1
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
2
|
Yang G, Wang Y, Hu S, Chen J, Chen L, Miao H, Li N, Luo H, He Y, Qian Y, Miao C, Feng R. Inhibition of neddylation disturbs zygotic genome activation through histone modification change and leads to early development arrest in mouse embryos. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167292. [PMID: 38871031 DOI: 10.1016/j.bbadis.2024.167292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modification and fine-tuned protein turnover are of great importance in mammalian early embryo development. Apart from the classic protein degradation promoting ubiquitination, new forms of ubiquitination-like modification are yet to be fully understood. Here, we demonstrate the function and potential mechanisms of one ubiquitination-like modification, neddylation, in mouse preimplantation embryo development. Treated with specific inhibitors, zygotes showed a dramatically decreased cleavage rate and almost all failed to enter the 4-cell stage. Transcriptional profiling showed genes were differentially expressed in pathways involving cell fate determination and cell differentiation, including several down-regulated zygotic genome activation (ZGA) marker genes. A decreased level of phosphorylated RNA polymerase II was detected, indicating impaired gene transcription inside the embryo cell nucleus. Proteomic data showed that differentially expressed proteins were enriched in histone modifications. We confirmed the lowered in methyltransferase (KMT2D) expression and a decrease in histone H3K4me3. At the same time, acetyltransferase (CBP/p300) reduced, while deacetylase (HDAC6) increased, resulting in an attenuation in histone H3K27ac. Additionally, we observed the up-regulation in YAP1 and RPL13 activities, indicating potential abnormalities in the downstream response of Hippo signaling pathway. In summary, we found that inhibition of neddylation induced epigenetic changes in early embryos and led to abnormalities in related downstream signaling pathways. This study sheds light upon new forms of ubiquitination regulating mammalian embryonic development and may contribute to further investigation of female infertility pathology.
Collapse
Affiliation(s)
- Guangping Yang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou University, China
| | - Yingnan Wang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Saifei Hu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianhua Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liangliang Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Hui Luo
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanni He
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Qian
- Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China.
| | - Ruizhi Feng
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China; Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu 215005, China.
| |
Collapse
|
3
|
Yadav SK, Kumar A, Yadav BG, Bijalwan V, Yadav S, Patil GP, Sarkar K, Palkhade R, Das S, Singh DP. Sub-acute bisphenol A exposure induces proteomic alterations and impairs male reproductive health in mice. J Biochem Mol Toxicol 2024; 38:e23862. [PMID: 39318032 DOI: 10.1002/jbt.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Bisphenol A (BPA) is one of the most prevalent endocrine disrupting chemicals (EDCs) and there is widespread concern about the adverse effects of EDCs on human health. However, the exact mechanism of these toxicities has still not been fully deciphered. Additionally, studies have reported the toxicological effects at far low doses to the generally considered no-observed-adverse-effect level (NOAEL) dose. The present study investigates the effects of a sub-acute (28 days) exposure to BPA (10, 50 and 100 mg/kg/day) in adult male mice on various hormones levels, sperm motility, sperm count, functional integrity of sperm plasma membrane, testicular histological changes, oxidative stress markers and DNA damage. The key proteome signatures were quantified by LC-MS/MS analysis using Orbitrap Fusion Lumos Tribrid Mass Spectrometer equipped with nano-LC Easy-nLC 1200. Data suggest that the BPA exposure in all doses (below/above NOAEL dose) have greatly impacted the hormone levels, sperm parameters (sperm count, motility and membrane integrity) and testicular histology. Mass spectrometry-based proteomics data suggested for 1352 differentially expressed proteins (DEPs; 368 upregulated, 984 downregulated) affecting biological process, cellular component, and molecular functions. Specifically searched male reproductive function related proteins suggested a complex network where 46 potential proteins regulating spermatogenesis, sperm structure, activity and membrane integrity while tackling oxidative stress responses were downregulated. These potential biomarkers could shed some more light on our current understanding of the reproductive toxicological effects of BPA and may lead to exploration of novel interventions strategies against these targets for male infertility.
Collapse
Affiliation(s)
- Shiv K Yadav
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Arvind Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Bal G Yadav
- Institute of Plant and Microbial Biology, Agricultural Technology Building, Taipei, Taiwan
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Suresh Yadav
- ICMR-National Institute for Implementation Research on Non-Communicable Disease (NIIRNCD), Jodhpur, India
| | - Gajanan P Patil
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, India
| | - Rajendra Palkhade
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, India
| | - Dhirendra P Singh
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, India
| |
Collapse
|
4
|
Hegde SS, Malashetty VB. Azoospermia and multi-organ damage in juvenile rats exposed to α-Terpineol from weaning to sexual maturity. Toxicol Appl Pharmacol 2024; 492:117106. [PMID: 39278549 DOI: 10.1016/j.taap.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to evaluate the repeated oral administration of α-terpineol in juvenile Wistar rats over a 70-day period. The objective was to assess the potential systemic and reproductive toxicity of α-terpineol when administered by gavage at doses of 75, 150, and 300 mg/kg/day to juvenile Wistar rats for 70 days from postnatal day 24. The control group received corn oil for 70 days. During the study, various parameters were evaluated, including clinical signs, body weight, food intake, neurobehavioral observations, haematology, serum biochemistry, organ weights, steroidogenic gene expression, and histopathological examination. No toxicity-related changes were observed in body weight, food intake, neurobehavioral observations, or steroidogenic gene expression. However, sperm evaluation revealed a complete absence of sperm and delayed sexual maturation. Total cholesterol was significantly elevated in both sexes, and serum testosterone was reduced at the 150 and 300 mg/kg doses. Microscopic examination showed severe pathological changes in the testes, epididymis, liver, and kidneys of both males and females. After the 14-day recovery period, total cholesterol levels returned to the normal range, but no recovery was observed in the other organs. The no-observed-adverse-effect level was 75 mg/kg/day for male rats based on the histopathological findings in the testes, liver, and kidneys, and for female rats based on the kidney and liver histopathology.
Collapse
Affiliation(s)
- Sneha Suma Hegde
- Reproductive Biology and Mechanistic Toxicology Lab, Department of Studies in Zoology Vijayanagara Sri Krishnadevaraya University, Ballari 58103, India
| | - Vijaykumar B Malashetty
- Reproductive Biology and Mechanistic Toxicology Lab, Department of Studies in Zoology Vijayanagara Sri Krishnadevaraya University, Ballari 58103, India.
| |
Collapse
|
5
|
Abady MM, Saadeldin IM, Han A, Bang S, Kang H, Seok DW, Kwon HJ, Cho J, Jeong JS. Melatonin and resveratrol alleviate molecular and metabolic toxicity induced by Bisphenol A in endometrial organoids. Reprod Toxicol 2024; 128:108628. [PMID: 38848930 DOI: 10.1016/j.reprotox.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/β-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.
Collapse
Affiliation(s)
- Mariam M Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Nutrition and Food Science, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayeong Han
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Wook Seok
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Galea J, Agius Anastasi A, Briffa SM. Design of a Weathering Chamber for UV Aging of Microplastics in the Mediterranean Region. ACS OMEGA 2024; 9:35627-35633. [PMID: 39184482 PMCID: PMC11339838 DOI: 10.1021/acsomega.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024]
Abstract
Microplastics are an ever-growing concern in the environment. Their degradation may lead to greater absorption of toxic pollutants, which may ultimately pose a threat to human health. In the pursuit of understanding microplastics' fate, behavior, and toxicity, there is a vital need to understand their aging and weathering. For this, multiple weathering setup designs were put forward. However, standardization of a weathering setup presents a significant challenge to the field due to apparatus costs, wide range of experimental parameters, or the lack of detailed reporting. This work seeks to make much-needed data gathering more accessible by constructing a low-cost weathering chamber that simulates Mediterranean shore conditions. The weathering chamber incorporates UV irradiation, mechanical abrasion, and elevated temperatures. After extensive preliminary testing, the chamber was able to achieve the desired outcome along with UV-A irradiance values, which were similar to those in the Mediterranean.
Collapse
Affiliation(s)
- Jack Galea
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| | - Anthea Agius Anastasi
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| | - Sophie M. Briffa
- Department of Metallurgy
and Materials Engineering, Faculty of Engineering, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
7
|
Kim SH, Kang DW, Kwon D, Jung YS. Critical role of endoplasmic reticulum stress on bisphenol A-induced cytotoxicity in human keratinocyte HaCaT cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4091-4104. [PMID: 38629620 DOI: 10.1002/tox.24290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 07/14/2024]
Abstract
Bisphenol A (BPA) is widely used in plastic and paper products, and its exposure can occur through skin contact or oral ingestion. The hazardous effects of BPA absorbed through the skin may be more severe; however, few studies have investigated the skin toxicity of BPA. This study investigated the effects of BPA on human epidermal keratinocyte cell lines, which is relevant for skin exposure. BPA treatment reduced cell viability in a time- and concentration-dependent manner and elevated oxidative and endoplasmic reticulum (ER) stress. N-acetylcysteine (NAC), an oxidative stress inhibitor, reduced BPA-induced reactive oxygen species (ROS) levels. However, only 10% of the decreased cell viability was restored at the highest NAC concentration. Treatment with tauroursodeoxycholic acid (TUDCA), which is an ER stress inhibitor, effectively countered the increase in ER stress-related proteins induced by BPA. Moreover, TUDCA treatment led to a reduction in oxidative stress, as demonstrated by the decrease in ROS levels, maintenance of mitochondrial membrane potential, and modulation of stress signaling proteins. Consequently, TUDCA significantly improved BPA-induced cytotoxicity in a concentration-dependent manner. Notably, combined treatment using TUDCA and NAC further reduced the BPA-induced ROS levels; however, no significant difference in cell viability was observed compared with that for TUDCA treatment alone. These findings indicated that the oxidative stress observed following BPA exposure was exacerbated by ER stress. Moreover, the principal factor driving BPA-induced cytotoxicity was indeed ER stress, which has potential implications for developing therapeutic strategies for diseases associated with similar stress responses.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Wan Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Torres-Torres J, Espino-y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, Ruiz-Ramirez E, Velasco-Espin M, Cerda-Flores P, Ramirez-Gonzalez A, Rojas-Zepeda L. A Narrative Review on the Pathophysiology of Preeclampsia. Int J Mol Sci 2024; 25:7569. [PMID: 39062815 PMCID: PMC11277207 DOI: 10.3390/ijms25147569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Preeclampsia (PE) is a multifactorial pregnancy disorder characterized by hypertension and proteinuria, posing significant risks to both maternal and fetal health. Despite extensive research, its complex pathophysiology remains incompletely understood. This narrative review aims to elucidate the intricate mechanisms contributing to PE, focusing on abnormal placentation, maternal systemic response, oxidative stress, inflammation, and genetic and epigenetic factors. This review synthesizes findings from recent studies, clinical trials, and meta-analyses, highlighting key molecular and cellular pathways involved in PE. The review integrates data on oxidative stress biomarkers, angiogenic factors, immune interactions, and mitochondrial dysfunction. PE is initiated by poor placentation due to inadequate trophoblast invasion and improper spiral artery remodeling, leading to placental hypoxia. This triggers the release of anti-angiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), causing widespread endothelial dysfunction and systemic inflammation. Oxidative stress, mitochondrial abnormalities, and immune dysregulation further exacerbate the condition. Genetic and epigenetic modifications, including polymorphisms in the Fms-like tyrosine kinase 1 (FLT1) gene and altered microRNA (miRNA) expression, play critical roles. Emerging therapeutic strategies targeting oxidative stress, inflammation, angiogenesis, and specific molecular pathways like the heme oxygenase-1/carbon monoxide (HO-1/CO) and cystathionine gamma-lyase/hydrogen sulfide (CSE/H2S) pathways show promise in mitigating preeclampsia's effects. PE is a complex disorder with multifactorial origins involving abnormal placentation, endothelial dysfunction, systemic inflammation, and oxidative stress. Despite advances in understanding its pathophysiology, effective prevention and treatment strategies remain limited. Continued research is essential to develop targeted therapies that can improve outcomes for both mothers and their babies.
Collapse
Affiliation(s)
- Johnatan Torres-Torres
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico (P.C.-F.)
| | - Salvador Espino-y-Sosa
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
| | - Raigam Martinez-Portilla
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
| | - Hector Borboa-Olivares
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
| | - Guadalupe Estrada-Gutierrez
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
| | - Sandra Acevedo-Gallegos
- Clinical Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (R.M.-P.)
| | - Erika Ruiz-Ramirez
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico (P.C.-F.)
| | - Martha Velasco-Espin
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico (P.C.-F.)
| | - Pablo Cerda-Flores
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico (P.C.-F.)
| | - Andrea Ramirez-Gonzalez
- Obstetric and Gynecology Department, Hospital General de México Dr. Eduardo Liceaga, Mexico City 06720, Mexico (P.C.-F.)
| | - Lourdes Rojas-Zepeda
- Maternal-Fetal Medicine Department, Instituto Materno Infantil del Estado de Mexico, Toluca 50170, Mexico
| |
Collapse
|
9
|
Gezer A, Üstündağ H, Kılıç Baygutalp N, Erbaş E, Özkaraca M. The Protective Effect of Gallic Acid Against Bisphenol A-Induced Ovarian Toxicity and Endocrine Disruption in Female Rats. J Med Food 2024; 27:651-660. [PMID: 38975681 DOI: 10.1089/jmf.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1β], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1β, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | | | - Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
10
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
11
|
Xiong C, Chen K, Xu LL, Zhang YM, Liu H, Guo ML, Xia ZG, Wang YJ, Mu XF, Fan XX, Chen JQ, Liu YR, Li YY, Xia W, Wang YJ, Zhou AF. Associations of prenatal exposure to bisphenols with BMI growth trajectories in offspring within the first two years: evidence from a birth cohort study in China. World J Pediatr 2024; 20:701-711. [PMID: 38019382 DOI: 10.1007/s12519-023-00767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Prenatal bisphenol exposure has been reported to be associated with lower birth weight and obesity-related indicators in early childhood. These findings warrant an investigation of the relationship between prenatal bisphenol exposure and the dynamic growth of offspring. This study aimed to evaluate the relationship of maternal bisphenol concentration in urine with the body mass index (BMI) growth trajectory of children aged up to two years and to identify the critical exposure periods. METHODS A total of 826 mother-offspring pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015. Maternal urine samples collected during the first, second, and third trimesters were analyzed for bisphenol A (BPA), bisphenol S, and bisphenol F (BPF) concentrations. Measurements of length and weight were taken at 0, 1, 3, 6, 8, 12, 18, and 24 months. Children's BMI was standardized using the World Health Organization reference, and group-based trajectory modeling was used to identify BMI growth trajectories. The associations between prenatal bisphenol exposure and BMI growth trajectory patterns were assessed using multinomial logistic regression models. RESULTS The BMI growth trajectories of the 826 children were categorized into four patterns: low-stable (n = 134, 16.2%), low-increasing (n = 142, 17.2%), moderate-stable (n = 350, 42.4%), and moderate-increasing (n = 200, 24.2%). After adjusting for potential confounders, we observed that prenatal exposure to BPA during the second trimester [odds ratio (OR) = 2.20, 95% confidence interval (CI) = 1.09-4.43] and BPF during the third trimester (OR = 3.28, 95% CI = 1.55-6.95) at the highest quartile concentration were associated with an increased likelihood of the low-increasing BMI trajectory. Furthermore, in the subgroup analysis by infant sex, the positive association between the highest quartile of prenatal average urinary BPF concentration during the whole pregnancy and the low-increasing BMI trajectory was found only in girls (OR = 2.82, 95% CI = 1.04-7.68). CONCLUSION Our study findings suggest that prenatal exposure to BPA and BPF (a commonly used substitute for BPA) is associated with BMI growth trajectories in offspring during the first two years, increasing the likelihood of the low-increasing pattern. Video Abstract (MP4 120033 kb).
Collapse
Affiliation(s)
- Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Kai Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Lu-Li Xu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yi-Ming Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hua Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Meng-Lan Guo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Zhi-Guo Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yu-Ji Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiao-Feng Mu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiao-Xuan Fan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Jing-Quan Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yu-Ru Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yuan-Yuan Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Jie Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ai-Fen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| |
Collapse
|
12
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
13
|
Gu J, Zhang N, Jiang X, Zhu L, Lou Y, Sun S, Yin L, Liu J. The Olfactory Receptor Olfr25 Mediates Sperm Dysfunction Induced by Low-Dose Bisphenol A through the CatSper-Ca 2+ Signaling Pathway. TOXICS 2024; 12:442. [PMID: 38922122 PMCID: PMC11209571 DOI: 10.3390/toxics12060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Bisphenol A (BPA), a typical endocrine disruptor, is known to have various adverse effects on the male reproductive system. However, the toxic effects and mechanisms of low-dose BPA have not yet been fully explored. In this study, male Kunming mice were orally administered low-dose BPA (0.03, 0.3 and 3 mg/kg/d) for ten consecutive weeks. Pathological sections of testicular tissue showed no significant morphological differences after BPA exposure. An analysis of the functional parameters of sperm revealed that exposure to low-dose BPA significantly decreased sperm motility, chemotaxis, and the acrosome reaction. An in vitro BPA exposure model combined with an omics data analysis showed that the olfactory receptor-related pathway was significantly enriched after BPA treatment. Subsequent experiments verified the reduced mRNA level of a novel olfactory receptor gene, Olfr25, in vivo and in vitro exposure models. Meanwhile, exposure to low-dose BPA reduced the intracellular calcium ion concentration and the mRNA levels of pore-forming subunits of the CatSper channel in sperm. Importantly, the knockdown of Olfr25 inhibited calcium ion levels and CatSper subunit expression in GC-2 cells. Olfr25 overexpression attenuated the BPA-induced downregulation of CatSper subunit expression in GC-2 cells. These findings indicate that Olfr25 might participate in low-dose BPA-induced sperm dysfunction by affecting the CatSper-Ca2+ signaling pathway. This study reveals a new mechanism underlying the effects of low-dose BPA on sperm function and provides a reference for assessing the safety of low-dose BPA exposure.
Collapse
Affiliation(s)
- Jing Gu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Ning Zhang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Xiao Jiang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Lei Zhu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Yixia Lou
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Shengqi Sun
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Li Yin
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
- Chongqing Key Lab of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jinyi Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| |
Collapse
|
14
|
Wang L, Zhuang J, Xue Z, Lu H, Zeng W, Zhang T. VD 3/VDR attenuates bisphenol A-induced impairment in mouse Leydig cells via regulation of autophagy. J Food Sci 2024; 89:3858-3870. [PMID: 38725370 DOI: 10.1111/1750-3841.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
| | - Jianan Zhuang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| |
Collapse
|
15
|
Parker J, O’Brien CL, Yeoh C, Gersh FL, Brennecke S. Reducing the Risk of Pre-Eclampsia in Women with Polycystic Ovary Syndrome Using a Combination of Pregnancy Screening, Lifestyle, and Medical Management Strategies. J Clin Med 2024; 13:1774. [PMID: 38541997 PMCID: PMC10971491 DOI: 10.3390/jcm13061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/04/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multisystem disorder that presents with a variety of phenotypes involving metabolic, endocrine, reproductive, and psychological symptoms and signs. Women with PCOS are at increased risk of pregnancy complications including implantation failure, miscarriage, gestational diabetes, fetal growth restriction, preterm labor, and pre-eclampsia (PE). This may be attributed to the presence of specific susceptibility features associated with PCOS before and during pregnancy, such as chronic systemic inflammation, insulin resistance (IR), and hyperandrogenism, all of which have been associated with an increased risk of pregnancy complications. Many of the features of PCOS are reversible following lifestyle interventions such as diet and exercise, and pregnant women following a healthy lifestyle have been found to have a lower risk of complications, including PE. This narrative synthesis summarizes the evidence investigating the risk of PE and the role of nutritional factors in women with PCOS. The findings suggest that the beneficial aspects of lifestyle management of PCOS, as recommended in the evidence-based international guidelines, extend to improved pregnancy outcomes. Identifying high-risk women with PCOS will allow targeted interventions, early-pregnancy screening, and increased surveillance for PE. Women with PCOS should be included in risk assessment algorithms for PE.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2522, Australia
| | - Claire Louise O’Brien
- Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia;
| | - Christabelle Yeoh
- Next Practice Genbiome, 2/2 New McLean Street, Edgecliff 2027, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
16
|
Jeseta M, Kalina J, Franzova K, Fialkova S, Hosek J, Mekinova L, Crha I, Kempisty B, Ventruba P, Navratilova J. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123445. [PMID: 38325504 DOI: 10.1016/j.envpol.2024.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.
Collapse
Affiliation(s)
- Michal Jeseta
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Czech Republic.
| | - Jiri Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Franzova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Fialkova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hosek
- Veterinary Research Institute, Hudcova 70, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Lenka Mekinova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Crha
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Wroclaw Medical University, Poland; Physiology Graduate Faculty, North Carolina State University, Raleigh NC, USA
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Navratilova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Motivarash Y, Bhatt A, Kardani H. Microplastic (MP) occurrence in pelagic and demersal fishes of Gujarat, northwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17239-17255. [PMID: 38334930 DOI: 10.1007/s11356-024-32361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are globally observed in marine as well as freshwater habitats, and laboratory studies have shown that marine organisms can accidentally ingest them. Monitoring the MP ingestion by fish in the environment is very crucial for understanding the risk of consuming MP-contaminated fish for human health. In this study, we investigated MP ingestion in 400 fish individuals from the Veraval Coast, in the state of Gujarat, India. There was 100% MP occurrence in the inedible tissues of fish, and 68% of the analyzed fishes presented MPs in edible tissues. The most dominant MPs based on their size in fishes were 0.05-0.1 mm. One hundred percent presence of only fibres in edible tissue was observed, while in inedible tissue, it was 77%, 20.42% and 2.58% of fibre, fragment and film respectively. The most common MP colour was blue. The predominant polymers were low-density polyethylene (LDPE) followed by polypropylene, high-density polyethylene (HDPE) and polystyrene. This is the first study performed on MPs in marine fishes from this region. Our findings suggest that the abundance of MPs observed in this area is higher than in other states of the country.
Collapse
Affiliation(s)
- Yagnesh Motivarash
- College of Fisheries science, Kamdhenu University, Veraval, Gujarat, India.
| | - Ashishkumar Bhatt
- College of Fisheries science, Kamdhenu University, Veraval, Gujarat, India
| | - Hitesh Kardani
- Fisheries Research Station, Kamdhenu university, Sikka, Gujarat, India
| |
Collapse
|
18
|
Zhang H, Zha X, Zhang B, Zheng Y, Elsabagh M, Wang H, Wang M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. MICROBIOME 2024; 12:28. [PMID: 38365714 PMCID: PMC10874076 DOI: 10.1186/s40168-024-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China.
| |
Collapse
|
19
|
Trasande L, Sargis RM. Endocrine-disrupting chemicals: Mainstream recognition of health effects and implications for the practicing internist. J Intern Med 2024; 295:259-274. [PMID: 38037246 PMCID: PMC11457725 DOI: 10.1111/joim.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rapidly advancing evidence documents that a broad array of synthetic chemicals found ubiquitously in the environment contribute to disease and disability across the lifespan. Although the early literature focused on early life exposures, endocrine-disrupting chemicals (EDCs) are now understood to contribute substantially to chronic disease in adulthood, especially metabolic, cardiovascular, and reproductive consequences as well as endocrine cancers. The contribution to mortality is substantial, with over 90,000 deaths annually and at least $39 billion/year in lost economic productivity in the United States (US) due to exposure to certain phthalates that are used as plasticizers in food packaging. Importantly, exposures are disproportionately high in low-income and minoritized populations, driving disparities in these conditions. Though non-Hispanic Blacks and Mexican Americans comprise 12.6% and 13.5% of the US population, they bear 16.5% and 14.6% of the disease burden due to EDCs, respectively. Many of these exposures can be modified through safe and simple behavioral changes supported by proactive government action to both limit known hazardous exposures and to proactively screen new industrial chemicals prior to their use. Routine healthcare maintenance should include guidance to reduce EDC exposures, and a recent report by the Institute of Medicine suggests that testing be conducted, particularly in populations heavily exposed to perfluoroalkyl substances-chemicals used in nonstick coatings as well as oil- and water-resistant clothing.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
- NYU Wagner Graduate School of Public Service, New York, NY, USA
| | - Robert M. Sargis
- Department of Medicine; Division of Endocrinology, Diabetes, and Metabolism; University of Illinois at Chicago, Chicago, IL, USA
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Zhu X, Liu M, Dong R, Gao L, Hu J, Zhang X, Wu X, Fan B, Chen C, Xu W. Mechanism Exploration of Environmental Pollutants on Premature Ovarian Insufficiency: a Systematic Review and Meta-analysis. Reprod Sci 2024; 31:99-106. [PMID: 37612521 DOI: 10.1007/s43032-023-01326-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
As a public health problem, premature ovarian insufficiency leads to infertility or sub-fertility. In addition to premature ovarian insufficiency (POI) increases the lifetime risk of bone fragility, cardiovascular disease, and cognitive impairment. To investigate the effects of environmental pollutants on the occurrence of POI and explore its mechanism, we conducted a computer search for articles published in electronic databases by December 13, 2022. Three reviewers independently examined all included studies and scored the qualities of included studies using the Newcastle-Ottawa Scale criteria. In this meta-analysis, eight clinical studies as well as ten preclinical findings showed a pooled OR of 2.331 and 95% CI of 1.968-2.760. This confirms that environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI. In addition, it is demonstrated from the results of this study that signaling pathway of calcium and PI3K Akt and Xpnpep2, Col1, Col3, Col4, Cx43, Egr3, Tff1, and Ptgs2 genes may all be involved in the process. Environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Meixia Liu
- Occupational Health Department, Shanghai Municipal Center for Disease Control and Prevention/Shanghai Institute for Prevention Medicine, Shanghai, China
| | - Ruoxi Dong
- Department of Anal & Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqun Gao
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Jiazhen Hu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xinpei Zhang
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xiaomei Wu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Bozhen Fan
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Chao Chen
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Wenjuan Xu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
21
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
22
|
Balabantaray SR, Singh PK, Pandey AK, Chaturvedi BK, Sharma AK. Forecasting global plastic production and microplastic emission using advanced optimised discrete grey model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123039-123054. [PMID: 37980320 DOI: 10.1007/s11356-023-30799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has become a prominent and pressing environmental concern within the realm of pollution. In recent times, microplastics have entered our ecosystem, especially in freshwater. In the contemporary global landscape, there exists a mounting apprehension surrounding the manifold environmental and public health issues that have emerged as a result of the substantial accumulation of microplastics. The objective of the current study is to employ an enhanced grey prediction model in order to forecast global plastic production and microplastic emissions. This study compared the accuracy level of the four grey prediction models, namely, EGM (1,1, α, θ), DGM (1,1), EGM (1,1), and DGM (1,1, α) models, to evaluate the accuracy levels. As per the estimation of the study, DGM (1,1, α) was found to be more suitable with higher accuracy levels to predict microplastic emission. The EGM (1,1, α, θ) model has slightly better accuracy than the DGM (1,1, α) model in predicting global plastic production. Various accuracy measurement tools (MAPE and RMSE) were used to determine the model's efficiency. There has been a gradual growth in both plastic production and microplastic emission. The current study using the DGM (1,1, α) model predicted that microplastic emission would be 1,084,018 by 2030. The present study aims to provide valuable insights for policymakers in formulating effective strategies to address the complex issues arising from the release of microplastics into the environment and the continuous production of plastic materials.
Collapse
Affiliation(s)
| | | | - Alok Kumar Pandey
- Centre for Integrated Rural Development, Banaras Hindu University, Varanasi, India
| | | | - Aditya Kumar Sharma
- School of Liberal Arts and Management, DIT University, Makka Wala, Uttarakhand, India
| |
Collapse
|
23
|
Zhang Y, Han S, Li T, Zhu L, Wei F. Bisphenol A induces non-alcoholic fatty liver disease by promoting the O-GlcNAcylation of NLRP3. Arch Physiol Biochem 2023:1-9. [PMID: 38038745 DOI: 10.1080/13813455.2023.2288533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease. The mechanism by which bisphenol A (BPA) promots NAFLD remains unclear. Palmitic acid (PA) and lipopolysaccharide (LPS) were used to simulate NAFLD in HepG2 cells in vitro. Total cholesterol (TC), triglyceride (TG) content, and lipid accumulation were measured to evaluate lipid metabolism. The caspase-1-stained cells and NLRP3 inflammasome-associated proteins were evaluated for pyroptosis. Western blot analysis was used to detect protein levels and co-immunoprecipitation (Co-IP) was used to detect the association between the proteins. Cycloheximide (CHX) treatment combined with western blot was performed to access protein stability. This data have shown that BPA induces lipid metabolism dysfunction and pyroptosis by upregulating O-GlcNAc transferase (OGT) level. NLRP3 directly interacts with OGT, and elevated OGT enhanced the stability of NLRP3 protein. BPA promoted OGT-mediated O-GlcNAcylation to stabilised NLRP3, thus accelerating NAFLD progress in vitro. Our study reveals that BPA, as an environmental factor, may be involved in the promotion of NAFLD, and that targeting NLRP3 and OGT may inhibit BPA's induction of NAFLD.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Shujuan Han
- Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Tian Li
- Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Li Zhu
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Feng Wei
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| |
Collapse
|
24
|
Urbanetz LAML, Junior JMS, Maciel GAR, Simões RDS, Baracat MCP, Baracat EC. Does bisphenol A (BPA) participates in the pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics (Sao Paulo) 2023; 78:100310. [PMID: 38008036 PMCID: PMC10757276 DOI: 10.1016/j.clinsp.2023.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
PCOS is an endocrine disorder characterized by chronic anovulation, hyperandrogenism, and polycystic ovaries. Its etiology is uncertain. It is debated whether BPA would be a component of the environmental factor in the etiology of PCOS. Contamination by BPA can occur from food packaging (exposure during the diet) and through skin absorption and/or inhalation. It can be transferred to the fetus via the placenta or to the infant via breast milk, and it can be found in follicular fluid, fetal serum, and amniotic fluid. The phenolic structure of BPA allows it to interact with Estrogen Receptors (ERs) through genomic signaling, in which BPA binds to nuclear ERα or Erβ, or through nongenomic signaling by binding to membrane ERs, prompting a rapid and intense response. With daily and constant exposure, BPA's tendency to bioaccumulate and its ability to activate nongenomic signaling pathways can alter women's metabolic and reproductive function, leading to hyperandrogenism, insulin resistance, obesity, atherogenic dyslipidemia, chronic inflammatory state, and anovulation and favoring PCOS. The harmful changes caused by BPA can be passed on to future generations without the need for additional exposure because of epigenetic modifications. Not only high BPA levels can produce harmful effects, but at low levels, BPA may be harmful when exposure occurs during the most vulnerable periods, such as the fetal and neonatal periods, as well as during the prepubertal age causing an early accumulation of BPA in the body. Learning how BPA participates in the pathogenesis of PCOS poses a challenge and further studies should be conducted.
Collapse
Affiliation(s)
| | - José Maria Soares Junior
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gustavo Arantes Rosa Maciel
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Ricardo Dos Santos Simões
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Maria Cândida Pinheiro Baracat
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
25
|
Weis JS, Alava JJ. (Micro)Plastics Are Toxic Pollutants. TOXICS 2023; 11:935. [PMID: 37999586 PMCID: PMC10675727 DOI: 10.3390/toxics11110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Plastics, including microplastics, have generally been regarded as harmful to organisms because of their physical characteristics. There has recently been a call to understand and regard them as persistent, bioaccumulative, and toxic. This review elaborates on the reasons that microplastics in particular should be considered as "toxic pollutants". This view is supported by research demonstrating that they contain toxic chemicals within their structure and also adsorb additional chemicals, including polychlorinated biphenyls (PCBs), pesticides, metals, and polycyclic aromatic hydrocarbons (PAHs), from the environment. Furthermore, these chemicals can be released into tissues of animals that consume microplastics and can be responsible for the harmful effects observed on biological processes such as development, physiology, gene expression, and behavior. Leachates, weathering, and biofilm play important roles in the interactions between microplastics and biota. Global policy efforts by the United Nations Environmental Assembly via the international legally binding treaty to address global plastic pollution should consider the designation of harmful plastics (e.g., microplastics) with associated hazardous chemicals as toxic pollutants.
Collapse
Affiliation(s)
- Judith S. Weis
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan José Alava
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T1Z4, Canada;
| |
Collapse
|
26
|
Rodriguez Martin L, Gilles L, Helte E, Åkesson A, Tägt J, Covaci A, Sakhi AK, Van Nieuwenhuyse A, Katsonouri A, Andersson AM, Gutleb AC, Janasik B, Appenzeller B, Gabriel C, Thomsen C, Mazej D, Sarigiannis D, Anastasi E, Barbone F, Tolonen H, Frederiksen H, Klanova J, Koponen J, Tratnik JS, Pack K, Gudrun K, Ólafsdóttir K, Knudsen LE, Rambaud L, Strumylaite L, Murinova LP, Fabelova L, Riou M, Berglund M, Szabados M, Imboden M, Laeremans M, Eštóková M, Janev Holcer N, Probst-Hensch N, Vodrazkova N, Vogel N, Piler P, Schmidt P, Lange R, Namorado S, Kozepesy S, Szigeti T, Halldorsson TI, Weber T, Jensen TK, Rosolen V, Puklova V, Wasowicz W, Sepai O, Stewart L, Kolossa-Gehring M, Esteban-López M, Castaño A, Bessems J, Schoeters G, Govarts E. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. TOXICS 2023; 11:819. [PMID: 37888670 PMCID: PMC10610666 DOI: 10.3390/toxics11100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
Collapse
Affiliation(s)
- Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Jonas Tägt
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Amrit K. Sakhi
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - An Van Nieuwenhuyse
- Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg;
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg;
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | | | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - Darja Mazej
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (D.M.); (J.S.T.)
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto–Piazza Della Vittoria 15, 27100 Pavia, Italy
| | - Elena Anastasi
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus; (A.K.); (E.A.)
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy;
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | | | - Kim Pack
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Koppen Gudrun
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Kristin Ólafsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Lisbeth E. Knudsen
- Section of Environmental Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Loreta Strumylaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Maté Szabados
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Michelle Laeremans
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Milada Eštóková
- Department of Environment and Health, Public Health Authority, 83105 Bratislava, Slovakia;
| | - Natasa Janev Holcer
- Division for Environmental Health, Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, Bráce Branchetta 20/1, 51000 Rijeka, Croatia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Nicole Vodrazkova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Nina Vogel
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Phillipp Schmidt
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Rosa Lange
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doctor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Szilvia Kozepesy
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Tamás Szigeti
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Till Weber
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy;
| | - Vladimira Puklova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Ovnair Sepai
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Lorraine Stewart
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Marike Kolossa-Gehring
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| |
Collapse
|
27
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
28
|
Chen J, Ikeda SI, Kang L, Negishi K, Tsubota K, Kurihara T. Bisphenol A exposure triggers endoplasmic reticulum stress pathway leading to ocular axial elongation in mice. Front Med (Lausanne) 2023; 10:1255121. [PMID: 37746069 PMCID: PMC10517050 DOI: 10.3389/fmed.2023.1255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Ocular axial elongation is one of the features of myopia progression. Endoplasmic reticulum (ER) stress-associated scleral remodeling plays an important role in ocular axial elongation. Bisphenol A (BPA) is one of the most common environmental pollutants and is known to affect various human organs through ER stress. However, whether BPA exerts an effect on scleral remodeling remains unknown. The purpose of this study was to determine the effect of BPA on the development of myopia and scleral ER stress. Methods BPA was administered by intraperitoneal injection. 4-PBA was administered as an endoplasmic reticulum stress inhibitor by eye drops. Refraction and axial length were measured by refractometer and SD-OCT system. Western blot was performed to detect the expression level of ER stress-related proteins. Results BPA-administered mice exhibit axial elongation and myopic refractive shift with endoplasmic reticulum stress in the sclera. BPA administration activated scleral PERK and ATF6 pathways, and 4-PBA eye drops attenuated ER stress response and suppressed myopia progression. Conclusion BPA controlled axial elongation during myopia development in a mouse model by inducing scleral ER stress and activation of the PERK/ATF6 pathway. 4-PBA eye drops as ER stress inhibitor suppressed BPA-induced myopia development.
Collapse
Affiliation(s)
- Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin-ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Longdan Kang
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Cipriani S, Ricci E, Chiaffarino F, Esposito G, Dalmartello M, La Vecchia C, Negri E, Parazzini F. Trend of change of sperm count and concentration over the last two decades: A systematic review and meta-regression analysis. Andrology 2023; 11:997-1008. [PMID: 36709405 DOI: 10.1111/andr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Since the 1970s, several studies found that sperm concentration (SC) and total sperm count (TSC) constantly worsened over time, mainly in high-income countries. OBJECTIVES To evaluate whether the decreasing trend in sperm count is continuing in Western European countries and USA, we performed a systematic review and meta-regression analysis. MATERIALS AND METHODS Embase and Pubmed/Medline were searched papers published in English in the 2000-2020 period limiting the search to data collected in the USA and Western European countries. RESULTS We identified 62 articles and pooled information on 24,196 men (range 10-2,523), collected from 1993 to 2018. Considering all the studies, random-effects meta-regression analyses showed no significant trend for SC (slope per year -0.07 mil/mL, p-value = 0.86). Negative trends of SC were detected in Scandinavian countries (slope per year -1.11 mil/mL, 95% CI: -2.40 to +0.19; p-value = 0.09), but the findings were statistically not significant. No significant trends of SC were detected in Central Europe (slope per year +0.23, 95% CI -2.51 to +2.96; p-value = 0.87), the USA (slope per year +1.08, 95% CI -0.42 to +2.57; p-value = 0.16), and Southern Europe (slope per year +0.19, 95% CI -0.99 to +1.37; p-value = 0.75). We have analyzed separately findings from studies including sperm donors, fertile men, young unselected men (unselected men, study mean age < 25 years) and unselected men (unselected men, study mean age ≥ 25 years). No significant trends of SC were observed among sperm donors (slope per year -2.80, 95% CI -6.76 to +1.17; p-value 0.16), unselected men (slope per year -0.23, 95% CI -1.58 to +1.12; p-value 0.73), young unselected men (slope per year -0.49, 95% CI -1.76 to +0.79; p-value 0.45), fertile men (slope per year +0.29, 95% CI -1.09 to +1.67; p-value 0.68). DISCUSSION AND CONCLUSION The results of this analysis show no significant trends in SC, in USA, and selected Western European countries.
Collapse
Affiliation(s)
- Sonia Cipriani
- Gynaecology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Ricci
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Chiaffarino
- Gynaecology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michela Dalmartello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eva Negri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Fabio Parazzini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Pumarega J, Buscà O, Gasull M, Porta M. Supporting legislative action: Urinary levels of phthalates and phenols among influencers in the 'Plastics in the spotlight' advocacy initiative. ENVIRONMENTAL RESEARCH 2023; 231:116205. [PMID: 37217124 DOI: 10.1016/j.envres.2023.116205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Society-wide initiatives to prevent human exposure to plastic residues include laws and policies. Such measures require citizens' support, which can be increased by honest advocacy and pedagogic projects. These efforts must have a scientific basis. OBJECTIVE To assist the 'Plastics in the spotlight' advocacy initiative raise awareness among the general public of the presence of plastic residues in the human body, and to increase citizens' support for legislation on plastic control in the European Union. METHODS Spot urine samples of 69 volunteers with cultural and political influence from Spain, Portugal, Latvia, Slovenia, Belgium, and Bulgaria were collected. Concentrations of 30 phthalate metabolites and phenols were determined through a high-performance liquid chromatography with tandem mass spectrometry and ultra-high-performance liquid chromatography with tandem mass spectrometry, respectively. RESULTS At least 18 compounds were detected in all urine samples. The maximum number of compounds detected per participant was 23, and the mean, 20.5. Phthalates were detected more frequently than phenols. Median concentrations were highest for monoethyl phthalate (41.6 ng/mL, adjusted for specific gravity), and maximum concentrations were highest for mono-iso-butyl phthalate (1345.1 ng/mL), oxybenzone (1915.1 ng/mL), and triclosan (949.6 ng/mL). Most reference values were not exceeded. Women had higher concentrations of the 14 phthalate metabolites and oxybenzone than men. Urinary concentrations were not correlated with age. DISCUSSION The study had three main limitations: method of subject selection (volunteers), small sample size, and limited data on determinants of exposure. Studies on volunteers do not pretend to be representative of the general population and are no substitute for biomonitoring studies in representative samples of the populations of interest. Studies as ours can only illustrate the existence and some aspects of the problem, and can raise awareness among citizens concerned by the evidence that the studies provide in a group of subjects who are humanly appealing. CONCLUSIONS The results illustrate that human exposure to phthalates and phenols is widespread. All countries appeared to be similarly exposed to these contaminants, with higher levels in females. Most concentrations did not exceed reference values. The effects of this study on the objectives of the 'Plastics in the spotlight' advocacy initiative deserve a specific analysis from policy science.
Collapse
Affiliation(s)
- José Pumarega
- Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Hospital Del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Oriol Buscà
- Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Hospital Del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Magda Gasull
- Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Hospital Del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Miquel Porta
- Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Hospital Del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
31
|
Cai Q, Jin S, Zong H, Pei L, Cao K, Qu L, Li Z. A Quadruplex Ultrasensitive Immunoassay for Simultaneous Assessment of Human Reproductive Hormone Proteins in Multiple Biofluid Samples. Anal Chem 2023; 95:11641-11648. [PMID: 37489999 DOI: 10.1021/acs.analchem.3c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Reproductive hormones play vital roles in reproductive health and can be used to assess a woman's ovarian function and diagnose diseases associated with reproductive endocrine disorders. As these hormones are important biomarkers for reproductive health monitoring and diagnosis, a rapid, high-throughput, and low-invasive detection and simultaneous assessment of the levels of multiple reproductive hormones has important clinical applications. In this work, a quadruplex ultrasensitive immunoassay was developed for simultaneous assessment of 4 human reproductive hormone proteins (follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and anti-Müllerian hormone (AMH)) in a variety of human biofluid samples. This assay takes advantage of single-molecule imaging of microwell arrays and capture antibody beads as a reaction interface to construct multiplex bead array immunoassays. The analyte-bound beads can easily be parsed to individual wells and detected via fluorophores, emitting distinct wavelengths associated to the beads. As a result, this proposed quadruplex immunoassay exhibits four good 4-parameter logistic calibration curves ranging from 2.7 to 2000, 1.6 to 1200, 1.8 to 1300, and 0.3 to 220 pg/mL with limits of detection of 0.32, 0.28, 0.14, and 0.02 pg/mL for FSH, LH, PRL, and AMH, respectively. Furthermore, the developed quadruplex immunoassay was used to test clinical venous serum samples where it showed remarkable consistency with clinical test results in methodological comparison and the diagnosis of polycystic ovary syndrome. In addition, we successfully applied the ultrasensitive capability of this assay to the simultaneous testing and evaluation of four proteins in fingertip blood as well as urine samples, in which the urinary AMH level (1.42-156 pg/mL) was measured and assessed quantitatively for the first time.
Collapse
Affiliation(s)
- Qiyong Cai
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuiling Jin
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hong Zong
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lu Pei
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Ke Cao
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
32
|
Presunto M, Mariana M, Lorigo M, Cairrao E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int J Mol Sci 2023; 24:12417. [PMID: 37569791 PMCID: PMC10419136 DOI: 10.3390/ijms241512417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Endocrine disruptor chemicals (EDCs) can have a harmful effect on the human body's endocrine system and thus adversely affect the development, reproduction, neurological, cardiovascular, and immune systems and metabolism in humans and wildlife. According to the World Health Organization, EDCs are mostly man-made and found ubiquitously in our daily lives, notably in pesticides, metals, and additives or contaminants in food and personal care products. Human exposure occurs through ingestion, inhalation, and dermal contact. Bisphenol A (BPA) is a proven EDC capable of mimicking or blocking receptors and altering hormone concentrations and metabolism. Although consumed in low doses, it can stimulate cellular responses and affect the body's functions. In humans, exposure to BPA has been correlated with the onset or development of several diseases. This literature review aimed to verify the effects of BPA on human male infertility using the most recently published literature. Thus, this review allowed us to conclude that this compound seems to have harmful effects on human male fertility, causing changes in hormonal and semen characteristics. However, these conclusions lack more robust and reproducible scientific studies. Even so, and since male infertility prevalence is increasing, preventive measures must be taken to ensure male fertility.
Collapse
Affiliation(s)
- Mafalda Presunto
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
| | - Melissa Mariana
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Margarida Lorigo
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
33
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
34
|
Tiwari BR, Lecka J, Pulicharla R, Brar SK. Microplastic pollution and associated health hazards: Impact of COVID-19 pandemic. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 34:100480. [PMID: 37304153 PMCID: PMC10183351 DOI: 10.1016/j.coesh.2023.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic led to an increase in plastic used for medical purposes such as personal protective equipment and packaging materials. A very low share of plastics is recycled while the majority is sent to landfills. This plastic may degrade over time to form microplastics which may pollute land, air, and water sources. An increase in microplastics can increase the disease risk in human well-being's. The ultimate fate of microplastic is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. Hence, proper detection and disposal methods should be devised to deal with the rise in microplastic pollution.
Collapse
Affiliation(s)
- Bikash Ranjan Tiwari
- Institut National de La Recherche Scientifique - Centre Eau Terre Environnement, Université Du Québec, Quebec City, Canada
| | - Joanna Lecka
- Institut National de La Recherche Scientifique - Centre Eau Terre Environnement, Université Du Québec, Quebec City, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Canada
| |
Collapse
|
35
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
36
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
37
|
Roy N, Lazzaretti C, Paradiso E, Capponi C, Ferrari T, Reggianini F, Sperduti S, Baschieri L, Mascolo E, Perri C, Varani M, Canu G, Trenti T, Nicoli A, Morini D, Iannotti F, Villani MT, Vicini E, Simoni M, Casarini L. Short-Term Exposure to Bisphenol A Does Not Impact Gonadal Cell Steroidogenesis In Vitro. Cells 2023; 12:1537. [PMID: 37296657 PMCID: PMC10252311 DOI: 10.3390/cells12111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Bisphenol A (BPA) is a ubiquitous, synthetic chemical proven to induce reproductive disorders in both men and women. The available studies investigated the effects of BPA on male and female steroidogenesis following long-term exposure to the compound at relatively high environmental concentrations. However, the impact of short-term exposure to BPA on reproduction is poorly studied. We evaluated if 8 and 24 h exposure to 1 nM and 1 µM BPA perturbs luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e., the mouse tumour Leydig cell line mLTC1, and human primary granulosa lutein cells (hGLC). Cell signalling studies were performed using a homogeneous time-resolved fluorescence (HTRF) assay and Western blotting, while gene expression analysis was carried out using real-time PCR. Immunostainings and an immunoassay were used for intracellular protein expression and steroidogenesis analyses, respectively. The presence of BPA leads to no significant changes in gonadotropin-induced cAMP accumulation, alongside phosphorylation of downstream molecules, such as ERK1/2, CREB and p38 MAPK, in both the cell models. BPA did not impact STARD1, CYP11A1 and CYP19A1 gene expression in hGLC, nor Stard1 and Cyp17a1 expression in mLTC1 treated with LH/hCG. Additionally, the StAR protein expression was unchanged upon exposure to BPA. Progesterone and oestradiol levels in the culture medium, measured by hGLC, as well as the testosterone and progesterone levels in the culture medium, measured by mLTC1, did not change in the presence of BPA combined with LH/hCG. These data suggest that short-term exposure to environmental concentrations of BPA does not compromise the LH/hCG-induced steroidogenic potential of either human granulosa or mouse Leydig cells.
Collapse
Affiliation(s)
- Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Chiara Capponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.C.)
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Lara Baschieri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Carmela Perri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
| | - Manuela Varani
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Giulia Canu
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Iannotti
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Elena Vicini
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.C.)
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (N.R.); (S.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
38
|
Yin L, Hu C, Yu XJ. High-content analysis of testicular toxicity of BPA and its selected analogs in mouse spermatogonial, Sertoli cells, and Leydig cells revealed BPAF induced unique multinucleation phenotype associated with the increased DNA synthesis. Toxicol In Vitro 2023; 89:105589. [PMID: 36958674 PMCID: PMC10351343 DOI: 10.1016/j.tiv.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Bisphenol A is an endocrine disruptor that has been shown to have testicular toxicity in animal models. Its structural analog, including bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) have been introduced to the market as BPA alternatives. Previously, we developed high-content analysis (HCA) assays and applied machine learning to compare the testicular toxicity of BPA and its analogs in spermatogonial cells and testicular cell co-culture models. There are diverse cell populations in the testis to support spermatogenesis, but their cell type-specific toxicities are still not clear. The purpose of this study is to examine the selective toxicity of BPA, BPS), BPAF, and TBBPA on these testicular cells, including Sertoli cells, Leydig cells, and spermatogonia cells. We developed a high-content image-based single-cell analysis and measured a broad spectrum of adverse endpoints related to the development of reproductive toxicology, including cell number, nuclear morphology, DNA synthesis, cell cycle progression, early DNA damage response, cytoskeleton structure, DNA methylation status, and autophagy. We introduced an HCA index and spectrum to reveal multiple HCA parameters and observed distinct toxicity profiling of BPA and its analogs among three testicular types. The HCA spectrum shows the dynamic, chemical-specific, dose-dependent changes of each HCA parameter. Each chemical displayed a unique dose-dependent profile within each type of cell. All three types of cells showed the highest response to BPAF at 10 μM across all endpoints measured. BPAF targeted spermatogonial cell (C18) more significantly at 5 μM. BPS more likely targeted Sertoli cell (TM4) and Leydig cell (TM3) and less at spermatogonia cells. TBBPA targeted spermatogonia, Sertoli cells, and less at TM3 cells. BPA is mainly targeted at TM4, followed by TM3 cells, and less at spermatogonial cells. Most importantly, we observed that BPAF induced a dose-dependent increase in spermatogonia cells, not in Sertoli and Leydig cells. In summary, our current HCA assays revealed the cell-type-specific toxicities of BPA and its analogs in different testicular cells. Multinucleation induced by BPAF, along with increased DNA damage and synthesis at low doses, could possibly have a profound long-term effect on reproductive systems.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, 800 Bradbury Dr. SE Science & Technology Park, Albuquerque, NM 87106, United States of America
| | - Chelin Hu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America
| | - Xiaozhong John Yu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America.
| |
Collapse
|
39
|
Lebachelier de la Riviere ME, Wu L, Gayet M, Bousquet M, Buron C, Vignault C, Téteau O, Desmarchais A, Maillard V, Uzbekova S, Guérif F, Lacroix M, Papillier P, Jarrier-Gaillard P, Binet A, Elis S. Cumulative and potential synergistic effects of seven different bisphenols on human granulosa cells in vitro? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121818. [PMID: 37182577 DOI: 10.1016/j.envpol.2023.121818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis. This study investigated the effects of seven BP analogues and their equimolar cocktail on human granulosa cells (hGC) and assessed BPA, BPS, BPF and BPAF level exposures in the follicular fluid of 277 women undergoing Assisted Reproductive Technology. The hGCs were recovered after women oocyte punctures and treated with the seven BP analogues (BPS, BPA, BPAF, BPF, BPAP, BPE and BPB) or their equimolar cocktail of 7 × 1.43 or 7 × 7.14 μM for each of the seven BPs, the sum of BPs reaching 10 ("∑BPs 10 μM"), or 50 μM ("∑BPs 50 μM"), respectively. Oestradiol and progesterone secretion, cell proliferation, viability and expression of steroidogenic enzymes were investigated. Progesterone secretion was decreased by 6 BPs 10 μM and the cocktail "∑BPs 10 μM", (-17.8 to -41.3%) and by all seven BPs 50 μM and "∑BPs 50 μM" (-21.8 to -84.2%). Oestradiol secretion was decreased only by 50 μM BPAF and BPAP (-37.8% and -44%, respectively), with corresponding decreases in CYP17A1 and CYP19A1 gene expression. Cellular proliferation was decreased after treatment with 50 μM BPAF (-32.2%), BPAP (-29%), BPB (-24%) and the equimolar cocktail "∑BPs 50 μM" (-33.1%). BPB (50 μM) and the cocktail "∑BPs 50 μM" increased HSD3B2 mRNA expression. At least one BP was detected in 64 of 277 (23.1%) women follicular fluids. Similar effects of the seven BPs or their cocktail were observed on progesterone secretion and/or on cell proliferation, suggesting cumulative effects of BPs. Our results highlight the urge to consider all BPs simultaneously and to further investigate the potential additive or synergistic effects of several BPs.
Collapse
Affiliation(s)
| | - Luyao Wu
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Manon Gayet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Marie Bousquet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Charlotte Buron
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Claire Vignault
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Ophélie Téteau
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Alice Desmarchais
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Virginie Maillard
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Svetlana Uzbekova
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Fabrice Guérif
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France; Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000, Tours, France
| | - Marlène Lacroix
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Pascal Papillier
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | | | - Aurélien Binet
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France; Service de Chirurgie Pédiatrique, CHU Poitiers, Université de Poitiers, 86000, Poitiers, France
| | - Sebastien Elis
- PRC, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
40
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
41
|
Liu R, Liu B, Tian L, Wu X, Li X, Cai D, Jiang X, Sun J, Jin Y, Bai W. Induction of reproductive injury by bisphenol A and the protective effects of cyanidin-3-O-glucoside and protocatechuic acid in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163615. [PMID: 37105472 DOI: 10.1016/j.scitotenv.2023.163615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality. Furthermore, we identified and screened differentially expressed genes (DEGs) and metabolites (DMs) that functionally enriched in the steroidogenesis-related pathways. Next, the validated results found that C3G and PCA significantly up-regulated the gene expressions of Star, Cyp11a1, Cyp17a1, Cyp19a1, Cyp7a1, Hsd3b1, Hsd3b2, Hsd17b3, Scrab1, and Ass1 in testicular. In Leydig cells, C3G and PCA dramatically alleviated apoptosis, ROS accumulation, and cell cycle arrest caused by BPA. In addition, molecular docking and simulation results implied that C3G and PCA competitively with BPA bind to the estrogen receptors α and β (ERα and ERβ) and shared common key amino acids. The main interaction modes between small molecules and estrogen receptors included π-π stacking, salt bridges, hydrogen bonds, and hydrophobic interactions. Therefore, our study sheds light on C3G and PCA supplementation can protect male reproduction from BPA-induced injury.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China; College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Boping Liu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyan Wu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yulong Jin
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
42
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
43
|
Peinado FM, Iribarne-Durán LM, Artacho-Cordón F. Human Exposure to Bisphenols, Parabens, and Benzophenones, and Its Relationship with the Inflammatory Response: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087325. [PMID: 37108488 PMCID: PMC10139086 DOI: 10.3390/ijms24087325] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenols, parabens (PBs), and benzophenones (BPs) are widely used environmental chemicals that have been linked to several adverse health effects due to their endocrine disrupting properties. However, the cellular pathways through which these chemicals lead to adverse outcomes in humans are still unclear, suggesting some evidence that inflammation might play a key role. Thus, the aim of this study was to summarize the current evidence on the relationship between human exposure to these chemicals and levels of inflammatory biomarkers. A systematic review of peer-reviewed original research studies published up to February 2023 was conducted using the MEDLINE, Web of Science, and Scopus databases. A total of 20 articles met the inclusion/exclusion criteria. Most of the reviewed studies reported significant associations between any of the selected chemicals (mainly bisphenol A) and some pro-inflammatory biomarkers (including C-reactive protein and interleukin 6, among others). Taken together, this systematic review has identified consistent positive associations between human exposure to some chemicals and levels of pro-inflammatory biomarkers, with very few studies exploring the associations between PBs and/or BPs and inflammation. Therefore, a larger number of studies are required to get a better understanding on the mechanisms of action underlying bisphenols, PBs, and BPs and the critical role that inflammation could play.
Collapse
Affiliation(s)
| | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
44
|
Guo M, Zhu C. Associations between exposure to a mixture of phenols and sex steroid hormones among pre- and postmenopausal women: evidence from NHANES 2015-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57103-57113. [PMID: 36930311 DOI: 10.1007/s11356-023-26421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Environmental phenols are well known as emerging endocrine-disrupting chemicals; however, their impacts on sex hormone homeostasis among pre- and postmenopausal women remain unknown. Our objective was to evaluate independent and combined relationships between phenol levels in urine and sex steroid hormones among 323 premenopausal women and 263 postmenopausal women from National Health and Nutrition Examination Survey (NHANES) 2015-2016. A total of 10 phenol concentrations in urine were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Serum concentrations of estradiol and total testosterone were measured by LC-MS/MS and serum sex hormone-binding globulin (SHBG) concentrations were measured using an immunofluorometric assay. Multivariable linear regression models were conducted to explore associations of individual phenol concentration in urine with natural logarithm-transformed serum hormone levels. Bayesian kernel machine regression (BKMR) model was conducted to evaluate phenol mixtures exposure in association with sex hormones among pre- and postmenopausal women, respectively. Considering both single-chemical models and multiple-chemical models, each doubling of urinary BPS concentration was significantly inversely related to serum SHBG concentration in premenopausal women (percent change: -6.70%, 95% confidence interval, CI: -11.12%, -2.73%; P = 0.002). Moreover, every doubling of urinary BP-3 concentration was significantly positively associated with SHBG level in serum (percent change: 3.53%, 95%CI: 0.70%, 5.70%; P = 0.008). Regarding postmenopausal women, inverse associations between urinary BPS levels and serum estradiol concentrations were observed (percent change: -8.62%, 95% CI: -15.33%, -2.06%; P = 0.012). The results revealed that BPS and BP-3 exposure may adversely disrupt sex hormone homeostasis at the current exposure levels among women in the USA. The findings and their underlying mechanisms are warranted to be confirmed and comprehensively interpreted in further epidemiological and experimental studies.
Collapse
Affiliation(s)
- Menglu Guo
- Department of Medical Records and Statistics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, China
| | - Changlin Zhu
- Department of Medical Records and Statistics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, China.
| |
Collapse
|
45
|
From old pollutants to the regulation of bisphenol A: Lessons learned for health promotion and disease prevention. Prev Med 2023; 169:107460. [PMID: 36809834 DOI: 10.1016/j.ypmed.2023.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Citizens deserve regulatory changes and policies more sensitive to the current needs of humans, the climate, and nature. In this work we draw on prior experiences of preventable human suffering and economic losses caused by delayed regulation of legacy and emerging pollutants. Heightened awareness of environmental health problems is necessary among health professionals, the media, and citizens' organizations. Improved translation from research to the clinical world and to policy is critical to reduce the population burden of diseases caused by exposure to endocrine disruptors and other environmental chemicals. Numerous lessons can be learned from science-to-policy processes built for "old pollutants" (as persistent organic pollutants, heavy metals, tributyltin), as well as from current trends regarding the regulation of non-persistent chemicals, such as the prototypical endocrine disruptor bisphenol A. We end discussing relevant pieces of the puzzle to tackle the environmental and regulatory challenges faced by our societies.
Collapse
|
46
|
Siddiqui SA, Bahmid NA, Salman SHM, Nawaz A, Walayat N, Shekhawat GK, Gvozdenko AA, Blinov AV, Nagdalian AA. Migration of microplastics from plastic packaging into foods and its potential threats on human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:313-359. [PMID: 36863838 DOI: 10.1016/bs.afnr.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microplastics from food packaging material have risen in number and dispersion in the aquatic system, the terrestrial environment, and the atmosphere in recent decades. Microplastics are of particular concern due to their long-term durability in the environment, their great potential for releasing plastic monomers and additives/chemicals, and their vector-capacity for adsorbing or collecting other pollutants. Consumption of foods containing migrating monomers can lead to accumulation in the body and the build-up of monomers in the body can trigger cancer. The book chapter focuses the commercial plastic food packaging materials and describes their release mechanisms of microplastics from packaging into foods. To prevent the potential risk of microplastics migrated into food products, the factors influencing microplastic to the food products, e.g., high temperatures, ultraviolet and bacteria, have been discussed. Additionally, as many evidences shows that the microplastic components are toxic and carcinogenic, the potential threats and negative effects on human health have also been highlighted. Moreover, future trends is summarized to reduce the microplastic migration by enhancing public awareness as well as improving waste management.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | | | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Garima Kanwar Shekhawat
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Jaipur, India
| | | | | | - Andrey Ashotovich Nagdalian
- Food Technology and Engineering Department, North Caucasus Federal University, Stavropol, Russia; Saint Petersburg State Agrarian University, St Petersburg, Russia
| |
Collapse
|
47
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
48
|
Wang X, Nag R, Brunton NP, Bakar Siddique MA, Harrison SM, Monahan FJ, Cummins E. Hazard characterization of bisphenol A (BPA) based on rodent models - Multilevel meta-analysis and dose-response analysis for reproductive toxicity. Food Chem Toxicol 2023; 172:113574. [PMID: 36566970 DOI: 10.1016/j.fct.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol A (BPA) is a widely used synthetic industrial compound frequently detected in food. Dietary exposure to BPA has been recognised as a potential health concern. However, there are uncertainties regarding BPA toxicity. The primary objective of this study was to summarise and analyse multiple toxicity endpoints of adverse reproductive effects caused by BPA exposure in rodent models. Therefore, a multilevel meta-analysis and subsequent dose-response analysis were conducted. Relevant articles published in English between 2012 and 2021 were collected from online databases, viz. Scopus, EmBase, Web of Science, and PubMed. In total, 41 studies were included for statistical analysis. All statistical analyses were performed using open-source RStudio packages. Summary effects indicated the statistical significance of BPA exposure on decreased sperm concentration (Hedges' g: -1.35) and motility (Hedges' g: -1.12) on average, while no significant effects were observed on the absolute and relative weight of male and female reproductive organs. The lowest mean toxicological reference dose values of 0.0011 mg (kg bw)-1 day-1 was proposed for BPA exposure on sperm concentration from the dose-response model. In conclusion, potential health risks from BPA exposure were shown with regards to reproductive toxicity, especially that sperm concentration and sperm motility require further attention.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
49
|
Wu Y, Weng X, Liu S, Tan Y, Liang H, Li Y, Wen L, Chen Q, Jing C. Associations of single and multiple organophosphate pesticide exposure with female infertility in the USA: data from the 2015-2018 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23411-23421. [PMID: 36322354 DOI: 10.1007/s11356-022-23624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substantial evidence has shown that organophosphate pesticide (OPP) exposure altered the reproductive system functions, such as prolonged menstrual cycles, sexual hormone imbalance, and changes in ovarian weight. However, the association of OPP exposure with female infertility is unclear. We explored the relationships of four single OPP metabolites and their mixed exposure with self-reported infertility among women aged 20-50 in the USA using the data from two cycles (2015-2016 and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) by multiple logistic regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (QGC). Eventually, 659 females were included in our study. Among these females, 77 participants were ever infertile. Multiple logistic regression showed that the odds ratios (ORs) in the second and third tertiles of dimethylphosphate (DMP) for female infertility were 2.53 (95% confidence interval (95%CI): 1.20-5.32, P value = 0.016) and 2.96 (95%CI: 1.18-7.47, P value = 0.023) compared to the lowest tertile after adjusting for all covariates (P for trend = 0.022). A significantly positive association between the mixed OPP metabolites and infertility was observed in the BKMR model, in which DMP had the highest posterior inclusion probability (PIP = 0.741). The QGC model showed similar results, in which OPP metabolite mixtures increased the risk of female infertility, with DMP as a significantly positive contributor to the outcome. This study revealed the potential harm of OPP mixtures for female infertility in the USA, and DMP played the most critical role in female infertility risk among all OPP metabolites.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
50
|
Mlynarcikova AB, Macejova D, Scsukova S. Expression of selected nuclear receptors in human epithelial ovarian cell line Caov3 exposed to bisphenol derivatives. Endocr Regul 2023; 57:191-199. [PMID: 37715983 DOI: 10.2478/enr-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Objectives. Bisphenol A (BPA) is an indispensable industrial chemical. However, as a proven endocrine disruptor, it may be associated with several health disturbances, including the reproductive functions impairment and cancer. Due to the restriction of BPA usage, many bisphenol derivatives gradually substitute BPA. However, studies have reported adverse biological effects of BPA analogs, but the specific sites of their action remain largely unknown. Nuclear receptors (NRs) appear to play significant roles in various types of cancer. In addition, they are considered relevant targets of bisphenols. In the present study, we investigated the effects of BPA and its analogs bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) on mRNA expression of selected NRs in the human ovarian epithelial cell line Caov3. The NRs examined included retinoic acid receptor α (RARA), retinoid X receptor α (RXRA), peroxisome proliferator activating receptor β/δ (PPARD), chicken ovalbumin upstream promoter-transcription factor 2 (COUPTFII), and nuclear receptor-related protein 1 (NURR1). Methods. Caov3 cells were treated with the bisphenols at the concentrations of 1 nM, 100 nM, 10 µM and 100 µM. After 24 h and 72 h of incubation, cell viability was determined by the MTS assay, and the selected genes expression was analyzed using RT-qPCR. Results. Bisphenol treatment did not affect Caov3 cell viability, except the significant impairment after exposure to the highest BPAF dose (100 µM). At lower doses, neither bisphenol analog altered the expression of the NRs. However, at the highest concentration (100 µM), BPAF and BPA altered the mRNA levels of PPARD, COUPTFII, and NURR1 in a time- and receptor-specific manner. Conclusions. The effects of bisphenols on the specific NRs in the epithelial ovarian cancer cells were addressed for the first time by the present study. Although generally we did not find that bisphenols may provoke significant alterations in the expression of the selected NRs in Caov3 cells, they may alter mRNA expression of certain NRs at high concentrations.
Collapse
Affiliation(s)
| | - Dana Macejova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sona Scsukova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|