1
|
Holthoff JH, Karakala N, Basnakian AG, Edmondson RD, Fite TW, Gokden N, Harville Y, Herzog C, Holthoff KG, Juncos LA, Reynolds KL, Shelton RS, Arthur JM. The role of IGFBP-1 in the clinical prognosis and pathophysiology of acute kidney injury. Am J Physiol Renal Physiol 2025; 328:F647-F661. [PMID: 40172487 DOI: 10.1152/ajprenal.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/30/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
The ability to predict progression to severe acute kidney injury (AKI) remains an unmet challenge. Contributing to the inability to predict the course of AKI is a void of understanding of the pathophysiological mechanisms of AKI. The identification of novel prognostic biomarkers could both predict patient outcomes and unravel the molecular mechanisms of AKI. We performed a multicenter retrospective observational study from a cohort of patients following cardiac surgery. We identified novel urinary prognostic biomarkers of severe AKI among subjects with early AKI. Of 2,065 proteins identified in the discovery cohort, insulin-like growth factor binding protein 1 (IGFBP-1) was the most promising. We validated IGFBP-1 as a prognostic biomarker of AKI in 213 patients. In addition, we investigated its role in the pathophysiology of AKI using a murine model of cisplatin-induced AKI (CIAKI). Urinary IGFBP-1 concentration in samples collected from patients with stage 1 AKI following cardiothoracic surgery was significantly higher in patients who progressed to severe AKI compared with patients who did not progress beyond stage 1 AKI (40.28 ng/ml vs. 2.8 ng/ml, P < 0.0001) and predicted the progression to the composite outcome (area under the curve: 0.85, P < 0.0001). IGFBP-1 knockout mice showed less renal injury, cell death, and apoptosis following CIAKI, possibly through increased activation of the insulin growth factor receptor 1. IGFBP-1 is a clinical prognostic biomarker of AKI and a direct mediator of the pathophysiology of AKI. Therapies that target the IGFBP-1 pathways may help alleviate the severity of AKI.NEW & NOTEWORTHY The ability to predict progression to severe AKI remains an unmet challenge. Early prognostic biomarkers of AKI hold promise to improve patient outcomes by early implementation of clinical therapy, as well as unravel the pathophysiological mechanisms of AKI. Here, we present a novel urinary biomarker, IGFBP-1, that predicts the progression to severe AKI following cardiac surgery. In addition, we show that IGFBP-1 mice are protected against CIAKI, suggesting a mechanistic role for IGFBP-1 in AKI.
Collapse
Affiliation(s)
- Joseph Hunter Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Nithin Karakala
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Todd Wesley Fite
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Yanping Harville
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Christian Herzog
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Kaegan G Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Luis A Juncos
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Katlyn L Reynolds
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Randall S Shelton
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - John M Arthur
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
3
|
Chang J, Pais GM, Barreto EF, Young B, Scott H, Schwartz Z, Cartwright C, Jubrail R, Srivastava A, Scheetz MH. Past, present, and future biomarkers of kidney function and injury: The relationship with antibiotics. Int J Antimicrob Agents 2024; 64:107332. [PMID: 39245327 DOI: 10.1016/j.ijantimicag.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Routinely used kidney biomarkers of injury and function such as serum creatinine and urine albumin to creatinine ratio, are neither sensitive nor specific. Future biomarkers are being developed for clinical use and have already been included in guidance from groups such as the U.S. Food and Drug Administration and the Predictive Safety Testing Consortium. These biomarkers have important implications for early identification of kidney injury and more accurate measurement of kidney function. Many antibiotics are either eliminated by the kidney or can cause clinically significant nephrotoxicity. As a result, clinicians should be familiar with new biomarkers of kidney function and injury, their place in clinical practice, and applications for antibiotic dosing.
Collapse
Affiliation(s)
- Jack Chang
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Department of Pharmacy (J.C., M.H.S.), Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Gwendolyn M Pais
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Erin F Barreto
- Department of Pharmacy (E.F.B.), Mayo Clinic, Rochester, Minnesota, USA
| | - Bryce Young
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Haley Scott
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Zachary Schwartz
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Collin Cartwright
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Raymond Jubrail
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Anand Srivastava
- Division of Nephrology (A.S.), University of Illinois-Chicago, Chicago, Illinois, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Department of Pharmacy (J.C., M.H.S.), Northwestern Memorial Hospital, Chicago, Illinois, USA; Department of Pharmacology (M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA.
| |
Collapse
|
4
|
Liu L, Liu Y, Xin Y, Liu Y, Gao Y, Yu K, Wang C. An early and stable mouse model of polymyxin-induced acute kidney injury. Intensive Care Med Exp 2024; 12:88. [PMID: 39352603 PMCID: PMC11445218 DOI: 10.1186/s40635-024-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Polymyxins have been revived as a last-line therapeutic option for multi-drug resistant bacteria and continue to account for a significant proportion of global antibiotic usage. However, kidney injury is often a treatment limiting event with kidney failure rates ranging from 5 to 13%. The mechanisms underlying polymyxin-induced nephrotoxicity are currently unclear. Researches of polymyxin-associated acute kidney injury (AKI) models need to be more standardized, which is crucial for obtaining consistent and robust mechanistic results. METHODS In this study, male C57BL/6 mice received different doses of polymyxin B (PB) and polymyxin E (PE, also known as colistin) by different routes once daily (QD), twice daily (BID), and thrice daily (TID) for 3 days. We continuously monitored the glomerular filtration rate (GFR) and the AKI biomarkers, including serum creatinine (Scr), blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1). We also performed histopathological examinations to assess the extent of kidney injury. RESULTS Mice receiving PB (35 mg/kg/day subcutaneously) once daily exhibited a significant decrease in GFR and a notable increase in KIM-1 two hours after the first dose. Changes in GFR and KIM-1 at 24, 48 and 72 h were consistent and demonstrated the occurrence of kidney injury. Histopathological assessments showed a positive correlation between the severity of kidney injury and the changes in GFR and KIM-1 (Spearman's rho = 0.3167, P = 0.0264). The other groups of mice injected with PB and PE did not show significant changes in GFR and AKI biomarkers compared to the control group. CONCLUSION The group receiving PB (35 mg/kg/day subcutaneously) once daily consistently developed AKI at 2 h after the first dose. Establishing an early and stable AKI model facilitates researches into the mechanisms of early-stage kidney injury. In addition, our results indicated that PE had less toxicity than PB and mice receiving the same dose of PB in the QD group exhibited more severe kidney injury than the BID and TID groups.
Collapse
Affiliation(s)
- Linqiong Liu
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuxi Liu
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yu Xin
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yanqi Liu
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yan Gao
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Changsong Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Nomiyama K, Sato R, Sato F, Eguchi A. Accumulation of persistent organic pollutants in the kidneys of pet cats (Felis silvestris catus) and the potential implications for their health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173212. [PMID: 38759481 DOI: 10.1016/j.scitotenv.2024.173212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Persistent organic pollutants (POPs), such as polychlorinated diphenyls (PCBs) and brominated diphenyl ethers (PBDEs), are ubiquitous in the pet cat's living environment and are ingested through dietary intake and environmental exposure such as house dust. Cats are known to be susceptible to chronic kidney disease (CKD) and exposure to POPs may be associated with CKD. However, no studies have been conducted on the renal accumulation and health effects of POPs in cats. The objective of this study was to elucidate the accumulation of PCBs, PBDEs, and organochlorine pesticides (OCPs) in the kidneys of domestic cats and discuss their potential impact on feline health. We report here that cats specifically accumulate POPs in their kidneys. Tissue samples were collected from the kidneys, livers, and muscles of cats and the concentrations of POPs in these tissues were analyzed in this study. The results showed that these compounds accumulated significantly higher in the kidney compared to other tissues. In addition, the ability to accumulate in the kidney was higher in cats than in other animals, suggesting that cats have a unique pattern of POPs accumulation in their kidneys, which is thought to occur because cats store a significant number of lipid droplets in the proximal tubules of the kidneys. This unique feature suggests that lipophilic POPs may accumulate in these lipid droplets during the excretory process. Accumulation of certain POPs in the kidneys causes necrosis and sloughing of renal tubular epithelial cells, which may be associated with CKD, a common disease in cats. This study provides valuable insight into understanding the renal accumulation and risk of POPs in cats and provides essential knowledge for developing strategies to protect the health and welfare of domestic cats.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Rina Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fuka Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba-city 263-8522, Japan
| |
Collapse
|
6
|
Expression of ER stress markers (GRP78 and PERK) in experimental nephrotoxicity induced by cisplatin and gentamicin: roles of inflammatory response and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:789-801. [PMID: 36482225 DOI: 10.1007/s00210-022-02358-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to establish the relationship between two endoplasmic reticulum (ER) stress proteins, glucose-regulated protein 78 (GRP78/BiP) and PKR-like endoplasmic reticulum kinase (PERK), and oxidative stress markers in cisplatin (CIS)-induced and gentamicin (GEN)-induced nephrotoxicity.The study consisted of five groups: control (saline solution only), CIS D2 (2.5 mg/kg for 2 days), CIS D7 (2.5 mg/kg for 7 days), GEN D2 (160 mg/kg for 2 days), and GEN D7 (160 mg/kg for 7 days). All rats were sacrificed 24 h after the last injection for standard clinical chemistry, and ultrastructural and histological evaluation of the kidney.CIS and GEN increased blood urea nitrogen (BUN) and serum creatinine (Cr) levels, as well as total oxidant status (TOS), while decreasing total antioxidant status (TAS) level in CIS D7 and GEN D7 groups. Histopathological and ultrastructural findings were also consistent with renal tubular damage. In addition, expression of markers of renal inflammation (tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β)) and ER stress markers (GRP78 and PERK) was significantly increased in the kidney tissue of rats treated with CIS and GEN for 7 days.These findings suggest that CIS and GEN administration for 7 days aggravates nephrotoxicity through the enhancement of oxidative stress, inflammation, and ER stress-related markers. As a result, the recommended course of action is to utilize CIS and GEN as an immediate but brief induction therapy, stopping after 3 days and switching to other drugs instead.
Collapse
|
7
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
8
|
Zhao X, Zhang S, Shao H. Dexpanthenol attenuates inflammatory damage and apoptosis in kidney and liver tissues of septic mice. Bioengineered 2022; 13:11625-11635. [PMID: 35510377 PMCID: PMC9275904 DOI: 10.1080/21655979.2022.2070585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sepsis is capable of causing systemic infections resulting in multiple organ damage. Dexpanthenol (DXP) has been reported to protect against kidney and liver injury. Therefore, this paper attempts to explore the role of DXP in sepsis-induced kidney and liver injury. A mice model of sepsis was established using the cecal ligation and puncture (CLP) method. The expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein (MCP)-1 in the serum of mice were measured utilizing enzyme linked immunosorbent assay (ELISA). Additionally, the damage of kidney and liver tissues in CLP-induced mice was determined by their respective commercial kits, western blot, and hematoxylin–eosin (HE) staining kits. The apoptosis of kidney and liver tissues in CLP-induced mice was assessed by means of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blot. It was observed that DXP decreased the expressions of TNF-α, IL-1β, IL-6, and MCP-1 in the serum of CLP-induced mice, attenuated the functional impairment, pathological damage, inflammation, and cell apoptosis of kidney tissue. Meanwhile, DXP decreased the functional impairment of liver in CLP-induced mice, reduced the levels of inflammatory factors and antioxidant enzymes, attenuated liver pathological damage, and decreased cell apoptosis in liver tissues. In conclusion, DXP attenuates inflammatory damage and apoptosis in kidney and liver organs in a sepsis model.
Collapse
Affiliation(s)
- Xi Zhao
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siquan Zhang
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyi Shao
- Department of Emergency Intensive Care Medicine, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| |
Collapse
|
9
|
Freitas F, Attwell D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. eLife 2022; 11:74211. [PMID: 35285797 PMCID: PMC8947765 DOI: 10.7554/elife.74211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is common, with ~13 million cases and 1.7 million deaths/year worldwide. A major cause is renal ischaemia, typically following cardiac surgery, renal transplant or severe haemorrhage. We examined the cause of the sustained reduction in renal blood flow ('no-reflow'), which exacerbates kidney injury even after an initial cause of compromised blood supply is removed. Adult male Sprague-Dawley rats, or NG2-dsRed male mice were used in this study. After 60 min kidney ischaemia and 30-60 min reperfusion, renal blood flow remained reduced, especially in the medulla, and kidney tubule damage was detected as Kim-1 expression. Constriction of the medullary descending vasa recta and cortical peritubular capillaries occurred near pericyte somata, and led to capillary blockages, yet glomerular arterioles and perfusion were unaffected, implying that the long-lasting decrease of renal blood flow contributing to kidney damage was generated by pericytes. Blocking Rho kinase to decrease pericyte contractility from the start of reperfusion increased the post-ischaemic diameter of the descending vasa recta capillaries at pericytes, reduced the percentage of capillaries that remained blocked, increased medullary blood flow and reduced kidney injury. Thus, post-ischaemic renal no-reflow, contributing to acute kidney injury, reflects pericytes constricting the descending vasa recta and peritubular capillaries. Pericytes are therefore an important therapeutic target for treating acute kidney injury.
Collapse
Affiliation(s)
- Felipe Freitas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Marquez-Exposito L, Tejedor-Santamaria L, Valentijn FA, Tejera-Muñoz A, Rayego-Mateos S, Marchant V, Rodrigues-Diez RR, Rubio-Soto I, Knoppert SN, Ortiz A, Ramos AM, Goldschmeding R, Ruiz-Ortega M. Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants (Basel) 2022; 11:301. [PMID: 35204184 PMCID: PMC8868560 DOI: 10.3390/antiox11020301] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non-invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senescence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was observed by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, characterized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progression.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Floris A. Valentijn
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Raul R. Rodrigues-Diez
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Av. Roma, s/n, 33011 Oviedo, Spain
| | - Irene Rubio-Soto
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Sebastiaan N. Knoppert
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| |
Collapse
|
11
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [DOI: https:/doi.org/10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [PMID: 34718120 DOI: 10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-β, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-β, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, Alcalá de Henares, Spain
| | - Carmen Muñoz-Moreno
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Nuria Olea-Herrero
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Paula Reventun
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Biochemistry and Molecular Biology Area, Department of Basic Sciences of Health, Alcorcon, Spain
| | - Alba Antón-Cornejo
- Clinical Analysis Service, Principe de Asturias Hospital, Alcalá de Henares, Spain
| | - Marta González-Santander
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)/Facultad de Medicina Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marta Saura
- Universidad de Alcalá, Laboratory of Pathophysiology of the Vascular Wall, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, IRICYS, Department of System Biology/Physiology Unit, Alcalá de Henares, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain.
| |
Collapse
|
13
|
Yang Y, Kowalkowski K, Ciurlionis R, Buck WR, Glaser KB, Albert DH, Blomme EAG. Identification of VEGF Signaling Inhibition-Induced Glomerular Injury in Rats through Site-Specific Urinary Biomarkers. Int J Mol Sci 2021; 22:ijms222312629. [PMID: 34884436 PMCID: PMC8657489 DOI: 10.3390/ijms222312629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Cancer therapies targeting the vascular endothelial growth factor (VEGF) signaling pathway can lead to renal damage by disrupting the glomerular ultrafiltration apparatus. The objective of the current study was to identify sensitive biomarkers for VEGF inhibition-induced glomerular changes in rats. Male Sprague-Dawley rats were administered an experimental VEGF receptor (VEGFR) inhibitor, ABT-123, for seven days to investigate the correlation of several biomarkers with microscopic and ultrastructural changes. Glomeruli obtained by laser capture microdissection were also subjected to gene expression analysis to investigate the underlying molecular events of VEGFR inhibition in glomerulus. ABT-123 induced characteristic glomerular ultrastructural changes in rats, including fusion of podocyte foot processes, the presence of subendothelial electron-dense deposits, and swelling and loss of fenestrations in glomerular endothelium. The subtle morphological changes cannot be detected with light microscopy or by changes in standard clinical chemistry and urinalysis. However, urinary albumin increased 44-fold as early as Day three. Urinary β2-microglobulin levels were also increased. Other urinary biomarkers that are typically associated with tubular injury were not significantly impacted. Such patterns in urinary biomarkers can provide valuable diagnostic insight to VEGF inhibition therapy-induced glomeruli injuries.
Collapse
Affiliation(s)
- Yi Yang
- Correspondence: ; Tel.: +1-847-937-8893
| | | | | | | | | | | | | |
Collapse
|
14
|
Eslamifar Z, Moridnia A, Sabbagh S, Ghaffaripour R, Jafaripour L, Behzadifard M. Ameliorative Effects of Gallic Acid on Cisplatin-Induced Nephrotoxicity in Rat Variations of Biochemistry, Histopathology, and Gene Expression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2195238. [PMID: 34746299 PMCID: PMC8564201 DOI: 10.1155/2021/2195238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cisplatin is a powerful chemotherapeutic drug mainly used in the treatment of solid tumors. Aggregation of the drug in renal proximal tubule cells causes nephrotoxicity and renal failure. Investigations showed nephrotoxicity as Cisplatin's dose-limiting side effect. One of the Cisplatin toxicity mechanisms is generation of reactive oxygen species, which leads to oxidative stress and renal damage. The purpose of this study was evaluation of the modulating effects of Gallic acid on Cisplatin-induced variations including Caspase-3 and Clusterin expression and histopathological and biochemical parameters in adult male Wistar rats. METHOD Rats were kept under standard condition of temperature, light, and humidity. The animals were divided into 4 groups: GpI: control group (received distilled water for 10 days); GpII: Gallic acid (alone) (50 mg/kg bw, once a day for 10 days); GpIII: Cisplatin (alone), single dose (6 mg/kg bw, I.P. on 5th day of study); GpIV: Gallic acid (50 mg/kg bw, once a day for 10 days) and also injected with single dose of Cisplatin (6 mg/kg bw, I.P., on 5th day of study). After 10 days, all rats were anaesthetized and plasma collected to estimate urea, creatinine, and uric acid. The right kidneys were removed for the study of gene expression and biochemical parameters. The left kidneys were used for histopathological studies. RESULTS The Cisplatin-induced nephrotoxicity was evident from the elevated levels of creatinine, urea, uric acid, and renal tissue MDA and also decreased levels of SOD, CAT, GPX, and GSH in renal tissue. Administration of Gallic acid significantly modulated nephrotoxicity markers, gene expression variations, and histopathological damage. CONCLUSION Outcomes of the present investigation suggest that Gallic acid provides protection against CP-induced nephrotoxicity, but for application in people, further studies are needed.
Collapse
Affiliation(s)
- Zahra Eslamifar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Abbas Moridnia
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Susan Sabbagh
- Department of Anatomy, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Reza Ghaffaripour
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Leila Jafaripour
- Department of Anatomy, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mahin Behzadifard
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
15
|
Priego AR, Parra EG, Mas S, Morgado-Pascual JL, Ruiz-Ortega M, Rayego-Mateos S. Bisphenol A Modulates Autophagy and Exacerbates Chronic Kidney Damage in Mice. Int J Mol Sci 2021; 22:7189. [PMID: 34281243 PMCID: PMC8268806 DOI: 10.3390/ijms22137189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous environmental toxin that accumulates in chronic kidney disease (CKD). Our aim was to explore the effect of chronic exposition of BPA in healthy and injured kidney investigating potential mechanisms involved. METHODS In C57Bl/6 mice, administration of BPA (120 mg/kg/day, i.p for 5 days/week) was done for 2 and 5 weeks. To study BPA effect on CKD, a model of subtotal nephrectomy (SNX) combined with BPA administration for 5 weeks was employed. In vitro studies were done in human proximal tubular epithelial cells (HK-2 line). RESULTS Chronic BPA administration to healthy mice induces inflammatory infiltration in the kidney, tubular injury and renal fibrosis (assessed by increased collagen deposition). Moreover, in SNX mice BPA exposure exacerbates renal lesions, including overexpression of the tubular damage biomarker Hepatitis A virus cellular receptor 1 (Havcr-1/KIM-1). BPA upregulated several proinflammatory genes and increased the antioxidant response [Nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1) and NAD(P)H dehydrogenase quinone 1 (Nqo-1)] both in healthy and SNX mice. The autophagy process was modulated by BPA, through elevated autophagy-related gene 5 (Atg5), autophagy-related gene 7 (Atg7), Microtubule-associated proteins 1A/1B light chain 3B (Map1lc3b/Lc3b) and Beclin-1 gene levels and blockaded the autophagosome maturation and flux (p62 levels). This autophagy deregulation was confirmed in vitro. CONCLUSIONS BPA deregulates autophagy flux and redox protective mechanisms, suggesting a potential mechanism of BPA deleterious effects in the kidney.
Collapse
Affiliation(s)
- Alberto Ruiz Priego
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - Emilio González Parra
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - Sebastián Mas
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/IRSIN, 28040 Madrid, Spain; (A.R.P.); (S.M.)
| | - José Luis Morgado-Pascual
- Cellular Biology, Physiology and Immunology Department, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid Faculty of Medicine, 28040 Madrid, Spain;
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid Faculty of Medicine, 28040 Madrid, Spain;
| |
Collapse
|
16
|
Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn FA, Cantero-Navarro E, Rayego-Mateos S, Rodrigues-Diez RR, Tejera-Muñoz A, Marchant V, Sanz AB, Ortiz A, Goldschmeding R, Ruiz-Ortega M. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol 2021; 12:662020. [PMID: 34239439 PMCID: PMC8258347 DOI: 10.3389/fphar.2021.662020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
17
|
Urinary Exosomes Identify Inflammatory Pathways in Vancomycin Associated Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22062784. [PMID: 33801801 PMCID: PMC7999309 DOI: 10.3390/ijms22062784] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Vancomycin is commonly used as a first line therapy for gram positive organisms such as methicillin resistant Staphylococcusaureus. Vancomycin-induced acute kidney injury (V-AKI) has been reported in up to 43% of patients, especially in those with higher targeted trough concentrations. The precise mechanism of injury in humans remains elusive, with recent evidence directed towards proximal tubule cell apoptosis. In this study, we investigated the protein contents of urinary exosomes in patients with V-AKI to further elucidate biomarkers of mechanisms of injury and potential responses. Methods: Urine samples from patients with V-AKI who were enrolled in the DIRECT study and matched healthy controls from the UAB-UCSD O’Brien Center Biorepository were included in the analysis. Exosomes were extracted using solvent exclusion principle and polyethylene glycol induced precipitation. Protein identity and quantification was determined by label-free liquid chromatography mass spectrometry (LC/MS). The mean peak serum creatinine was 3.7 ± 1.4 mg/dL and time to kidney injury was 4.0 ± 3.0 days. At discharge, 90% of patients demonstrated partial recovery; 33% experienced full recovery by day 28. Proteomic analyses on five V-AKI and 7 control samples revealed 2009 proteins in all samples and 251 proteins significantly associated with V-AKI (Pi-score > 1). The top discriminatory proteins were complement C3, complement C4, galectin-3-binding protein, fibrinogen, alpha-2 macroglobulin, immunoglobulin heavy constant mu and serotransferrin. Conclusion: Urinary exosomes reveal up-regulation of inflammatory proteins after nephrotoxic injury in V-AKI. Further studies are necessary in a large patient sample to confirm these findings for elucidation of pathophysiologic mechanisms and validation of potential injury biomarkers.
Collapse
|
18
|
Awdishu L, Atilano-Roque A, Tuey S, Joy MS. Identification of Novel Biomarkers for Predicting Kidney Injury Due to Drugs Using "Omic" Strategies. Pharmgenomics Pers Med 2020; 13:687-705. [PMID: 33293850 PMCID: PMC7719321 DOI: 10.2147/pgpm.s239471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Drug-induced kidney injury accounts for 20% of community- and hospital-acquired cases of acute kidney injury (AKI). The incidence is higher among older individuals, who often have co-existing morbidities and are exposed to more diagnostic procedures and therapies. While demographic and clinical components have been identified as risk factors, the proposed cellular mechanisms of drug-induced kidney injury are numerous and complicated. There are also limitations recognized in the use of traditional biomarkers, such as serum creatinine and blood urea nitrogen, to provide high sensitivity, specificity, and timeliness to identification of drug-induced kidney injury. Therefore, novel biomarkers are currently being investigated, identified, developed, and validated for their performance over the traditional biomarkers. This review will provide an overview of drug-induced kidney injury and will discuss what is known regarding "omic" (proteomic, genomic, transcriptomic, and metabolomic) biomarker strategies for drugs known to induce nephrotoxicity.
Collapse
Affiliation(s)
- Linda Awdishu
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA, USA
| | - Amandla Atilano-Roque
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Stacey Tuey
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Melanie S Joy
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
- University of Colorado, School of Medicine, Division of Renal Diseases and Hypertension, Aurora, CO, USA
| |
Collapse
|
19
|
Adedeji AO, Gu YZ, Pourmohamad T, Kanerva J, Chen Y, Atabakhsh E, Tackett MR, Chen F, Bhatt B, Gury T, Dorchies O, Sonee M, Morgan M, Burkey J, Gautier JC, McDuffie JE. The Utility of Novel Urinary Biomarkers in Mice for Drug Development Studies. Int J Toxicol 2020; 40:15-25. [PMID: 33161787 DOI: 10.1177/1091581820970498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Novel urinary protein biomarkers have recently been identified and qualified in rats for the early detection of renal injury in drug development studies. However, there are few reports on the utility of these renal biomarkers in mice, another important and widely used preclinical animal species for drug development studies. The purpose of this study was to assess the value of these recently qualified biomarkers for the early detection of drug-induced kidney injury (DIKI) in different strains of mice using multiple assay panels. To this end, we evaluated biomarker response to kidney injury induced by several nephrotoxic agents including amphotericin B, compound X, and compound Y. Several of the biomarkers were shown to be sensitive to DIKI in mice. When measured, urinary albumin and neutrophil gelatinase-associated lipocalin were highly sensitive to renal tubular injury, regardless of the assay platforms, mouse strain, and nephrotoxic agents. Depending on the type of renal tubular injury, kidney injury molecule-1 was also highly sensitive, regardless of the assay platforms and mouse strain. Osteopontin and cystatin C were modestly to highly sensitive to renal tubular injury, but the assay type and/or the mouse strain should be considered before using these biomarkers. Calbindin D28 was highly sensitive to injury to the distal nephron in mice. To our knowledge, this is the first report that demonstrates the utility of novel urinary biomarkers evaluated across multiple assay platforms and nephrotoxicants in different mice strains with DIKI. These results will help drug developers make informed decisions when selecting urinary biomarkers for monitoring DIKI in mice for toxicology studies.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- 7412Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Yi-Zhong Gu
- 331129Merck & Co., Inc., West Point, PA, USA
| | - Tony Pourmohamad
- 7412Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Justin Kanerva
- 241854Janssen Research & Development, LLC, San Diego, CA, USA
| | - Yafei Chen
- 241854Janssen Research & Development, LLC, San Diego, CA, USA
| | | | | | - Feifei Chen
- 331129Merck & Co., Inc., West Point, PA, USA
| | | | | | | | - Manisha Sonee
- 241854Janssen Research & Development, LLC, Spring House, PA, USA
| | | | | | | | | |
Collapse
|
20
|
Abd-Elhakim YM, Mohamed WAM, El Bohi KM, Ali HA, Mahmoud FA, Saber TM. Prevention of melamine-induced hepatorenal impairment by an ethanolic extract of Moringa oleifera: Changes in KIM-1, TIMP-1, oxidative stress, apoptosis, and inflammation-related genes. Gene 2020; 764:145083. [PMID: 32860902 DOI: 10.1016/j.gene.2020.145083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Melamine (ML) is a common food adulterant and contaminant. Moringa oleifera is a well-known medicinal plant with many beneficial biological properties. This study investigated the possible prophylactic and therapeutic activity of an ethanolic extract of M. oleifera (MEE) against ML-induced hepatorenal damage. METHOD Fifty male Sprague Dawley rats were orally administered distilled water, MEE (800 mg/kg bw), ML (700 mg/kg bw), MEE/ML (prophylactically) or MEE+ML (therapeutically). Hepatic aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphate (ALP) in serum were measured. Serum total bilirubin, direct bilirubin, indirect bilirubin, protein, albumin, and globulin contents were also assayed, and urea and creatinine levels were determined. Moreover, antioxidant enzyme activity of glutathione peroxidase (GPx) and catalase (CAT) in serum levels were quantified. Complementary histological and histochemical evaluation of renal and hepatic tissues was conducted, and expression of oxidative stress (GPx and CAT) and apoptosis-related genes, p53 and Bcl-2, in hepatic tissue were assessed. In parallel, transcriptional expression of inflammation and renal injury-related genes, including kidney injury molecule 1 (KIM-1), metallopeptidase inhibitor 1 (TIMP1), and tumor necrosis factor alpha (TNF-α) in the kidney tissue were determined. RESULTS ML caused significant increases in serum levels of ALT, AST, ALP, total bilirubin, direct bilirubin, indirect bilirubin, urea, and creatinine. Further, ML treated rats showed significant reductions in serum levels of protein, albumin, globulin, GPx, and CAT. Distinct histopathological damage and disturbances in glycogen and DNA content in hepatic and renal tissues of ML treated rats were observed. KIM-1, TIMP-1, and TNF-α gene expression was significantly upregulated in kidney tissue. Also, GPx, CAT, and Bcl-2 genes were significantly downregulated, and p53 was significantly upregulated in liver tissue after ML treatment. MEE significantly counteracted the ML-induced hepatorenal damage primarily for co-exposed rats. CONCLUSION MEE could be an effective therapeutic supplement for treatment of ML-induced hepato-renal damage, probably via modulating oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Wafaa A M Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fagr A Mahmoud
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals (Basel) 2020; 13:149. [PMID: 32664348 PMCID: PMC7407499 DOI: 10.3390/ph13070149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-β-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
22
|
Herath S, Dai H, Erlich J, Au AYM, Taylor K, Succar L, Endre ZH. Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS One 2020; 15:e0233109. [PMID: 32437461 PMCID: PMC7241806 DOI: 10.1371/journal.pone.0233109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Normalisation to standard reference gene(s) is essential for quantitative real-time polymerase chain reaction (RT-qPCR) to obtain reproducible and comparable results of a gene of interest (GOI) between subjects and under varying experimental conditions. There is limited evidence to support selection of the commonly used reference genes in rat ischaemic and toxicological kidney models. Employing these models, we determined the most stable reference genes by comparing 4 standard methods (NormFinder, qBase+, BestKeeper and comparative ΔCq) and developed a new 3-way linear mixed-effects model for evaluation of reference gene stability. This new technique utilises the intra-class correlation coefficient as the stability measure for multiple continuous and categorical covariates when determining the optimum normalisation factor. The model also determines confidence intervals for each candidate normalisation gene to facilitate selection and allow sample size calculation for designing experiments to identify reference genes. Of the 10 candidate reference genes tested, the geometric mean of polyadenylate-binding nuclear protein 1 (PABPN1) and beta-actin (ACTB) was the most stable reference combination. In contrast, commonly used ribosomal 18S and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were the most unstable. We compared the use of PABPN1×ACTB and 2 commonly used genes 18S and GAPDH on the expression of 4 genes of interest know to vary after renal injury and expressed by different kidney cell types (KIM-1, HIF1α, TGFβ1 and PECAM1). The less stable reference genes gave varying patterns of GOI expression in contrast to the use of the least unstable reference PABPN1×ACTB combination; this improved detection of differences in gene expression between experimental groups. Reduced within-group variation of the now more accurately normalised GOI may allow for reduced experimental group size particularly for comparison between various models. This objective selection of stable reference genes increased the reliability of comparisons within and between experimental groups.
Collapse
Affiliation(s)
- Sanjeeva Herath
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Hongying Dai
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jonathan Erlich
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- * E-mail:
| | - Amy YM Au
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Kylie Taylor
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Lena Succar
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Zoltán H. Endre
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
23
|
Abstract
Several biomarkers have been developed to detect acute kidney injury (AKI) and predict outcomes. Most AKI biomarkers have been shown to be expressed before serum creatinine and to be more sensitive and specific than urine output. Only a few studies have examined how implementation can change clinical outcomes. A second generation of AKI biomarkers have been developed. These markers, including tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulinlike growth factor-binding protein 7 (IGFBP7), have obtained regulatory approval in many countries based on large, rigorous clinical studies and small, single-centered trials and have begun to establish clinical utility.
Collapse
|
24
|
Pannala VR, Vinnakota KC, Estes SK, Trenary I, OˈBrien TP, Printz RL, Papin JA, Reifman J, Oyama T, Shiota M, Young JD, Wallqvist A. Genome-Scale Model-Based Identification of Metabolite Indicators for Early Detection of Kidney Toxicity. Toxicol Sci 2020; 173:293-312. [PMID: 31722432 PMCID: PMC8000070 DOI: 10.1093/toxsci/kfz228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Identifying early indicators of toxicant-induced organ damage is critical to provide effective treatment. To discover such indicators and the underlying mechanisms of toxicity, we used gentamicin as an exemplar kidney toxicant and performed systematic perturbation studies in Sprague Dawley rats. We obtained high-throughput data 7 and 13 h after administration of a single dose of gentamicin (0.5 g/kg) and identified global changes in genes in the liver and kidneys, metabolites in the plasma and urine, and absolute fluxes in central carbon metabolism. We used these measured changes in genes in the liver and kidney as constraints to a rat multitissue genome-scale metabolic network model to investigate the mechanism of gentamicin-induced kidney toxicity and identify metabolites associated with changes in tissue gene expression. Our experimental analysis revealed that gentamicin-induced metabolic perturbations could be detected as early as 7 h postexposure. Our integrated systems-level analyses suggest that changes in kidney gene expression drive most of the significant metabolite alterations in the urine. The analyses thus allowed us to identify several significantly enriched injury-specific pathways in the kidney underlying gentamicin-induced toxicity, as well as metabolites in these pathways that could serve as potential early indicators of kidney damage.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Tracy P OˈBrien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| | - Tatsuya Oyama
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| |
Collapse
|
25
|
Mosa IF, Youssef M, Kamel M, Mosa OF, Helmy Y. Synergistic antioxidant capacity of CsNPs and CurNPs against cytotoxicity, genotoxicity and pro-inflammatory mediators induced by hydroxyapatite nanoparticles in male rats. Toxicol Res (Camb) 2019; 8:939-952. [PMID: 32206303 DOI: 10.1039/c9tx00221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
Due to their dynamic characteristics, hydroxyapatite nanoparticles (HAP-NPs) have been employed numerous times in nanomedicine and in tissue engineering, particularly as diagnostic and therapeutic agents. However, there are outstanding findings from various studies that question whether these NPs are safe when they are used in the human body. Therefore, a more in-depth toxicity assessment should be carried out to give a clear answer regarding the fate of these particles. Here we aim to investigate the possible cytotoxicity, genotoxicity and inflammation induced by HAP-NPs, as well as predict the synergistic antioxidative effect of chitosan nanoparticles (CsNPs) and curcumin nanoparticles (CurNPs) in mitigating this pronounced toxicity. The present study was conducted on eighty Wistar male rats, divided into eight equal groups. The results showed that, at the molecular level, HAP-NPs significantly induced gene expression of tumor suppressor protein p53, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and also Kidney Injury Molecule-1 (KIM-1) and Lipocalin-2 (LCN2). In addition, kidney biochemical parameters (total bilirubin, urea, uric acid and creatinine) increased, but albumin levels decreased in the group treated with HAP-NPs alone. Meanwhile, co-treatment with CsNPs and/or CurNPs with HAP-NPs showed an improvement in the activities of the kidney parameters and reduced inflammation. This study shows that the nephrotoxicity mechanism of HAP-NPs may involve various signaling pathways including alterations in biochemical parameters, gene expression of KIM-1 and LCN2 and disturbing the production of cytokines and p53. Furthermore, these insights showed that the combined effect of both CsNPs and CurNPs was more pronounced than the effect of each one on its own.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Environmental Studies , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt . ; Tel: +201024680746
| | - Mokhtar Youssef
- Department of Environmental Studies , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt
| | - Maher Kamel
- Department of Biochemistry , Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Osama F Mosa
- Department of Public health , Health Sciences College at Leith , Umm Al Qura University , Al-Leith , Makkah , Saudi Arabia
| | - Yasser Helmy
- Department of BioMaterials , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt
| |
Collapse
|
26
|
Toxicological evaluation, brine shrimp lethality assay, in vivo and ex vivo antioxidant assessment followed by GC–MS study of the extracts obtained from Olax psittacorum (Lam.) Vahl. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Bashir SO. Concomitant administration of resveratrol and insulin protects against diabetes mellitus type-1-induced renal damage and impaired function via an antioxidant-mediated mechanism and up-regulation of Na +/K +-ATPase. Arch Physiol Biochem 2019; 125:104-113. [PMID: 29436859 DOI: 10.1080/13813455.2018.1437752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigated if a combination of resveratrol (RES) and insulin could reverse type 1 diabetic mellitus-induced (T1DM) nephropathy and illustrates mechanism of action. Rats were divided into six groups (n = 10/group) as follows: control, control + RES (20 mg/kg), T1DM, T1DM + RES, T1DM + insulin (1 U/g), and T1DM + RES + insulin and treated for eight weeks. While individual administrations of both drugs significantly but partially restored renal function and cortex architectures, combination therapy of both RES and insulin produced the maximum improvements. Mechanism of actions revealed a synergist effect of both drugs due to hypoglycaemic effect of insulin and the ability of both drugs to increase renal cortex antioxidant enzymes activities, inhibit lipid peroxidation, and up-regulate Na+/K+-ATPase, independent of each others. In conclusion, these data suggest the combined therapy with insulin and RES could provide an excellent combined drug therapy against T1DM-induced nephropathy.
Collapse
Affiliation(s)
- Salah O Bashir
- a Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
28
|
Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep 2018; 6:91-99. [PMID: 30581763 PMCID: PMC6297903 DOI: 10.1016/j.toxrep.2018.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Gentamicin induced dose dependent and temporal change in urinary biomarkers. Histological changes were minimal to severe on Day 4 & 8 respectively at both doses. Several fold increase in urinary biomarkers on Day 4 and 8 at both doses. On Day 8, increase in urinary and serum markers and histological changes. Clusterin is highly sensitive urinary biomarkers.
Consistent, sensitive biomarkers of acute kidney injury in animal models and humans have historically represented a poorly met need for investigators and clinicians. Detection of early kidney damage using urinary biomarkers is essential to assess the adversity in preclinical toxicology studies, which will help in reducing attrition of lead candidates in drug development. This study was undertaken to evaluate recently identified urinary biomarkers use in identifying acute kidney injury compared to traditional serum markers in experimentally induced nephrotoxicity in male Sprague Dawley (SD) rats. Gentamicin induced nephrotoxicity in Sprague Dawley rats is commonly detected using serum markers and histological evaluation of kidneys. Gentamicin, an aminoglycoside was administered at 30 and 100 mg/kg/day dose (subcutaneous) for seven consecutive days to induce nephrotoxicity. On day 4 and day 8 post treatment, serum and urine samples from these rats were analyzed for traditional serum/urine and novel urinary biomarkers and microscopic evaluation of kidneys. On Day 4, no statistically significant change in serum BUN and creatinine level, but increase in urinary microalbumin (mALB) and urinary protein (UP) noticed in both doses of Gentamicin treated rats. On Day 8 significant increase in serum blood urea nitrogen (BUN), serum creatinine, UP and urinary mALB at 100 mg/kg/day, increase in total protein and decrease in albumin in 30 and 100 mg/kg/day and decrease in BUN and creatinine at 100 mg/kg of Gentamicin treated rats. The BUN and creatinine levels or fold change was comparable between control and 30 mg/kg of Gentamicin on Day 8, however, there was 5.6 and 3.4 fold change in BUN and Creatinine level noticed at 100 mg/kg/day of Gentamicin. On Day 4 and 8, significant increase in urinary levels of Clusterin was noted with animals administered both doses of Gentamicin. Similarly, significant increase in urinary levels of kidney injury molecule 1 (Kim-1), Cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were noticed with animals administered Gentamicin at 100 mg/kg/day on both Day 4 and 8. All these markers have shown dose-dependent change. Histological changes seen on Day 4 and Day 8 were of minimal to mild and moderate to severe in nature at both doses, respectively. The results demonstrated the sensitiveness and accuracy of detecting acute renal damage with novel urinary biomarkers, and their use in diagnosing early kidney damage. This helps in adversity assessment in animal toxicology studies and advocating right treatment to patients who have early renal injury which otherwise can only be diagnosed by elevated levels of traditional biomarkers in blood only after >30% of kidneys is damaged.
Collapse
Affiliation(s)
- Venkatesha Udupa
- Department of Toxicology, Glenmark Pharmaceuticals Limited, A607, TTC Industrial Area, MIDC, Mahape, Navi Mumbai, 400 709, Maharashtra, India
| | - Veeru Prakash
- Department of Biochemistry and Biochemical Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211 007, Uttar Pradesh, India
| |
Collapse
|
29
|
Perše M, Večerić-Haler Ž. Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics and Challenges. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1462802. [PMID: 30276200 PMCID: PMC6157122 DOI: 10.1155/2018/1462802] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Cisplatin is an antitumor drug used in the treatment of a wide variety of malignancies. However, its primary dose-limiting side effect is kidney injury, which is a major clinical concern. To help understand mechanisms involved in the development of kidney injury, cisplatin rodent model has been developed. Given the complex pathogenesis of kidney injury, which involves both local events in the kidney and interconnected and interdependent systemic effects in the body, cisplatin rodent model is indispensable in the investigation of underlying mechanisms and potential treatment strategies of both acute and chronic kidney injury. Cisplatin rodent model is well appreciated and widely used model due to its simplicity. It has many similarities to human cisplatin nephrotoxicity, which are mentioned in the paper. In spite of its simplicity and wide applicability, there are also traps that need to be taken into account when using cisplatin model. The present paper is aimed at giving a concise insight into the complex characteristics of cisplatin rodent model and heterogeneity of cisplatin dosage regimens as well as outlining factors that can severely influence the outcome of the model and the study. Challenges for future research are also mentioned.
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Urinary kidney injury molecule-1 in renal disease. Clin Chim Acta 2018; 487:15-21. [PMID: 30201372 DOI: 10.1016/j.cca.2018.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Kidney injury molecule-1 (KIM-1), a type l transmembrane glycoprotein, is recognized as a potential biomarker for detection of tubular injury in the main renal diseases. Urinary KIM-1 increases rapidly upon the tubular injury, and its levels are associated with the degree of tubular injury, interstitial fibrosis, and inflammation in the injured kidney. Currently, the investigation of kidney diseases is usually performed through the assessment of serum creatinine and urinary albumin. However, these biomarkers are limited for the early detection of changes in renal function. Besides, the tubular injury appears to precede glomerular damage in the pathophysiology of renal diseases. For these reasons, the search for sensitive, specific and non-invasive biomarkers is of interest. Therefore, the purpose of this article is to review the physiological mechanisms of KIM-1, as well to present clinical evidence about the association between elevated urinary KIM-1 levels and the main renal diseases such as chronic kidney disease, diabetic kidney disease, acute kidney injury, and IgA nephropathy.
Collapse
|
31
|
Gu YZ, Vlasakova K, Troth SP, Peiffer RL, Tournade H, Pasello Dos Santos FR, Glaab WE, Sistare FD. Performance Assessment of New Urinary Translational Safety Biomarkers of Drug-induced Renal Tubular Injury in Tenofovir-treated Cynomolgus Monkeys and Beagle Dogs. Toxicol Pathol 2018; 46:553-563. [PMID: 29807506 DOI: 10.1177/0192623318775023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newer urinary protein kidney safety biomarkers can outperform the conventional kidney functional biomarkers blood urea nitrogen (BUN) and serum creatinine (SCr) in rats. However, there is far less experience with the relative performance of these biomarkers in dogs and nonhuman primates. Here, we report urine protein biomarker performance in tenofovir-treated cynomolgus monkeys and beagle dogs. Tenofovir intravenous daily dosing in monkeys for 2 or 4 weeks at 30 mg/kg/day resulted in minimal to moderate tubular degeneration and regeneration, and tenofovir disoproxil fumarate oral dosing in dogs for 10 days at 45 mg/kg/day resulted in mild to marked tubular degeneration, necrosis, and regeneration. Among biomarkers tested, kidney injury molecule 1 (Kim-1) and clusterin (CLU) clearly outperformed BUN and SCr and were the most reliable in detecting the onset and progression of tenofovir-induced tubular injury. Cystatin C, retinol binding protein 4, β2-microglobulin, neutrophil gelatinase-associated lipocalin, albumin, and total protein also performed better than BUN and SCr and added value when considered together with Kim-1 and CLU. These findings demonstrate the promising utility of these urinary safety biomarkers in monkeys and dogs and support their further evaluation in human to improve early detection of renal tubular injury.
Collapse
Affiliation(s)
- Yi-Zhong Gu
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Katerina Vlasakova
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Sean P Troth
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Robert L Peiffer
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | - Warren E Glaab
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Frank D Sistare
- 1 Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania, USA
| |
Collapse
|
32
|
Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018; 33:17-30. [DOI: 10.1016/j.dmpk.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
|
33
|
Kokura K, Kuromi Y, Endo T, Anzai N, Kazuki Y, Oshimura M, Ohbayashi T. A kidney injury molecule-1 (Kim-1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells. J Gene Med 2018; 18:273-281. [PMID: 27591740 PMCID: PMC5095820 DOI: 10.1002/jgm.2925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Background Kidney injury molecule‐1 (Kim‐1) has been validated as a urinary biomarker for acute and chronic renal damage. The expression of Kim‐1 mRNA is also activated by acute kidney injury induced by cisplatin in rodents and humans. To date, the measurement of Kim‐1 expression has not fully allowed the detection of in vitro cisplatin nephrotoxicity in immortalized culture cells, such as human kidney‐2 cells and immortalized proximal tubular epithelial cells. Methods We measured the augmentation of Kim‐1 mRNA expression after the addition of cisplatin using immortalized S3 cells established from the kidneys of transgenic mice harboring temperature‐sensitive large T antigen from Simian virus 40. Results A mouse Kim‐1 gene luciferase reporter in conjunction with an Hprt gene reporter detected cisplatin‐induced nephrotoxicity in S3 cells. These two reporter genes were contained in a mouse artificial chromosome, and two luciferases that emitted different wavelengths were used to monitor the respective gene expression. However, the Kim‐1 reporter gene failed to respond to cisplatin in A9 fibroblast cells that contained the same reporter mouse artificial chromosome, suggesting cell type‐specificity for activation of the reporter. Conclusions We report the feasibility of measuring in vitro cisplatin nephrotoxicity using a Kim‐1 reporter gene in S3 cells.
Collapse
Affiliation(s)
- Kenji Kokura
- Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan.,Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yasushi Kuromi
- Tottori Industrial Promotion Organization, Tottori, Tottori, Japan.,Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Tottori, Japan
| | - Takeshi Endo
- Tottori Industrial Promotion Organization, Tottori, Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan.,Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan
| | | |
Collapse
|
34
|
Collier JB, Schnellmann RG. Extracellular Signal-Regulated Kinase 1/2 Regulates Mouse Kidney Injury Molecule-1 Expression Physiologically and Following Ischemic and Septic Renal Injury. J Pharmacol Exp Ther 2017; 363:419-427. [PMID: 29074644 PMCID: PMC5698947 DOI: 10.1124/jpet.117.244152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023] Open
Abstract
The upregulation of kidney injury molecule-1 (KIM-1) has been extensively studied in various renal diseases and following acute injury; however, the initial mechanisms controlling KIM-1 expression remain limited. In this study, KIM-1 expression was examined in mouse renal cell cultures and in two different models of acute kidney injury (AKI), ischemia reperfusion (IR)-induced and lipopolysaccharide (LPS)-induced sepsis. KIM-1 mRNA increased in both AKI models, and pharmacological inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling attenuated injury-induced KIM-1 expression in the renal cortex. Toll-like receptor 4 knockout (TLR4KO) mice exhibited reduced ERK1/2 phosphorylation and attenuated KIM-1 mRNA after LPS exposure. TLR4KO mice were not protected from IR-induced ERK1/2 phosphorylation and upregulation of KIM-1 mRNA. Following renal IR injury, phosphorylation of signal transducer and activator of transcription 3 (STAT3) at serine 727 and tyrosine 705 increased downstream from ERK1/2 activation. Because phosphorylated STAT3 is a transcriptional upregulator of KIM-1 and inhibition of ERK1/2 attenuated increases in STAT3 phosphorylation, we suggest an ERK1/2-STAT3-KIM-1 pathway following renal injury. Finally, ERK1/2 inhibition in naive mice decreased KIM-1 mRNA and nuclear STAT3 phosphorylation in the cortex, indicating homeostatic regulation of KIM-1. These findings reveal renal ERK1/2 as an important initial regulator of KIM-1 expression in IR and septic AKI and at a physiologic level.Visual Abstract.Proposed mechanism of IR, LPS, and ROS-induced renal damage that initiates ERK1/2 and STAT3 phosphorylation. STAT3 then binds to the KIM-1 promoter and increases KIM-1 mRNA. By preventing ERK1/2 phosphorylation following renal injury, STAT3 phosphorylation is decreased, leading to less phosphorylated STAT3 within the nucleus, and subsequently less KIM-1 mRNA increases post injury.
Collapse
Affiliation(s)
- Justin B Collier
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.B.C.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.B.C.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (R.G.S.)
| |
Collapse
|
35
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
36
|
Ezaki T, Nishiumi S, Azuma T, Yoshida M. Metabolomics for the early detection of cisplatin-induced nephrotoxicity. Toxicol Res (Camb) 2017; 6:843-853. [PMID: 30090547 PMCID: PMC6062266 DOI: 10.1039/c7tx00171a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023] Open
Abstract
Cisplatin, which is an inorganic molecule containing a platinum ion, is an antineoplastic agent that has been used to treat various solid tumors. However, its side effects include nephrotoxicity, neurotoxicity, bone marrow toxicity, gastrointestinal toxicity, and ototoxicity, which can limit its use. In this study, nephrotoxicity was caused by the intraperitoneal injection of cisplatin into rats, and then metabolome analysis was performed using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to find plasma metabolite biomarker candidates that would facilitate the early detection of cisplatin-induced nephrotoxicity. As a result, chronological changes were detected in the plasma levels of cysteine-cystine and 3-hydroxy-butyrate in the GC/MS-based metabolomics study. In the LC/MS-based metabolomics study, 3 acylcarnitines and a phosphatidylethanolamine with C18:2-C18:2 were identified as potential plasma biomarkers of cisplatin-induced nephrotoxicity. The plasma levels of these 6 metabolites altered significantly after the administration of cisplatin, and these alterations occurred quicker than the equivalent changes in the plasma levels of creatinine and blood urea nitrogen, which are usually used as indicators of renal dysfunction. These results indicate that the abovementioned metabolites might be reliable biomarkers that would allow the earlier detection of cisplatin-induced nephrotoxicity and that metabolomics is a useful tool for discovering biomarkers that could be used to predict the side effects of cancer therapy.
Collapse
Affiliation(s)
- Takeshi Ezaki
- Division of Gastroenterology , Department of Internal Medicine , Kobe University Graduate School of Medicine , Japan . ; ; Tel: +81-78-382-6305
| | - Shin Nishiumi
- Division of Gastroenterology , Department of Internal Medicine , Kobe University Graduate School of Medicine , Japan . ; ; Tel: +81-78-382-6305
| | - Takeshi Azuma
- Division of Gastroenterology , Department of Internal Medicine , Kobe University Graduate School of Medicine , Japan . ; ; Tel: +81-78-382-6305
| | - Masaru Yoshida
- Division of Gastroenterology , Department of Internal Medicine , Kobe University Graduate School of Medicine , Japan . ; ; Tel: +81-78-382-6305
- Metabolomics Research , Department of Internal Related , Kobe University Graduate School of Medicine , Japan
- AMED-CREST , AMED , Japan
| |
Collapse
|
37
|
van Poelgeest EP, Dillingh MR, de Kam M, Malone KE, Kemper M, Stroes ESG, Burggraaf J, Moerland M. Characterization of immune cell, endothelial, and renal responses upon experimental human endotoxemia. J Pharmacol Toxicol Methods 2017; 89:39-46. [PMID: 29056520 DOI: 10.1016/j.vascn.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Although the effects of relatively high concentrations of endotoxin on endothelial activation/dysfunction and kidney markers has been described in literature, detailed insight in the LPS concentration-effect relationship, the magnitude, variability and timing of the response, and potential effects of endotoxemia on the kidneys is lacking. A study was performed to assess the effects of low- to moderate dose (0.5, 1 or 2ng/kg) endotoxemia on the endothelium and kidneys as measured by a panel of novel highly sensitive kidney injury markers. METHODS This was a randomized, double-blind, placebo-controlled study with single ascending doses of LPS (0.5, 1 or 2ng/kg) administered to healthy male volunteers (3 cohorts of 8 subjects, LPS:placebo 6:2). Endothelial measures included selectins, cell adhesion molecules, and thrombomodulin. Renal measures included novel, sensitive and specific biomarkers of acute kidney injury. RESULTS Endotoxin exposure resulted in consistent LPS dose-dependent responses in inflammatory markers, E- and P- Selectin, VCAM1, ICAM1, and thrombomodulin. The observed biological responses were transient, reaching a level of significance of at least <0.01 in the highest dose group and with an effect size which was dependent on the administered LPS dose. LPS-induced inflammatory and endothelial effects did not translate into a change in renal damage biomarkers, although at 2ng/kg LPS, subtle and transient biomarker changes were observed that may relate to (subclinical) tubular damage. DISCUSSION We demonstrated that administration of a single LPS dose of 2ng/kg to healthy volunteers results in significant inflammatory and endothelial responses, without inducing clinically relevant signs of kidney injury. These findings support the application of the human endotoxemia model in future clinical pharmacology studies.
Collapse
Affiliation(s)
| | - Marlous R Dillingh
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Marieke de Kam
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Karen E Malone
- Good Biomarker Sciences, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Marleen Kemper
- Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Erik S G Stroes
- Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| | - Matthijs Moerland
- Centre for Human Drug Research, Zernikedreef 8, 2333, CL, Leiden, The Netherlands.
| |
Collapse
|
38
|
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55:1074-1089. [PMID: 28076311 DOI: 10.1515/cclm-2016-0973] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a common complication of critical illnesses and has a significant impact on outcomes, including mortality and morbidities. Unfortunately, apart from prophylactic measures, no effective treatment for this syndrome is known. Therefore, early recognition of AKI not only can provide better opportunities for preventive interventions, but also opens many gates for research and development of effective therapeutic options. Over the last few years, several new AKI biomarkers have been discovered and validated to improve early detection, differential diagnosis, and differentiation of patients into risk groups for progressive renal failure, need for renal replacement therapy (RRT), or death. These novel AKI biomarkers complement serum creatinine (SCr) and urine output, which are the standard diagnostic tools for AKI detection. In this article, we review the available literature on characteristics of promising AKI biomarkers that are currently the focus of preclinical and clinical investigations. These biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein, interleukin 18 (lL-18), insulin-like growth factor-binding protein 7, tissue inhibitor of metalloproteinase 2 (TIMP-2), calprotectin, urine angiotensinogen (AGT), and urine microRNA. We then describe the clinical performance of these biomarkers for diagnosis and prognostication. We also appraise each AKI biomarker's advantages and limitations as a tool for early AKI recognition and prediction of clinical outcomes after AKI. Finally, we review the current and future states of implementation of biomarkers in the clinical practice.
Collapse
|
39
|
Vilar S, Hripcsak G. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions. Brief Bioinform 2017; 18:670-681. [PMID: 27273288 PMCID: PMC6078166 DOI: 10.1093/bib/bbw048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Explosion of the availability of big data sources along with the development in computational methods provides a useful framework to study drugs' actions, such as interactions with pharmacological targets and off-targets. Databases related to protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational models. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similarity and create methods to predict and analyze drugs' actions. We highlight profiles constructed with different biological data, such as target-protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the discovery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the interaction with off-targets responsible for adverse reactions and in drug-drug interaction analysis. The current and future applications, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an important source of data generation to deeply analyze biological actions with important implications in drug-related studies.
Collapse
Affiliation(s)
- Santiago Vilar
- Corresponding author: Santiago Vilar, Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA. E-mail: ; George Hripcsak, Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA. E-mail:
| | - George Hripcsak
- Corresponding author: Santiago Vilar, Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA. E-mail: ; George Hripcsak, Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA. E-mail:
| |
Collapse
|
40
|
Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol (Oxf) 2017; 219:554-572. [PMID: 27474473 DOI: 10.1111/apha.12764] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Various biomarkers of acute kidney injury (AKI) have been discovered and characterized in the recent past. These molecules can be detected in urine or blood and signify structural damage to the kidney. Clinically, they are proposed as adjunct diagnostics to serum creatinine and urinary output to improve the early detection, differential diagnosis and prognostic assessment of AKI. The most obvious requirements for a biomarker include its reflection of the underlying pathophysiology of the disease. Hence, a biomarker of AKI should derive from the injured kidney and reflect a molecular process intimately connected with tissue injury. Here, we provide an overview of the basic pathophysiology, the cellular sources and the clinical performance of the most important currently proposed biomarkers of AKI: neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), interleukin-18 (IL-18), insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2) and calprotectin (S100A8/9). We also acknowledge each biomarker's advantages and disadvantages as well as important knowledge gaps and perspectives for future studies.
Collapse
Affiliation(s)
- E. V. Schrezenmeier
- Department of Nephrology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - J. Barasch
- Division of Nephrology; Columbia University College of Physicians and Surgeons; New York NY USA
| | - K. Budde
- Department of Nephrology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - T. Westhoff
- Medical Department I; Universitätsklinikum Marien Hospital Herne; Ruhr University of Bochum; Bochum Germany
| | - K. M. Schmidt-Ott
- Department of Nephrology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| |
Collapse
|
41
|
Nayeri H, Babaknejad N. Evaluation of novel biomarkers in nephrotoxicity. Biomark Med 2016; 10:1209-1213. [DOI: 10.2217/bmm-2016-0235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hashem Nayeri
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasim Babaknejad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
42
|
Impact of feline AIM on the susceptibility of cats to renal disease. Sci Rep 2016; 6:35251. [PMID: 27731392 PMCID: PMC5059666 DOI: 10.1038/srep35251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
Renal failure is one of the most important social problems for its incurability and high costs for patients’ health care. Through clarification of the underlying mechanism for the high susceptibility of cats to renal disease, we here demonstrates that the effective dissociation of serum AIM protein from IgM is necessary for the recovery from acute kidney injury (AKI). In cats, the AIM-IgM binding affinity is 1000-fold higher than that in mice, which is caused by the unique positively-charged amino-acid cluster present in feline AIM. Hence, feline AIM does not dissociate from IgM during AKI, abolishing its translocation into urine. This results in inefficient clearance of lumen-obstructing necrotic cell debris at proximal tubules, thereby impairing AKI recovery. Accordingly, mice whose AIM is replaced by feline AIM exhibit higher mortality by AKI than in wild-type mice. Recombinant AIM administration into the mice improves their renal function and survival. As insufficient recovery from AKI predisposes patients to chronic, end-stage renal disease, feline AIM may be involved crucially in the high mortality of cats due to renal disease. Our findings could be the basis of the development of novel AKI therapies targeting AIM-IgM dissociation, and may support renal function in cats and prolong their lives.
Collapse
|
43
|
Ma Q, Devarajan SR, Devarajan P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin. Ren Fail 2016; 38:1476-1482. [PMID: 27605163 DOI: 10.1080/0886022x.2016.1227917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the protective effect and mechanism of neutrophil gelatinase-associated lipocalin (NGAL) in a murine model of cisplatin-induced nephrotoxicity. Male Swiss-Webster mice were assigned to four groups (n = 10 in each group). Control mice received vehicle only. Mice in the experimental group were given a single intraperitoneal injection of cisplatin (20 mg/kg) to induce nephrotoxicity, and were divided into three groups. The first group received 100 μL of saline only via tail vein at the time of cisplatin administration. The second group was given biologically active recombinant NGAL via tail vein (250 μg/100 μL solution). The third group was injected with a 250 μg/100μL solution of inactivated NGAL. After 4 days, we measured serum creatinine and urinary N-acetyl-β-d-glucosaminidase (NAG), and performed histologic studies. Biologically active NGAL significantly blunted the rise in serum creatinine (NGAL plus cisplatin 1.33 ± 0.31 versus cisplatin alone 2.43 ± 0.31 mg/dL, p < .001) as well as the increase in urine NAG (NGAL plus cisplatin 60.7 ± 14.2 versus cisplatin alone 120.5 ± 22.5 units/gm creatinine, p < .005). In addition, NGAL conferred a marked reduction in tubule cell necrosis and apoptosis (NGAL plus cisplatin 6.9 ± 1.2 versus cisplatin alone 15.1 ± 3.4 TUNEL positive nuclei per 100 cells, p < .001). These beneficial effects were completely abolished when heat-inactivated NGAL was administered instead of the biologically active form. Since induction of NGAL in kidney tubules is a known physiologic response to cisplatin, the pharmacologic use of NGAL to prevent cisplatin nephrotoxicity is likely to be safe and effective.
Collapse
Affiliation(s)
- Qing Ma
- a Department of Nephrology and Hypertension , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Shiva R Devarajan
- a Department of Nephrology and Hypertension , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Prasad Devarajan
- a Department of Nephrology and Hypertension , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
44
|
Thukral SK, Nordone PJ, Hu R, Sullivan L, Galambos E, Fitzpatrick VD, Healy L, Bass MB, Cosenza ME, Afshari CA. Prediction of Nephrotoxicant Action and Identification of Candidate Toxicity-Related Biomarkers. Toxicol Pathol 2016; 33:343-55. [PMID: 15805072 DOI: 10.1080/01926230590927230] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A vast majority of pharmacological compounds and their metabolites are excreted via the urine, and within the complex structure of the kidney, the proximal tubules are a main target site of nephrotoxic compounds. We used the model nephrotoxicants mercuric chloride, 2-bromoethylamine hydrobromide, hexachlorobutadiene, mitomycin, amphotericin, and puromycin to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. Male Sprague–Dawley rats were dosed via intraperitoneal injection once daily for mercuric chloride and amphotericin (up to 7 doses), while a single dose was given for all other compounds. Animals were exposed to 2 different doses of these compounds and kidney tissues were collected on day 1, 3, and 7 postdosing. Gene expression profiles were generated from kidney RNA using 17K rat cDNA dual dye microarray and analyzed in conjunction with histopathology. Analysis of gene expression profiles showed that the profiles clustered based on similarities in the severity and type of pathology of individual animals. Further, the expression changes were indicative of tubular toxicity showing hallmarks of tubular degeneration/regeneration and necrosis. Use of gene expression data in predicting the type of nephrotoxicity was then tested with a support vector machine (SVM)-based approach. A SVM prediction module was trained using 120 profiles of total profiles divided into four classes based on the severity of pathology and clustering. Although mitomycin C and amphotericin B treatments did not cause toxicity, their expression profiles were included in the SVM prediction module to increase the sample size. Using this classifier, the SVM predicted the type of pathology of 28 test profiles with 100% selectivity and 82% sensitivity. These data indicate that valid predictions could be made based on gene expression changes from a small set of expression profiles. A set of potential biomarkers showing a time- and dose-response with respect to the progression of proximal tubular toxicity were identified. These include several transporters ( Slc21a2, Slc15, Slc34a2), Kim 1, IGFbp-1, osteopontin, α -fibrinogen, and Gstα.
Collapse
|
45
|
Anti-interleukin-33 Reduces Ovalbumin-Induced Nephrotoxicity and Expression of Kidney Injury Molecule-1. Int Neurourol J 2016; 20:114-21. [PMID: 27377943 PMCID: PMC4932645 DOI: 10.5213/inj.1632578.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023] Open
Abstract
Purpose: To evaluate the effect of anti-interleukin-33 (anti-IL-33) on a mouse model of ovalbumin (OVA)-induced acute kidney injury (AKI). Methods: Twenty-four female BALB/c mice were assigned to 4 groups: group A (control, n=6) was administered sterile saline intraperitoneally (i.p.) and intranasally (i.n.); group B (allergic, n=6) was administered i.p./i.n. OVA challenge; group C (null treatment, n=6) was administered control IgG i.p. before OVA challenge; and group D (anti-IL-33, n=6) was pretreated with 3.6 µg of anti-IL-33 i.p. before every OVA challenge. The following were evaluated after sacrifice: serum blood urea nitrogen and creatinine levels, Kidney injury molecule-1 gene (Kim-1) and protein (KIM-1) expression in renal parenchyma, and expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), phosphorylated endothelial NOS (p-eNOS), and phosphorylated AMP kinase (p-AMPK) proteins in renal parenchyma. Results: After OVA injection and intranasal challenge, mice in groups B and C showed significant increases in the expression of Kim-1 at both the mRNA and protein levels. After anti-IL-33 treatment, mice in group D showed significant Kim-1 down-regulation at the mRNA and protein levels. Group D also showed significantly lower COX-2 protein expression, marginally lesser iNOS expression than groups B and C, and p-eNOS and p-AMPK expression at baseline levels. Conclusions: Kim-1 could be a useful marker for detecting early-stage renal injury in mouse models of OVA-induced AKI. Further, anti-IL-33 might have beneficial effects on these mouse models.
Collapse
|
46
|
Zhou X, Qu Z, Zhu C, Lin Z, Huo Y, Wang X, Wang J, Li B. Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol 2016; 78:78-84. [PMID: 27074385 DOI: 10.1016/j.yrtph.2016.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) have been recently recognized as promising non-invasive biomarkers for detecting the organ injuries. To further understand the sensibility and reliability of miRNA measurements in urine sample for predicting drug-induced early nephrotoxicity, a global urinary miRNA expression analysis was performed in the rodent models with gentamicin-induced acute kidney injury (AKI). Male Wistar rats were daily administrated with gentamicin (0, 60, and 120 mg/kg) for up to 10 days by intraperitoneal injection, and the miRNA profiling of animal urine samples were subsequently analyzed using TaqMan(®) Array Rodent miRNA Cards. The results showed that four miRNAs (mmu-miR-138-5p, mmu-miR-1971, mmu-miR-218-1-3p, and rno-miR-489) were continuously increased in urine samples since day 4 after administration with gentamicin, which was not reflected by the standard markers such as serum creatinine (Cr) and urea nitrogen (BUN). Furthermore, other nine urinary miRNAs were increased in both 60 and 120 mg/kg groups on day 8. Receiver operator characteristics analysis demonstrated that the performance of these miRNAs with time- or dose-dependent increases were comparable to standard biomarkers (i.e. serum Cr and BUN), suggesting that the urinary miRNA panel can be used as potential biomarkers for the detection of gentamicin-induced AKI in rats. Moreover, the computer prediction analysis showed that these differentially expressed miRNAs were potentially targeted to many genes, which were mainly associated with the regulation of metabolic process and signaling. These data will improve the understanding and prediction of toxicology processes induced by nephrotoxicants.
Collapse
Affiliation(s)
- Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Cong Zhu
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Zhi Lin
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Yan Huo
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Xue Wang
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Jufeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
47
|
Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med 2016; 22:183-93. [PMID: 26726878 DOI: 10.1038/nm.4012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.
Collapse
|
48
|
Taniguchi Y, Kawakami S, Fuchigami Y, Oyama N, Yamashita F, Konishi S, Shimizu K, Hashida M. Optimization of renal transfection using a renal suction-mediated transfection method in mice. J Drug Target 2015; 24:450-6. [PMID: 26390999 DOI: 10.3109/1061186x.2015.1087526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously developed a suction-mediated transfection method in mice. PURPOSE The purpose of this study was to optimize the suction-mediated transfection conditions using a pressure-controlled computer system for efficient and safe kidney-targeted gene delivery in mice. METHODS Naked pCMV-Luc was injected into the tail vein in mice, and then the right kidney was suctioned by a device of the suction pressure-controlled system. The effects of renal transfection conditions, such as the suction pressure degree, suction pressure waveform and device area were evaluated by measuring luciferase expression. In addition, renal injury was examined. RESULTS The renal suction-mediated transfection method at -30 kPa showed high transgene expression. The renal suction waveform did not affect the transfection activity. Under the optimized conditions, the high transgene expression was mostly observed at the renal suctioned site. The transfection conditions used did not induce histological defects or increases in two renal injury biomarkers (Kidney injury molecule-1 mRNA and Clusterin mRNA). DISCUSSION AND CONCLUSION We have clarified the transfection conditions for efficient and safe transfection in the kidney using the suction-mediated transfection method in mice.
Collapse
Affiliation(s)
- Yota Taniguchi
- a Department of Drug Delivery Research , Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| | - Shigeru Kawakami
- b Department of Pharmaceutical Informatics , Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki , Japan
| | - Yuki Fuchigami
- b Department of Pharmaceutical Informatics , Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki , Japan
| | - Natsuko Oyama
- b Department of Pharmaceutical Informatics , Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki , Japan
| | - Fumiyoshi Yamashita
- a Department of Drug Delivery Research , Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| | - Satoshi Konishi
- c Department of Mechanical Engineering , Ritsumeikan University , Shiga , Japan
| | - Kazunori Shimizu
- d Department of Biotechnology , Graduate School of Engineering, Nagoya University , Aichi , Japan , and
| | - Mitsuru Hashida
- a Department of Drug Delivery Research , Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan .,e Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University , Kyoto , Japan
| |
Collapse
|
49
|
Zaky ASA. Looking for the early marker of renal injury. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2015. [DOI: 10.4103/1110-7782.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Lee CG, Kang YJ, Kim HS, Moon A, Kim SG. Phlda3, a urine-detectable protein, causes p53 accumulation in renal tubular cells injured by cisplatin. Cell Biol Toxicol 2015; 31:121-130. [PMID: 25809501 DOI: 10.1007/s10565-015-9299-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022]
Abstract
Measurable indicators of renal injury are required for the assessment of kidney function after toxicant challenge. In our previous study, pleckstrin homology-like domain, family A, member 3 (Phlda3) was a most greatly up-regulated molecule downstream from p53, culminating with kidney tubular injury. This study investigated the positive feedforward effect of Phlda3 on p53 in an effort to explain the largest increase of Phlda3 in injured tubules and the potential of its urine excretion. qRT-PCR assays confirmed a rapid and substantial increase in Phlda3 messenger RNA (mRNA) in the kidney cortex of mice treated with a single dose of cisplatin. Cisplatin overexpression of Phlda3 was verified by gene set analyses of three different microarray databases. In the immunohistochemistry, Phlda3 staining intensities were augmented in the tubules as kidney injury worsened. Moreover, the urinary content of Phlda3 was increased after cisplatin treatment, as were those of other kidney injury markers (Kim-1 and Timp-1). By contrast, cisplatin failed to increase Phlda3 mRNA in the liver despite hepatocyte necrosis and ensuing increases in serum transaminase activities. In NRK52E tubular cells, siRNA knockdown of Phlda3 enhanced the ability of cisplatin to increase p-Mdm2 presumably via Akt, enforcing the interaction between Mdm2 and p53. Consistently, a deficiency in Phlda3 abrogated p53 increase by cisplatin, indicating that Phlda3 promotes p53 accumulation. Phlda3 overexpression had the opposite effect. In addition, treatment with cyclosporine A or CdCl2, other nephrotoxicants, increased Phlda3 mRNA and protein levels in NRK52E cells, as did cisplatin treatment. Overall, Phlda3 may cause p53 accumulation through a feedforward pathway, facilitating tubular injury and its urine excretion.
Collapse
Affiliation(s)
- Chan Gyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | | | | | | | | |
Collapse
|