1
|
Fujihara J, Nishimoto N. Thallium - poisoner's poison: An overview and review of current knowledge on the toxicological effects and mechanisms. Curr Res Toxicol 2024; 6:100157. [PMID: 38420185 PMCID: PMC10899033 DOI: 10.1016/j.crtox.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Thallium (Tl) is one of the most toxic metals and its historic use in homicides has led it to be known as "the poisoner's poison." This review summarizes the methods for identifying Tl and determining its concentrations in biological samples in recently reported poisoning cases, as well as the toxicokinetics, toxicological effects, toxicity mechanisms, and detoxication methods of Tl. Recent findings regarding Tl neurotoxicological pathways and toxicological effects of Tl during pregnancy are also presented. Confirmation of elevated Tl concentrations in blood, urine, or hair is indispensable for diagnosing Tl poisoning. The kidneys show the highest Tl concentration within 24 h after ingestion, while the brain shows the highest concentration thereafter. Tl has a very slow excretion rate due to its large distribution volume. Following acute exposure, gastrointestinal symptoms are observed at an early stage, and neurological dysfunction is observed later: Tl causes the most severe damage in the central nervous system. Alopecia and Mees' lines in the nails are observed within 1 month after Tl poisoning. The toxicological mechanism of Tl is considered to be interference of vital potassium-dependent processes with Tl+ because its ionic radius is similar to that of K+, as well as inhibition of enzyme reactions by the binding of Tl to -SH groups, which disturbs vital metabolic processes. Tl toxicity is also related to reactive oxygen species generation and mitochondrial dysfunction. Prussian blue is the most effective antidote, and metallothionein alone or in combination with Prussian blue was recently reported to have cytoprotective effects after Tl exposure. Because Tl poisoning cases are still reported, early determination of Tl in biological samples and treatment with an antidote are essential.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Naoki Nishimoto
- Shimane Institute for Industrial Technology, 1 Hokuryo, Matsue, Shimane 690-0816, Japan
| |
Collapse
|
2
|
Berky AJ, Ryde IT, Feingold B, Ortiz EJ, Wyatt LH, Weinhouse C, Hsu-Kim H, Meyer JN, Pan WK. Predictors of mitochondrial DNA copy number and damage in a mercury-exposed rural Peruvian population near artisanal and small-scale gold mining: An exploratory study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:197-210. [PMID: 30289587 PMCID: PMC6452630 DOI: 10.1002/em.22244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
Mitochondrial DNA (mtDNA) copy number (CN) and damage in circulating white blood cells have been proposed as effect biomarkers for pollutant exposures. Studies have shown that mercury accumulates in mitochondria and affects mitochondrial function and integrity; however, these data are derived largely from experiments in model systems, rather than human population studies that evaluate the potential utility of mitochondrial exposure biomarkers. We measured mtDNA CN and damage in white blood cells (WBCs) from 83 residents of nine communities in the Madre de Dios region of the Peruvian Amazon that vary in proximity to artisanal and small-scale gold mining. Prior research from this region reported high levels of mercury in fish and a significant association between food consumption and human total hair mercury level of residents. We observed that mtDNA CN and damage were both associated with consumption of fruit and vegetables, higher diversity of fruit consumed, residential location, and health characteristics, suggesting common environmental drivers. Surprisingly, we observed negative associations of mtDNA damage with both obesity and age. We did not observe any association between total hair mercury or, in contrast to previous results, age, with either mtDNA damage or CN. The results of this exploratory study highlight the importance of combining epidemiological and laboratory research in studying the effects of stressors on mitochondria, suggesting that future work should incorporate nutritional and social characteristics, and caution should be taken when applying conclusions from epidemiological studies conducted in the developed world to other regions, as results may not be easily translated. Environ. Mol. Mutagen. 60: 197-210, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Axel J. Berky
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA
| | - Ian T. Ryde
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA
| | - Beth Feingold
- University of Albany, School of Public Health, Rensselaer, NY 12144, USA
| | - Ernesto J. Ortiz
- Duke Global Health Institute, Duke University, 310 Trent Dr, Durham, NC 27710, USA
| | - Lauren H. Wyatt
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA
| | - Caren Weinhouse
- Duke Global Health Institute, Duke University, 310 Trent Dr, Durham, NC 27710, USA
| | - Heileen Hsu-Kim
- Department of Civil and Engineering, Box 90287, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA
- Corresponding authors: William Pan, Duke Global Health Institute, 310 Trent Drive, Campus Box 90519, Durham, NC 27708, fax 681-7748, , Joel N. Meyer, Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA,
| | - William K. Pan
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, 310 Trent Dr, Durham, NC 27710, USA
- Corresponding authors: William Pan, Duke Global Health Institute, 310 Trent Drive, Campus Box 90519, Durham, NC 27708, fax 681-7748, , Joel N. Meyer, Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA,
| |
Collapse
|
3
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
4
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One 2017; 12:e0189076. [PMID: 29206858 PMCID: PMC5716537 DOI: 10.1371/journal.pone.0189076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcriptional regulation of the five MT isoforms present in T. thermophila, by using several strains of this ciliate. After a laboratory evolution experiment over more than two years, three different T. thermophila strains adapted to extreme metal stress (Cd2+, Cu2+ or Pb2+) were obtained. In addition, three knockout and/or knockdown strains for different metallothionein (MT) genes were generated. These strains were then analyzed for expression of the individual MT isoforms. Our results provide a strong basis for assigning differential roles to the set of MT isoforms. MTT1 appears to have a key role in adaptation to Cd. In contrast, MTT2/4 are crucial for Cu-adaptation and MTT5 appears to be important for Pb-adaptation and might be considered as an “alarm” MT gene for responding to metal stress. Moreover, results indicate that likely a coordinated transcriptional regulation exists between the MT genes, particularly among MTT1, MTT5 and MTT2/4. MTT5 appears to be an essential gene, a first such report in any organism of an essential MT gene.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Martín-González
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois, United States of America
| | - Juan Carlos Gutiérrez
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Yoshioka H, Tanaka M, Fujii H, Nonogaki T. Sasa veitchii extract suppresses carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Environ Health Prev Med 2016; 21:554-562. [PMID: 27738877 DOI: 10.1007/s12199-016-0581-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the therapeutic effects of a Sasa veitchii leaf extract (SE) on carbon tetrachloride (CCl4)-induced hepato- and nephrotoxicity. METHODS Seven-week-old male ddy mice were orally administered SE or saline for seven days. Twenty-four hours after the last SE or saline administration, the mice were intraperitoneally injected with 3 g/kg CCl4 or olive oil. The mice from each group were euthanized and bled for plasma analysis 24 h after the CCl4/olive oil injection. RESULTS We found that pretreatment with SE completely abolished the CCl4-induced mortality in the mice after 24 h. The mice pretreated with SE exhibited significantly decreased levels of functional markers, and reduced histological damage in both the liver and the kidney. Furthermore, we found that the SE pretreatment decreased lipid peroxidation and calcium levels in the liver. Although SE could not induce the free radical-scavenging metallothioneins, the plasma biological antioxidant power was significantly increased in the mice pretreated with SE. CONCLUSION Our findings demonstrate that prophylactic treatment with SE protects mice from CCl4-induced lethal toxicity by decreasing oxidative stress in the liver and kidney, presumably by increasing biological antioxidant power.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| | - Miki Tanaka
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Hirohisa Fujii
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi, 463-8521, Japan.
| |
Collapse
|
6
|
Ghorbel I, Chaabane M, Elwej A, Boudawara O, Abdelhedi S, Jamoussi K, Boudawara T, Zeghal N. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats. Arch Physiol Biochem 2016; 122:214-222. [PMID: 27230980 DOI: 10.1080/13813455.2016.1187176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hepatotoxicity, induced by aluminium chloride (AlCl3), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.
Collapse
Affiliation(s)
| | | | | | - Ons Boudawara
- b Anatomopathology Laboratory, CHU Habib Bourguiba , and
| | - Sameh Abdelhedi
- c Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | - Kamel Jamoussi
- c Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | | | | |
Collapse
|
7
|
Gunderson MP, Pickett MA, Martin JT, Hulse EJ, Smith SS, Smith LA, Campbell RM, Lowers RH, Boggs ASP, Guillette LJ. Variations in hepatic biomarkers in American alligators (Alligator mississippiensis) from three sites in Florida, USA. CHEMOSPHERE 2016; 155:180-187. [PMID: 27111470 PMCID: PMC4909370 DOI: 10.1016/j.chemosphere.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Sub-individual biomarkers are sub-lethal biological responses commonly used in the assessment of wildlife exposure to environmental contaminants. In this study, we examined the activity of glutathione-s-transferase (GST) and lactate dehydrogenase (LDH), and metallothionein (MT) concentrations among captive-raised alligator hatchlings, wild-caught juveniles, and wild-caught adults. Juveniles and adults were collected from three locations in Florida (USA) with varying degrees of contamination (i.e. Lake Apopka (organochlorine polluted site), Merritt Island National Wildlife Refuge (NWR) (metal polluted site), and Lake Woodruff NWR (reference site)). We examined whether changes in the response of these three biomarkers were age and sex dependent or reflected site-specific variations of environmental contaminants. Juvenile alligators from Merritt Island NWR had higher MT concentrations and lower GST activity compared to those from the other two sites. This outcome was consistent with higher metal pollution at this location. Sexually dimorphic patterns of MT and GST (F > M) were observed in juvenile alligators from all sites, although this pattern was not observed in adults. GST activity was lower in captive-raised alligators from Lake Apopka and Merritt Island NWR as compared to animals from Lake Woodruff NWR, suggesting a possible developmental modulator at these sites. No clear patterns were observed in LDH activity. We concluded that GST and MT demonstrate age and sex specific patterns in the alligators inhabiting these study sites and that the observed variation among sites could be due to differences in contaminant exposure.
Collapse
Affiliation(s)
- Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA.
| | - Melissa A Pickett
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Justin T Martin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Elizabeth J Hulse
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Spenser S Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Levi A Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Rachel M Campbell
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Russell H Lowers
- Inomedic Health Applications, Aquatics Division, Mail Code IHA-300, Kennedy Space Center, FL, USA
| | - Ashley S P Boggs
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| |
Collapse
|
8
|
Ben Saad H, Driss D, Ellouz Chaabouni S, Boudawara T, Zeghal KM, Hakim A, Ben Amara I. Vanillin mitigates potassium bromate-induced molecular, biochemical and histopathological changes in the kidney of adult mice. Chem Biol Interact 2016; 252:102-13. [PMID: 27074584 DOI: 10.1016/j.cbi.2016.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
The present study aimed to explore the ability of vanillin to ameliorate the adverse effects induced by potassium bromate (KBrO3) in the renal tissue. Our results showed a significant increase in hydrogen peroxide, superoxide anion, malondialdehyde, advanced oxidation protein product and protein carbonyl levels in the kidney of KBrO3 treated mice, compared with the control group. Nephrotoxicity was evidenced by a decrease in plasma uric acid and kidney glutathione levels, Na(+)-K(+)-ATPase, lactate dehydrogenase and catalase activities. Additionally, creatinine and urea levels significantly increased in the plasma and declined in the urine. Also, Kidney glutathione peroxidase, superoxide dismutase, metallothionein (MT1 and MT2) mRNA expression remarkably increased. These modifications in biochemical and molecular values were substantiated by histopathological data. Co-treatment with vanillin restored these parameters to near control values. Interestingly, vanillin proved to possess, in vitro, a stronger scavenging radical activity than vitamin C and Trolox. Thus, vanillin inhibited KBrO3-induced damage via its antioxidant and antiradical activities as well as its capacity to protect genes expression and histopathological changes.
Collapse
Affiliation(s)
- Hajer Ben Saad
- Laboratory of Pharmacology, UR/12 ES-13, Faculty of Medicine, 3029 Sfax, University of Sfax, Tunisia.
| | - Dorra Driss
- Enzymes and Bioconversions Laboratory, National Engineering School, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Samia Ellouz Chaabouni
- Enzymes and Bioconversions Laboratory, National Engineering School, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, University of Sfax, Tunisia
| | - Khaled Mounir Zeghal
- Laboratory of Pharmacology, UR/12 ES-13, Faculty of Medicine, 3029 Sfax, University of Sfax, Tunisia
| | - Ahmed Hakim
- Laboratory of Pharmacology, UR/12 ES-13, Faculty of Medicine, 3029 Sfax, University of Sfax, Tunisia
| | - Ibtissem Ben Amara
- Higher Institute of Biotechnology of Sfax, 3000 Sfax University, Tunisia
| |
Collapse
|
9
|
Deng X, Pan L, Cai Y, Jin Q. Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yoshioka H, Onosaka S. Zinc sulfate pretreatment prevents carbon tetrachloride-induced lethal toxicity through metallothionein-mediated suppression of lipid peroxidation in mice. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University
- Faculty of Nutrition, Kobe Gakuin University
| | | |
Collapse
|
11
|
Vieira HC, Morgado F, Soares AMVM, Abreu SN. Real and potential mercury accumulation in human scalp of adolescents: a case study. Biol Trace Elem Res 2015; 163:19-27. [PMID: 25359702 DOI: 10.1007/s12011-014-0159-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Mercury (Hg) concentration in human hair is used to estimate methylmercury (MeHg) exposure and establish a reference dose for MeHg intake. In this study, Hg accumulation and MeHg intake were evaluated in relation to fish consumption habits in adolescents from two coastal areas: Angra do Heroísmo (Azores archipelago) and Murtosa (Portuguese mainland). Results showed that Hg concentration and MeHg intake increased with increasing fish consumption. In spite of that, Hg concentrations remained relatively low when compared with World Health Organization "no observed adversary effect level"; therefore, risk for mercury exposure should not be considered. Adolescents revealed a similar range of Hg concentrations (0.03-2.60 μg g(-1)) in scalp hair, apart from being exposed to natural or anthropogenic Hg source (Azores and Mainland, respectively). Nevertheless, Mainland volunteers generally exhibited higher values of Hg accumulation, being approximately 50 % of the results above 1 μg g(-1). Hg concentrations increased in both adolescent groups according to the weekly rate of fish meals, however, not linearly in the highest fish consumption rates. In fact, considering the adolescents' group having over one fish meal per week, the Hg bioaccumulation pattern found in the respective scalp hair suggests the ability of the human body to induce a self-protection response, probably mitigating Hg levels in the blood when experiencing increasing Hg exposure due to fish uptake. Actual and potential mercury levels in human scalp of adolescents probably diverge as fish consumption increases, the effective Hg uptake being lower than the expected, reducing risk to human health.
Collapse
Affiliation(s)
- H C Vieira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | |
Collapse
|
12
|
Ghorbel I, Elwej A, Jamoussi K, Boudawara T, Kamoun NG, Zeghal N. Potential protective effects of extra virgin olive oil on the hepatotoxicity induced by co-exposure of adult rats to acrylamide and aluminum. Food Funct 2015; 6:1126-35. [DOI: 10.1039/c4fo01128g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Extra virgin olive oil has been shown to be effective against oxidative stress associated diseases.
Collapse
Affiliation(s)
- Imen Ghorbel
- Animal Physiology Laboratory
- Sfax Faculty of Sciences
- University of Sfax
- Tunisia
| | - Awatef Elwej
- Animal Physiology Laboratory
- Sfax Faculty of Sciences
- University of Sfax
- Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory
- CHU Hedi Chaker
- University of Sfax
- 3029 Sfax
- Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory
- CHU Habib Bourguiba
- University of Sfax
- 3029 Sfax
- Tunisia
| | - Naziha Grati Kamoun
- Technology & Quality Research Unit
- Olive Tree Institute
- BP 1087
- University of Sfax
- 3000 Sfax
| | - Najiba Zeghal
- Animal Physiology Laboratory
- Sfax Faculty of Sciences
- University of Sfax
- Tunisia
| |
Collapse
|
13
|
In vitro evaluation of inorganic mercury and methylmercury effects on the intestinal epithelium permeability. Food Chem Toxicol 2014; 74:349-59. [DOI: 10.1016/j.fct.2014.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/17/2023]
|
14
|
Jorge-Nebert LF, Gálvez-Peralta M, Landero Figueroa J, Somarathna M, Hojyo S, Fukada T, Nebert DW. Comparing gene expression during cadmium uptake and distribution: untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci 2014; 143:26-35. [PMID: 25294218 DOI: 10.1093/toxsci/kfu204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nonessential metal cadmium (Cd) is toxic only after entering the cell. Proteins possibly relevant to intracellular Cd accumulation include the divalent metal transporter-1 (DMT1) and all 14 zinc-like iron-like protein (ZIP) importers, 10 zinc transporter (ZnT) exporters, and metallothionein chaperones MT1 and MT2. Comparing oral Cd-treated ZIP14 knockout (KO) with wild-type (WT) mice, we predicted Cd uptake and distribution would be diminished in the KO-because ZIP14 is very highly expressed in GI tract and liver; this was indeed observed for Cd content in liver. However, the reverse was found in kidney and lung from 6 or 12 h through 10 days of Cd exposure; at these times, Cd accumulation was unexpectedly greater in KO than WT mice; mRNA levels of the 27 above-mentioned genes were thus examined in proximal small intestine (PSI) versus kidney to see if these paradoxical effects could be explained by substantial alterations in any of the other 26 genes. PSI genes highly expressed in untreated WT animals included seven ZIP and five ZnT transporters, DMT1, MT1, and MT2; kidney genes included 11 ZIP and 7 ZnT transporters, DMT1, MT1, and MT2. Over 10 days of oral Cd, a bimodal response was seen for Cd content in PSI and for various mRNAs; initially, acute effects caused by the toxic metal; subsequently, the up- or down-regulation of important genes presumably to combat the sustained adversity. These data underscore the complex interplay between the gastrointestinal tract and renal proteins that might be relevant to Cd uptake and distribution in animals exposed to oral Cd.
Collapse
Affiliation(s)
- Lucia F Jorge-Nebert
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Marina Gálvez-Peralta
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Julio Landero Figueroa
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Maheshika Somarathna
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Shintaro Hojyo
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Toshiyuki Fukada
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| | - Daniel W Nebert
- *Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan, Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, 10117 Berlin, Germany and Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
15
|
Wu Q, Zhang D, Tao N, Zhu QN, Jin T, Shi JS, Liu J. Induction of Nrf2 and metallothionein as a common mechanism of hepatoprotective medicinal herbs. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:207-21. [PMID: 24467545 DOI: 10.1142/s0192415x14500141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many Chinese medicines have the potential to be hepatoprotective and therefore can be used to treat acute and chronic liver diseases. The challenge is to identify the molecular target for their protective mechanism. This study investigated the induction of nuclear factor-erythroid 2(NF-E2)-related factor 2 (Nrf2) antioxidant genes and metallothionein as a common mechanism of hepatoprotective effects of Chinese medicines such as Piper puberulum. Mice were pretreated with Piper puberulum extract (PPE, 500 mg/kg, po) or vehicles for seven days, followed by intoxication with CCl 4 (25 μl/kg, ip for 16 h), D-galactosamine (800 mg/kg, ip for 8 h), or acetaminophen (400 mg/kg, ip for 8 h). Hepatotoprotection was evaluated by serum enzyme activities and histopathology. To determine the mechanism of protection, mice were given PPE (250-1000 mg/kg, po for seven days) and livers were collected to quantify the expression of Nrf2-targeted genes and metallothionein. Nrf2-null mice were also used to determine the role of Nrf2 in PPE-mediated hepatoprotection.PPE pretreatment protected against the hepatotoxicity produced by CCl 4, D-galactosamine, and acetaminophen, as evidenced by decreased serum enzyme activities and ameliorated liver lesions. PPE treatment increased the expression of hepatic Nrf2, NAD(P)H:quinone oxidoreductase1 (Nqo1), heme oxygenase-1 (Ho-1), glutamate-cysteine ligases (Gclc), and metallothionein (MT), at both transcripts and protein levels. PPE protected wild-type mice from CCl 4 and acetaminophen hepatotoxicity, but not Nrf2-null mice, fortifying the Nrf2-dependent protection. In conclusion, induction of the Nrf2 antioxidant pathways and metallothionein appears to be a common mechanism for hepatoprotective herbs such as PPE.
Collapse
Affiliation(s)
- Qin Wu
- Department of Pharmacology and Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, P. R. China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
The effect of LED light spectra on antioxidant system by thermal stress in goldfish, Carassius auratus. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0006-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
19
|
Paiva F, Fialho L, Rafael A, Cabrita AS, Pereira A, Capela e Silva F. Alterações histológicas dos rins e expressão das metalotioneínas e das proteínas de choque térmico em ratos Wistar após exposição ao fungicida tirame. ARQ BRAS MED VET ZOO 2013. [DOI: 10.1590/s0102-09352013000100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Avaliaram-se as alterações histológicas e a expressão das metalotioneínas (MTs) e das proteínas de choque térmico (Hsp70) nos rins de ratos Wistar após a exposição ao fungicida tirame. Os animais foram distribuídos em três grupos: grupo dieta-padrão; grupo dieta-padrão+óleo de milho; e grupo tirame. Foram encontradas diferenças significativas (P<0,05) na evolução do peso corporal entre os ratos do grupo tirame e os dos grupos controle e óleo de milho, e não foram verificadas lesões histológicas evidentes nos rins dos animais. Foram encontradas diferenças entre os animais do grupo exposto ao tirame e os dos grupos controle e óleo quanto às características histomorfométricas relativas ao corpúsculo renal - exceto para a proporção área da cápsula de Bowman:área do glomérulo - e relativas aos túbulos contorcidos proximal e distal - exceto para altura do epitélio dos túbulos distais. Nos ratos expostos ao tirame, foi observada imunomarcação positiva para as MTs, de moderada a forte, nos túbulos contorcidos da região cortical, diminuindo do córtex em direção à medula, e forte imunomarcação para as Hsp70 nas áreas do córtex e da medula, no glomérulo e nos túbulos contorcidos. Os resultados sugerem que o tirame pode ter toxicidade crônica nos mamíferos por afetar o seu crescimento e que a expressão das MTs e das Hsp70, provável resposta celular adaptativa ao estresse oxidativo causado pelo tirame, pode ser utilizada como biomarcador de exposição a este químico.
Collapse
Affiliation(s)
- F. Paiva
- Universidade do Algarve, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Liao H, Jiang L, Huang H, Zhou L, Li L, Cheng S. Protective effect of maifanite against cadmium-induced oxidative stress to rats hippocampus by regulating the balance and metabolism of metals. Health (London) 2013. [DOI: 10.4236/health.2013.59187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Wu KC, Liu JJ, Klaassen CD. Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol Appl Pharmacol 2012; 263:14-20. [PMID: 22677785 DOI: 10.1016/j.taap.2012.05.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5mg Cd/kg, i.p.). Blood and liver samples were collected 8h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H(2)DCFDA (2',7'-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd.
Collapse
Affiliation(s)
- Kai C Wu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
22
|
Bao Y, Chen H, Hu Y, Bai Y, Zhou M, Xu A, Shao C. Combination effects of chronic cadmium exposure and gamma-irradiation on the genotoxicity and cytotoxicity of peripheral blood lymphocytes and bone marrow cells in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 743:67-74. [DOI: 10.1016/j.mrgentox.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
|
23
|
Wang Q, Xu J, Zhu Y, Chai B, Liang A, Wang W. Lanthanum(III) impacts on metallothionein MTT1 and MTT2 from Tetrahymena thermophila. Biol Trace Elem Res 2011; 143:1808-18. [PMID: 21359533 DOI: 10.1007/s12011-011-9004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/13/2011] [Indexed: 10/18/2022]
Abstract
Metallothionein MTT1 and MTT2 from Tetrahymena thermophila are sulfydryl-rich proteins that can bind to and are inducible by heavy metals such as mercury, cadmium, zinc, and copper. However, little is known about the induction and binding of T. thermophila metallothionein by trivalent metals. In this study, we found that 10-80 μM La(3+) can promote Tetrahymena cells proliferation, and fluorescence spectrum analysis showed that La(3+) can enter T. thermophila cells. Real-time quantitative polymerase chain reaction showed La(3+) induced the expression of MTT1 and MTT2. Furthermore, Fluorescence analysis indicated La(3+) bind to MTT1 and MTT2. These results implied that La(3+) could interact with MTT1 and MTT2 via aspartic or glutamic acid oxygen atoms.
Collapse
Affiliation(s)
- Qinglu Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd, Taiyuan, 030006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Fujishiro H, Doi M, Enomoto S, Himeno S. High sensitivity of RBL-2H3 cells to cadmium and manganese: an implication of the role of ZIP8. Metallomics 2011; 3:710-8. [PMID: 21509381 DOI: 10.1039/c1mt00020a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cellular incorporation of Cd involves multiple transport systems for other metals such as Fe, Zn, Mn, and Ca. Metal transporters including divalent metal transporter 1, Zrt/Irt-related protein (ZIP) 8, and ZIP14, and certain types of voltage-dependent Ca channels have been shown to be involved in cellular Cd uptake. However, tissue- or cell-specific roles of these metal transporters in the accumulation and toxicity of Cd remains unclear. In the present study, we compared the sensitivity to and accumulation of Cd, Mn, and Zn among four types of rat cell lines. Rat basophilic leukemia RBL-2H3 cells showed the highest sensitivity to Cd and Mn due to the highest accumulation of Cd and Mn among the four cell lines. The high accumulation of Cd and Mn was caused by high uptake rates of Cd and Mn. Since relatively high expression of ZIP8 and ZIP14 was found in RBL-2H3 cells, siRNAs of ZIP8 and ZIP14 were transfected into RBL-2H3 cells. The knockdown of ZIP8, but not of ZIP14, significantly reduced the uptake rates of Cd and Mn in RBL-2H3 cells, especially in the presence of bicarbonate. These results suggest that the high expression of ZIP8, which is known to have affinities for both Cd and Mn, resulted in high accumulation of Cd and Mn, leading to high sensitivity to these metals in RBL-2H3 cells. Thus, RBL-2H3 cells may serve as a good model for clarifying the mechanisms of Cd and Mn transport via ZIP8.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | | | | |
Collapse
|
25
|
Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett 2010; 198:49-55. [DOI: 10.1016/j.toxlet.2010.04.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022]
|
26
|
Abbassi R, Chamkhia N, Sakly M. Chloroform-induced oxidative stress in rat liver: Implication of metallothionein. Toxicol Ind Health 2010; 26:487-96. [DOI: 10.1177/0748233710373088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current studies evaluated the effect of acute and subacute exposure to chloroform (CHCl3) on rat liver and the implication of oxidative stress. For this purpose, different doses of CHCl3 (150, 300 and 450 mg/kg bw) were administered intraperitoneally (ip) to male Wistar rats. Malondialdehyde (MDA), glutathione (GSH), reduced cytochrome c and metallothioneins (MTs) levels as well as the activities of catalase (CAT) and glutathione peroxidase (GPx) and the activities of the biochemical markers of hepatic injury (alanine transaminase [ALT] and aspartate transaminase [AST]) were determined. CHCl3 did not cause a significant increase in hepatic lipid peroxidation. However, dose-dependant and/or time dependant effects of CHCl3 were demonstrated on most of the oxidative stress parameters measured, namely the GSH depletion and the superoxide anion production. Acute exposure CHCl3 increased the aminotransferase and GPx activities and reduced cytochrome c levels in a dose-dependant pattern. A well-combined dose-dependent and time-dependent effect of CHCl3 on MT levels after acute and subacute exposure was noticed. Moreover, the increase of MT levels seems to be associated with the GSH depletion, indicating a possible role of the latter in MT synthesis. In conclusion, the superoxide anion production and the GSH depletion could be implicated in the mechanism of hepatotoxity of CHCl3 and MTs seem to be a part of the antioxidant defense system against the oxidative damage caused by CHCl3 in liver.
Collapse
Affiliation(s)
- Riadh Abbassi
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| | - Naoufel Chamkhia
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia,
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| |
Collapse
|
27
|
Kiliç GA, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem Toxicol 2010; 48:980-7. [PMID: 20079794 DOI: 10.1016/j.fct.2010.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Metallothionein (MT) is a low-molecular weight sulfur-rich protein that plays role in metal homeostasis/detoxification and radical scavenging. The following study investigated the ability of exogenous MT to protect against oxidative damage induced by thallium (TI) in rat liver. Male Wistar rats were divided into four groups; a control and three experimental groups. The control group received physiological saline. Group 1 animals were injected with thallium acetate intraperitoneally (i.p.) at a single dose of LD(50) (32 mg/kg). In group 2 and group 3, metallothionein I was administrated once at two different doses (1 or 2.5mg/kg i.p., respectively) 1h before TI intoxication. Levels of endogenous antioxidants, oxidative stress markers were measured and histopathological examinations were performed 4 days after TI administration. TI accumulation in liver decreased related to the dose of MT. Mostly all of the alterations in the levels antioxidants restored to normal levels in MT administrated animals. H(2)O(2) levels and lipid peroxidation decreased, integrity of hepatocytes and membranous structures inside the cells were preserved. The toxic effects of TI were modulated in MT administrated animals particularly at the dose of 2.5mg/kg. These findings suggest an active role of exogenous MT against TI-induced oxidative stress in rat liver.
Collapse
Affiliation(s)
- Gözde Aydoğan Kiliç
- Faculty of Science, Department of Biology, Anadolu University, 26470 Eskişehir, Turkey.
| | | |
Collapse
|
28
|
Kurowska E, Bal W. Recent Advances in Molecular Toxicology of Cadmium and Nickel. ADVANCES IN MOLECULAR TOXICOLOGY 2010. [DOI: 10.1016/s1872-0854(10)04003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Toxicological assessment of toxic element residues in swine kidney and its role in public health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:3127-42. [PMID: 20049251 PMCID: PMC2800339 DOI: 10.3390/ijerph6123127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/18/2009] [Accepted: 11/26/2009] [Indexed: 11/17/2022]
Abstract
In order to ensure the safety of consumers in Serbia the prevalence of toxic elements (As, Cd, Hg, Pb) in swine kidney collected from three different areas in Serbia (n = 90) was determined by atomic absorption spectrometry. Also, in order to find information on the effects of accumulation of toxic elements on swine kidney, pathohistological examination of the kidneys was performed. The presence of mercury was found in 33.3% of kidney samples in the range of 0.005-0.055 mg/kg, while the presence of cadmium was detected less often (27.7%) but in larger amounts (0.05-1.23 mg/kg). The presence of arsenic was found only in one sample, while no lead was found. The results of the metal-to-metal correlation analysis supported there were the result of different sources of contamination. Pathohistological examination of kidneys confirms tubulopathies with oedema and cell vacuolization. In addition, haemorrhages and necrosis of proximal kidney tubule cells were found. This study demonstrates that toxic elements in Serbian slaughtered pigs are found at levels comparable to those reported in other countries, and consequently the levels reported in this study do not represent a concern from a consumer safety point of view. The lack of a strong correlation between histopathological changes and the incidence of toxic elements found in this study might be explained as the result of synergism among toxic elements and other nephrotoxic compounds which enhance the toxicity of the individual toxins even at the relatively low mean concentrations observed in this study.
Collapse
|
30
|
Wang L, Chen D, Cao J, Liu Z. Protective effect of N-acetylcysteine on experimental chronic cadmium nephrotoxicity in immature female rats. Hum Exp Toxicol 2009; 28:221-9. [PMID: 19734274 DOI: 10.1177/0960327109102365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the present study, female Sprague-Dawley rats received CdCl(2) (50 mg/L through drinking water) and/or N-acetylcysteine (NAC, 120 mg/kg/day, orally) to investigate the protective effect of NAC on Cd-induced renal damage. Renal toxicity was evaluated by measuring the contents of total protein, beta(2)-microglobulin, and alpha(1)-microglobulin in the urine and urinary enzyme markers of tubular necrosis, as well as levels of serum urea nitrogen and serum creatinine. Activities of antioxidant enzymes and contents of glutathione, malondialdehyde, and trace elements in the kidney were also measured. Animals that received both Cd and NAC showed a better renal function than those receiving Cd alone. In addition, NAC significantly reduced the levels of lipid peroxidation (LPO) in the kidney of cadmium-treated rats. The enzymic and nonenzymatic antioxidants levels are not restored, but their further decrease is prevented by NAC. Also NAC administration does not modify the urinary excretion of cadmium or contents of cadmium in the serum and kidney. In conclusion, NAC exerts its protective effect by decreased LPO and improving antioxidants status to prevent renal tubular damage induced by chronic Cd administration, most probably through its antioxidant properties.
Collapse
Affiliation(s)
- L Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Liu J, Zhou ZX, Zhang W, Bell MW, Waalkes MP. Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int 2009; 29:1222-9. [PMID: 19490425 PMCID: PMC3500762 DOI: 10.1111/j.1478-3231.2009.02007.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Zinc (Zn) administration at non-toxic doses protects against the hepatotoxicity produced by many agents, but the underlying mechanisms remain elusive. AIM To examine the basis of Zn-induced generalised hepatoprotective effects. METHODS Rats and mice were given Zn at known hepatoprotective levels (100 mumol ZnCl2/kg/day, s.c., for 4 days) and molecular responses were assessed. RESULTS Zn treatment produced changes in 5% of the genes on custom-designed mouse liver array and Rat Toxicology-II array. Changes in gene expression were further confirmed and extended by real-time reverse transcriptase-polymerase chain reaction. Zn treatment dramatically increased the expression of the metallothionein (Mt), and modestly increased the expression of acute-phase protein genes (ceruloplasmin, Stat3, egr1, Cxc chemokines and heat-shock proteins). For genes encoding for antioxidant enzymes, some were increased (Nrf2 and Nqo1), while others remained unaltered (Cu, Zn SOD and glutathione S-transferases). Expressions of cytokine and pro-inflammatory genes were not affected, while genes related to cell proliferation (cyclin D1) were modestly upregulated. Some metabolic enzyme genes, including cytochrome P450s and UDP-glucuronosyltransferase, were modestly suppressed, perhaps to switch cellular metabolic energy to acute-phase responses. Liver Zn content was increased between 1.6- and 2.1-fold, while hepatic MT protein was increased between 50 and 200-fold. Mice typically showed greater responses than rats. CONCLUSION Such gene expression changes, particularly the dramatic induction of MT and Nrf2 antioxidant pathway, occur in the absence of overt liver injury, and are probably important in the hepatoprotective effects of Zn against toxic insults.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| | - Zhan-Xiang Zhou
- Department of Medicine, University of Louisville, Louisville, KY
| | - Wei Zhang
- Laboratory of Pharmacology, NIEHS, Research Triangle Park, NC
| | - Matthew W. Bell
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| |
Collapse
|
32
|
Markkanen A, Juutilainen J, Naarala J. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int J Radiat Biol 2009; 84:742-51. [DOI: 10.1080/09553000802360836] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Wiseman CLS, Zereini F. Airborne particulate matter, platinum group elements and human health: a review of recent evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2493-2500. [PMID: 19181366 DOI: 10.1016/j.scitotenv.2008.12.057] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
Environmental concentrations of the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) have been on the rise, due largely to the use of automobile catalytic converters which employ these metals as exhaust catalysts. It has generally been assumed that the health risks associated with environmental exposures to PGE are minimal. More recent studies on PGE toxicity, environmental bioavailability and concentrations in biologically relevant media indicate however that environmental exposures to these metals may indeed pose a health risk, especially at a chronic, subclinical level. The purpose of this paper is to review the most recent evidence and provide an up-to-date assessment of the risks related to environmental exposures of PGE, particularly in airborne particulate matter (PM). This review concludes that these metals may pose a greater health risk than once thought for several reasons. First, emitted PGE may be easily mobilised and solubilised by various compounds commonly present in the environment, thereby enhancing their bioavailability. Second, PGE may be transformed into more toxic species upon uptake by organisms. The presence of chloride in lung fluids, for instance, may lead to the formation of halogenated PGE complexes that have a greater potential to induce cellular damage. Third, a significant proportion of PGE found in airborne PM is present in the fine fraction that been found to be associated with increases in morbidity and mortality. PGE are also a concern to the extent that they contribute to the suite of metals found in fine PM suspected of eliciting a variety of health effects, especially in vulnerable populations. All these factors highlight the need to monitor environmental levels of PGE and continue research on their bioavailability, behaviour, speciation and associated toxicity to enable us to better assess their potential to elicit health effects in humans.
Collapse
|
34
|
Liu J, Wu Q, Lu YF, Pi J. New insights into generalized hepatoprotective effects of oleanolic acid: key roles of metallothionein and Nrf2 induction. Biochem Pharmacol 2008; 76:922-8. [PMID: 18706400 DOI: 10.1016/j.bcp.2008.07.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 12/15/2022]
Abstract
Oleanolic acid (OA) is a natural triperpenoid that protects against a variety of hepatotoxicants such as carbon tetrachloride, cadmium, acetaminophen, and bromobenzene. To gain insight into the molecular mechanisms of this generalized hepatoprotection, genomic analysis was performed on mouse and rat livers after OA treatment. Mice and rats were given OA at a hepatoprotective dose (50 micromol/kg, s.c., daily for 4 days) and hepatic RNA was isolated, purified, and subjected to gene expression analysis. OA treatment produced changes in 5% of the genes on custom-designed mouse liver array and rat toxicology-II array. Changes in key gene expressions were further analyzed by real-time RT-PCR. OA treatment dramatically increased expression of hepatic metallothionein (Mt), and increased the expression of the nuclear factor E2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (Nqo1), heme oxygenase-1 (Hmox1), and glutamate-cysteine ligases (Gclc and Gclm). OA treatment also increased the expression of genes related to cell proliferation and suppressed the expression of several cytochrome P450 genes possibly to switch cellular metabolic energy to an acute-phase response. Hepatic MT protein was increased 60- and 15-fold in mice and rats, respectively, together with a 30% increase in mouse liver zinc. These gene expression changes, particularly the dramatic induction of MT and the Nrf2 signaling, occur with hepatoprotection doses of OA, and likely are important in the generalized protective effects of OA against hepatotoxicants.
Collapse
Affiliation(s)
- Jie Liu
- Zunyi Medical College, Key Laboratory of Pharmacology, 201 Dalian Road, Zunyi 563000, China.
| | | | | | | |
Collapse
|
35
|
Amaro F, del Pilar de Lucas M, Martín-González A, Gutiérrez JC. Two new members of the Tetrahymena multi-stress-inducible metallothionein family: characterization and expression analysis of T. rostrata Cd/Cu metallothionein genes. Gene 2008; 423:85-91. [PMID: 18675326 DOI: 10.1016/j.gene.2008.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/17/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
Abstract
We report the cloning and characterization of two new metallothionein (MT) genes (TrosMTT1 and TrosMTT2), isolated as cDNAs, from the ciliated protozoa Tetrahymena rostrata. The TrosMTT1 inferred protein has been identified as a CdMT and included into the 7a subfamily of Tetrahymena MTs, while TrosMTT2 has been identified as a CuMT (including it into 7b subfamily), due to its similarity to TpigMT-2 and its significant induction by copper. TrosMTT1 protein sequence reveals a remarkably regular and hierarchical modular organization, as it is known for other Tetrahymena CdMTs, showing a bi-modular structure. TrosMTT2 presents a structural organization based on CKCX(2-5)CKC repeats, like it occurs in other Tetrahymena CuMTs, indicating that an evolutionary history based on intra-gene duplications might be also possible. Both are also multi-stress-inducible genes because they are induced by other heavy metals and stressors, as it has been shown by quantitative real-time RT-PCR. It is the first time that the gene expression of a putative Tetrahymena CuMT is analyzed by quantitative PCR, confirming it as a CuMT. These two new Tetrahymena MTs complete, at present, the actual view of this protein superfamily, and corroborate the unique features of ciliate MTs. Furthermore, both, a comparative analysis of relative gene expression values obtained by quantitative RT-PCR on other Tetrahymena MT genes and an analysis of the different Tetrahymena MTs based on the different Cys clusters of these proteins are carried out, which show an update view of Tetrahymena MT gene family.
Collapse
Affiliation(s)
- Francisco Amaro
- Departamento de Microbiología-III, Facultad de Biología, C/, José Antonio Novais, 2, Universidad Complutense (UCM), 28040 Madrid, Spain
| | | | | | | |
Collapse
|
36
|
An KW, Shin HS, Choi CY. Physiological responses and expression of metallothionein (MT) and superoxide dismutase (SOD) mRNAs in olive flounder, Paralichthys olivaceus exposed to benzo[a]pyrene. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:534-9. [PMID: 18203642 DOI: 10.1016/j.cbpb.2007.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/13/2022]
Abstract
We cloned complementary DNA (cDNA) encoding metallothionein (MT) and superoxide dismutase (SOD) from the liver of olive flounder, Paralichthys olivaceus. The full-length MT cDNA consists of 183 base pairs (bp) and encodes a protein of 60 amino acids; partial SOD cDNA consists of 326 bp and encodes a protein of 109 amino acids. We investigated the dose- and time-related effects of the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) on MT and SOD mRNA using quantitative polymerase chain reaction (QPCR). The expression levels of MT mRNA were highest at 24 h (about five times) in 10 microg/L BaP, and at 6 h (about twelve times) in 30 microg/L BaP. The expression levels of SOD mRNA were highest at 12 h (about three times) in 10 microg/L BaP, and at 6 h (about six times) in 30 microg/L BaP, and then decreased toward the end of the experiment. We also measured plasma glucose and cortisol, all of which increased with BaP exposure. These results suggest that MT and SOD play an important role in the detoxification of reactive oxygen species (ROS) caused by BaP exposure, and thus may be indicators of oxidative stress responses.
Collapse
Affiliation(s)
- Kwang Wook An
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan, 606-791, South Korea
| | | | | |
Collapse
|
37
|
Choi CY, An KW, Nelson ER, Habibi HR. Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:595-600. [PMID: 17369103 DOI: 10.1016/j.cbpc.2007.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is a widespread non-essential heavy metal that enters the aquatic environment as a result of natural and human-caused activities, including industrial effluent, mining, and agricultural runoff. In the present study, we investigated time and dose-related effect of CdCl(2) on metallothionein (MT) and glutathione peroxidase (GPX) mRNA levels in a number of goldfish tissues, in vivo. Basal MT and GPX mRNA levels remained unchanged in the tissues tested throughout the experiment. Injection with CdCl(2) significantly increased MT mRNA levels in the brain, liver, kidney and intestine in a dose-dependant manner at all time tested (6, 12, 24 and 36 h). We isolated the full length GPX cDNA from goldfish kidneys, and found it to contain 785 nucleotides, including an open reading frame, predicted to encode a protein of 142 amino acids. In contrast, injection with CdCl(2) significantly decreased GPX mRNA levels in the liver and kidney in a time-, and dose-, dependant, and became undetectable after 12, 24 and 36 h. The findings provide molecular characterization of MT and GPX in goldfish and suggest that exposure to Cd results in significant physiological changes in goldfish.
Collapse
Affiliation(s)
- Cheol Young Choi
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan, 606-791, South Korea.
| | | | | | | |
Collapse
|
38
|
Díaz S, Amaro F, Rico D, Campos V, Benítez L, Martín-González A, Hamilton EP, Orias E, Gutiérrez JC. Tetrahymena metallothioneins fall into two discrete subfamilies. PLoS One 2007; 2:e291. [PMID: 17356700 PMCID: PMC1808422 DOI: 10.1371/journal.pone.0000291] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/20/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. METHODOLOGY/PRINCIPAL FINDINGS We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3' UTR of the MTT5 mRNA with potential regulatory activity is reported. CONCLUSION/SIGNIFICANCE The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances.
Collapse
Affiliation(s)
- Silvia Díaz
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense (UCM), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gagnon ZE, Patel A. Induction of metallothionein in chick embryos as a mechanism of tolerance to platinum group metal exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:381-7. [PMID: 17365305 DOI: 10.1080/10934520601144691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent data show that platinum group metals (PGMs), primarily platinum (Pt), palladium (Pd) and rhodium (Rd), from automobile catalytic converters are being deposited in the environment. We investigated the PGM neurotoxicity and tolerance mechanism by induction of metallothionein (MT) in developing chick embryos. Chick embryos were injected on the 7th and 14th days of incubation with different concentrations of Pt and mixture of Pt, Pd and Rh (PGM mix) solutions. It is documented that induction of MT by zinc (Zn+2) protects against metal and non-metal hepatotoxicity. In this study the MT induction was examined through pretreatment of the two highest Pt(IV) exposure levels with exogenous Zn2+ on the 4th and 11th days of incubation. SDS-PAGE assay and digital image system were used to identify and quantify MT in homogenized brain and liver tissues. Quantitative analysis revealed an increase of MT in the 5 ppm Pt exposure as compared to controls. The 10 ppm Pt treatment was a lethal dose for exposed embryos. There was increased mortality at the 1.0 PGM mix level. The interaction of Pt, Pd and Rh in the mixture seems to favor metal accumulation and MT induction in the liver but not the brain. Pretreatment with exogenous Zn2+ increased chick survival. These results indicate that induction of MT plays a protective role against PGM toxicity. Metal analysis using atomic absorption spectrometer in graphite furnace mode (GFAAS) revealed PGM accumulation in chick embryo liver and brain tissues proportional to exposure concentration. Our results may imply that MT has an important role as a tolerance mechanism against PGM toxicity. The presence of Pt(IV) in brain tissue suggests that the undeveloped blood-brain barrier is permeable to PGMs. This raises concerns regarding the implication of these metals on neural injury.
Collapse
Affiliation(s)
- Zofia E Gagnon
- School of Science, Marist College, Poughkeepsie, NY 12601, USA.
| | | |
Collapse
|
40
|
Swiergosz-Kowalewska R, Bednarska A, Kafel A. Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. CHEMOSPHERE 2006; 65:963-74. [PMID: 16674991 DOI: 10.1016/j.chemosphere.2006.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/08/2006] [Accepted: 03/18/2006] [Indexed: 05/09/2023]
Abstract
The biochemical response to chronic heavy metal exposure was studied in tissues of bank voles Clethrionomys glareolus. Animals were collected from three sites located 4, 8 and 30km from a zinc-lead smelter, the area's main source of metal contamination. Concentrations of Cd, Pb, Zn and Fe were measured in the liver, kidneys and gonads to assess the level of metal intoxication. In response to intoxication, organisms activate detoxification mechanisms which can protect animals from metals' toxicity. Glutathione plays an important role in toxic substance detoxification. Total glutathione (tGSH) and glutathione disulfide (GSSG) were measured in the tissues. Also, the activity of glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) was measured in the studied tissues. Results indicate that levels of all studied parameters were tissue and site-dependent. Evidence indicates that the most sensitive parameter of metal toxicity for animals living in a chronically contaminated environment is the GSH/GSSG ratio. In our study, the GSH/GSSG ratio was decreased in the liver of animals with high Cd levels. However, the relationship between Pb and the GSH/GSSG ratio was positive in the gonads. Cadmium and lead negatively influenced GPX activity in the liver; this was probably connected with inhibition of the Se-dependent fraction. The relationship between iron and GR activity in the kidney was also negative, but other correlations for iron both in liver and kidney were not significant. Positive correlations between Zn levels and GST and GR activity were found in the gonads of bank voles.
Collapse
Affiliation(s)
- R Swiergosz-Kowalewska
- Institute of Environmental Sciences, Department of Ecotoxicology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
41
|
Liu J, Cheng ML, Shi JZ, Yang Q, Wu J, Li CX, Waalkes MP. Differential effects between maotai and ethanol on hepatic gene expression in mice: Possible role of metallothionein and heme oxygenase-1 induction by maotai. Exp Biol Med (Maywood) 2006; 231:1535-41. [PMID: 17018877 DOI: 10.1177/153537020623100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcohol is a risk factor for liver fibrosis and hepatocellular carcinoma. On the other hand, light alcoholic beverage consumption is believed to be beneficial because of the effects of both alcohol and nonalcoholic components of the beverage. Maotai is a commonly consumed beverage in China containing 53% alcohol. Epidemiological and experimental studies show that Maotai is less toxic to the liver than ethanol alone. To examine the differential effects of Maotai and ethanol, a low dose of Maotai or an equal amount of ethanol (53%, v/v in water, 5 ml/kg) were given to male mice daily for 1 week, and hepatic RNA was extracted for microarray analysis. Approximately 10% of genes on the liver-selective custom array (588 genes) were altered following Maotai or ethanol administration, but Maotai treated livers had fewer alterations compared with ethanol alone. Real-time reverse transcription-polymerase chain reaction confirmed and extended microarray results on selected genes. An induction of metallothionein and heme oxygenase-1 occurred with Maotai, which could not be explained by alcohol consumption alone, whereas the attenuation of ethanol responsive genes such as quinone dehydrogenase, DNA-ligase 1, IGFBP1, and IL-1beta suggests less liver injury occurred with Maotai. The expression of genes related to liver fibrosis, such as cytokeratin-18, was slightly increased by the high dose of ethanol, but was unchanged in the Maotai group. In summary, gene expression analysis indicates that Maotai induces a different response than ethanol alone. The dramatic induction of metallothionein and heme oxygenase-1 with Maotai could be important adaptive responses to reduce alcoholic liver injury.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Williams BL, Yaddanapudi K, Kirk CM, Soman A, Hornig M, Lipkin WI. Metallothioneins and zinc dysregulation contribute to neurodevelopmental damage in a model of perinatal viral infection. Brain Pathol 2006; 16:1-14. [PMID: 16612977 PMCID: PMC8095830 DOI: 10.1111/j.1750-3639.2006.tb00556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neonatal Borna disease (NBD) virus infection in the Lewis rat results in life-long viral persistence and causes behavioral and neurodevelopmental abnormalities. A hallmark of the disorder is progressive loss of cerebellar Purkinje and dentate gyrus granule cells. Findings of increased brain metallothionein-I and -II (MT-I/-II) mRNA expression in cDNA microarray experiments led us to investigate MT isoforms and their relationship to brain zinc metabolism, cellular toxicity, and neurodevelopmental abnormalities in this model. Real-time PCR confirmed marked induction of MT-I/-II mRNA expression in the brains of NBD rats (40.5-fold increase in cerebellum, p<0.0001; 6.8-fold increase in hippocampus, p=0.003; and 9.5-fold increase in striatum, p=0.0012), whereas a trend toward decreased MT-III mRNA was found in hippocampus (1.25-fold decrease, p=0.0841). Double label immunofluorescence revealed prominent MT-I/-II expression in astrocytes throughout the brain; MT-III protein was decreased in granule cell neurons and increased in astrocytes, with differential subcellular distribution from cytoplasmic to nuclear compartments in NBD rat hippocampus. Modified Timm staining of hippocampus revealed reduced zinc in mossy fiber projections to the hilus and CA3, accumulation of zinc in glial cells and degenerating granule cell somata, and robust mossy fiber sprouting into the inner molecular layer of the dentate gyrus. Zinc Transporter 3 (ZnT-3) mRNA expression was decreased in hippocampus (2.3-fold decrease, p= 0.0065); staining for its correlate protein was reduced in hippocampal mossy fibers. Furthermore, 2 molecules implicated in axonal pathfinding and mossy fiber sprouting, the extracellular matrix glycoprotein, tenascin-R (TN-R), and the hyaluronan receptor CD44, were increased in NBD hippocampal neuropil. Abnormal zinc metabolism and mechanisms of neuroplasticity may contribute to the pathogenesis of disease in this model, raising more general implications for neurodevelopmental damage following viral infections in early life.
Collapse
Affiliation(s)
- Brent L. Williams
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
- Department of Microbiology and Molecular Genetics, University of California, Irvine
| | - Kavitha Yaddanapudi
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
| | - Cassandra M. Kirk
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
| | - Arya Soman
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
| | - Mady Hornig
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
| | - W. Ian Lipkin
- Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
43
|
Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW. Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci U S A 2005; 102:3401-6. [PMID: 15722412 PMCID: PMC552906 DOI: 10.1073/pnas.0406085102] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular necrosis is a sensitive endpoint for cadmium (Cd(2+), Cd) toxicity across all species tested. Resistance to Cd-induced testicular damage is a recessive trait assigned to the Cdm locus on mouse chromosome 3. We first narrowed the Cdm-gene-containing region to 880 kb. SNP analysis of this region from two sensitive and two resistant inbred strains demonstrated a 400-kb haplotype block consistent with the Cd-induced toxicity phenotype; in this region is the Slc39a8 gene encoding a member of the solute-carrier superfamily. Slc39a8 encodes SLC39A8 (ZIP8), whose homologs in plant and yeast are putative zinc transporters. We show here that ZRT-, IRT-like protein (ZIP)8 expression in cultured mouse fetal fibroblasts leads to a >10-fold increase in the rate of intracellular Cd influx and accumulation and 30-fold increase in sensitivity to Cd-induced cell death. The complete ZIP8 mRNA and intron-exon splice junctions have no nucleotide differences between two sensitive and two resistant strains of mice; by using situ hybridization, we found that ZIP8 mRNA is prominent in the vascular endothelial cells of the testis of the sensitive strains of mice but absent in these cells of resistant strains. Slc39a8 is therefore the Cdm gene, defining sensitivity to Cd toxicity specifically in vascular endothelial cells of the testis.
Collapse
Affiliation(s)
- Timothy P Dalton
- Department of Environmental Health and the Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yin H, Smith M, Glass J. Stable expression of C/EBPalpha in prostate cancer cells down-regulates metallothionein and increases zinc-induced toxicity. Prostate 2005; 62:209-16. [PMID: 15389791 DOI: 10.1002/pros.20136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The transcription factor C/EBPalpha regulates terminal differentiation of various cell types. C/EBPalpha is expressed in prostate epithelium but its role in prostate development and malignant transformation is unknown. In examining the effect of forced expression of C/EBPalpha on the global gene expression profile in prostate cancer cells, we found that C/EBPalpha significantly decreased the RNA level of metallothioneins (MTs). METHODS The prostate cancer cell lines DU145, LNCaP, and PC3 with stable overexpression of C/EBPalpha were established with a retroviral expression system. MT expression was assayed by Western blot analysis and with the MT promoter in a plasmid using luciferase as a reporter. RESULTS Under basal conditions and in response to zinc, forced overexpression of C/EBPalpha decreased expression of MT isoforms 1A, B, F, and H, IIA and III. Following zinc exposure C/EBPalpha inhibited MT promoter activity by 1.5-2.5-fold. Overexpression of C/EBPalpha led to increased cytotoxicity of zinc at concentration of 150 microM in DU145 and LNCaP cells. CONCLUSIONS Our data demonstrated that expression of MTs in prostate cancer cells is inhibited by C/EBPalpha and the effect may have functional significance in regulating the growth of prostate cancer cells and the response of these cells to environment stresses.
Collapse
Affiliation(s)
- Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
45
|
Cai L. Metallothionein as an adaptive protein prevents diabetes and its toxicity. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:89-103. [PMID: 19330125 PMCID: PMC2655702 DOI: 10.1080/15401420490464367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metallothioneins (MTs) are a group of intracellular metal-binding and cysteine-enriched proteins and are highly inducible in many tissues in response to various types of stress. Although it mainly acts as a regulator of metal homeostasis such as zinc and copper in tissues, MT also acts as a potent antioxidant and adaptive (or stress) protein to protect cells and tissues from oxidative stress. Diabetes affects many Americans and other populations, and its development and toxic effect on various organs have been attributed to increased oxidative stress. Studies showed that zinc-induced or genetically enhanced pancreatic MT synthesis prevented diabetes induced by chemicals such as streptozotocin and alloxan, and zinc pretreatment also prevented spontaneously developed diabetes. Since diabetic complications are the consequences of organ damage caused by diabetic hyperglycemia and hyperlipidemia through oxidative stress, whether MT in nonpancreatic organs also provides a preventive effect on diabetic toxicity has been recently investigated. We demonstrated that overexpression of cardiac MT significantly prevented diabetes-induced cardiomyopathy. Likewise, overexpression of renal MT also prevented diabetes-induced renal toxicity. In addition, we also found that MT as an adaptive protein is overexpressed in several organs in response to diabetes. Therefore, the biological importance of diabetes-induced MT in diabetic complications and subsequent other pathogenesis was further explored. We found that diabetes-induced hepatic and renal MT synthesis was accompanied by a significant prevention of endotoxin-induced hepatic toxicity and cisplatin-induced renal toxicity. These studies suggest that MT as an adaptive protein can prevent both diabetes development and its complications or subsequent suffered other pathogenic injury.
Collapse
Affiliation(s)
- Lu Cai
- Department of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY; Department of Toxicology, School of Preventive Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
46
|
Mumtaz MM, Tully DB, El-Masri HA, De Rosa CT. Gene induction studies and toxicity of chemical mixtures. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110 Suppl 6:947-56. [PMID: 12634124 PMCID: PMC1241277 DOI: 10.1289/ehp.02110s6947] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of its mixtures program, the Agency for Toxic Substances and Disease Registry (ATSDR) supports in vitro and limited in vivo toxicity testing to further our understanding of the toxicity and health effects of chemical mixtures. There are increasing concerns that environmental chemicals adversely affect the health of humans and wildlife. These concerns have been augmented by the realization that exposure to chemicals often occurs to mixtures of these chemicals that may exhibit complex synergistic or antagonistic interactions. To address such concerns, we have conducted two studies with techniques that are being used increasingly in experimental toxicology. In the first study, six organochlorine pesticides (4,4 -DDT, 4,4 -DDD, 4,4 -DDE, aldrin, dieldrin, or endrin) were selected from the ATSDR Comprehensive Environmental Response, Compensation and Liability Act of 1980 (or Superfund) priority list and tested for their ability to modulate transcriptional activation of an estrogen-responsive reporter gene in transfected HeLa cells. In these assays, HeLa cells cotransfected with an expression vector encoding estrogen receptor and an estrogen-responsive chloramphenicol acetyltransferase (CAT) reporter plasmid were dosed with and without selected environmental chemicals either individually or in defined combinations. Estradiol consistently elicited 10- to 23-fold dose-dependent inductions in this assay. By contrast, all six of the organochlorine pesticides showed no detectable dose-related response when tested either individually or in binary combinations. Thus, these chemicals as binary mixtures do not exhibit any additional estrogenicity at the levels tested in these assays. In the second study, arsenic [As(V)], cadmium [Cd(II)], chromium [Cr(III, VI)], and lead [Pb(II)] were tested in a commercially developed assay system, CAT-Tox (L), to identify metal-responsive promoters and to determine whether the pattern of gene expression changed with a mixture of these metals. This assay employs a battery of recombinant HepG2 cell lines to test the transcriptional activation capacity of xenobiotics in any of 13 different signal-transduction pathways. Singly, As(V), Cd(II), Cr(III, VI), and Pb(II) produced complex induction profiles in these assays. However, no evidence of synergistic activity was detected with a mixture of Cd(II), Cr(III), and Pb(II). These results have shown metal activation of gene expression through several previously unreported signal-transduction pathways and thus suggest new directions for future studies into their biochemical mechanisms of toxicity. In conclusion, the (italic)in vitro(/italic) methods used in these studies provide insights into complex interactions that occur in cellular systems and could be used to identify biomarkers of exposure to other environmental chemical mixtures.
Collapse
Affiliation(s)
- M M Mumtaz
- Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
47
|
Mercury Induces Cytotoxicity and Transcriptionally Activates Stress Genes in Human Liver Carcinoma (HepG2) Cells. Int J Mol Sci 2002. [DOI: 10.3390/i3090965] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Savva D, Garcia-Aljaro C, Lawes KP, Swiergosz-Kowalewska R. Characterisation of DNA probes for the analysis of metallothionein gene expression in the bank vole (Clethrionomys glareolus). ENVIRONMENT INTERNATIONAL 2002; 28:139-146. [PMID: 12222609 DOI: 10.1016/s0160-4120(02)00019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA probes have been developed for subsequent use in monitoring the exposure of animals to heavy metal pollution in terrestrial environments using metallothionein (MT) gene expression in the bank vole (Clethrionomys glareolus). Three different bank vole sequences were characterised corresponding to the cDNA and the genomic DNA for MT-I and the genomic DNA for MT-II. Nucleotide sequence analysis indicates that the coding sequences of the bank vole MT-I and MT-II genes exhibit a very high degree of similarity (greater than 92%) to the corresponding genes of the Chinese hamster, the mouse and the rat. In common with other mammalian MT genes, both the MT-I and MT-II genes in the bank vole are interrupted by two introns, which are at identical positions as those in other rodent MT genes; furthermore, the sizes of these introns are similar to those in other rodents with the first intron being larger than the second and those in the MT-I gene being larger than those in the MT-II gene. The predicted amino acid sequence for the proteins shows that both proteins contain 20 cysteine residues at positions identical to those in other known mammalian MTs. The availability of these DNA sequences now provides a good opportunity to investigate MT gene expression and possible gene amplification in bank voles exposed to metal pollution.
Collapse
Affiliation(s)
- Demetris Savva
- Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, UK.
| | | | | | | |
Collapse
|
49
|
Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J. Methods of in vitro toxicology. Food Chem Toxicol 2002; 40:193-236. [PMID: 11893398 DOI: 10.1016/s0278-6915(01)00118-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro methods are common and widely used for screening and ranking chemicals, and have also been taken into account sporadically for risk assessment purposes in the case of food additives. However, the range of food-associated compounds amenable to in vitro toxicology is considered much broader, comprising not only natural ingredients, including those from food preparation, but also compounds formed endogenously after exposure, permissible/authorised chemicals including additives, residues, supplements, chemicals from processing and packaging and contaminants. A major promise of in vitro systems is to obtain mechanism-derived information that is considered pivotal for adequate risk assessment. This paper critically reviews the entire process of risk assessment by in vitro toxicology, encompassing ongoing and future developments, with major emphasis on cytotoxicity, cellular responses, toxicokinetics, modelling, metabolism, cancer-related endpoints, developmental toxicity, prediction of allergenicity, and finally, development and application of biomarkers. It describes in depth the use of in vitro methods in strategies for characterising and predicting hazards to the human. Major weaknesses and strengths of these assay systems are addressed, together with some key issues concerning major research priorities to improve hazard identification and characterisation of food-associated chemicals.
Collapse
Affiliation(s)
- G Eisenbrand
- University of Kaiserslautern, Department of Chemistry Food Chemistry & Environmental Toxicology, PO Box 3049, D-67653, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Devi KD, Banu BS, Mahboob M, Jamil K, Grover P. In vivo genotoxic effect of cadmium chloride in mice leukocytes using comet assay. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 2002; 21:325-33. [PMID: 11746246 DOI: 10.1002/tcm.1020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alkaline single cell gel electrophoresis (SCGE) or "comet" assay under alkaline conditions was used to measure DNA damage in the leukocytes of Swiss Albino male mice exposed to cadmium chloride (CdCl(2)). The effect of CdCl(2) was studied after a single acute oral administration of a range of doses starting from 0.5 to 128.0 mg/kg b.wt of CdCl(2). The samples of whole blood were collected from each mouse at 24, 48, 72, and 96 h post-treatment to study single/double strand breaks in DNA. A significant increase in mean comet tail length indicating DNA damage was observed with CdCl(2) at 24 h post-treatment (P<0.05) with CdCl(2) when compared to controls. A gradual decrease in the mean tail length was observed at 48 h post-treatment indicating repair of the damaged DNA. The mean tail length showed a dose-related increase and time-dependent decrease after treatment with CdCl(2) when compared to controls. The study also confirms that the comet assay is a sensitive and rapid method to detect DNA damage caused by heavy metal like Cadmium (Cd).
Collapse
Affiliation(s)
- K D Devi
- Toxicology Unit, Biology and Biotechnology Division, Indian Institute of Chemical Technology, Hyderabad, A.P., India
| | | | | | | | | |
Collapse
|