | - Xueying Wang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jiao Cai
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jun Pan
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Yanmin Huang
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Jing Chang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Thermal Energy and Power Engineering, Shandong Jiaotong University, Jinan, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Carlsen HK, Boman P, Björ B, Olin AC, Forsberg B. Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060621. [PMID: 27338437 PMCID: PMC4924078 DOI: 10.3390/ijerph13060621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
Coarse particle matter, PMcoarse, is associated with increased respiratory morbidity and mortality. The aim of this study was to investigate the association between short-term changes in PMcoarse and sub-clininal airway inflammation in children. Healthy children aged 11 years from two northern Swedish elementary schools underwent fraction of exhaled nitrogen oxide (FENO) measurements to determine levels of airway inflammation twice weekly during the study period from 11 April–6 June 2011. Daily exposure to PMcoarse, PM2.5, NO2, NOx, NO and O3 and birch pollen was estimated. Multiple linear regression was used. Personal covariates were included as fixed effects and subjects were included as a random effect. In total, 95 children participated in the study, and in all 493 FENO measurements were made. The mean level of PMcoarse was 16.1 μg/m3 (range 4.1–42.3), and that of O3 was 75.0 μg/m3 (range: 51.3–106.3). That of NO2 was 17.0 μg/m3 (range: 4.7–31.3), NOx was 82.1 μg/m3 (range: 13.3–165.3), and NO was 65 μg/m3 (range: 8.7–138.4) during the study period. In multi-pollutant models an interquartile range increase in 24 h PMcoarse was associated with increases in FENO by between 6.9 ppb (95% confidence interval 0.0–14) and 7.3 ppb (95% confidence interval 0.4–14.9). PMcoarse was associated with an increase in FENO, indicating sub-clinical airway inflammation in healthy children.
Collapse
Affiliation(s)
- Hanne Krage Carlsen
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, University of Umeå, Umeå 90187, Sweden.
- Section of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg 40530, Sweden.
- Centre of Public Health, University of Iceland, Reykjavík 101, Iceland.
| | - Peter Boman
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, University of Umeå, Umeå 90187, Sweden.
| | - Bodil Björ
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, University of Umeå, Umeå 90187, Sweden.
| | - Anna-Carin Olin
- Section of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg 40530, Sweden.
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, University of Umeå, Umeå 90187, Sweden.
| |
Collapse
|
27
|
Eckel SP, Zhang Z, Habre R, Rappaport EB, Linn WS, Berhane K, Zhang Y, Bastain TM, Gilliland FD. Traffic-related air pollution and alveolar nitric oxide in southern California children. Eur Respir J 2016; 47:1348-56. [PMID: 26797034 DOI: 10.1183/13993003.01176-2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/22/2015] [Indexed: 11/05/2022]
Abstract
Mechanisms for the adverse respiratory effects of traffic-related air pollution (TRAP) have yet to be established. We evaluated the acute effects of TRAP exposure on proximal and distal airway inflammation by relating indoor nitric oxide (NO), a marker of TRAP exposure in the indoor microenvironment, to airway and alveolar sources of exhaled nitric oxide (FeNO).FeNO was collected online at four flow rates in 1635 schoolchildren (aged 12-15 years) in southern California (USA) breathing NO-free air. Indoor NO was sampled hourly and linearly interpolated to the time of the FeNO test. Estimated parameters quantifying airway wall diffusivity (DawNO) and flux (J'awNO) and alveolar concentration (CANO) sources of FeNO were related to exposure using linear regression to adjust for potential confounders.We found that TRAP exposure indoors was associated with elevated alveolar NO. A 10 ppb higher indoor NO concentration at the time of the FeNO test was associated with 0.10 ppb higher average CANO (95% CI 0.04-0.16) (equivalent to a 7.1% increase from the mean), 4.0% higher J'awNO (95% CI -2.8-11.3) and 0.2% lower DawNO (95% CI -4.8-4.6).These findings are consistent with an airway response to TRAP exposure that was most marked in the distal airways.
Collapse
Affiliation(s)
- Sandrah P Eckel
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zilu Zhang
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward B Rappaport
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - William S Linn
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yue Zhang
- Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresa M Bastain
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children. PLoS One 2015; 10:e0145363. [PMID: 26714306 PMCID: PMC4695093 DOI: 10.1371/journal.pone.0145363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Exhaled nitric oxide (FeNO), a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2) and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children. METHODS In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old) were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes) around the subjects' homes were estimated using geographic information system (GIS) methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level. RESULTS The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively). In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI): 9.99 to 13.80) than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63) with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002). In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34). Similar interactive effects of this haplotype and local road lengths within 200m buffer on FeNO were also observed. CONCLUSIONS Higher exposure from residential traffic nullifies the protective effect of one common NOS2 promoter haplotype on FeNO level. Regulation of traffic-related pollution may protect children's respiratory health.
Collapse
|
29
|
Schulte JK, Fox JR, Oron AP, Larson TV, Simpson CD, Paulsen M, Beaudet N, Kaufman JD, Magzamen S. Neighborhood-Scale Spatial Models of Diesel Exhaust Concentration Profile Using 1-Nitropyrene and Other Nitroarenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13422-30. [PMID: 26501773 PMCID: PMC5026850 DOI: 10.1021/acs.est.5b03639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitropyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R(2) of 0.87 and cross-validated R(2) of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods.
Collapse
Affiliation(s)
- Jill K. Schulte
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
- Corresponding Author Phone: (360) 407-6374. Fax (360) 407-7534.
| | - Julie R. Fox
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
| | - Assaf P. Oron
- Seattle Children's Research Institute, P.O. Box 5371, Seattle, Washington 98145-5005, United States
| | - Timothy V. Larson
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
| | | | - Michael Paulsen
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
| | - Nancy Beaudet
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
| | - Joel D. Kaufman
- University of Washington, Box 357234, Seattle, Washington 98195-7234, United States
| | - Sheryl Magzamen
- Colorado State University, 1681 Campus Delivery, Fort Collins, Colorado 80523-1681, United States
| |
Collapse
|
30
|
Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. ATMOSPHERE 2015. [DOI: 10.3390/atmos6101422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Abstract
OBJECTIVES To investigate the role of storage mites in the development of allergic diseases among ham production workers, and to search for early alterations in lung function tests and early inflammation markers in exhaled air. Respiratory allergies due to storage mites have been reported in people with various occupations but, although such mites are unavoidable when curing ham, there are no published data concerning ham production workers. SETTING Secondary care. DESIGN Experimental cross-sectional study. PARTICIPANTS 220 participants (110 ham production workers and 110 controls) were recruited. PRIMARY AND SECONDARY OUTCOME MEASURES Workers answered a medical questionnaire, and underwent spirometry and fraction of exhaled nitric oxide at 50 mL/s (FeNO₅₀) measurements. Those with allergic symptoms also underwent skin prick tests to determine their sensitisation to airborne allergens. A methacholine test was performed in symptomatic participants when spirometry was normal to assess airways hyper-responsiveness. RESULTS Symptomatic storage mite sensitisation was observed in 16 workers (14.5%) (rhinoconjunctivitis in 15 (63%) and asthma in (4%)) and 2 controls (1.8%; p=0.001). Higher FeNO₅₀ values in exposed symptomatic workers compared with healthy control participants (34.65±7.49 vs 13.29±4.29 ppb; p<0.001) suggested bronchial and nasal involvement, although their lung function parameters were normal. Regardless of exposure, a FeNO₅₀ value of 22.5 ppb seems to be 100% sensitive and 99.4% specific in distinguishing allergic and non-allergic participants. Multivariate analysis of FeNO₅₀ values in the symptomatic participants showed that they were positively influenced by IgE-mediated allergy (p=0.001) and reported symptom severity (p=0.041), and negatively by smoking status (p=0.049). CONCLUSIONS Ham processing workers, as well as workers involved in any meat processing work that includes curing, should be informed about the occupational risk of sensitisation to mites.
Collapse
Affiliation(s)
- Federica Tafuro
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Marcello Montagni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Massimo Corradi
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
32
|
Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study. J Thorac Dis 2015; 7:46-58. [PMID: 25694817 DOI: 10.3978/j.issn.2072-1439.2014.12.20] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023]
Abstract
Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children's Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children's health while control measures are being implemented.
Collapse
Affiliation(s)
- Zhanghua Chen
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Muhammad T Salam
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Sandrah P Eckel
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Carrie V Breton
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Frank D Gilliland
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| |
Collapse
|
33
|
Sehgal M, Suresh R, Sharma VP, Gautam SK. Assessment of outdoor workers’ exposure to air pollution in Delhi (India). ACTA ACUST UNITED AC 2014. [DOI: 10.1080/00207233.2014.965937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Schmalisch G, Wilitzki S, Fischer HS, Bührer C. Effect of intubation and mechanical ventilation on exhaled nitric oxide in preterm infants with and without bronchopulmonary dysplasia measured at a median postmenstrual age of 49 weeks. BMC Res Notes 2014; 7:389. [PMID: 24957096 PMCID: PMC4102333 DOI: 10.1186/1756-0500-7-389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/19/2014] [Indexed: 11/17/2022] Open
Abstract
Background Exhaled nitric oxide (eNO) is a marker of established airway inflammation in adults and children, but conflicting results have been reported in preterm infants when postnatal eNO is measured during tidal breathing. This study investigated the extent to which intubation and mechanical ventilation (MV) affect eNO and NO production (V’NO) in preterm infants with and without bronchopulmonary dysplasia (BPD). Patients and methods A total of 176 very low birth weight (VLBW) infants (birth weight <1500 g), including 74 (42%) with and 102 (58%) without BPD, were examined at a median postmenstrual age of 49 weeks. Of the 176 infants, 84 (48%) did not require MV, 47 (27%) required MV for <7 days and 45 (26%) required MV for ≥7 days. Exhaled NO and tidal breathing parameters were measured in sleeping infants during tidal breathing, respiratory mechanics were assessed by occlusion tests, and arterialized capillary blood gas was analyzed. Results eNO was significantly correlated with tidal breathing parameters, while V’NO was correlated with growth parameters, including age and body length (p < 0.001 each). Infants who were intubated and received MV for <7 days had significantly lower eNO (p < 0.01) and V’NO (p < 0.01) than non-ventilated infants. In contrast, eNO and V’NO did not differ significantly in non-ventilated infants and those receiving MV for ≥7 days. Multivariate analysis showed that independent on the duration of MV eNO (p = 0.003) and V’NO (p = 0.018) were significantly increased in BPD infants comparable with the effects of intubation and MV on eNO (p = 0.002) and V’NO (p = 0.017). Conclusions Preterm infants with BPD show only weak postnatal increases in eNO and V’NO, but these changes may be obscured by the distinct influences of breathing pattern and invasive respiratory support. This limits the diagnostic value of postnatal eNO measurements in the follow-up of BPD infants.
Collapse
Affiliation(s)
- Gerd Schmalisch
- Department of Neonatology, Charité University Medicine, Charitéplatz 1, D - 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
35
|
Altuğ H, Gaga EO, Döğeroğlu T, Brunekreef B, Hoek G, Van Doorn W. Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:201-9. [PMID: 24561926 DOI: 10.1016/j.scitotenv.2014.01.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 05/13/2023]
Abstract
Respiratory health effects of ambient air pollution were studied in 605 school children 9 to 13 years in Eskişehir, Turkey. Each child performed a fractional exhaled nitric oxide (FENO) measurement and a lung function test (LFT). Self-reported respiratory tract complaints (having cold, complaints of throat, runny nose and shortness of breath/wheezing) in the last 7 days and on the day of testing were also recorded. As acute health outcomes were investigated, weekly average ambient concentrations of ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) were determined by passive sampling in the school playgrounds simultaneously with the health survey. Effects of air pollution on respiratory tract complaints and exhaled NO/lung function were estimated by multivariate logistic regression and multivariate linear mixed effects models, respectively. Upper respiratory tract complaints were significantly (p<0.05) associated with weekly average O3 concentrations during the health survey (adjusted odds ratios (OR) of 1.21 and 1.28 for a 10 μgm(-3) increment for having cold and a runny nose on day of testing, respectively). FENO levels were significantly (p<0.05) increased in children with various upper respiratory tract complaints (ratio in FENO varied between 1.16 and 1.40). No significant change in FENO levels was detected in association with any of the measured pollutants (p ≥ 0.05). Lung function was not associated with upper respiratory tract complaints and FENO levels. Peak Expiratory Flow (PEF) levels were negatively associated with weekly average O3 levels for children without upper respiratory tract complaints. In summary, elevated levels of air pollutants increased respiratory tract complaints in children.
Collapse
Affiliation(s)
- Hicran Altuğ
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Eftade O Gaga
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Tuncay Döğeroğlu
- Department of Environmental Engineering, Anadolu University, İki Eylül Campus, 26555 Eskişehir, Turkey.
| | - Bert Brunekreef
- IRAS Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Gerard Hoek
- IRAS Institute for Risk Assessment Sciences, Utrecht University, The Netherlands.
| | - Wim Van Doorn
- Royal Haskoning, Business line Industry and Energy, P.O. Box 151, 6500 AD Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Berhane K, Zhang Y, Salam MT, Eckel SP, Linn WS, Rappaport EB, Bastain TM, Lurmann F, Gilliland FD. Longitudinal effects of air pollution on exhaled nitric oxide: the Children's Health Study. Occup Environ Med 2014; 71:507-13. [PMID: 24696513 DOI: 10.1136/oemed-2013-101874] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To assess the effects of long-term variations in ambient air pollutants on longitudinal changes in exhaled nitric oxide (FeNO), a potentially useful biomarker of eosinophilic airway inflammation, based on data from the southern California Children's Health Study. METHODS Based on a cohort of 1211 schoolchildren from eight Southern California communities with FeNO measurements in 2006-2007 and 2007-2008, regression models adjusted for short-term effects of air pollution were fitted to assess the association between changes in annual long-term exposures and changes in FeNO. RESULTS Increases in annual average concentrations of 24-h average NO2 and PM2.5 (scaled to the IQR of 1.8 ppb and 2.4 μg/m(3), respectively) were associated with a 2.29 ppb (CI 0.36 to 4.21; p=0.02) and a 4.94 ppb (CI 1.44 to 8.47; p=0.005) increase in FeNO, respectively, after adjustments for short-term effects of the respective pollutants. In contrast, changes in annual averages of PM10 and O3 were not significantly associated with changes in FeNO. These findings did not differ significantly by asthma status. CONCLUSIONS Changes in annual average exposure to current levels of ambient air pollutants are significantly associated with changes in FeNO levels in children, independent of short-term exposures and asthma status. Use of this biomarker in population-based epidemiological research has great potential for assessing the impact of changing real world mixtures of ambient air pollutants on children's respiratory health.
Collapse
Affiliation(s)
- Kiros Berhane
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yue Zhang
- University of Utah, Salt Lake City, Utah, USA
| | - Muhammad T Salam
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - William S Linn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Edward B Rappaport
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, California, USA
| | - Frank D Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Liu C, Flexeder C, Fuertes E, Cyrys J, Bauer CP, Koletzko S, Hoffmann B, von Berg A, Heinrich J. Effects of air pollution on exhaled nitric oxide in children: Results from the GINIplus and LISAplus studies. Int J Hyg Environ Health 2014; 217:483-91. [DOI: 10.1016/j.ijheh.2013.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
|
38
|
Urman R, Gauderman J, Fruin S, Lurmann F, Liu F, Hosseini R, Franklin M, Avol E, Penfold B, Gilliland F, Brunekreef B, McConnell R. Determinants of the Spatial Distributions of Elemental Carbon and Particulate Matter in Eight Southern Californian Communities. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2014; 86:84-92. [PMID: 25313293 PMCID: PMC4192647 DOI: 10.1016/j.atmosenv.2013.11.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities.
Collapse
Affiliation(s)
- Robert Urman
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - James Gauderman
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Scott Fruin
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Fred Lurmann
- Sonoma Technology, Inc., 1455 N. McDowell Blvd. #D, Petaluma, CA 94954-6503, USA
| | - Feifei Liu
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Reza Hosseini
- Department of Mathematical Informatics, University of Tokyo, Japan
| | - Meredith Franklin
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Edward Avol
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Bryan Penfold
- Sonoma Technology, Inc., 1455 N. McDowell Blvd. #D, Petaluma, CA 94954-6503, USA
| | - Frank Gilliland
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| | - Bert Brunekreef
- University of Utrecht, Netherlands Institute for Risk Assessment Sciences, Utrecht University, The Netherlands and Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Rob McConnell
- Division of Environmental Health, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90089, USA
| |
Collapse
|
39
|
Eckel SP, Linn WS, Berhane K, Rappaport EB, Salam MT, Zhang Y, Gilliland FD. Estimation of parameters in the two-compartment model for exhaled nitric oxide. PLoS One 2014; 9:e85471. [PMID: 24465571 PMCID: PMC3894971 DOI: 10.1371/journal.pone.0085471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/27/2013] [Indexed: 01/13/2023] Open
Abstract
The fractional concentration of exhaled nitric oxide (FeNO) is a biomarker of airway inflammation that is being increasingly considered in clinical, occupational, and epidemiological applications ranging from asthma management to the detection of air pollution health effects. FeNO depends strongly on exhalation flow rate. This dependency has allowed for the development of mathematical models whose parameters quantify airway and alveolar compartment contributions to FeNO. Numerous methods have been proposed to estimate these parameters using FeNO measured at multiple flow rates. These methods—which allow for non-invasive assessment of localized airway inflammation—have the potential to provide important insights on inflammatory mechanisms. However, different estimation methods produce different results and a serious barrier to progress in this field is the lack of a single recommended method. With the goal of resolving this methodological problem, we have developed a unifying framework in which to present a comprehensive set of existing and novel statistical methods for estimating parameters in the simple two-compartment model. We compared statistical properties of the estimators in simulation studies and investigated model fit and parameter estimate sensitivity across methods using data from 1507 schoolchildren from the Southern California Children's Health Study, one of the largest multiple flow FeNO studies to date. We recommend a novel nonlinear least squares model with natural log transformation on both sides that produced estimators with good properties, satisfied model assumptions, and fit the Children's Health Study data well.
Collapse
Affiliation(s)
- Sandrah P. Eckel
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - William S. Linn
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kiros Berhane
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Edward B. Rappaport
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Muhammad T. Salam
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yue Zhang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Frank D. Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
40
|
Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int J Mol Sci 2014; 15:878-94. [PMID: 24413755 PMCID: PMC3907844 DOI: 10.3390/ijms15010878] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
Fractional exhaled nitric oxide (FENO) measurement is a useful diagnostic test of airway inflammation. However, there have been few studies of FENO in workers exposed to nanomaterials. The purpose of this study was to examine the effect of nanoparticle (NP) exposure on FENO and to assess whether the FENO is increased in workers exposed to nanomaterials (NM). In this study, both exposed workers and non-exposed controls were recruited from NM handling plants in Taiwan. A total of 437 subjects (exposed group = 241, non-exposed group = 196) completed the FENO and spirometric measurements from 2009–2011. The authors used a control-banding (CB) matrix to categorize the risk level of each participant. In a multivariate linear regression analysis, this study found a significant association between risk level 2 of NP exposure and FENO. Furthermore, asthma, allergic rhinitis, peak expiratory flow rate (PEFR), and NF-κB were also significantly associated with FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO2 in all of the NM exposed categories had a significantly increased risk in FENO > 35 ppb. This study found associations between the risk level of NP exposure and FENO (particularly noteworthy for Nano-TiO2). Monitoring FENO in the lung could open up a window into the role nitric oxide (NO) may play in pathogenesis.
Collapse
|
41
|
Bijnens E, Pieters N, Dewitte H, Cox B, Janssen BG, Saenen N, Dons E, Zeegers MP, Int Panis L, Nawrot TS. Host and environmental predictors of exhaled breath temperature in the elderly. BMC Public Health 2013; 13:1226. [PMID: 24365236 PMCID: PMC3890614 DOI: 10.1186/1471-2458-13-1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exhaled breath temperature has been suggested as a new method to detect and monitor pathological processes in the respiratory system. The putative mechanism of this approach is based upon changes in the blood flow. So far potential factors that influence breath temperature have not been studied in the general population. METHODS The exhaled breath temperature was measured in 151 healthy non-smoking elderly (aged: 60-80 years) at room temperature with the X-halo device with an accuracy of 0.03°C. We related exhaled breath temperature by use of regression models with potential predictors including: host factors (sex, age) and environmental factors (BMI, physical activity, and traffic indicators). RESULTS Exhaled breath temperature was lower in women than in men and was inversely associated with age, physical activity. BMI and daily average ambient temperature were positively associated with exhaled breath temperature. Independent of the aforementioned covariates, exhaled breath temperature was significantly associated with several traffic indicators. Residential proximity to major road was inversely associated with exhaled breath temperature: doubling the distance to the nearest major intense road was observed a decrease of 0.17°C (95% CI: -0.33 to -0.01; p=0.036). CONCLUSIONS Exhaled breath temperature has been suggested as a noninvasive method for the evaluation of airway inflammation. We provide evidence that several factors known to be involved in proinflammatory conditions including BMI, physical activity and residential proximity to traffic affect exhaled breath temperature. In addition, we identified potential confounders that should be taken into account in clinical and epidemiological studies on exhaled breath temperature including sex, age, and ambient temperature.
Collapse
Affiliation(s)
- Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Harrie Dewitte
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
- Primary health care center GVHV, Genk, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Nelly Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Evi Dons
- VITO, Flemish Institute for Technological Research, Mol, Belgium
- Transportation Research Institute, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc Int Panis
- VITO, Flemish Institute for Technological Research, Mol, Belgium
- Transportation Research Institute, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
42
|
Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution epidemiology. ENVIRONMETRICS 2013; 24:501-517. [PMID: 24764691 PMCID: PMC3994141 DOI: 10.1002/env.2233] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Public health researchers often estimate health effects of exposures (e.g., pollution, diet, lifestyle) that cannot be directly measured for study subjects. A common strategy in environmental epidemiology is to use a first-stage (exposure) model to estimate the exposure based on covariates and/or spatio-temporal proximity and to use predictions from the exposure model as the covariate of interest in the second-stage (health) model. This induces a complex form of measurement error. We propose an analytical framework and methodology that is robust to misspecification of the first-stage model and provides valid inference for the second-stage model parameter of interest. We decompose the measurement error into components analogous to classical and Berkson error and characterize properties of the estimator in the second-stage model if the first-stage model predictions are plugged in without correction. Specifically, we derive conditions for compatibility between the first- and second-stage models that guarantee consistency (and have direct and important real-world design implications), and we derive an asymptotic estimate of finite-sample bias when the compatibility conditions are satisfied. We propose a methodology that (1) corrects for finite-sample bias and (2) correctly estimates standard errors. We demonstrate the utility of our methodology in simulations and an example from air pollution epidemiology.
Collapse
Affiliation(s)
- Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, 98195, USA
- Correspondence to: Adam A. Szpiro, Department of Biostatistics, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
43
|
Delfino RJ, Staimer N, Tjoa T, Gillen DL, Schauer JJ, Shafer MM. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:466-73. [PMID: 23673461 PMCID: PMC4181605 DOI: 10.1038/jes.2013.25] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 05/17/2023]
Abstract
Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 2'7'-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7-9.9% per 0.43 nmole/min/m(3) DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition.
Collapse
Affiliation(s)
- Ralph J Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, California 92617-7555, USA
| | | | | | | | | | | |
Collapse
|
44
|
Linn WS, Rappaport EB, Eckel SP, Berhane KT, Zhang Y, Salam MT, Bastain TM, Gilliland FD. Multiple-flow exhaled nitric oxide, allergy, and asthma in a population of older children. Pediatr Pulmonol 2013; 48:885-96. [PMID: 23687084 PMCID: PMC3748140 DOI: 10.1002/ppul.22708] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/24/2012] [Indexed: 11/12/2022]
Abstract
UNLABELLED "Extended" (multiple-flow) measurements of exhaled nitric oxide (FeNO) potentially can distinguish proximal and distal airway inflammation, but have not been evaluated previously in large populations. We performed extended NO testing within a longitudinal study of a school-based population, to relate bronchial flux (J'awNO) and peripheral NO concentration (CalvNO) estimates with respiratory health status determined from questionnaires. We measured FeNO at 30, 50, 100, and 300 ml/sec in 1,640 subjects aged 12-15 from eight communities, then estimated J'awNO and CalvNO from linear and nonlinear regressions of NO output versus flow. J'awNO, as well as FeNO at all flows, showed influences of asthma, allergy, Asian or African ancestry, age, and height (positive), and of weight (negative), generally corroborating past findings. By contrast, CalvNO results were inconsistent across different extended NO regression models, and appeared more sensitive to small measurement artifacts. CONCLUSIONS Extended NO testing is feasible in field surveys of young populations. In interpreting results, size, age, and ethnicity require attention, as well as instrumental and environmental artifacts. J'awNO and conventional FeNO provide similar information, probably reflecting proximal airway inflammation. CalvNO may give additional information relevant to peripheral airway, alveolar, or systemic pathology. However, it needs additional research, including testing of populations with independently verifiable peripheral or systemic pathology, to optimize measurement technique and interpretation.
Collapse
Affiliation(s)
- William S Linn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Warburton D, Gilliland F, Dashdendev B. Environmental pollution in Mongolia: effects across the lifespan. ENVIRONMENTAL RESEARCH 2013; 124:65-6. [PMID: 23673312 PMCID: PMC4043223 DOI: 10.1016/j.envres.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/11/2013] [Indexed: 05/10/2023]
Affiliation(s)
- David Warburton
- Fogarty/NIEHS Lifespan Environmental Pollution Global Impact Center, Developmental Biology, Regenerative Medicine and Stem Cell Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and Ostrow School of Dentistry, University of Southern California, USA.
| | | | | |
Collapse
|
46
|
Soto-Ramos M, Castro-Rodríguez JA, Hinojos-Gallardo LC, Hernández-Saldaña R, Cisneros-Castolo M, Carrillo-Rodríguez V. Fractional exhaled nitric oxide has a good correlation with asthma control and lung function in latino children with asthma. J Asthma 2013; 50:590-4. [PMID: 23617392 DOI: 10.3109/02770903.2013.792349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although the measurement of fractional exhaled nitric oxide (FE(NO)) has been recommended for observational studies and clinical trials of asthma, FE(NO) has not been examined in studies of childhood asthma in Latin America, OBJECTIVE To examine the relationship between FE(NO) and indicators of disease control or severity [asthma control test/childhood asthma control test (ACT/C-ACT), lung function, and exercise challenge test (ECT)] in Mexican children with persistent asthma, METHODS Children (6-18 years of age) with persistent asthma were consecutively recruited in a tertiary asthma clinic and divided into two groups, e.g. FE(NO) < 20 parts per billion (ppb) and ≥20 ppb.Adequate FE(NO) measurements were obtained in 134 (83.2%) of 161 eligible children, RESULTS Children with FE(NO)<20 ppb had significantly higher scores on the ACT/C-ACT than those with FE(NO) ≥ 20 ppb (median [interquartile range] :23 [20.8-25] vs. 21 [18-24], p = .002, respectively). Compared to children with FE(NO) ≥20 ppb, those with FE(NO) <20 ppb had a higher baseline predicted forced expiratory volume (FEV(1)) [94% (92.5%-99.4%) vs. 83% (81%-89.9%), p = .001] and a lower probability of having a positive ECT (42.7% vs. 71.2%, p = .001). In addition, FE(NO) was significantly inversely correlated with the participants' ACT/C-ACT score and predicted FEV1, and directly correlated with positive ECT, CONCLUSION: Among Mexican children with persistent asthma, low levels of FE(NO) ( <20 ppb) are associated with better asthma control, and higher lung function.
Collapse
Affiliation(s)
- Mario Soto-Ramos
- Respiratory Section, Hospital Infantil del Estado de Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Yoda Y, Otani N, Hasunuma H, Kanegae H, Shima M. Storage conditions for stability of offline measurement of fractional exhaled nitric oxide after collection for epidemiologic research. BMC Pulm Med 2012; 12:68. [PMID: 23116255 PMCID: PMC3515473 DOI: 10.1186/1471-2466-12-68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background The measurement of fractional concentration of nitric oxide in exhaled air (FeNO) is valuable for the assessment of airway inflammation. Offline measurement of FeNO has been used in some epidemiologic studies. However, the time course of the changes in FeNO after collection has not been fully clarified. In this study, the effects of storage conditions on the stability of FeNO measurement in exhaled air after collection for epidemiologic research were examined. Methods Exhaled air samples were collected from 48 healthy adults (mean age 43.4 ± 12.1 years) in Mylar bags. FeNO levels in the bags were measured immediately after collection. The bags were then stored at 4°C or room temperature to measure FeNO levels repeatedly for up to 168 hours. Results In the bags stored at room temperature after collection, FeNO levels were stable for 9 hours, but increased starting at 24 hours. FeNO levels remained stable for a long time at 4°C, and they were 99.7% ± 7.7% and 101.3% ± 15.0% relative to the baseline values at 24 and 96 hours, respectively. When the samples were stored at 4°C, FeNO levels gradually decreased with time among the subjects with FeNO ≥ 51 ppb immediately after collection, although there were almost no changes among the other subjects. FeNO levels among current smokers increased even at 4°C, although the values among ex-smokers decreased gradually, and those among nonsmokers remained stable. The rate of increase was significantly higher among current smokers than among nonsmokers and ex-smokers from 9 hours after collection onwards. Conclusions Storage at 4°C could prolong the stability of FeNO levels after collection. This result suggests that valid measurements can be performed within several days if the samples are stored at 4°C. However, the time course of the changes in FeNO levels differed in relation to initial FeNO values and cigarette smoking.
Collapse
Affiliation(s)
- Yoshiko Yoda
- Department of Public Health, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | | | | | | | | |
Collapse
|