1
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Chen LW, Mo HY, Shan CH, Chen X, Han C, Tao FB, Gao H. Health hazards of preconception phthalate exposure: A scoping review of epidemiology studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116763. [PMID: 39047367 DOI: 10.1016/j.ecoenv.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
There is a close relationship between preconception health and maternal and child health outcomes, and the consequences may be passed down from generation to generation. In 2018, Lancet published three consecutive articles emphasizing the importance of the preconception period. Phthalic acid ester (PAE) exposure during this period may affect gametogenesis and epigenetic information in gametophytes, thereby affecting embryonic development and offspring health. Therefore, this article reviews the effects of parental preconception PAE exposure on reproductive/birth outcomes and offspring health, to provide new evidence on this topic. We searched Web of Science, MEDLINE (through PubMed), the China National Knowledge Infrastructure (CNKI), ScienceDirect, and the VIP Journal Library from the date of database establishment to July 3, 2024. Finally, 12 articles were included. Three studies investigated the health hazards (effects on birth weight, abortion, etc.) of women's preconception PAE exposure. Nine studies involved both parents. Nine studies considered the impacts of PAE preconception exposure on reproductive/birth outcomes, focusing on birth weight, pregnancy loss, preterm birth, embryo quality, and placental weight. Three studies considered the impacts of preconception PAE exposure on offspring behavior. The results of this review suggested that parental preconception PAE exposure may have an impact on reproductive/birth outcomes and offspring behavior, including birth weight, child behavior, and dietary behavior. However, studies on the health hazards of preconception PAE exposure are relatively scarce, and the outcomes of current studies are varied. It is necessary to use systematic reviews to verify an accurate research question to provide recommendations for public health policy making.
Collapse
Affiliation(s)
- Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Hua-Yan Mo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chun-Han Shan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Xin Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chen Han
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Li G, Dong Y, Chen Y, Li B, Chaudhary S, Bi J, Sun H, Yang C, Liu Y, Li CSR. Drinking severity mediates the relationship between hypothalamic connectivity and rule-breaking/intrusive behavior differently in young women and men: an exploratory study. Quant Imaging Med Surg 2024; 14:6669-6683. [PMID: 39281112 PMCID: PMC11400642 DOI: 10.21037/qims-24-815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Background The hypothalamus is a key hub of the neural circuits of motivated behavior. Alcohol misuse may lead to hypothalamic dysfunction. Here, we investigated how resting-state hypothalamic functional connectivities are altered in association with the severity of drinking and clinical comorbidities and how men and women differ in this association. Methods We employed the data of the Human Connectome Project. A total of 870 subjects were included in data analyses. The severity of alcohol use was quantified for individual subjects with the first principal component (PC1) identified from principal component analyses of all drinking measures. Rule-breaking and intrusive scores were evaluated with the Achenbach Adult Self-Report Scale. We performed a whole-brain regression of hypothalamic connectivities on drinking PC1 in all subjects and men/women separately and evaluated the results at a corrected threshold. Results Higher drinking PC1 was associated with greater hypothalamic connectivity with the paracentral lobule (PCL). Hypothalamic PCL connectivity was positively correlated with rule-breaking score in men (r=0.152, P=0.002) but not in women. In women but not men, hypothalamic connectivity with the left temporo-parietal junction (LTPJ) was negatively correlated with drinking PC1 (r=-0.246, P<0.001) and with intrusiveness score (r=-0.127, P=0.006). Mediation analyses showed that drinking PC1 mediated the relationship between hypothalamic PCL connectivity and rule-breaking score in men and between hypothalamic LTPJ connectivity and intrusiveness score bidirectionally in women. Conclusions We characterized sex-specific hypothalamic connectivities in link with the severity of alcohol misuse and its comorbidities. These findings extend the literature by elucidating the potential impact of problem drinking on the motivation circuits.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yun Dong
- University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Bao Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Hao Sun
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chunlan Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
5
|
Lu M, Gan H, Zhou Q, Han F, Wang X, Zhang F, Tong J, Huang K, Gao H, Yan S, Jin Z, Wang Q, Tao F. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: The moderating role of gestational vitamin D status. ENVIRONMENTAL RESEARCH 2024; 251:118536. [PMID: 38442813 DOI: 10.1016/j.envres.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Organophosphate esters (OPEs) and phthalate acid esters (PAEs) are prevalent endocrine-disrupting chemicals (EDCs). Humans are often exposed to OPEs and PAEs simultaneously through multiple routes. Given that fetal stage is a critical period for neurodevelopment, it is necessary to know whether gestational co-exposure to OPEs and PAEs affects fetal neurodevelopment. However, accessible epidemiological studies are limited. The present study included 2, 120 pregnant women from the Ma'anshan Birth Cohort (MABC) study. The concentrations of tris (2-chloroethyl) phosphate (TCEP), 6 OPE metabolites and 7 PAE metabolites were measured in the first, second and third trimester using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Cognitive development of preschooler was assessed based on the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) of the Chinese version. Generalized estimating equations (GEEs), restricted cubic spline (RCS) and generalized additive models (GAMs) were employed to explore the associations between individual OPE exposure and preschooler cognitive development. The quantile-based g-computation (QGC) method was used to estimate the joint effect of PAEs and OPEs exposure on cognitive development. GEEs revealed significant adverse associations between diphenyl phosphate (DPHP) (β: -0.58, 95% CI: -1.14, -0.01), bis (2-butoxyethyl) phosphate(BBOEP) (β: -0.44, 95% CI: -0.85, -0.02), bis(1-chloro-2-propyl) phosphate (BCIPP) (β: -0.81, 95%CI: -1.43, -0.20) and full-scale intelligence quotient (FSIQ) in the first trimester; additionally, TCEP and bis(2-ethylhexyl) phosphate (BEHP) in the second trimester, as well as DPHP in the third trimester, were negatively associated with cognitive development. Through the QGC analyses, mixture exposure in the first trimester was negatively associated with FSIQ scores (β: -1.70, 95% CI: -3.06, -0.34), mono-butyl phthalate (MBP), BCIPP, and DPHP might be the dominant contributors after controlling for other OPEs and PAEs congeners. Additionally, the effect of OPEs and PAEs mixture on cognitive development might be driven by vitamin D deficiency.
Collapse
Affiliation(s)
- Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiong Zhou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Zhongxiu Jin
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Choi JW, Oh J, Bennett DH, Calafat AM, Schmidt RJ, Shin HM. Prenatal exposure to per- and polyfluoroalkyl substances and child behavioral problems. ENVIRONMENTAL RESEARCH 2024; 251:118511. [PMID: 38387490 PMCID: PMC11144101 DOI: 10.1016/j.envres.2024.118511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect child behaviors; however, findings of epidemiologic studies are inconsistent. We examined prenatal PFAS exposure in association with child behavioral problems. METHODS Participants were 177 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). We quantified nine PFAS in maternal serum (1-3 samples per mother) collected from the 1st to 3rd trimesters of pregnancy. Child behavioral problems were assessed at 3 years of age using the Child Behavior Checklist (CBCL), developed to test for various behavioral problems of children. We examined associations of the CBCL scores with individual PFAS concentrations and with their mixture using negative binomial regression and weighted quantile sum regression models. RESULTS Higher prenatal perfluorononanoate (PFNA) concentrations were associated with higher scores of externalizing problems [β = 0.16, 95% CI (0.01, 0.32)] and aggressive behavior [β = 0.17 (0.01, 0.32)]. Higher PFNA, perfluorooctane sulfonate (PFOS), and perfluorodecanoate (PFDA) were associated with higher scores of sleep problems [β = 0.34 (0.15, 0.54) for PFNA, β = 0.20 (0.02, 0.37) for PFOS, and β = 0.19 (0.00, 0.37) for PFDA]. No significant associations observed for typically developing children, whereas PFOS, PFNA, and PFDA were associated with several behavioral problems among children diagnosed with ASD or other neurodevelopmental concerns. Exposure to a mixture of PFAS was associated with higher scores of sleep problems and aggressive behavior, mostly contributed by PFNA and PFDA. CONCLUSIONS Our study showed that prenatal exposure to some PFAS could increase child behavioral problems at 3 years of age. However, our results should be interpreted with caution because we relied on data from a cohort with increased familial likelihood of ASD and thereby had more behavioral problems.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA; MIND Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
7
|
Oh J, Schweitzer JB, Buckley JP, Upadhyaya S, Kannan K, Herbstman JB, Ghassabian A, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Early childhood exposures to phthalates in association with attention-deficit/hyperactivity disorder behaviors in middle childhood and adolescence in the ReCHARGE study. Int J Hyg Environ Health 2024; 259:114377. [PMID: 38692176 DOI: 10.1016/j.ijheh.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Early-life exposure to phthalates alters behaviors in animals. However, epidemiological evidence on childhood phthalate exposure and attention-deficit/hyperactivity disorder (ADHD) behaviors is limited. METHODS This study included 243 children from the ReCHARGE (Revisiting Childhood Autism Risks from Genetics and Environment) study, who were previously classified as having autism spectrum disorder (ASD), developmental delay, other early concerns, and typical development in the CHARGE case-control study. Twenty phthalate metabolites were measured in spot urine samples collected from children aged 2-5 years. Parents reported on children's ADHD symptoms at ages 8-18 years using Conners-3 Parent Rating Scale. Covariate-adjusted negative binomial generalized linear models were used to investigate associations between individual phthalate metabolite concentrations and raw scores. Weighted quantile sum (WQS) regression with repeated holdout validation was used to examine mixture effects of phthalate metabolites on behavioral scores. Effect modification by child sex was evaluated. RESULTS Among 12 phthalate metabolites detected in >75% of the samples, higher mono-2-heptyl phthalate (MHPP) was associated with higher scores on Inattentive (β per doubling = 0.05, 95% confidence interval [CI]: 0.02, 0.08) and Hyperactive/Impulsive scales (β = 0.04, 95% CI: 0.00, 0.07), especially among children with ASD. Higher mono-carboxy isooctyl phthalate (MCiOP) was associated with higher Hyperactivity/Impulsivity scores (β = 0.07, 95% CI: -0.01, 0.15), especially among typically developing children. The associations of the molar sum of high molecular weight (HMW) phthalate metabolites and a phthalate metabolite mixture with Hyperactivity/Impulsivity scores were modified by sex, showing more pronounced adverse associations among females. CONCLUSION Exposure to phthalates during early childhood may impact ADHD behaviors in middle childhood and adolescence, particularly among females. Although our findings may not be broadly generalizable due to the diverse diagnostic profiles within our study population, our robust findings on sex-specific associations warrant further investigations.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sudhi Upadhyaya
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Lin YC, Wuputra K, Kato K, Ku CC, Saito S, Noguchi M, Nakamura Y, Hsiao M, Lin CS, Wu DC, Kawaguchi A, Yu HS, Yokoyama KK. Di-n-butyl phthalate promotes the neural differentiation of mouse embryonic stem cells through neurogenic differentiation 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123722. [PMID: 38460589 DOI: 10.1016/j.envpol.2024.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
An understanding of the risk of gene deletion and mutation posed by endocrine-disrupting chemicals (EDCs) is necessary for the identification of etiological reagents for many human diseases. Therefore, the characterization of the genetic traits caused by developmental exposure to EDCs is an important research subject. A new regenerative approach using embryonic stem cells (ESCs) holds promise for the development of stem-cell-based therapies and the identification of novel therapeutic agents against human diseases. Here, we focused on the characterization of the genetic traits and alterations in pluripotency/stemness triggered by phthalate ester derivatives. Regarding their in vitro effects, we reported the abilities of ESCs regarding proliferation, cell-cycle control, and neural ectoderm differentiation. The expression of their stemness-related genes and their genetic changes toward neural differentiation were examined, which led to the observation that the tumor suppressor gene product p53/retinoblastoma protein 1 and its related cascades play critical functions in cell-cycle progression, cell death, and neural differentiation. In addition, the expression of neurogenic differentiation 1 was affected by exposure to di-n-butyl phthalate in the context of cell differentiation into neural lineages. The nervous system is one of the most sensitive tissues to exposure to phthalate ester derivatives. The present screening system provides a good tool for studying the mechanisms underlying the effects of EDCs on the developmental regulation of humans and rodents, especially on the neuronal development of ESCs.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
| | - Michiya Noguchi
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Michael Hsiao
- Genome Research Center, Academia Sinica, Nangan, Taipei, 115, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Department of Biological Sciences, National Sun Yan-Sen University, Kaohsiung, 80424, Taiwan
| | - Deng-Chyang Wu
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kazunari K Yokoyama
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
9
|
Chen H, Wang Y, Liang H. The combined neurotoxicity of DBP and nano-TiO 2 in embryonic zebrafish (Danio rerio) revealed by oxidative activity, neuro-development genes expression and metabolomics changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106881. [PMID: 38430782 DOI: 10.1016/j.aquatox.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Yingjia Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China.
| |
Collapse
|
10
|
Wei Z, Fang R, Wang Y, Dong J. Maternal exposure to di-(2-ethylhexyl) phthalate impaired the social interaction via activating microglia in male pups. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116069. [PMID: 38340601 DOI: 10.1016/j.ecoenv.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common endocrine-disrupting chemical (EDC), is widely used in daily articles, early exposure to DEHP is associated with many behavioral changes in pups. This study aimed to investigate the effects and underlying mechanisms of maternal exposure to DEHP on the impaired social interaction in pups. Pregnant rats were administered 0, 30, 300, or 750 mg/kg/d DEHP daily by oral gavage. Highly aggressive proliferating immortalized (HAPI) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) and tyrosine phosphorylation inhibitor (AG490). Our results showed that DEHP exposure induced the activation of microglias (MGs) via activating the janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, and increased the level of pro-inflammatory factors, then impaired the social behavior in male pups, but not female pups. Moreover, MEHP exposure could also activate HAPI via activating this signaling pathway, and AG490 could inhibit the activation of this signaling pathway caused by MEHP. Therefore, we indicated that maternal exposure to DEHP could cause the gender-specific impaired social interaction in pups that might be related to the activation of MGs.
Collapse
Affiliation(s)
- Zhixia Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 110004 Shenyang, China.
| | - Jing Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China Medical University, Shenyang, Liaoning 11012, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China.
| |
Collapse
|
11
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
12
|
Yu EX, Braun JM, Lyall K, Hertz-Picciotto I, Fallin MD, Croen LA, Chen A, Xu Y, Yolton K, Newschaffer CJ, Hamra GB. A Mixture of Urinary Phthalate Metabolite Concentrations During Pregnancy and Offspring Social Responsiveness Scale Scores. Epidemiology 2024; 35:84-93. [PMID: 37820223 PMCID: PMC10842958 DOI: 10.1097/ede.0000000000001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Phthalates are a group of chemicals with ubiquitous exposure worldwide. Exposures to phthalates during pregnancy may play a role in autism spectrum disorder (ASD) etiology by disrupting hormone levels or directly impacting fetal neurodevelopment. However, there is little research quantifying the aggregate effect of phthalates on child ASD-related behaviors. METHODS We used data from two prospective pregnancy and birth cohorts-the Health Outcomes and Measures of the Environment (HOME) and the Early Autism Risk Longitudinal Investigation (EARLI). HOME is a general population cohort while participants in EARLI were at higher familial risk for ASD. Using quantile g-computation and linear regression models, we assessed the joint and individual associations of a mixture of six phthalate metabolites during pregnancy with child ASD-related traits measured by Social Responsiveness Scale (SRS) scores at ages 3-8 years. RESULTS Our analyses included 271 participants from HOME and 166 participants from EARLI. There were imprecise associations between the phthalate mixture and SRS total raw scores in HOME (difference in SRS scores per decile increase in every phthalate = 1.3; 95% confidence interval [CI] = -0.2, 2.8) and EARLI (difference in SRS scores per decile increase in every phthalate = -0.9; 95% CI = -3.5, 1.7). CONCLUSIONS The cohort-specific effect sizes of the pthalates-SRS associations were small and CIs were imprecise. These results suggest that if there are associations between phthalate metabolites during pregnancy and child SRS scores, they may differ across populations with different familial liabilities. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Emma X. Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, CA, USA
| | | | - Lisa A. Croen
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary phthalate metabolite and BPA concentrations in relation to child behavior. ENVIRONMENT INTERNATIONAL 2024; 183:108337. [PMID: 38088019 PMCID: PMC10868726 DOI: 10.1016/j.envint.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Epidemiologic studies on health effects of parental preconception exposures are limited despite emerging evidence from toxicological studies suggesting that such exposures, including to environmental chemicals, may affect offspring health. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate metabolite and bisphenol A (BPA) concentrations were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-11 years whose parent(s) previously enrolled in the prospective preconception Environment and Reproductive Health (EARTH) study. Using linear mixed models, we estimated covariate-adjusted associations of 11 urinary phthalate metabolite and BPA concentrations collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 (BASC-3) T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 134 mothers, 87 fathers and 157 children (24 sets of twins); parents were predominantly non-Hispanic white (mothers and fathers86%). Higher maternal preconception or pregnancy monobenzyl phthalate (MBzP) concentrations were related to higher mean externalizing problems T-scores in their children (β = 1.3 per 1-loge unit increase; 95 % CI: -0.2, 2.4 and β = 2.1, 95 % CI: 0.7, 3.6, respectively). Higher maternal preconception monocarboxyoctyl phthalate (MCOP) was suggested to be related to lower mean externalizing problems T-scores (β = -0.9; 95 % CI: -1.8, 0.0). Higher paternal preconception MCOP was suggestively associated with lower internalizing problems (β = -0.9; 95 %CI:-1.9, 0.1) and lower Behavioral Symptoms Index (BSI) T-scores (β = -1.3; 95 % CI: -2.1, -0.4). CONCLUSION In this cohort, higher maternal preconception and pregnancy MBzP were associated with worse parent-reported child behavior, while higher maternal and paternal preconception MCOP concentrations were related to lower BASC-3 scores.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Research Director Emeritus, Cardiac Neurodevelopment Program, Boston Children's Hospital, Boston, MA, USA; Professor of Neurology and Psychology, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:203-212. [PMID: 38298799 PMCID: PMC10829632 DOI: 10.1016/j.bpsgos.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, Maryland
| | - Adam P. Swiercz
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Paronett
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Manelle Ramadan
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| | - Nikki Gillum Posnack
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| |
Collapse
|
15
|
Barrett ES, Day DB, Szpiro A, Peng J, Loftus CT, Ziausyte U, Kannan K, Trasande L, Zhao Q, Nguyen RHN, Swan S, Karr CJ, LeWinn KZ, Sathyanarayana S, Bush NR. Prenatal exposures to phthalates and life events stressors in relation to child behavior at age 4-6: A combined cohort analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108425. [PMID: 38199129 PMCID: PMC10863744 DOI: 10.1016/j.envint.2024.108425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Prenatal exposures to chemical and psychosocial stressors can impact the developing brain, but few studies have examined their joint effects. We examined associations between prenatal phthalate exposures and child behavior, hypothesizing that prenatal stressful life events (PSLEs) may exacerbate risks. To do so, we harmonized data from three U.S. pregnancy cohorts comprising the ECHO-PATHWAYS consortium. Phthalate metabolites were measured in single mid-pregnancy urine samples. When children were ages 4-6 years, mothers completed the Child Behavior Checklist (CBCL), from which a Total Problems score was calculated. Mothers additionally provided recall on their exposure to 14 PSLEs during pregnancy. Primary models examined problem behaviors in relation to: (1) phthalate mixtures calculated through weighted quantile sums regression with permutation test-derived p-values; and (2) joint exposure to phthalate mixtures and PSLEs (counts) using interaction terms. We subsequently refitted models stratified by child sex. Secondarily, we fit linear and logistic regression models examining individual phthalate metabolites. In our main, fully adjusted models (n = 1536 mother-child dyads), we observed some evidence of weak main effects of phthalate mixtures on problem behaviors in the full cohort and stratified by child sex. Interaction models revealed unexpected relationships whereby greater gestational exposure to PSLEs predicted reduced associations between some phthalates (e.g., the metabolites of di-2-ethylhexyl phthalate, di-n-octyl phthalate, di-iso-nonyl phthalate) and problem behaviors, particularly in males. Few associations were observed in females. Additional research is needed to replicate results and examine potential mechanisms.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - James Peng
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Christine T Loftus
- Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA
| | - Ugne Ziausyte
- Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Shanna Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Karr
- Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Occupational and Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Liu J, Gao D, Wang H, Li Y, Chen M, Ma Q, Wang X, Cui M, Chen L, Zhang Y, Guo T, Yuan W, Ma T, Jiang J, Dong Y, Zou Z, Ma J. Long-term exposure to exogenous phthalate, masculinity and femininity trait, and gender identity in children: a Chinese 3-year longitudinal cohort study. Environ Health 2023; 22:81. [PMID: 38012654 PMCID: PMC10683128 DOI: 10.1186/s12940-023-01031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Phthalate esters (PAEs) are known to have hormone-like properties, and there is a growing trend of children expressing a gender identity different from assigned sex. However, there has been limited research in the potential links between PAEs exposure and gender identity. METHODS A total of 571 children (278 boys) completed the follow-up from Oct 2017 to Oct 2020 in Childhood Blood Pressure and Environmental Factors (CBPEF) cohort in Xiamen, China. Urinary PAE metabolites were measured at three time of visits using ultraperformance liquid chromatography-tandem mass spectrometry. The Children's Sex Role Inventory scale was used to assess gender identity (masculinity, femininity, androgyny and undifferentiated), and Tanner definition was used to define puberty timing. Generalized linear models and log-binomial regression were used to assess the relationships between PAEs exposure, gender trait scores and gender identity. RESULTS Overall, the concentration of most PAEs in more than 90% of participants was above the limit of detection values. In visit 1, there were 10.1% boys with femininity and 11.3% girls with masculinity; while these figures increased to 10.8% and 12.3% during follow-up, respectively. Early puberty onset accounted for 24.8% and 25.6% among boys and girls. Long-term exposure to mono-2-ethylhexyl phthalate (MEHP) (β = 1.20, 95%CI = 0.13, 2.28), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (β = 1.25, 95%CI = 0.22, 2.28) and mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (β = 1.40, 95%CI = 0.24, 2.56) was associated with the increased differences of femininity trait scores in boys who enter puberty earlier, prolonged exposure to di(2-ethylhexyl) phthalate (DEHP) might also have such a positive impact (β = 1.38, 95%CI = 0.36, 2.41). For gender identity, persistent exposure to low molecular weight phthalates (LMWP) was negatively associated with undifferentiated type among boys entering puberty earlier (RR = 0.18, 95%CI = 0.05, 0.75, P < 0.05), and most of the PAE metabolites exposures showed risk ratios > 1 for their femininity. CONCLUSION Long-term exposure to PAEs increase the femininity trait scores in boys with early onset of puberty. Although the mechanisms remain to be determined, environmental pollution might have subtle, yet measurable effects on childhood gender identity. Reducing these chemicals exposure has important public implications on gender development.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Huan Wang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| |
Collapse
|
17
|
Ren WQ, Liu N, Shen Y, Wang XY, Zhou Q, Rui C, Yang XH, Cao SL, Li LY, Wāng Y, Wang QN. Subchronic exposure to di-(2-ethylhexyl) phthalate (DEHP) elicits blood-brain barrier dysfunction and neuroinflammation in male C57BL/6J mice. Toxicology 2023; 499:153650. [PMID: 37858774 DOI: 10.1016/j.tox.2023.153650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Exposure to di-(2-ethylhexyl) phthalate (DEHP) can cause neurotoxicity but the mechanism is not clear. Blood brain barrier (BBB) is one of the most important tissues to protect the brain. However, whether DEHP can disrupt the BBB or not remains unclear. The objective of this study is to investigate the potential effects of subchronic DEHP exposure on BBB integrity and discuss the role of BBB in DEHP inducible neurotoxicity with an emphasis on neuroinflammatory responses. Male adult C57BL/6J mice were orally administered with vehicle or 200 or 750 mg/kg/day DEHP for 90 days. Subchronic exposure to high-dose DEHP increased water intake but decreased body weight and brain weight. The concentrations of DEHP metabolites increased in serum from all DEHP-exposed groups while increased in brain only from the high-dose group. DEHP induced neurobehavioural alterations and damaged hippocampal neurons. DEHP increased BBB permeability by Evans blue (EB) extravasation and decreased tight junction proteins (ZO-1, occludin, and claudin-5) while presenting a neuroinflammatory feature characterized by the upregulated inflammatory mediators TNF-α and the NLRP3/caspase-1/IL-1β inflammasome pathway. Our data provide new insights into neurotoxicity caused by subchronic DEHP exposure, which is probably involved in BBB dysfunction and neuroinflammatory responses.
Collapse
Affiliation(s)
- Wen-Qiang Ren
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Nuo Liu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yan Shen
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Qiong Zhou
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Han Yang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Sheng-Long Cao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ling-Yu Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Qu-Nan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Munk Andreasen S, Frederiksen H, Bilenberg N, Andersson AM, Juul A, Kyhl HB, Kold Jensen T. Maternal concentrations of phthalates and Attention-Deficit Hyperactivity Disorder (ADHD-) related symptoms in children aged 2 to 4 years from Odense child cohort. ENVIRONMENT INTERNATIONAL 2023; 180:108244. [PMID: 37797478 DOI: 10.1016/j.envint.2023.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Phthalates are endocrine disrupting chemicals used in everyday consumer products. Several epidemiological studies have examined the association between prenatal phthalate concentration and Attention-Deficit Hyperactivity Disorder (ADHD) in offspring, but the findings have been inconclusive. OBJECTIVES To investigate the association between maternal urinary concentrations of phthalate metabolites during pregnancy and ADHD related symptoms in children at 2 to 4 years in a large prospective cohort. METHODS In the Odense Child Cohort from Denmark were women recruited in early pregnancy from 2010 to 2012. Phthalate concentrations were measured in urine samples collected in 3rd trimester and separated into low and high weight phthalates. Parents filled in the Child Behavior Checklist for ages 1.5 to 5 years (CBCL/1½-5), including a 6-item ADHD symptom scale at children aged 2 to 4 years. Data were analysed by use of adjusted negative binomial regression. RESULTS A total of 658 mother-child pairs were included. Urinary phthalate metabolite concentrations were generally low compared to previous cohorts. A doubling in maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with lower ADHD symptoms score in children (IRR: 0.95 (95 % CI 0.91-0.98)), strongest in girls (IRR: 0.92 (0.87-0.98)). Sex differences were observed. High maternal phthalate metabolite concentrations were associated with lower ADHD symptom score in girls, significant trends across tertile of MCPP and MnBP (p = 0.018, p = 0.038, respectively). In boys, maternal concentrations of high-molecular-weight phthalates (MBzP, ∑DiNP and ∑DEHP) were associated with an almost significantly higher ADHD symptom score (IRR for a doubling in concentration: 1.04 (95 % CI: 0.99-1.10), IRR: 1.05 (95 % CI: 0.97-1.13), IRR: 1.04 (95 % CI: 0.99-1.10), respectively). CONCLUSION Maternal concentration of the low-weighted phthalate metabolite MCPP was significantly associated with a lower ADHD symptom score in children, strongest in girls. Maternal concentrations of high-molecular-weight phthalates were associated with non-significant increase in ADHD symptom score in boys.
Collapse
Affiliation(s)
- Sarah Munk Andreasen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Psychiatry, Odense, Mental Health Services in Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark.
| |
Collapse
|
19
|
Dewey D, Martin JW, MacDonald AM, Kinniburgh DW, Letourneau N, Giesbrecht GF, Field CJ, Bell RC, England-Mason G. Sex-specific associations between maternal phthalate exposure and neurodevelopmental outcomes in children at 2 years of age in the APrON cohort. Neurotoxicology 2023; 98:48-60. [PMID: 37517784 DOI: 10.1016/j.neuro.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND There is inconsistent evidence regarding the sex-specific associations between prenatal phthalate exposure and children's neurodevelopment. This could be due to differences in the phthalate exposures investigated and the neurodevelopmental domains assessed. OBJECTIVE To evaluate the associations between prenatal phthalate exposure and sex-specific outcomes on measures of cognition, language, motor, executive function, and behaviour in children 2 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. METHODS We evaluated the associations between prenatal phthalate exposure and sex-specific neurodevelopmental outcomes in children at 2 years of age using data from 448 mothers and their children (222 girls, 226 boys). Nine phthalate metabolites were measured in maternal urine collected in the second trimester of pregnancy. Children's cognitive, language, and motor outcomes were assessed using the Bayley Scales of Infant Development - Third Edition (Bayley-III). Parents completed questionnaires on children's executive function and behavior, the Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) and Child Behavior Checklist (CBCL), respectively. Sex-stratified robust multivariate regressions were performed. RESULTS Higher maternal concentrations of ΣDEHP and its metabolites were associated with lower scores on the Bayley-III Cognitive (β's from -11.8 to -0.07 95% CI's from -21.3 to -0.01), Language (β's from -11.7 to -0. 09, 95% CI's from -22.3 to -0.02) and Motor (β's from -10.9 to -0.07, 95% CI from -20.4 to -0.01) composites in boys. The patterns of association in girls were in the opposite direction on the Cognitive and Language composites; on the Motor composite they were in the same direction as boys, but of reduced strength. Higher concentrations of ΣDEHP and its metabolites were associated with higher scores (i.e., more difficulties) on all measures of executive function in girls: inhibitory self-control (B's from 0.05 to 0.11, 95% CI s from -0.01 to 0.15), flexibility (B's from 0.04 to 0.11, 95% CI s from 0.01 to 0.21) and emergent metacognition (B's from -0.01 to 0.06, 95% CIs from -0.01 to 0.20). Similar patterns of attenuated associations were seen in boys. Higher concentrations of ΣDEHP and its metabolites were associated with more Externalizing Problems in girls and boys (B's from 0.03 to 6.82, 95% CIs from -0.08 to 12.0). Two phthalates, MMP and MBP, had sex-specific adverse associations on measures of executive function and behaviour, respectively, while MEP was positively associated with boys' cognitive, language, and motor performance. Limited associations were observed between mixtures of maternal phthalates and sex-specific neurodevelopmental outcomes. CONCLUSIONS Maternal prenatal concentrations of DEHP phthalates were associated with sex specific difference on measures of cognition and language at 2 years of age, specifically, poorer outcomes in boys. Higher exposure to DEHP was associated with poorer motor, executive function, and behavioural outcomes in girls and boys but the strength of these associations differed by sex. Limited associations were noted between phthalate mixtures and child neurodevelopment.
Collapse
Affiliation(s)
- Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, Univerity of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Cohen-Eliraz L, Ornoy A, Ein-Mor E, Bar-Nitsan M, Pilowsky Peleg T, Calderon-Margalit R. Prenatal exposure to phthalates and emotional/behavioral development in young children. Neurotoxicology 2023; 98:39-47. [PMID: 37536470 DOI: 10.1016/j.neuro.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) such as phthalates, found in our daily environment, are nowadays suggested to be associated with adverse outcomes. Prenatal exposure was found associated with neurodevelopmental complications such as behavioral difficulties in school age children. AIM To explore the association between intrauterine exposure to phthalates and emotional/behavioral development of 24 months old toddlers. METHODS Women were recruited at 11-18 weeks of gestation and provided spot urine samples, analyzed for phthalate metabolites (DEHP, DiNP, MBzBP). Offspring were examined at 24 months of age, using standard maternal report, regarding developmental and behavioral problems (CBCL, ASQ-3, HOME questionnaires) (N = 158). To explore the associations between metabolite levels and developmental outcomes, multivariate GLM analysis (General Linear Model) was used according to tertiles and developmental scores on each developmental outcome. RESULTS Associations of Di-(2-ethylhexyl) phthalate (DEHP) maternal exposure with behavioral-developmental outcomes were found only in boys. Compared with boys with lower DEHP maternal exposure, boys with high DEHP maternal exposure had lower developmental score in personal social abilities in the ASQ-3 questionnaire (50.68 + 8.06 and 44.14 + 11.02, high and low DEHP, respectively, p = 0.03), and more internalizing problems (for example, emotionally reactive score in high and low DEHP: 53.77 + 7.41 and 50.50 + 1.19, respectively, p = 0.029; anxious or depressed score: 53.38 + 5.01 and 50.75 + 1.34, respectively, p = 0.009; and somatic complaints scores 64.03 + 10.1 and 55.84 + 7.84, respectively, p = 0.003), and externalizing problems (49.28 + 8.59 and 43.33 + 9.11, respectively, p = 0.039). No differences were found in the development and behavior problems between high and low DEHP maternal exposure level in girls. CONCLUSION Maternal DEHP metabolite concentrations measured in first trimester urine was associated with children's emotional/behavioral developmental problems in 24-months old boys, supporting accumulating evidence of DEHP as a potentially harming chemical and call for environmental attention.
Collapse
Affiliation(s)
- Liron Cohen-Eliraz
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Asher Ornoy
- Department of Medical Neurobiology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliana Ein-Mor
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| | - Moriah Bar-Nitsan
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tammy Pilowsky Peleg
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel; The Neuropsychological Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ronit Calderon-Margalit
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
22
|
Wang JQ, Liang CM, Hu YB, Xia X, Li ZJ, Gao H, Sheng J, Huang K, Wang SF, Zhu P, Hao JH, Tao FB. The effect of phthalates exposure during pregnancy on asthma in infants aged 0 to 36 months: a birth cohort study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1951-1974. [PMID: 35751763 DOI: 10.1007/s10653-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This cohort study sought to investigate the effects of phthalates exposure during pregnancy on offspring asthma and its association with placental stress and inflammatory factor mRNA expression levels. A total of 3474 pregnant women from the China Ma'anshan birth cohort participated in this study. Seven phthalate metabolites were detected in urine samples during pregnancy by solid phase extraction-high-performance liquid chromatography tandem mass spectrometry. Placenta stress and inflammation mRNA expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Early pregnancy may be the critical period when phthalates exposure increases the risk of asthma in infants and young children, and there is a certain gender difference in the risk of asthma in infants and young children. Moreover, through the placenta stress and inflammatory factor associated with infant asthma found anti-inflammatory factor of interleukin-10 (IL-10) mRNA expression will reduce the risk of 36-month-old male infant asthma. The expression of interleukin-4(IL-4) and macrophage (M2) biomarker cluster of differentiation 206(CD206) mRNA reduced the risk of asthma in 18-month-old female infants. Placental stress and inflammatory response were analyzed using mediating effects. Tumor necrosis factor-α (TNFα) showed a complete mediating effect between mono-benzyl phthalate (MBzP) exposure in early pregnancy and asthma in 12-month-old males, and IL-10 also showed a complete mediating effect between mono-n-butyl phthalate (MBP) exposure in early and late pregnancy and asthma in 36-month-old males. In summary, exposure to phthalates during pregnancy may contribute to the development of asthma in infants, which may be associated with placental stress and inflammation.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhi-Juan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Al-Saleh I, Elkhatib R, Alnuwaysir H, Aldhalaan H, Alismail E, Binmanee A, Hawari A, Alhazzani F, Jabr MB, Mohamed G. Exposure of preterm neonates receiving total parenteral nutrition to phthalates and its impact on neurodevelopment at the age of 2 months. Sci Rep 2023; 13:6969. [PMID: 37117441 PMCID: PMC10141929 DOI: 10.1038/s41598-023-33715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
This prospective study assessed the exposure to phthalates of preterm neonates who received total parenteral nutrition (TPN) during their stay in the neonatal intensive care unit (NICU) and the risk of neurodevelopment delays at the age of 2 months. Our study recruited 33 preterm neonates who required TPN upon NICU admission. Urine samples for analyzing phthalate metabolites were obtained at admission and then daily until the last day of receiving TPN. Phthalates in the daily TPN received by the preterm neonates were analyzed. The neurodevelopment of the neonates was assessed using the Ages and Stages Questionnaire Edition 3 (ASQ-3). Diethyl phthalate and butyl benzyl phthalate were found in all TPN samples, while 27% and 83% contained dibutyl phthalate and di-(2-ethylhexyl) phthalate (DEHP), respectively. Yet, the daily dose of each phthalate that our preterm neonates received from TPN was much lower than the recommended tolerable limit. Urinary levels of monobenzyl phthalate and four metabolites of DEHP [i.e., mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP)] and the sum of four DEHP metabolites (∑4DEHP) increased significantly in preterm neonates before discharge. However, these levels were not correlated with their phthalate parent compounds in TPN, suggesting other sources of exposure in the NICU. At 2 months, we found that urinary levels of mono-iso-butyl phthalate (MiBP), MECPP, MEHP, and ∑4DEHP were inversely related to fine motor skills. After adjusting for head circumference, the inverse relationships remained significant, suggesting direct effects from phthalates. Given the extreme vulnerability of our population, it is critical to minimize exposure to phthalates during their NICU stay.
Collapse
Affiliation(s)
- Iman Al-Saleh
- King Faisal Specialist Hospital and Research Centre, Environmental Health Program (MBC#03), P.O. Box: 3354, Riyadh, 11211, Saudi Arabia.
| | - Rola Elkhatib
- King Faisal Specialist Hospital and Research Centre, Environmental Health Program (MBC#03), P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Hissah Alnuwaysir
- King Faisal Specialist Hospital and Research Centre, Environmental Health Program (MBC#03), P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Eiman Alismail
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Abdulaziz Binmanee
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Amal Hawari
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Fahad Alhazzani
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Mohammad Bin Jabr
- Neonatal Critical Care Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Gamal Mohamed
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, P.O. Box: 3354, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
24
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536567. [PMID: 37886449 PMCID: PMC10602041 DOI: 10.1101/2023.04.13.536567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.
Collapse
|
25
|
Tsai TL, Hsieh CJ, Wu MT, Chen ML, Kuo PH, Wang SL. Co-exposure to toxic metals and phthalates in pregnant women and their children's mental health problems aged four years - Taiwan Maternal and Infant Cohort Study (TMICS). ENVIRONMENT INTERNATIONAL 2023; 173:107804. [PMID: 36842379 DOI: 10.1016/j.envint.2023.107804] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Childhood and adolescent mental health problems may increase the global burden of disease. Neurotoxic metals are associated with inflammation and cytotoxicity in the brain. In addition, prenatal phthalate ester (PAE) exposure is associated with cognitive function deficits. However, the effect of co-exposure to toxic metals, PAEs, and their association with child behavior is less well studied. Hence, we aimed to investigate prenatal co-exposure to the metals and PAEs and the consequent behavioral outcomes in early childhood. METHODS We followed pregnant women and their newborns from the Taiwan Maternal and Infant Cohort Study between 2015 and 2017, with a focus on women from the central, southern, and eastern areas of Taiwan. We quantified maternal urinary concentrations of metals and metabolites of PAEs as surrogates of prenatal exposure. We recorded the Child Behavior Checklist scores according to caregiver reports at 4 years of age, and identified Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)-oriented problems. RESULTS Ultimately, 408 children were included in the statistical analysis. Maternal urinary copper levels were significantly associated with depressive problems (odds ratio [OR] = 2.13) in children. Maternal urinary concentrations of mono-n-butyl phthalate (MnBP) and mono-isobutyl phthalate (MiBP) were also significantly associated with depressive symptoms (odds ratio [OR] = 1.51 and 1.53, respectively). Further analysis considering prenatal co-exposure to metals and PAEs showed that co-exposure to these materials was significantly associated with autism spectrum problems (OR = 3.11). CONCLUSIONS We observed that prenatal single exposure or co-exposure to metals and PAEs may play a role in some DSM-5-oriented problems in children at 4 years of age. Reduction of exposure to toxic metals and PAEs in pregnancy is suggested to prevent increased mental health problems in children.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
26
|
Chen HK, Wang SL, Chang YH, Sun CW, Wu MT, Chen ML, Lin YJ, Hsieh CJ. Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120956. [PMID: 36581241 DOI: 10.1016/j.envpol.2022.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown associations between prenatal phthalate exposure and neurobehavioral changes in children. However, few studies have focused on neonatal neurobehavioral development. This study aimed to examine the associations between prenatal phthalate exposure and neonatal neurobehavioral development in the early days of life after birth. This cohort study included 283 mother-infant pairs who participated in the Taiwan Mother Infant Cohort Study during 2012-2015. Each mother was interviewed, and urine samples were collected during the third trimester of pregnancy (weeks 29-40). Eleven common phthalate metabolites in maternal urine were analyzed. The Chinese version of the Neonatal Neurobehavioral Examination was used to evaluate early infant neurobehavioral development within five days of birth. We performed multiple linear regressions to explore the associations between phthalate exposure and neonatal neurobehavioral development. Sex differences in the association between phthalate metabolites and neonatal neurobehaviors were noted. Among girls, tertiles of phthalate metabolite concentrations were associated with worse behavioral responses and tone and motor patterns in the high-molecular-weight phthalate (HMW) and low-molecular-weight phthalate (LMW) groups. Girls in the highest tertile of di-2-ethylhexyl phthalate (DEHP) and mono-isobutyl phthalate (MiBP) had a negative association with tone and motor patterns. Girls in the highest tertile of mono-n-butyl phthalate (MnBP) and MiBP showed a negative association with behavioral responses. In contrast, tertiles of phthalate metabolite exposure were associated with improved neurobehaviors in mono-methyl phthalate (MMP) among boys. The highest tertile of MMP was positively associated with behavioral responses, primitive reflexes, and tone and motor patterns. Our findings suggest that maternal phthalate exposure affects neonatal neurobehavioral development in a sex-specific manner. Despite the relatively small sample size, our findings add to the existing research linking maternal phthalate exposure to neonatal neurobehavioral development. Additional research is needed to determine the potential long-term effects of prenatal phthalate exposure on children.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jie Lin
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
27
|
Rolland M, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Méary D, Philippat C. Effects of early exposure to phthalates on cognitive development and visual behavior at 24 months. ENVIRONMENTAL RESEARCH 2023; 219:115068. [PMID: 36528043 DOI: 10.1016/j.envres.2022.115068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Studies focusing on the neurodevelopmental effects of phthalates seldom consider exposure during infancy, a critical period for brain development. Most rely on parent-completed questionnaires to assess child neurodevelopment, which may be subject to reporting error. We studied the associations between prenatal and infancy exposure to phthalates and objective measures of neurodevelopment at the age of two. METHODS We relied on 151 mother-child pairs from the SEPAGES mother-child cohort. Women were asked to collect three spot urine samples per day over seven consecutive days during the second (median: 18.0 gestational weeks) and third (median: 34.2 gestational weeks) trimesters of pregnancy. They then collected one urine sample per day over seven consecutive days from their infants around the age of 12 months. Metabolites of phthalates and non-phthalate plasticizers were measured in within-subject and within-period pools of repeated urine samples. Eye tracking tasks were performed at two years allowing to compute four indicators linked with cognitive development and visual behavior: mean fixation duration, novelty preference, percent time spent looking at the eyes and mean reaction time. RESULTS Pre-natal exposure to monobenzyl phthalate at the second and third trimesters was associated with shorter fixation durations. In models allowing for interaction with child sex, these associations were only observed among girls. Exposure to di(2-ethylhexyl) phthalate at the third but not the second trimester was associated with increased time spent looking at a novel face and eyes. We observed faster reaction times and decreased time spent looking at the eyes in a face recognition task, with increased post-natal exposure to monoethyl, mono-iso-butyl and mono-n-butyl phthalates. DISCUSSION Relying on improved exposure assessment, we highlighted associations of pre- and post-natal exposure to phthalates with indicators derived from eye tracking tasks, mainly in girls. Some of these indicators have been affected in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | - David Méary
- Laboratoire de Psychologie et Neurocognition, LPNC, UMR 5105, Université Grenoble Alpes, Grenoble, France
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
28
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
29
|
Park S, Zimmerman E, Huerta-Montañez G, Rosario-Pabón Z, Vélez-Vega CM, Cordero JF, Alshwabekah A, Meeker JD, Watkins DJ. Gestational Exposure to Phthalates and Phthalate Replacements in Relation to Neurodevelopmental Delays in Early Childhood. TOXICS 2023; 11:65. [PMID: 36668792 PMCID: PMC9863718 DOI: 10.3390/toxics11010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/10/2023]
Abstract
Phthalates have been linked to changes in child neurodevelopment. However, sex-specificity has been reported inconsistently, and little is known about the impact of recent phthalate replacement chemicals. Our analysis included mother−child pairs (N = 274) from the PROTECT birth cohort in Puerto Rico. Phthalate metabolites were measured in multiple maternal urine collected during pregnancy. Neurodevelopment was measured at 6, 12, and 24 months of age using the Battelle Developmental Inventory-2nd edition (BDI), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. Multivariable linear regression was used to examine associations between phthalate metabolite concentrations and BDI scores, adjusting for maternal age, maternal education, child age, and specific gravity. Sex-specificity was assessed with sex X exposure interaction terms and stratified models. Results show that all five domains were significantly associated with mono-3-carboxypropyl phthalate (MCPP) at age 24 months, suggesting a holistic developmental delay related to this metabolite. Sex-specificity existed for all timepoints (p-interaction < 0.2), in general, showing stronger associations among boys. For example, metabolites of a recent phthalate replacement, di-2-ethylhexyl terephthalate (DEHTP), were differentially associated with the adaptive domain (boys −7.53%/IQR, 95% CI: −14.58, −0.48 vs. girls −0.85%/IQR, 95% CI: −5.08, 3.37), and the cognitive domain (boys −6.05%/IQR, 95% CI: −10.88, −1.22 vs. girls −1.93%/IQR, 95%CI: −4.14, 0.28) at 6 months. To conclude, gestational exposure to phthalates and phthalate replacements was associated with neurodevelopmental delay across multiple domains, with differences by sex and child age.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA 02115, USA
| | - Gredia Huerta-Montañez
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zaira Rosario-Pabón
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Carmen M. Vélez-Vega
- Department of Social Sciences, UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR 00936, USA
| | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, USA
| | - Akram Alshwabekah
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Eisner A, Gao Y, Collier F, Drummond K, Thomson S, Burgner D, Vuillermin P, Tang ML, Mueller J, Symeonides C, Saffery R, Ponsonby AL. Cord blood immune profile: Associations with higher prenatal plastic chemical levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120332. [PMID: 36195195 DOI: 10.1016/j.envpol.2022.120332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Prenatal exposure to plastic chemicals has been associated with alterations to early-life immune function in children. However, previous studies have generally been small and focused on limited repertoires of immune indices. In a large population-based pre-birth cohort (n = 1074), third-trimester measurements of eight phthalate metabolites and three analogues of bisphenols were used to estimate prenatal exposure to phthalate and bisphenol compounds. In cord blood, immune cell populations were measured by flow cytometry and an extensive panel of cytokines and chemokines were measured by multiplex immunoassay. We used these cord blood analytes to estimate "early life" immune profiles. The full study sample comprises data from 774 infants with prenatal plastic metabolite measurements and any cord blood immune data. Multiple linear regression analysis was used to evaluate whether prenatal phthalate and bisphenol exposure was prospectively associated with cord blood immune cell populations and cytokine and chemokine levels. Generally, inverse associations were observed between prenatal phthalate exposure and cord blood immune indices. Higher exposure to di-n-butyl phthalate was associated with lower cord blood levels of platelet-derived growth factor (PDGF) and interferon gamma-induced protein 10 (IP-10); higher exposure to the sum of dibutyl phthalates was associated with lower cord blood levels of IP-10; and higher exposure to benzyl butyl phthalate was associated with lower cord blood levels of interleukin 1 beta (IL-1β). There was less evidence of associations between bisphenols and cord blood immune indices. These results extend previous work examining prenatal plastic chemical exposure and early-life immune development and highlight the importance of further examination of potential associations with health-related outcomes.
Collapse
Affiliation(s)
- Alex Eisner
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Yuan Gao
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Melbourne University, Melbourne, Victoria, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; The Minderoo Foundation, Perth, Western Australia, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Zhou T, He S, Ye X, Wei Z, Wan J, Zhang H, Ding S. Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158319. [PMID: 36041608 DOI: 10.1016/j.scitotenv.2022.158319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and dibutyl phthalate (DBP) exist extensively in the environment, and they are easy to form compound pollution through π-π interactions in the environment. We investigate whether DBP, an environmental hormone disruptor, mediated by CNTs can more easily cross the blood-brain barrier, and whether DBP entering the brain has neurotoxic effects on the cells in the brain. Experimental subjects were 40 male Kunming (KM) mice randomly divided into 4 groups: the control group; the MWCNTs group; the DBP group; and the MWCNTs+DBP group. The mice were exposed via tail intravenous injection once every 3 days for 21 days, following which toxicology studies were carried out. The results of behavioral experiments showed that the mice in the combined exposure group (MWCNTs+DBP) exhibited spatial learning and memory impairment, and anxiety-like behavior. Staining of hippocampal sections of mouse brain tissue showed that, in the CA1, CA2, and DG areas, the number of neurons decreased, the nucleus was pyknotic, the cell body was atrophied, and levels of the microglia marker Iba-1 increased. By proteomic KEGG analysis, we found that the DEPs were mainly those related to neurodegenerative diseases. Immunohistochemistry in the hippocampus indicated that the level of brain-derived neurotrophic factor (BDNF) in the DG region was significantly increased. RT-PCR results revealed that the expression levels of P53, caspase3, and Bax genes related to apoptosis were up-regulated. The experimental results demonstrated that the mechanism of the combined-exposure injury to neurons in the hippocampus of mice may be that MWCNTs with adsorbed DBP can induce the release of BDNF, accelerate the apoptosis of neurons, and reduce the number of nerve cells, which activates microglia, causing neuroinflammation and nervous system toxicity.
Collapse
Affiliation(s)
- Tingting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China.
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| |
Collapse
|
33
|
Zheng Y, Li L, Cheng H, Huang S, Feng X, Huang L, Wei L, Cao D, Wang S, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Liu C, Chen X, Wang F, Mo Z, Yang X. Gender-specific effects of prenatal mixed exposure to serum phthalates on neurodevelopment of children aged 2-3 years:the Guangxi Birth Cohort Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85547-85558. [PMID: 35794332 DOI: 10.1007/s11356-022-21769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates have been shown to have adverse effects on neurodevelopment, which may be gender-specific. However, the association between prenatal mixed exposure to phthalates and children's neurodevelopment remains inconsistent. We measured 15 prenatal serum phthalate levels and evaluated children's neurodevelopmental indicators using Gesell Developmental Schedule (GDS) (n = 750). Generalized linear regression was fitted to examine the association. Among boys, mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) had adverse effects on gross motor [odds ratio (OR): 7.38, 95% confidence interval (CI):1.42, 38.46]. For gross motor in boys, joint effect was discovered between mono-2-ethylhexyl phthalate (MEHP) and MEHHP. Moreover, synergistic effects were found for MEHP with vanadium and cadmium, and antagonistic effects for MEHP with magnesium, calcium, titanium, iron, copper, selenium, rubidium, and strontium. We did not find statistically significant relationships in girls. In the 1st trimester, adverse effects were identified between mono-2-ethyl-5-oxoyhexyl phthalate (MEOHP) and adaptation (P = 0.024), and monomethyl phthalate (MMP) with social area (P = 0.017). In the 2nd trimester, MEHHP had adverse effects on social area (P = 0.035). In summary, we found boys may be more vulnerable to the neurotoxicity than girls in gross motor, and we also discovered the detrimental effects of phthalates on children's neurodevelopment in the 1st and 2nd trimesters. Therefore, the supplementation of appropriate elements in the 1st and 2nd trimesters may help reduce the adverse effects of phthalates on children's neurodevelopment, especially among boys.
Collapse
Affiliation(s)
- Yuan Zheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuming Feng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Tian
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Weijun Tang
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Caitong He
- Maternal & Child Health Hospital of Yulin, Yulin, 537000, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital; Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, 537000, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, 530021, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, 543000, Guangxi, China
| | - Baohong Pang
- Maternal & Child Health Hospital of Yuzhou, Yulin, 537000, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xing Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
34
|
Yuan L, Liu J, Huang Y, Shen G, Pang S, Wang C, Li Y, Mu X. Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87402-87412. [PMID: 35804233 DOI: 10.1007/s11356-022-21863-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 μg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10-5000 μg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 μg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
35
|
Yousefi F, Asadikaram G, Karamouzian S, Abolhassani M, Pourghadamyari H, Moazed V, Khanjani N, Paydar P. Organochlorine and organophosphorus pesticides may induce brain cancer through oxidative stress. Toxicol Ind Health 2022; 38:717-732. [PMID: 36180968 DOI: 10.1177/07482337221125954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, oxidative stress was investigated as the possible mechanism of action of organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) in primary brain tumors (PBT). The levels of seven OCP residues and enzymatic antioxidant biomarkers including erythrocyte acetylcholinesterase (AChE), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and paraoxonase-1 (PON-1) along with non-enzymatic oxidative biomarkers including malondialdehyde (MDA), protein carbonyl (PC), total antioxidant capacity (TAC), and nitric oxide (NO) were measured in blood samples of 73 patients with PBT and 104 healthy controls. A significant association was found between farming activities and PBT (55% of patients were engaged in farming activities while 45% had no farming experience). The mean levels of β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, 4,4 DDT, MDA, PC, NO, SOD, CAT, and GPx were significantly higher in PBT patients, whereas the levels of TAC, PON-1, and AChE were significantly lower in these patients. Regression analysis showed that PBT was correlated with β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, and 4,4 DDT. Based on these results, it can be concluded that OCPs and OPPs may play a role in PBT development through the formation of reactive oxygen species (ROS) and promoting oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Karamouzian
- Department of Neurosurgery, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Khanjani
- Neurology Research Center, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Paydar
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
36
|
Cardenas-Iniguez C, Burnor E, Herting MM. Neurotoxicants, the Developing Brain, and Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:223-232. [PMID: 35911498 PMCID: PMC9337627 DOI: 10.1016/j.bpsgos.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
While life in urban environments may confer a number of benefits, it may also result in a variety of exposures, with toxic consequences for neurodevelopment and neuropsychological health. Neurotoxicants are any of a large number of chemicals or substances that interfere with normal function and/or compromise adaptation in the central and/or peripheral nervous system. Evidence suggests that neurotoxicant effects have a greater effect when occurring in utero and during early childhood. Recent findings exploring neural-level mechanisms provide a crucial opportunity to explore the ways in which environmental conditions may get "under the skin" to impact a number of psychological behaviors and cognitive processes, ultimately allowing for greater synergy between macro- and microlevel efforts to improve mental health in the presence of neurotoxicant exposures. In this review, we provide an overview of 3 types of neurotoxicants related to the built environment and relevant to brain development during childhood and adolescence: lead exposure, outdoor particulate matter pollution, and endocrine-disrupting chemicals. We also discuss mechanisms through which these neurotoxicants affect central nervous system function, including recent evidence from neuroimaging literature. Furthermore, we discuss neurotoxicants and mental health during development in the context of social determinants and how differences in the spatial distribution of neurotoxicant exposures result in health disparities that disproportionately affect low-income and minority populations. Multifaceted approaches incorporating social systems and their effect on neurotoxicant exposures and downstream mental health will be key to reduce societal costs and improve quality of life for children, adolescents, and adults.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
37
|
Brandsma SH, Leonards PEG, Koekkoek JC, Samsonek J, Puype F. Migration of hazardous contaminants from WEEE contaminated polymeric toy material by mouthing. CHEMOSPHERE 2022; 294:133774. [PMID: 35104545 DOI: 10.1016/j.chemosphere.2022.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the migration of brominated flame retardants (BFRs), phosphate flame retardants (PFRs), bisphenols (BPA, BPF), and phthalate ester-based plasticizers from recycled polymeric toy material, containing waste electrical and electronic equipment (WEEE), in artificial saliva simulating 1 h of mouthing. In total 12 parts of 9 different toys were tested in triplicate after confirming WEEE specific contamination. Up to 11 contaminants were detected in saliva from one toy sample. The highest migration rate up to 128 ng/(cm2 x h) was found for BPA followed by bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DIBP) with migration rates up to 25.5 and 8.27 ng/(cm2 x h), respectively. In addition to DecaBDE, which was detected in 3 saliva samples at migration rates between 0.09 and 0.31 ng/(cm2 x h), the decaBDE replacements 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), decabromodiphenyl ethane (DBDPE), resorcinol bis(diphenyl phosphate) (RDP), and hexabromocyclododecane (HBCDD) were detected as well with comparable migration rates. 2,4,6-tribromphenol (246-TBP) reached migration rates up to 1.15 ng/(cm2 x h) in correspondence to the presence of TTBP-TAZ. Tetrabromobisphenol A (TBBPA), BPA, 246-TBP, DEHP, DIBP and triphenyl phosphate (TPHP) were predominantly observed in saliva with a detection frequency between 50 and 75%. Daily intake (DI) values were calculated for relevant analytes and compared to tolerable daily intake (TDI) values. The highest DI values of 72.4, 14.3, 5.74, 2.28 and 2.09 ng/(kg BW x day), were obtained for BPA, DEHP, DIBP, TBBPA, and TPHP, respectively. None of them exceed the TDI value or respective reference dose (RfD).
Collapse
Affiliation(s)
- Sicco H Brandsma
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Jacco C Koekkoek
- Department of Environment and Health, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Jíří Samsonek
- Institute for Testing and Certification, Inc., Trida Tomase Bati 299, Louky, 76302, Zlín, Czech Republic
| | - Franky Puype
- Institute for Testing and Certification, Inc., Trida Tomase Bati 299, Louky, 76302, Zlín, Czech Republic
| |
Collapse
|
38
|
Does early life phthalate exposure mediate racial disparities in children’s cognitive abilities? Environ Epidemiol 2022; 6:e205. [PMID: 35434463 PMCID: PMC9005259 DOI: 10.1097/ee9.0000000000000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
|
39
|
Prenatal Exposure to an EDC Mixture, NeuroMix: Effects on Brain, Behavior, and Stress Responsiveness in Rats. TOXICS 2022; 10:toxics10030122. [PMID: 35324748 PMCID: PMC8954446 DOI: 10.3390/toxics10030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Abstract
Humans and wildlife are exposed to endocrine-disrupting chemicals (EDCs) throughout their lives. Environmental EDCs are implicated in a range of diseases/disorders with developmental origins, including neurodevelopment and behavior. EDCs are most often studied one by one; here, we assessed outcomes induced by a mixture designed to represent the real-world situation of multiple simultaneous exposures. The choice of EDCs, which we refer to as “NeuroMix,” was informed by evidence for neurobiological effects in single-compound studies and included bisphenols, phthalates, vinclozolin, and perfluorinated, polybrominated, and polychlorinated compounds. Pregnant Sprague Dawley rats were fed the NeuroMix or vehicle, and then offspring of both sexes were assessed for effects on postnatal development and behaviors and gene expression in the brain in adulthood. In order to determine whether early-life EDCs predisposed to subsequent vulnerability to postnatal life challenges, a subset of rats were also given a stress challenge in adolescence. Prenatal NeuroMix exposure decreased body weight and delayed puberty in males but not females. In adulthood, NeuroMix caused changes in anxiety-like, social, and mate preference behaviors only in females. Effects of stress were predominantly observed in males. Several interactions of NeuroMix and stress were found, especially for the mate preference behavior and gene expression in the brain. These findings provide novel insights into how two realistic environmental challenges lead to developmental and neurobehavioral deficits, both alone and in combination, in a sex-specific manner.
Collapse
|
40
|
Rotem RS, Chodick G, Davidovitch M, Bellavia A, Weisskopf MG. Maternal Thyroid Anomalies and Attention-Deficit Hyperactivity Disorder in Progeny. Am J Epidemiol 2022; 191:430-440. [PMID: 34791037 DOI: 10.1093/aje/kwab272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/12/2022] Open
Abstract
Previous epidemiologic investigations suggested that maternal thyroid anomalies are a possible causal factor in attention-deficit hyperactivity disorder (ADHD) in progeny, yet clinical trials indicated that levothyroxine treatment was ineffective in preventing neurodevelopmental impairments. We used an Israeli cohort of 385,542 singleton births from 1999-2012 to explore the interrelated roles of maternal thyroid conditions, laboratory gestational thyroid hormone measurements, use of thyroid medications, and offspring ADHD. Analyses were performed using Cox proportional hazards models. Results indicated that maternal hypothyroidism diagnosis was associated with an elevated progeny ADHD hazard (adjusted hazard ratio = 1.14, 95% confidence interval = 1.10, 1.18). However, this association was unmitigated by gestational use of levothyroxine and was unexplained by maternal gestational thyroid hormone levels. Associations with gestational thyrotropin values and hypothyroxinemia were also observed but were robust only in mothers without other records indicative of a thyroid problem. Results indicated that maternal thyroid hypofunction was associated with progeny ADHD but possibly not due to a direct causal relationship. Instead, maternal thyroid hypofunction may serve as a proxy indicator for other factors that affect neurodevelopment through thyroid hormone independent pathways, which are thus unaffected by pharmaceutical treatments for thyroid hypofunction. Factors known to disrupt thyroid functioning should be examined for their independent ADHD-related effects.
Collapse
|
41
|
Gao H, Tong J, Zhu BB, Geng ML, Gan H, Sun L, Wu XY, Huang K, Cao H, Liu WW, Tao SM, Ding P, Zhu P, Hao JH, Tao FB. Sex-specific mediation of placental inflammatory biomarkers in the effects of prenatal phthalate coexposure on preschooler cognitive development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13305-13314. [PMID: 34585354 DOI: 10.1007/s11356-021-16695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study is to investigate the mediating effect of placental inflammatory biomarkers on the relationship between prenatal phthalate coexposure and cognitive development in preschoolers. A subgroup of 1660 mother-child pairs from the Ma'anshan Birth Cohort study were included. We measured the levels of phthalate metabolites of dibutyl phthalate (DBP), butyl benzyl phthalate (BBzP), and di (2-ethylhexyl) phthalate (DEHP) in all the women included in the study from three urine samples collected in each of the trimesters. A potency-weighted sum of coexposure to DBP, BBzP, and DEHP (indicator: ∑PAE) was calculated. The mRNA of the proinflammatory cytokine IL-6 and the classically activated macrophage (M1) biomarker CD68 was analyzed using placental tissues. The Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition-Chinese was used to evaluate the full-scale intelligence quotient (FSIQ) of children aged 2.5-6 years. Average ∑PAEs and ∑PAEs in each trimester were associated with IL-6 and CD68. ∑PAE in the first trimester was positively associated with IL-6 (β = 0.11, 95% CIs = 0.03-0.19) and CD68 (β = 0.16, 95% CIs = 0.04-0.28), and negatively associated with FSIQ (β =-0.06, 95% CIs = -0.11 to -0.02), verbal comprehension (β =-0.06, 95% CIs = -0.11 to -0.01), and processing speed (β =-0.07, 95% CIs = -0.12 to -0.01). Additionally, sex discrepancies were observed for the mediating effects of placental inflammation on the relationships between ∑PAE and children's cognitive development. For instance, the association between ∑PAE in early pregnancy and FSIQ was partially mediated by IL-6 (estimated proportion mediated: 21.85%) and CD68 (estimated proportion mediated: 16.2%). Gender-specific associations and trimester-specific relationships of prenatal multiple phthalate coexposure were revealed. ∑PAE in the first trimester of pregnancy was associated with increased of placental inflammation, and a decrease in preschoolers' cognitive development. In boys, placental IL-6 and CD68 elevation resulting from phthalates might be potential mechanisms of poor cognitive development.
Collapse
Affiliation(s)
- Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Juan Tong
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Bei-Bei Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Meng-Long Geng
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Li Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiao-Yan Wu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Kun Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hui Cao
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, People's Republic of China
| | - Wen-Wen Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Shu-Man Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Peng Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Peng Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jia-Hu Hao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Fang-Biao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
42
|
Günaydin N, Altin E, Ormanci N, Ertekin A. The Effect of Di (2-Ethylhexyl) Phthalate on Hair Trace Mineral Levels in Rats. Biol Trace Elem Res 2022; 200:647-651. [PMID: 33683540 DOI: 10.1007/s12011-021-02663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
We studied the effect of di (2-ethylhexyl) phthalate (DEHP) on rat hair deposition of Iron (Fe), Copper (Cu), Manganese (Mn), and Zinc (Zn). Four groups, each of eight of female Wistar rats weighing 250-300 g, were randomly distributed to (1) control (corn oil-based diet), (2) DEHP 20 (20 mg DEHP per kg body weight (bw), (3) DEHP 100 (100mg DEHP kg/bw, and (4) DEHP 500 (500 mg DEHP kg/bw). The diets were fed daily for 14 days by gastric gavage before the rats were sacrificed. Hair content of Fe, Cu, Mn, and Zn was analyzed with atomic absorption spectrophotometry. There were no significant effect of DEHP on hair Fe content. However, hair Cu, Mn, and Zn were increased after DEHP 20 exposure (p<0.001). After administering DEHP 100 and DEHP 500, both Mn and Zn were decreased (p<0.001), respectively. Hair deposition of Cu, Mn, and Zn was affected by DEHP.
Collapse
Affiliation(s)
- Nurgül Günaydin
- Republic of Turkey Ministry of Health, 29 Mayis State Hospital, Ankara, Turkey
| | - Emine Altin
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey.
| | - Neslihan Ormanci
- Samsun Veterinary Control and Research Institute, Samsun, Turkey
| | - Ali Ertekin
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| |
Collapse
|
43
|
Transgenerational Effects of Prenatal Endocrine Disruption on Reproductive and Sociosexual Behaviors in Sprague Dawley Male and Female Rats. TOXICS 2022; 10:toxics10020047. [PMID: 35202233 PMCID: PMC8875130 DOI: 10.3390/toxics10020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) lead to endocrine and neurobehavioral changes, particularly due to developmental exposures during gestation and early life. Moreover, intergenerational and transgenerational phenotypic changes may be induced by germline exposure (F2) and epigenetic germline transmission (F3) generation, respectively. Here, we assessed reproductive and sociosexual behavioral outcomes of prenatal Aroclor 1221 (A1221), a lightly chlorinated mix of PCBs known to have weakly estrogenic mechanisms of action; estradiol benzoate (EB), a positive control; or vehicle (3% DMSO in sesame oil) in F1-, F2-, and F3-generation male and female rats. Treatment with EDCs was given on embryonic day (E) 16 and 18, and F1 offspring monitored for development and adult behavior. F2 offspring were generated by breeding with untreated rats, phenotyping of F2s was performed in adulthood, and the F3 generation were similarly produced and phenotyped. Although no effects of treatment were found on F1 or F3 development and physiology, in the F2 generation, body weight in males and uterine weight in females were increased by A1221. Mating behavior results in F1 and F2 generations showed that F1 A1221 females had a longer latency to lordosis. In males, the F2 generation showed decreased mount frequency in the EB group. In the F3 generation, numbers of ultrasonic vocalizations were decreased by EB in males, and by EB and A1221 when the sexes were combined. Finally, partner preference tests in the F3 generation revealed that naïve females preferred F3-EB over untreated males, and that naïve males preferred untreated over F3-EB or F3-A1221 males. As a whole, these results show that each generation has a unique, sex-specific behavioral phenotype due to direct or ancestral EDC exposure.
Collapse
|
44
|
Liang QX, Lin Y, Fang XM, Gao YH, Li F. Association Between Phthalate Exposure in Pregnancy and Gestational Diabetes: A Chinese Cross-Sectional Study. Int J Gen Med 2022; 15:179-189. [PMID: 35023956 PMCID: PMC8747708 DOI: 10.2147/ijgm.s335895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objective The present study aims to explore the association between phthalate exposure and the risk of gestational diabetes mellitus (GDM). Materials and Methods A total of 11 plasticizer metabolites were measured in patient morning urine using high-performance liquid chromatography. Furthermore, fasting blood glucose and fasting insulin were detected in first-trimester blood samples. The chemical concentration was described using the median, the metabolite concentration difference between the GDM and control groups was compared using the bootstrap method, and the correlations of the fasting blood glucose, fasting insulin, insulin resistance index, and phthalic acid ester (PAE) metabolites were analyzed using Spearman correlation analysis. The multivariate logistic regression model and predictive probability map were performed to help assess the linearity and nature of any dose–response relationship. Results Of the 224 women recruited for the present study, 200 met the inclusion criteria. Their measured outcomes and biomonitoring data were examined for the presence of chemicals. The results showed that the patients in the GDM group had higher mono-(2-ethylhexyl) phthalate (MEHP) and methylerythritol cyclophosphane concentrations in their bodies than the patients in the control group. Statistically significant MEHP–GDM associations were also observed (P < 0.001). The GDM and MEHP dose–response relationships were different among pregnant women aged <35 years and those aged >35 years (P < 0.001). Furthermore, gestational age >28 weeks exhibited similar changes to those aged ≤28 weeks (P = 0.059). Conclusion The findings of the present study add to the growing body of evidence supporting phthalate exposure as a GDM risk factor.
Collapse
Affiliation(s)
- Qiu-Xia Liang
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Yan Lin
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Xiao-Min Fang
- Fundus Surgery Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Yun-He Gao
- Department of Obstetrics Clinic, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Fei Li
- Department of Laboratory Medicine, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| |
Collapse
|
45
|
Raja GL, Subhashree KD, Kantayya KE. In utero exposure to endocrine disruptors and developmental neurotoxicity: Implications for behavioural and neurological disorders in adult life. ENVIRONMENTAL RESEARCH 2022; 203:111829. [PMID: 34358505 DOI: 10.1016/j.envres.2021.111829] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a class of environmental toxicants that interfere with the endocrine system, resulting in developmental malformations, reproductive disorders, and alterations to immune and nervous system function. The emergence of screening studies identifying these chemicals in fetal developmental matrices such as maternal blood, placenta and amniotic fluid has steered research focus towards elucidation of in utero effects of exposure to these chemicals, as their capacity to cross the placenta and reach the fetus was established. The presence of EDCs, a majority of which are estrogen mimics, in the fetal environment during early development could potentially affect neurodevelopment, with implications for behavioural and neurological disorders in adult life. This review summarizes studies in animal models and human cohorts that aim to elucidate mechanisms of action of EDCs in the context of neurodevelopment and disease risk in adult life. This is a significant area of study as early brain development is heavily mediated by estrogen and could be particularly sensitive to EDC exposure. A network analysis presented using genes summarized in this review, further show a significant association with disorders such as major depressive disorder, alcoholic disorder, psychotic disorders and autism spectrum disorder. Functional outcomes such as alterations in memory, behaviour, cognition, learning memory, feeding behaviour and regulation of ion transport are also highlighted. Interactions between genes, receptors and signaling pathways like NMDA glutamate receptor activity, 5-hydroxytryptamine receptor activity, Ras-activated Ca2+ influx and Grin2A interactions, provide further potential mechanisms of action of EDCs in mediating brain function. Taken together with the growing pool of human and animal studies, this review summarizes current status of EDC neurotoxicity research, limitations and future directions of study for researchers.
Collapse
Affiliation(s)
- Glancis Luzeena Raja
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55902, USA.
| | - K Divya Subhashree
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603203, India
| | | |
Collapse
|
46
|
Engdahl E, Svensson K, Lin PID, Alavian-Ghavanini A, Lindh C, Rüegg J, Bornehag CG. DNA methylation at GRIN2B partially mediates the association between prenatal bisphenol F exposure and cognitive functions in 7-year-old children in the SELMA study. ENVIRONMENT INTERNATIONAL 2021; 156:106617. [PMID: 34015668 DOI: 10.1016/j.envint.2021.106617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Accumulating evidence suggests that prenatal chemical exposure triggers epigenetic modifications that could influence health outcomes later in life. In this study, we investigated whether DNA methylation (DNAm) levels at the glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B) gene underlies the association between prenatal exposure to an endocrine disrupting chemical (EDC), bisphenol F (BPF), and lower cognitive functions in 7-year-old children. METHODS Data from 799 children participating in the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) pregnancy cohort was analyzed. Prenatal BPF exposure was assessed by measuring BPF levels in maternal urine. At age 7, DNAm of three CpG sites in a regulatory region of the GRIN2B gene was analyzed from buccal swabs using bisulfite-Pyrosequencing. Cognitive functions, including full-scale IQ and four subscales, were evaluated using the Wechsler Intelligence Scale for Children (WISC-IV). Associations between prenatal BPF exposure and GRIN2B DNAm, as well as between GRIN2B DNAm and cognitive functions, were determined using regression models adjusted for potential confounders. Generalized structural equation models (gSEM) were used to evaluate if GRIN2B DNAm mediates the association between prenatal BPF exposure and cognitive functions at 7 years of age. RESULTS Prenatal BPF exposure was positively associated with GRIN2B DNAm levels at the third CpG site (CpG3), while CpG3 methylation was inversely associated with cognitive test scores. Mediation analyses showed that CpG3 methylation exerted 6-9% of the association between BPF exposure and full-scale IQ, as well as verbal comprehension and perceptual reasoning in boys, while not significant in girls. CONCLUSIONS This study is the first to identify locus-specific DNAm as a mediating factor underlying an epidemiological association between prenatal EDC exposure and cognitive functions in childhood. It also confirms previous findings, that GRIN2B DNAm is responsive to environmental exposures.
Collapse
Affiliation(s)
- Elin Engdahl
- Uppsala University, Department of Organismal Biology, 752 36 Uppsala, Sweden.
| | - Katherine Svensson
- Karlstad University, Department of Health Sciences, 651 88 Karlstad, Sweden
| | - Ping-I Daniel Lin
- Karlstad University, Department of Health Sciences, 651 88 Karlstad, Sweden
| | - Ali Alavian-Ghavanini
- Karolinska Institutet, Swetox, Unit of Toxicology Sciences, 151 36 Södertälje, Sweden
| | - Christian Lindh
- Lund University, Division of Occupational and Environmental Medicine, 223 81 Lund, Sweden
| | - Joëlle Rüegg
- Uppsala University, Department of Organismal Biology, 752 36 Uppsala, Sweden; Karlstad University, Department of Health Sciences, 651 88 Karlstad, Sweden
| | - Carl-Gustaf Bornehag
- Karlstad University, Department of Health Sciences, 651 88 Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, NY 10029, USA
| |
Collapse
|
47
|
Guilbert A, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Guichardet K, Philippat C. Associations between a mixture of phenols and phthalates and child behaviour in a French mother-child cohort with repeated assessment of exposure. ENVIRONMENT INTERNATIONAL 2021; 156:106697. [PMID: 34147998 DOI: 10.1016/j.envint.2021.106697] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic phenols and phthalates can interfere with biological pathways involved in brain development. Despite the high within-subject temporal variability of urinary concentrations observed for their metabolites, studies investigating effects of phenols and phthalates on child behaviour often relied on a limited number of spot biospecimens to assess exposure. Besides, the majority did not consider mixture effects. OBJECTIVES To study the combined effect of prenatal exposure to synthetic phenols and phthalates on child behaviour using repeated exposure measurements. METHODS We assessed concentrations of 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites in within-subject pools of multiple urine samples (median = 21 samples per individual pool) collected at two distinct time points during pregnancy in 416 mother-child pairs from the French SEPAGES cohort. Child behaviour was evaluated at two years using the Child Behaviour Checklist 1.5-5 (CBCL). Associations between a mixture of biomarkers of exposure and externalizing and internalizing behaviour scores were studied using adjusted Weighted Quantile Sum (WQS) regressions with a repeated holdout validation (100 repetitions). RESULTS The positive WQS indexes were associated with both the externalizing and internalizing behaviour scores in the whole population, indicating greater risk of behavioural problems. Stratification for child sex suggested stronger associations in girls than boys. On average, girls externalizing and internalizing scores increased by 3.67 points (95% CI: 1.24, 6.10) and 2.47 points (95 %CI: 0.60, 4.33) respectively, for an increase of one tertile in the WQS index, compared with 1.70 points (95 %CI: -0.42, 3.81) and 1.17 points (95 %CI: -0.50, 2.84) in boys. Main contributors for the associations observed in girls were bisphenol A (weight of 18%), triclosan (17%) and monoethyl phthalate (MEP, 15%) for the externalizing score and MEP (19%), mono-benzyl phthalate (MBzP, 19%) and mono-n-butyl phthalate (MnBP, 16%) for the internalizing score. DISCUSSION Our results suggest adverse associations between in utero exposure to a mixture of phenols and phthalates and child behaviour, mainly in girls. Public health consequences may be substantial due to the widespread exposure of the population to these compounds.
Collapse
Affiliation(s)
- Ariane Guilbert
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France; Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | | | | | | | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
48
|
Sellinger EP, Riesgo VR, Brinks AS, Willing J, Juraska JM. Perinatal phthalate exposure increases developmental apoptosis in the rat medial prefrontal cortex. Neurotoxicology 2021; 87:167-173. [PMID: 34599995 DOI: 10.1016/j.neuro.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Phthalates are a class of endocrine disruptors found in a variety of consumer goods, and offspring can be exposed to these compounds during gestation and lactation. Our laboratory has found that perinatal exposure to an environmentally relevant mixture of phthalates resulted in a decrease in cognitive flexibility and in neuron number in the adult rat medial prefrontal cortex (mPFC). Here, we examine effects of phthalate treatment on prenatal cellular proliferation and perinatal apoptosis in the mPFC. To examine the phthalate effects on cellular proliferation, dams consumed 0, 1, or 5 mg/kg of the phthalate mixture daily from embryonic day 2 (E2) through the day of birth (P0), and on E16 and E17, they were injected with BrdU. The mPFC of offspring was analyzed on P5 and showed a decrease in labelled cells in the phthalate exposed groups. To examine whether changes in BrdU density observed on P5 were due to altered cell survival, cell death was measured on E18, P0, and P5 using a TUNEL assay in a separate cohort of prenatally exposed offspring. There was an increase in TUNEL labelled cells at E18 in the phthalate exposed groups. In the final experiment, dams consumed the phthalate mixture from E2 through P10, at which time mPFC tissue was stained with TUNEL. Phthalate treated subjects showed a higher density of apoptotic cells at P10. These results indicate both pre- and postnatal phthalate exposure increases apoptosis in the male and female rat mPFC. While the impact of phthalates on proliferation cannot be ruled out, these data do not allow for definitive conclusions.
Collapse
Affiliation(s)
- Elli P Sellinger
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL, 61820, United States
| | - Victoria R Riesgo
- Department of Psychology, Bowling Green State University, 822 E Merry Ave, Bowling Green, OH, 43403, United States
| | - Amara S Brinks
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL, 61820, United States
| | - Jari Willing
- Department of Psychology, Bowling Green State University, 822 E Merry Ave, Bowling Green, OH, 43403, United States
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL, 61820, United States; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL, 61820, United States.
| |
Collapse
|
49
|
Colicino E, de Water E, Just AC, Navarro E, Pedretti NF, McRae N, Braun JM, Schnaas L, Rodríguez-Carmona Y, Hernández C, Tamayo-Ortiz M, Téllez-Rojo MM, Deierlein AL, Calafat AM, Baccarelli A, Wright RO, Horton MK. Prenatal urinary concentrations of phthalate metabolites and behavioral problems in Mexican children: The Programming Research in Obesity, Growth Environment and Social Stress (PROGRESS) study. ENVIRONMENTAL RESEARCH 2021; 201:111338. [PMID: 34051199 PMCID: PMC9234946 DOI: 10.1016/j.envres.2021.111338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phthalate exposure has been associated with increased childhood behavioral problems. Existing studies failed to include phthalate replacements and did not account for high correlations among phthalates. Phthalates' exposure is higher in Mexico than in U.S. locations, making it an ideal target population for this study. AIM To examine associations between 15 maternal prenatal phthalate metabolite concentrations and children's behavioral problems. METHODS We quantified phthalate metabolites in maternal urine samples from maternal-child dyads (n = 514) enrolled in the Programming Research in Obesity, Growth Environment and Social Stress (PROGRESS) birth cohort in Mexico City. We performed least absolute shrinkage and selection operator (LASSO) regressions to identify associations between specific-gravity adjusted log2-transformed phthalate metabolites and parent-reported 4-6 year old behavior on the Behavior Assessment System for Children (BASC-2), accounting for metabolite correlations. We adjusted for socio-demographic and birth-related factors, and examined associations stratified by sex. RESULTS Higher prenatal mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) urinary concentrations were associated with increased hyperactivity scores in the overall sample (β = 0.57, 95% CI = 0.17, 1.13) and in girls (β = 0.54, 95% CI = 0.16, 1.08), overall behavioral problems in boys (β = 0.58, 95% CI = 0.20, 1.15), and depression scores in boys (β = 0.44, 95% CI = 0.06, 0.88). Higher prenatal monobenzyl phthalate (MBzP) concentrations were associated with reduced hyperactivity scores in girls (ß = -0.54, 95% CI = -1.08, -0.21). DISCUSSION Our findings suggested that prenatal concentrations of phthalates and their replacements altered child neurodevelopment and those associations may be influenced sex.
Collapse
Affiliation(s)
- Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Erik de Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Esmeralda Navarro
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | | | - Nia McRae
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, United States.
| | - Lourdes Schnaas
- National Institute of Perinatology (INPer), Mexico City, Mexico.
| | - Yanelli Rodríguez-Carmona
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.
| | - Carmen Hernández
- National Institute of Perinatology (INPer), Mexico City, Mexico.
| | | | | | - Andrea L Deierlein
- College of Global Public Health, New York University, New York, NY, United States.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, NY, United States.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
50
|
Chang WH, Herianto S, Lee CC, Hung H, Chen HL. The effects of phthalate ester exposure on human health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147371. [PMID: 33965815 DOI: 10.1016/j.scitotenv.2021.147371] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 05/26/2023]
Abstract
Phthalate esters (PAEs) are one of the most widely used plasticizers in polymer products and humans are increasingly exposed to them. The constant exposure to PAEs-contained products has raised some concerns against human health. Thus, the impacts of PAEs and their metabolites on human health require a comprehensive study for a better understanding of the associated risks. Here, we attempt to review eight main health effects of PAE exposure according to the most up-to-date studies. We found that epidemiological studies demonstrated a consistent association between PAE exposure (especially DEHP and its metabolites) and a decrease in sperm quality in males and symptom development of ADHD in children. Overall, we found insufficient evidence and lack of consistency of the association between PAE exposure and cardiovascular diseases (hypertension, atherosclerosis, and CHD), thyroid diseases, respiratory diseases, diabetes, obesity, kidney diseases, intelligence performance in children, and other reproductive system-related diseases (anogenital distance, girl precocious puberty, and endometriosis). Future studies (longitudinal and follow-up investigations) need to thoroughly perform in large-scale populations to yield more consistent and powerful results and increase the precision of the association as well as enhance the overall understanding of potential human health risks of PAEs in long-term exposure.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin Hung
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|