1
|
van Larebeke N, Colles A, Leermakers M, Den Hond E, Voorspoels S, Goderis L, Schoeters G. Organic food and internal exposure to pollutants among Flemish adolescents. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1315-1336. [PMID: 39196262 DOI: 10.1080/19440049.2024.2386143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
Contrary to the initial hypothesis, Flemish adolescents who reported consuming organic food at least 7.5 times per week did not exhibit reduced internal exposure to the tested recently used pesticides. After adjustment for gender, age, country of origin, socioeconomic status, body mass index, consumption of high-fat foods and foods linked to organic food consumption, and concerning organochlorine derivatives and lead, additional adjustment for the duration of breastfeeding expressed in weeks, they displayed slightly elevated internal exposure to organochlorine derivatives, lead, methyl arsenate, and toxic relevant arsenic. A comparison was also made between the correlation of internal exposure to pollutants with the frequency of organic food consumption on one hand and the total consumption of equivalent products from all sources on the other. Regarding potatoes, vegetables, and fruits, no clear trends were observed. Regarding eggs, there was a trend towards higher internal exposures with organic food consumption, significant for trans-nonachlor, PCB118, and 2,4-dichlorophenoxyacetic acid, and marginally significant for glyphosate. For dairy, there was a trend towards higher internal exposures with organic food consumption, significant for perfluorononanoic acid and marginally significant for PCB153. Regarding nuts and seeds, the higher internal exposure to dichlorophenoxyacetic acid and the lower exposure to 3-phenoxybenzoic acid were marginally significant, while there was also a trend towards higher internal exposure to other pollutants with organic food consumption, significant for PCB118, PCB153, and sum PCBs, and marginally significant for trans-nonachlor. Concerning breakfast cereals and muesli, no clear trends were observed.
Collapse
Affiliation(s)
- Nicolas van Larebeke
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Martine Leermakers
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Voorspoels
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Lode Goderis
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Chronister BNC, Justo D, Wood RJ, Lopez-Paredes D, Gonzalez E, Suarez-Torres J, Gahagan S, Martinez D, Jacobs DR, Checkoway H, Jankowska MM, Suarez-Lopez JR. Sex and adrenal hormones in association with insecticide biomarkers among adolescents living in ecuadorian agricultural communities. Int J Hyg Environ Health 2024; 259:114386. [PMID: 38703462 PMCID: PMC11421858 DOI: 10.1016/j.ijheh.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17β-estradiol, and cortisol. We used general linear models to assess linear (β = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (β2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (βboys = 5.88% [1.21%, 10.78%], βgirls = 4.10% [-0.02%, 8.39%]), and cortisol (βboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (β2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (β2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (βboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (βboys = 3.90% [1.28%, 6.58%]) were positively associated with 17β-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17β-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.
Collapse
Affiliation(s)
- Briana N C Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Denise Justo
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert J Wood
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Eduardo Gonzalez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Los Angeles, CA, 91010, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Shi MH, Yan Y, Niu X, Wang JF, Li S. GPR39-mediated ERK1/2 signaling reduces permethrin-induced proliferation of estrogen receptor α-negative cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116303. [PMID: 38599157 DOI: 10.1016/j.ecoenv.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Certain insecticides are known to have estrogenic effects by activating estrogen receptors through genomic transcription. This has led researchers to associate specific insecticide use with an increased breast cancer risk. However, it is unclear if estrogen receptor-dependent pathways are the only way in which these compounds induce carcinogenic effects. The objective of this study was to determine the impact of the pyrethroid insecticide permethrin on the growth of estrogen receptor negative breast cancer cells MDA-MB-231. Using tandem mass spectrometric techniques, the effect of permethrin on cellular protein expression was investigated, and gene ontology and pathway function enrichment analyses were performed on the deregulated proteins. Finally, molecular docking simulations of permethrin with the candidate target protein was performed and the functionality of the protein was confirmed through gene knockdown experiments. Our findings demonstrate that exposure to 10-40 μM permethrin for 48 h enhanced cell proliferation and cell cycle progression in MDA-MB-231. We observed deregulated expression in 83 upregulated proteins and 34 downregulated proteins due to permethrin exposure. These deregulated proteins are primarily linked to transmembrane signaling and chemical carcinogenesis. Molecular docking simulations revealed that the overexpressed transmembrane signaling protein, G protein-coupled receptor 39 (GPR39), has the potential to bind to permethrin. Knockdown of GPR39 partially impeded permethrin-induced cellular proliferation and altered the expression of proliferation marker protein PCNA and cell cycle-associated protein cyclin D1 via the ERK1/2 signaling pathway. These findings offer novel evidence for permethrin as an environmental breast cancer risk factor, displaying its potential to impact breast cancer cell proliferation via an estrogen receptor-independent pathway.
Collapse
Affiliation(s)
- Ming-Hui Shi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Yi Yan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Xi Niu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Jia-Fu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Sheng Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province 550025, China.
| |
Collapse
|
4
|
Tang F, Wang Y, Wang D, Yang Y, Chang J, Sun H, Gu S, He J. Streptavidin-biotin system-mediated immobilization of a bivalent nanobody onto magnetosomes for separation and analysis of 3-phenoxybenzoic acid in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1546-1553. [PMID: 38404205 DOI: 10.1039/d4ay00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compound 3-phenoxybenzoic acid (3-PBA) is frequently utilized as a biomarker to detect exposure to various pyrethroids. In this study, a bivalent nanobody (Nb2) specifically targeting 3-PBA was biotinylated and immobilized onto streptavidin (SA)-modified bacterial magnetic nanoparticles (BMPs), resulting in the formation of BMP-SA-Biotin-Nb2 complexes. These complexes demonstrated remarkable stability when exposed to strongly acidic solutions (4 M HCl), methanol (80%), and high ionic strength (1.37 M NaCl). An immunoassay was subsequently developed utilizing BMP-SA-Biotin-Nb2 as the capture agent and 3-PBA-horseradish peroxidase as the detection probe. The immunoassay exhibited an IC50 value (half-maximum signal inhibition concentration) of 1.11 ng mL-1 for 3-PBA. To evaluate the accuracy of the assay, spiked sheep and cow urine samples (ranging from 3.0 to 240 ng mL-1) were analyzed. The quantitative recoveries ranged from 82.5% to 113.1%, which agreed well with the findings obtained using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, the BMP-SA-Biotin-Nb2-based immunoassay holds great promise for rapid monitoring of 3-PBA following acid dissociation.
Collapse
Affiliation(s)
- Fang Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Yating Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Di Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Yayun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Jiashu Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Huabo Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| |
Collapse
|
5
|
Sheikh IA, Beg MA, Hamoda TAAM, Mandourah HMS, Memili E. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Front Cell Dev Biol 2023; 11:1173575. [PMID: 37187621 PMCID: PMC10175798 DOI: 10.3389/fcell.2023.1173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ishfaq Ahmad Sheikh,
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Erdogan Memili
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
6
|
Jia C, Zhang S, Cheng X, An J, Zhang X, Li P, Li W, Wang X, Yuan Y, Zheng H, Zhang X, Guo H, Yang H, Wu T, Jing T, He M. Association between serum pyrethroid insecticide levels and incident type 2 diabetes risk: a nested case-control study in Dongfeng-Tongji cohort. Eur J Epidemiol 2022; 37:959-970. [PMID: 36031647 DOI: 10.1007/s10654-022-00906-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/13/2022] [Indexed: 12/30/2022]
Abstract
Pyrethroid insecticides have been extensively used worldwide, but few studies explored the prospective association between pyrethroid exposure and incident type 2 diabetes (T2D). We conducted a nested case-control study of 2012 paired cases and controls, and measured eight pyrethroid insecticides in the baseline sera. We used conditional logistic regression models to estimate odds ratios (ORs) with 95% confidence intervals, and constructed multiple-pollutant models to investigate the association of pyrethroid mixture with incident T2D risk. The median concentrations (detection rates) were 3.53 μg/L (92.45%), 0.52 μg/L (99.80%), 1.16 μg/L (90.61%) and 1.43 μg/L (99.95%) for permethrin, cypermethrin, fenvalerate, and deltamethrin, respectively. Compared to participants with serum fenvalerate levels in the first quartile, the multivariable-adjusted ORs of incident T2D were 1.20 (95% CI 0.86-1.67), 1.41 (0.97-2.05), and 2.29 (1.27-4.11) for the second, third and fourth quartile (P trend = 0.01). Spline analysis further confirmed the positive association between serum fenvalerate levels and incident T2D risk (P for overall association = 0.006). Furthermore, mixture models revealed a positive association of pyrethroid mixture with incident T2D risk, with serum fenvalerate ranked as the top contributor (proportion of relative contribution: > 70%). We found that high concentrations of serum pyrethroid insecticides were significantly associated with an increased risk of incident T2D. The elevated risk was largely explained by fenvalerate. Further investigations are urgently needed to confirm our findings and elucidate the underlying mechanisms, given the widespread use of pyrethroids and the global pandemic of diabetes.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Zheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jing
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Hu C, Wang L, Ma Y, Xu Z, Lu H. Investigation on the interaction of pyrethroid pesticides to estrogen receptor alpha through computational and experimental methods. Colloids Surf B Biointerfaces 2022; 216:112565. [PMID: 35588686 DOI: 10.1016/j.colsurfb.2022.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Pyrethroid insecticides are a group of widely used bio-mimetic synthetic pesticides. However, recent studies reported that they could have an accumulation effect in human which may cause series of health problems. Estrogen receptors (ER) are a class of nuclear receptors that are vital in proper physiological behavior of estrogens. To investigate the reproductive toxicity of pyrethroids, homology modeling, molecular docking, molecular dynamic simulations (MDs) were conducted to explore the interaction between pyrethroids and ERα from atomic scale. The human ERα (2YJA) was selected as a template protein for homology modeling. Then eight typical pyrethroids and positive control estradiol were docked to the modeled protein. The highest scoring bifenthrin and the lowest scoring permethrin were chosen for in-depth analysis. MDs showed that the complex formed by permethrin with ERα had a lower RMSD value and binding free energies compared to bifenthrin. Based on these results from microscopic dimension, exposure experiments were implemented to validate the primary conclusions. VTG concentrations in male zebrafish's blood were significantly higher under permethrin exposure than bifenthrin, suggesting a stronger estrogenic activity and binding propensity. In this regard, the structural characteristics of molecules were analyzed, expecting to provide theoretical references for subsequent drug design and rational drug application.
Collapse
Affiliation(s)
- Caiwei Hu
- Department of Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Leng Wang
- Department of Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Yuhao Ma
- Department of Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Zhiyou Xu
- Department of Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Huizhe Lu
- Department of Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
8
|
Sun Y, Zhou Z, Jiang H, Duan Y, Li J, Liu X, Hong L, Zhao C. Preparation and evaluation of novel bio-based Bis-GMA-free dental composites with low estrogenic activity. Dent Mater 2021; 38:281-293. [PMID: 34955233 DOI: 10.1016/j.dental.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/07/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although bisphenol Aglycidyl methacrylate (Bis-GMA) are widely used in the dental composite, its raw materials include the petroleum-based product bisphenol A (BPA) with high estrogenic activity (EA). In this study, two new BPA-free dimethacrylate monomers from bio-based material creosol were synthesized and evaluated. METHODS The renewable bisphenol monomer 5, 5'-methylenedicreosol (BCF) was prepared from bio-based material creosol. By the human breast cancer cells (MCF-7 cells) proliferation assay, a risk assessment of BCF was performed to determine if BCF possessed reduced EA in comparison to BPA. Then, the novel monomers 5, 5'-methylenedicreosol diglycidyl ether diacrylate (BCF-EA) and 5, 5'-methylenedicreosol diglycidyl ether dimethacrylate (BCF-GMA) were synthesized from BCF with epichlorohydrin and (meth)acrylate. All products were investigated by 1H NMR and FT-IR spectra. The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 5:5 (5B5T). Similarly, experimental resin matrix was a mixture based on BCF-EA/TEGDMA (5E5T) and BCF-GMA/TEGDMA (5G5T). And their corresponding composites were then prepared with corresponding resin matrices and hybrid SiO2 (5E5TC, 5G5TC and 5B5TC). The properties of these composites were investigated according to the standard or referenced methods. Each sample was evaluated for double bond conversion (DC), shrinkage stress (SS) and volumetric polymerization shrinkage (VS). Water sorption (WS), water solubility (SL), mechanical properties and cytotoxicity were also measured. RESULTS 1H NMR and FT-IR spectra confirmed the chemical structure of each monomer. EA test revealed that bio-based bisphenol monomer BCF as the precursor of BCF-EA and BCF-GMA showed lower EA than BPA. Cured resin matrix: Both 5E5T and 5G5T had nearly the same DC (p < 0.05), which was higher than 5B5T (p < 0.05); 5E5T and 5G5T had lower VS, SL and cytotoxicity than 5B5T (p < 0.05); mechanical properties of 5E5T and 5G5T were all better than those of 5B5T (p < 0.05). Cured composite: There was no significant difference in conversion (p < 0.05); 5E5TC and 5G5TC had significantly lower VS (p < 0.05); WS of 5E5TC and 5G5TC were similar (p < 0.05), but higher compared to 5B5TC (p < 0.05); 5E5TC and 5G5TC had the deeper depth of cure (p > 0.05); before water immersion, there was no significant difference in flexural strength between 5E5TC and 5G5TC (p > 0.05), and higher than 5B5TC (p < 0.05); 5E5TC and 5G5TC showed less cytotoxicity than 5B5TC (p < 0.05). SIGNIFICANCE The new BPA-free di(meth)acrylates are promising photocurable dental monomers owning to bio-based raw material, high degree of conversion coupled with low curing shrinkage and good mechanical properties. Therefore, BCF-EA and BCF-GMA has a potential to be used as the substitution for Bis-GMA to prepare Bis-GMA-free dental composite.
Collapse
Affiliation(s)
- Yinan Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zeying Zhou
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Hao Jiang
- College of Materials Science and Engineering, Jilin University, Changchun 130022, PR China
| | - Yuting Duan
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jialin Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiaoqiu Liu
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Lihua Hong
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China.
| | - Chengji Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
9
|
Lv C, Wei Z, Yue B, Xia N, Huang W, Yue Y, Li Z, Li T, Zhang X, Wang Y. Characterization of diphenyl phthalate as an agonist for estrogen receptor: an in vitro and in silico study. Toxicol Mech Methods 2021; 32:280-287. [PMID: 34697989 DOI: 10.1080/15376516.2021.1998276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phthalate esters (PAEs) are important pollutants in the environment, which can interfere with the endocrine system by mimicking estrogen. However, limited information is available on modulating the estrogen receptor (ER) of five PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), diphenyl phthalate (DPhP) and dicyclohexyl phthalate (DCHP). This study evaluated the agonistic effects of PAEs on human ER. The cytotoxicity assay showed that there were a significant inhibition of the cell proliferation with treatment of five PAEs. Moreover, DPhP does-dependently enhanced ER-mediated transcriptional activity in the reporter gene assay. The increased expression of estrogen-responsive genes (TFF1, CTSD, and GREB1) was also observed in MCF-7 cells treated with DPhP. The result of molecular docking showed that DPhP tended to bind to the agonist conformation of ER compared with the antagonist conformation of ER, demonstrating its agonist characteristic that has been confirmed in the reporter gene assay. Thus, we found that DPhP may be evaluated as an ER agonist in vitro and it can interfere with the normal function of human ER.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Benjie Yue
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Ning Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yulan Yue
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiuxia Zhang
- Office of Retirement Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
10
|
Kawashima Y, Onishi Y, Tatarazako N, Yamamoto H, Koshio M, Oka T, Horie Y, Watanabe H, Nakamoto T, Yamamoto J, Ishikawa H, Sato T, Yamazaki K, Iguchi T. Summary of 17 chemicals evaluated by OECD TG229 using Japanese Medaka, Oryzias latipes in EXTEND 2016. J Appl Toxicol 2021; 42:750-777. [PMID: 34725835 PMCID: PMC9297976 DOI: 10.1002/jat.4255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
In June 2016, the Ministry of the Environment of Japan announced a program "EXTEND2016" on the implementation of testing and assessment for endocrine active chemicals, consisting of a two-tiered strategy. The aim of the Tier 1 screening and the Tier 2 testing is to identify the impacts on the endocrine system and to characterize the adverse effects to aquatic animals by endocrine disrupting chemicals detected in the aquatic environment in Japan. For the consistent assessment of the effects on reproduction associated with estrogenic, anti-estrogenic, androgenic, and/or anti-androgenic activities of chemicals throughout Tier 1 screening to Tier 2 testing, a unified test species, Japanese medaka (Oryzias latipes), has been used. For Tier 1 screening, the in vivo Fish Short-Term Reproduction Assay (OECD test guideline No. 229) was conducted for 17 chemicals that were nominated based on the results of environmental monitoring, existing knowledge obtained from a literature survey, and positive results in reporter gene assays using the estrogen receptor of Japanese medaka. In the 17 assays using Japanese medaka, adverse effects on reproduction (i.e., reduction in fecundity and/or fertility) were suggested for 10 chemicals, and a significant increase of hepatic vitellogenin in males, indicating estrogenic (estrogen receptor agonistic) potency, was found for eight chemicals at the concentrations in which no overt toxicity was observed. Based on these results, and the frequency and the concentrations detected in the Japanese environment, estrone, 4-nonylphenol (branched isomers), 4-tert-octylphenol, triphenyl phosphate, and bisphenol A were considered as high priority candidate substances for the Tier 2 testing.
Collapse
Affiliation(s)
- Yukio Kawashima
- Environmental Consulting Department, Japan NUS Co., Tokyo, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Masaaki Koshio
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Resources Recycling Center, Japan Environmental Management Association for Industry, Tokyo, Japan
| | - Yoshifumi Horie
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takashi Nakamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Hidenori Ishikawa
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Tomomi Sato
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| | - Kunihiko Yamazaki
- Environmental Health Department, Ministry of the Environment of Japan, Tokyo, Japan
| | - Taisen Iguchi
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
Darbre PD. Endocrine disrupting chemicals and breast cancer cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:485-520. [PMID: 34452695 DOI: 10.1016/bs.apha.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many hundreds of endocrine disrupting chemicals (EDCs) have been measured as entering human breast tissue from a range of environmental sources, and this review focuses on discussion of mechanisms by which such EDCs may be contributing to the globally rising incidence of breast cancer. Many of the distinguishing features of breast cancer may be accounted for by EDC exposure, including, but not limited to, the fact that many EDCs possess estrogenic activity and exposure to estrogen is a main risk factor for breast cancer. Studies of the actions of EDCs in human breast cancer cells are aided by use of the conceptual framework of the hallmarks of cancer, and, acting by a variety of genomic and nongenomic mechanisms, EDCs have now been shown to enable all the hallmarks of cancer to develop in human breast cancer cells. Many studies report that hallmarks can develop at concentrations which are within the range of those measured in human breast tissues, especially when added as mixtures. The varied levels of different EDCs measured in individual breast tissue samples together with the overlapping and complementary mechanisms of action of the EDCs imply that thematic mechanisms will be driven inevitably by different chemical mixtures. Despite the complexity, EDCs do need to now be acknowledged as a risk factor for breast cancer in order for preventative strategies to include reduction in EDC exposure.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, United Kingdom.
| |
Collapse
|
12
|
Kara-Ertekin S, Yazar S, Erkan M. In vitro toxicological assessment of flumethrin's effects on MCF-7 breast cancer cells. Hum Exp Toxicol 2021; 40:2165-2177. [PMID: 34142587 DOI: 10.1177/09603271211022789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pyrethroid pesticides are frequently used for household insect control of insects and in agriculture and livestock. Flumethrin is a pyrethroid that is used against ectoparasites in many animals. The goal of this study was to evaluate the cytotoxic, apoptotic, genotoxic, and estrogenic effects of flumethrin on the mammalian breast cancer cell line (MCF-7). Compared with control groups, a dose-dependent decrease was observed in cell viability at concentrations of 100 µM and higher. The cytotoxic and apoptotic effects detected by LDH assay and AO/EtBr staining increased significantly at a concentration of 1000 µM. The expression of BCL2, which is an anti-apoptotic gene, significantly decreased, whereas BAX, TP53, and P21 expression significantly increased. The results of a comet assay indicated that flumethrin significantly changed tail length, tail % DNA, tail moment, and Olive tail moment in concentrations above 1 and 10 µM. In addition, a 0.1 µM concentration of flumethrin affected ERα receptor mediated cell proliferation and increased transcription of estrogen-responsive pS2 (TFF1) and progesterone receptor (PGR) genes. As a result, flumethrin-induced apoptosis and cytotoxicity at a high concentration, while induced genotoxicity even at lower concentrations. Flumethrin is an endocrine disrupting insecticide with estrogenic effects at very low concentrations.
Collapse
Affiliation(s)
- S Kara-Ertekin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Yeni Yuzyil University, Istanbul, Turkey.,Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - S Yazar
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Erkan
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Chang J, Pan Y, Yang L, Xie Y, Xu P, Wang H. Environmental relevant concentration of λ-cyhalothrin and 3-phenoxybenzoic acid caused endocrine-disrupting effects on male lizards (Eremias argus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115077. [PMID: 32806430 DOI: 10.1016/j.envpol.2020.115077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the endocrine toxicity of LCT and PBA was investigated through exposure to Eremias argus for two weeks under environmental relevant concentration. RNA-sequencing identified 4442 and 4653 differentially expressed genes in lizard liver after LCT and PBA exposure. Four differentially expressed genes (hsd17β, ar, sult, ugt) related with hypothalamic-pituitary-gonadal axis were quantified by qPCR. The expression of genes associated with HPG axis in different tissues differed significantly. In LCT treatment group, ar, cyp17 and hsd3β genes involved in testosterone synthesis and transportation were significantly decreased in lizard testes, and the spermatogensis was inhibited in the testes, which indicated the anti-androgenic activity of LCT. After PBA exposure, the genes related with estradiol synthesis, transportation and metabolism, such as hsd17β, erα, ugt in lizard liver were important biomarkers and the significant decrease of estradiol level was highly correlated with hsd17β, erα, ugt gene expressions. The relative high binding affinity of PBA with ERα further demonstrated the anti-estrogenic activity of PBA. Our results elucidate the different toxic mechanism of LCT and PBA on lizard endocrine system at environmental relevant concentration. Pyrethroids metabolism may cause more seriously toxicity rather than detoxification.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yun Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
14
|
Vidal LG, Vannuci-Silva M, Alonso MB, Feo ML, Corcellas C, Bisi TL, Flach L, Fragoso ABL, Lima Silva FJ, Carvalho VL, de Meirelles ACO, Domit C, Barbosa LA, Cremer MJ, Azevedo AF, Torres JPM, Malm O, Lailson-Brito J, Eljarrat E. Pyrethroid insecticides along the Southwestern Atlantic coast: Guiana dolphin (Sotalia guianensis) as a bioindicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138749. [PMID: 32570306 DOI: 10.1016/j.scitotenv.2020.138749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The presence of pyrethroid compounds in hepatic tissue of Guiana dolphins (Sotalia guianensis) is reported for the first time. Twelve pyrethroids were determined in 50 animals from eight locations of the Brazilian coast. The highest average concentration of total pyrethroids (∑PYR) was 1166 ng.g-1 lw, with values ranging from 148 to 5918 ng.g-1 lw, in Ilha Grande Bay, Rio de Janeiro State, while the Espírito Santo State had the highest median, 568 ng.g-1 lw. Permethrin was the predominant compound in most areas, contributing for 42% to 81% of the ∑PYR, whereas cypermethrin was the most abundant compound in Guanabara and Sepetiba bays (79% and 81%, respectively), both located in Rio de Janeiro State. Biological factors were not correlated with pyrethroids concentration. Tetramethrin and es/fenvalerate compounds were negatively correlated to the age, suggesting degradation/metabolization capacity in these animals that increases throughout life. Despite being metabolized and excreted, the wide use of these pollutants is reflected in relevant concentrations found in Guiana dolphins. This is the first study evaluating pyrethroids in a representative number of hepatic samples and covering >2600 km of coast. The overall lack of information on pyrethroids in cetaceans highlights the importance of understanding the profile and distribution of these pollutants in dolphins which exclusively inhabit the Southwestern Atlantic coast.
Collapse
Affiliation(s)
- Lara G Vidal
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil; Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Monizze Vannuci-Silva
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Mariana B Alonso
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil; Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Maria L Feo
- Water, Environmental and Food Chemistry, Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cayo Corcellas
- Water, Environmental and Food Chemistry, Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Tatiana L Bisi
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Rua Dom Pedro I, Itacuruçá, 23870-000 Mangaratiba, RJ, Brazil
| | - Ana Bernadete Lima Fragoso
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador. Mossoró, Rio Grande do Norte, Brazil
| | - Flávio J Lima Silva
- Programa de Pós-Graduação em Ciências Naturais/Projeto Cetáceos da Costa Branca-Universidade do Estado do Rio Grande do Norte (UERN)/Projeto Golfinho Rotador. Mossoró, Rio Grande do Norte, Brazil
| | - Vítor Luz Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos (AQUASIS), Caucaia, Ceará, Brazil
| | | | - Camila Domit
- Ecology and Conservation Laboratory, Marine Studies Center (CEM), Federal University of Paraná (UFPR), Av Beira Mar s/n, Pontal do Sul, Pontal do Paraná, 83255-000, PR, Brazil
| | - Lupércio A Barbosa
- Environmental Awareness Organization (ORCA), Rua São Paulo, 23, Praia da Costa, Vila Velha, ES 29101-315, Brazil
| | - Marta J Cremer
- Ecology and Conservation Laboratory for marine and coastal tetrapods, University of Joinville Region (UNIVILLE), São Francisco do Sul, Rod. Duque de Caxias, 6365, Iperoba, São Francisco do Sul, 89240-000, SC, Brazil
| | - Alexandre F Azevedo
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Olaf Malm
- Radioisotope Laboratory Eduardo Penna Franca (LREPF), Biophysics Institute Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - José Lailson-Brito
- Aquatic Mammal and Bioindicator Laboratory Professora Izabel Gurgel (MAQUA), School of Oceanography, Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 524/ 4002-E, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Ethel Eljarrat
- Water, Environmental and Food Chemistry, Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
15
|
Nakagawa LE, do Nascimento CM, Costa AR, Polatto R, Papini S. Persistence of indoor permethrin and estimation of dermal and non-dietary exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:547-553. [PMID: 30926895 DOI: 10.1038/s41370-019-0132-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pesticides applied indoors may persist longer than they would in outdoor environments, making people more vulnerable to the risk of exposure. Permethrin is a pyrethroid insecticide used in agricultural, residential, and public health sites, and is commonly detected in indoor environments. The objectives of this study were to evaluate the persistence of permethrin indoors and to estimate the levels of possible dermal and non-dietary exposure to this insecticide. Permethrin was applied on aluminum foil and kept in a glass chamber and a test house for 112 days; its concentration was measured at application and after 28, 56, and 112 days. Permethrin persisted for the entire 112 days in concentrations equal to a maximum of 89.6% of the initial concentration. We observed low levels of human dermal and non-dietary exposure to permethrin.
Collapse
|
16
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
17
|
Eni G, Ibor OR, Andem AB, Oku EE, Chukwuka AV, Adeogun AO, Arukwe A. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108584. [PMID: 31394255 DOI: 10.1016/j.cbpc.2019.108584] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
In the present study, we investigated plasma biochemical and steroid hormone responses, together with gonado-histopathological alterations in Clarias gariepinus exposed to sublethal concentrations of two synthetic pyrethroids (cypermethrin and deltamethrin). Fish were exposed to environmentally-relevant concentrations of cypermethrin at 0 (ethanol solvent control), 0.07, 0.014, 0.028, 0.056) and deltamethrin at 0.22, 0.44, 0.88 and 1.76 μg/L, for 7, 14, 21 and 28 days. Plasma enzyme (aspartate transaminase: AST, alanine transaminase: ALT and alkaline phosphatase: ALP) and steroid hormones (estradiol-17β: E2, testosterone: T) levels were analyzed. Gonado-histopathological evaluation shows the presence of ovo-testis (intersex), oocytes atresia, cytoplasmic degeneration and clumping of vitellogenic oocytes in females, while male fish displayed enlargement and degeneration of testicular seminiferous tubules after 28 days exposure to cypermethrin and deltamethrin. Plasma biochemical analysis in pesticides exposed fish revealed that AST, ALT and ALP were significantly increased in a concentration-dependent manner. In addition, we observed respective and apparent concentration- and time-dependent increase and decrease of plasma E2 and T levels, compared to control. Interestingly, the significant increase in E2 levels paralleled gonadal ovo-testis (intersex) condition in exposed fish, indicating endocrine disruptive effects of cypermethrin and deltamethrin that favor the estrogenic pathway, in addition to overt negative consequences on reproductive, biochemical and physiological health of the exposed fish.
Collapse
Affiliation(s)
- George Eni
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria; Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway
| | - Andem B Andem
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Ene E Oku
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | | | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
18
|
Niehoff NM, Gammon MD, Parada H, Stellman SD, Neugut AI, Teitelbaum SL. Self-reported residential pesticide use and survival after breast cancer. Int J Hyg Environ Health 2019; 222:1077-1083. [PMID: 31351853 PMCID: PMC6732244 DOI: 10.1016/j.ijheh.2019.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Previous investigations found elevated mortality after breast cancer in association with biomarkers of persistent organochlorine pesticides in non-occupationally exposed women. We hypothesized that lifetime residential pesticide use, which includes persistent and non-persistent pesticides, would also be associated with increased mortality after breast cancer. METHODS A population-based cohort of 1505 women with invasive or in situ breast cancer was interviewed in 1996-1997, shortly after diagnosis, about pre-diagnostic lifetime residential pesticide use. Participants were followed for mortality through 2014 (595 deaths from any cause and 236 from breast cancer, after 17.6 years of follow-up). Pesticides were examined as 15 individual categories; a group of seven used for lawn and garden purposes; a group of eight used for nuisance-pest purposes; and all combined. Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause and breast cancer-specific mortality. Modification by estrogen receptor (ER) status, body mass index, and long-term residence was examined. RESULTS Ever use (HR = 0.77, 95%CI = 0.63-0.95) and higher lifetime applications (4th quartile: HR = 0.62, 95%CI = 0.47-0.81, ptrend = 0.3) of the lawn and garden group of pesticides were inversely associated with all-cause mortality, compared to never use. The inverse association for lawn and garden pesticide use was limited to ER positive (vs. negative) tumors (pinteraction = 0.05). Nuisance-pest pesticides, and all groups combined, were not associated with all-cause or breast cancer-specific mortality. CONCLUSIONS Contrary to our hypothesis, lifetime residential use of lawn and garden pesticides, but not all combined or nuisance-pest pesticides, was inversely associated with all-cause mortality after breast cancer.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599-7435, USA.
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599-7435, USA
| | - Humberto Parada
- Division of Epidemiology & Biostatistics, School of Public Health, San Diego State University, 5500 Campanile Drive, Hardy Tower Room 168, San Diego, CA, 92182, USA
| | - Steven D Stellman
- Department of Epidemiology, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Alfred I Neugut
- Department of Epidemiology, Columbia University, 722 West 168th Street, New York, NY, 10032, USA; Department of Medicine, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
19
|
Babeľová J, Šefčíková Z, Čikoš Š, Kovaříková V, Špirková A, Pisko J, Koppel J, Fabian D. In vitro exposure to pyrethroid-based products disrupts development of mouse preimplantation embryos. Toxicol In Vitro 2019; 57:184-193. [DOI: 10.1016/j.tiv.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
20
|
Ye X, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:590-599. [PMID: 30476888 DOI: 10.1016/j.envpol.2018.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Huo J, Li Z, Wan D, Li D, Qi M, Barnych B, Vasylieva N, Zhang J, Hammock BD. Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11284-11290. [PMID: 30293433 PMCID: PMC6442738 DOI: 10.1021/acs.jafc.8b04521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
3-Phenoxybenzoic acid (3-PBA) is a human urinary metabolite of many pyrethroid insecticides and can be used as a biomarker to monitor human exposure to these pesticides. A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for detecting 3-PBA on the basis of a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The anti-3-PBA Nb-AP fusion protein was expressed and purified. The 50% inhibitory concentration (IC50) and linear range of dc-FEIA were 0.082 and 0.015-0.447 ng/mL, respectively, with a detection limit of 0.011 ng/mL. The IC50 of dc-FEIA was improved by nearly ten times compared with those of one-step and three-step direct competitive enzyme-linked immunosorbent assay (dc-ELISA). Spiked urine samples were detected by both dc-FEIA and liquid chromatography-mass spectrometry (LC-MS), and the results showed good consistency between the two analysis methods, indicating the reliability of dc-FEIA based on the Nb-AP fusion protein for detecting 3-PBA in urine.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Meng Qi
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Jinlin Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
- Corresponding author (Tel: +86-0312-7528575; Fax: +86-0312-7528575; )
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
- Corresponding author (Tel: +86-0312-7528575; Fax: +86-0312-7528575; )
| |
Collapse
|
22
|
Abstract
Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health.
Collapse
|
23
|
Mazioti M. The potential role of endocrine disrupting chemicals in cellulite. Med Hypotheses 2018; 116:132-135. [PMID: 29857897 DOI: 10.1016/j.mehy.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/18/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
Cellulite constitutes a major aesthetic concern affecting the majority of post-adolescent women. Current epidemiological evidence supports that the prevalence of cellulite is significantly higher in industrialized societies indicating that environmental factors have crucial role in its pathogenesis and perpetuation. Endocrine disrupting chemicals, which exist ubiquitously in the environment, are able to alter hormonal and homeostatic systems. Several of them exert agonist effects by binding to estrogen receptors and mimicking the biological activity of estrogens. Since elevated estrogen concentration is prerequisite for cellulite, the present article suggests that endocrine disrupting chemicals may be key determinants in the initiation and deterioration of cellulite either by stimulating estrogen receptors or increasing their circulating levels due to interference with enzymes and binding proteins.
Collapse
Affiliation(s)
- Maria Mazioti
- Athens Faculty of Medicine, 26, Perikleous Street, Salamina 18900, Greece.
| |
Collapse
|
24
|
Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. ENVIRONMENTAL RESEARCH 2018; 160:152-182. [PMID: 28987728 DOI: 10.1016/j.envres.2017.08.045] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many common environmental chemicals are mammary gland carcinogens in animal studies, activate relevant hormonal pathways, or enhance mammary gland susceptibility to carcinogenesis. Breast cancer's long latency and multifactorial etiology make evaluation of these chemicals in humans challenging. OBJECTIVE For chemicals previously identified as mammary gland toxicants, we evaluated epidemiologic studies published since our 2007 review. We assessed whether study designs captured relevant exposures and disease features suggested by toxicological and biological evidence of genotoxicity, endocrine disruption, tumor promotion, or disruption of mammary gland development. METHODS We systematically searched the PubMed database for articles with breast cancer outcomes published in 2006-2016 using terms for 134 environmental chemicals, sources, or biomarkers of exposure. We critically reviewed the articles. RESULTS We identified 158 articles. Consistent with experimental evidence, a few key studies suggested higher risk for exposures during breast development to dichlorodiphenyltrichloroethane (DDT), dioxins, perfluorooctane-sulfonamide (PFOSA), and air pollution (risk estimates ranged from 2.14 to 5.0), and for occupational exposure to solvents and other mammary carcinogens, such as gasoline components (risk estimates ranged from 1.42 to 3.31). Notably, one 50-year cohort study captured exposure to DDT during several critical windows for breast development (in utero, adolescence, pregnancy) and when this chemical was still in use. Most other studies did not assess exposure during a biologically relevant window or specify the timing of exposure. Few studies considered genetic variation, but the Long Island Breast Cancer Study Project reported higher breast cancer risk for polycyclic aromatic hydrocarbons (PAHs) in women with certain genetic variations, especially in DNA repair genes. CONCLUSIONS New studies that targeted toxicologically relevant chemicals and captured biological hypotheses about genetic variants or windows of breast susceptibility added to evidence of links between environmental chemicals and breast cancer. However, many biologically relevant chemicals, including current-use consumer product chemicals, have not been adequately studied in humans. Studies are challenged to reconstruct exposures that occurred decades before diagnosis or access biological samples stored that long. Other problems include measuring rapidly metabolized chemicals and evaluating exposure to mixtures.
Collapse
Affiliation(s)
- Kathryn M Rodgers
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia O Udesky
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| |
Collapse
|
25
|
Nakagawa LE, Costa AR, Polatto R, Nascimento CMD, Papini S. Pyrethroid concentrations and persistence following indoor application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2895-2898. [PMID: 28640485 DOI: 10.1002/etc.3860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 05/14/2017] [Indexed: 05/27/2023]
Abstract
Residential indoor environments are potential sources of exposure to pyrethroids, which have low acute toxicity to humans but are allergenic and suspected endocrine disruptors. The present study evaluated the persistence of the pyrethroids cypermethrin and beta-cyfluthrin on indoor surfaces and in house dust. Cypermethrin and beta-cyfluthrin were applied and maintained on aluminum foils and in dust samples for 112 d under controlled conditions and for 12 mo in a test house; periodically, they were quantified by high-performance liquid chromatography. Cypermethrin and beta-cyfluthrin concentrations showed decreases of 10.1% and 7.7% on aluminum foils, and 12.7% and 16.4% in dust, respectively, at 112 d under controlled conditions. In the test house, cypermethrin and beta-cyfluthrin concentrations decreased by 40.3% and 60.2% on aluminum foils, and 29.6% and 56.2% in dust at the end of the study. The results show the considerable persistence of cypermethrin and beta-cyfluthrin indoors and indicate the risk of exposure to these products. Environ Toxicol Chem 2017;36:2895-2898. © 2017 SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Solange Papini
- Municipal Secretariat of Health, São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Marettova E, Maretta M, Legáth J. Effect of pyrethroids on female genital system. Review. Anim Reprod Sci 2017; 184:132-138. [PMID: 28735887 DOI: 10.1016/j.anireprosci.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
Pyrethroids have been associated with a range of toxicological effects on various organs in animals.Recent animal studies suggest that neurodevelopmental, reproductive, and immunological effects may result following exposure to some pyrethroids at levels below those that induce overt signs of neurotoxicity. A variety of pyrethroids and their metabolites have the potential to affect the reproductive system. Dose-dependent effects on reproduction are associated with exposure across pyrethroid types. In mammals, permethrin and tetramethrin and cypermethrin have been found to be associated with adverse effects at high doses. Fenvalerate, deltamethrin, cypermethrin, caused morphometric and structural changes in the female genital organs. These pyrethroids affect ovulation, cause atresia of follicles, decrease the number of follicular cells, oocytes and corpora lutea and induce vesicular atrophy of the endometrial glands. The potential hormonal activity of pyrethroids showed that certain pyrethroids and their metabolites have multiple effects on the endocrine system. The level of steroid hormones, such as progesterone and estradiol, was inhibited. The pyrethorids may have the potential to mimic estrogens or to inhibit estrogen action. Some metabolites of pyrethroids, in particular permethrin and cypermethrin, are more likely to interact with the cellular estrogen receptors than the parent pyrethroids. Though several pyrethroids posses low toxicity, some pyrethroids, such as deltamethrin, cypermethrin, fenvalerate and bifenthrin have showed considerable toxicity.
Collapse
Affiliation(s)
- Elena Marettova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Milan Maretta
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Jaroslav Legáth
- Department of Toxicology and Pharmacy, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| |
Collapse
|
27
|
Jiang W, Conkle JL, Luo Y, Li J, Xu K, Gan J. Occurrence, Distribution, and Accumulation of Pesticides in Exterior Residential Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12592-12601. [PMID: 27174594 DOI: 10.1021/acs.est.6b01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pesticides are commonly applied around residential homes, but their occurrence on exterior surfaces (e.g., pavement) has not been thoroughly evaluated. We collected 360 dust samples from curbside gutters, sidewalks, and street surfaces at 40 houses in southern California to evaluate pesticide occurrence on urban paved surfaces as well as their spatial and temporal distributions. Pesticides and select degradates were ubiquitously detected in dust, with the median concentration of total target analytes at 85 μg kg-1. A total of 75% of samples contained at least five pesticides. As a result of recurring pesticide applications, concentrations increased throughout the summer. The pyrethroids bifenthrin and permethrin accounted for 55% of total pesticides detected in the dust. The highest concentrations in dust were found on the sidewalk and in the gutter. Relative to indoor environments, human exposure risk to pesticides on paved surfaces was estimated to be lower, with the highest potential oral and dermal exposure predicted to be 38 ng day-1 for permethrin. The ubiquitous detection of pesticides on residential outdoor surfaces and the fact that the exterior concentrations did not correlate to the indoor areas highlight the necessity to measure pesticides in both indoor and outdoor areas for complete residential pesticide risk assessment.
Collapse
Affiliation(s)
- Weiying Jiang
- Department of Environmental Sciences, University of California, Riverside , Riverside, California 92521, United States
- California Department of Pesticide Regulation , Sacramento, California 95812, United States
| | - Jeremy L Conkle
- Department of Environmental Sciences, University of California, Riverside , Riverside, California 92521, United States
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi , Corpus Christi, Texas 78412, United States
| | - Yuzhou Luo
- California Department of Pesticide Regulation , Sacramento, California 95812, United States
| | - Juying Li
- Department of Environmental Sciences, University of California, Riverside , Riverside, California 92521, United States
- College of Energy and Environmental Engineering, Shenzhen University , Shenzhen, Guangdong 518060, People's Republic of China
| | - Karen Xu
- Department of Statistics, University of California, Riverside , Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
28
|
Anwer F, Chaurasia S, Khan AA. Hormonally active agents in the environment: a state-of-the-art review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:415-433. [PMID: 27487487 DOI: 10.1515/reveh-2016-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.
Collapse
|
29
|
Romero DM, Berardino BG, Wolansky MJ, Kotler ML. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides. Toxicol Sci 2016; 155:196-212. [PMID: 27815491 DOI: 10.1093/toxsci/kfw188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC)15s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10-1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC15) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity.
Collapse
Affiliation(s)
- Delfina M Romero
- Laboratorio de Toxicología de Mezclas Químicas.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Bruno G Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Laboratorio de Neuroepigenética
| | - Marcelo J Wolansky
- Laboratorio de Toxicología de Mezclas Químicas; .,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Mónica L Kotler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET).,Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina
| |
Collapse
|
30
|
Saillenfait AM, Ndiaye D, Sabaté JP. The estrogenic and androgenic potential of pyrethroids in vitro. Review. Toxicol In Vitro 2016; 34:321-332. [DOI: 10.1016/j.tiv.2016.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
31
|
Yekeen TA, Fawole OO, Bakare AA, Emikpe BO. Alteration in haematological, biochemical and reproductive indices ofRattus norvegicustreated with lambdacyhalothrin. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/21658005.2016.1142702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
33
|
Plošnik A, Vračko M, Mavri J. Computational study of binding affinity to nuclear receptors for some cosmetic ingredients. CHEMOSPHERE 2015; 135:325-334. [PMID: 25974010 DOI: 10.1016/j.chemosphere.2015.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
We studied the ingredients of cosmetic products as potential endocrine disruptors (ED) by in silico methods (docking). The structures of 14 human nuclear receptors have been retrieved from the protein data bank (PDB). We only considered the mechanism linked with direct binding to nuclear receptors with well-defined crystal structures. Predictions were performed using the Endocrine Disruptome docking program http://endocrinedisruptome.ki.si/ (Kolšek et al., 2013). 122 compounds were estimated to be possible endocrine disruptors bind to at least one of the receptors, 21 of them which are predicted to be probable toxicants for endocrine disruption as they bind to more than five receptors simultaneously. According to the literature survey and lack of experimental data it remains a challenge to prove or disprove the in silico results experimentally also for other potential endocrine disruptors.
Collapse
Affiliation(s)
- Alja Plošnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Marjan Vračko
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Douglas HD, Malenke JR. An Extraordinary Host-Specific Sex Ratio in an Avian Louse (Phthiraptera: Insecta)--Chemical Distortion? ENVIRONMENTAL ENTOMOLOGY 2015; 44:1149-1154. [PMID: 26314060 DOI: 10.1093/ee/nvv073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Distortions of sex ratios and sexual traits from synthetic chemicals have been well documented; however, there is little evidence for such phenomena associated with naturally occurring chemical exposures. We reasoned that chemical secretions of vertebrates could contribute to skewed sex ratios in ectoparasitic insects due to differences in susceptibility among the sexes. For example, among ectoparasitic lice the female is generally the larger sex. Smaller males may be more susceptible to chemical effects. We studied sex ratios of lice on two sympatric species of colonial seabirds. Crested auklets (Aethia cristatella) secrete a strong smelling citrus-like odorant composed of aldehydes while a closely related congener the least auklet (Aethia pusilla) lacks these compounds. Each auklet hosts three species of lice, two of which are shared in common. We found that the sex ratio of one louse species, Quadraceps aethereus (Giebel), was highly skewed on crested auklets 1:69 (males: females), yet close to unity on least auklets (1:0.97). We suggest that a host-specific effect contributes to this difference, such as the crested auklet's chemical odorant.
Collapse
Affiliation(s)
- H D Douglas
- Institute of Marine Science, University of Alaska, Fairbanks, AK 99775. Current address: Science Department, College of Rural and Community Development, Kuskokwim Campus, University of Alaska, Bethel, AK 99559.
| | - J R Malenke
- Department of Biology, University of Utah, Salt Lake City, UT 84412
| |
Collapse
|
35
|
Jin Y, Wang J, Pan X, Miao W, Lin X, Wang L, Fu Z. Enantioselective disruption of the endocrine system by Cis-Bifenthrin in the male mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:746-754. [PMID: 24449165 DOI: 10.1002/tox.21954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Bifenthrin (BF), as a chiral pyrethroid, is widely used to control field and household pests in China. At present, the commercial BF is a mixed compound containing cis isomers (cis-BF) including two enantiomers of 1R-cis-BF and 1S-cis-BF. In the present study, the two individual cis-BF enantiomers were separated by a preparative supercritical fluid chromatography. Then, four week-old adolescent male ICR mice were orally administered 1R-cis-BF and 1S-cis-BF separately daily for 3 weeks at doses of 0, 7.5 and 15 mg/kg/day, respectively. Results showed that the transcription status of some genes involved in cholesterol synthesis and transport as well as testosterone (T) synthesis in the testes were influenced by cis-BF enantiomers. Especially, we observed that the transcription status of key genes on the pathway of T synthesis including cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P45017α)) were selectively altered in the testis of mice when treated with 1S-cis-BF, suggesting that it is the possible reason to explain why the lower serum T concentration in 1S-cis-BF treated group. Taken together, it concluded that both of the cis-BF enantiomers have the endocrine disruption activities, while 1S-cis-BF was higher than 1R-cis-BF in mice when exposed during the puberty. The data was helpful to understand the toxicity of cis-BF in mammals under enantiomeric level.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiangcong Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiuhong Pan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenyu Miao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaojian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Linggang Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
36
|
Allethrin induces oxidative stress, apoptosis and calcium release in rat testicular carcinoma cells (LC540). Toxicol In Vitro 2014; 28:1386-95. [DOI: 10.1016/j.tiv.2014.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 07/19/2014] [Indexed: 01/17/2023]
|
37
|
Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI, Al-Ghothemi M. Reproductive toxicity and histopathological changes induced by lambda-cyhalothrin in male mice. ENVIRONMENTAL TOXICOLOGY 2014; 29:750-762. [PMID: 22865375 DOI: 10.1002/tox.21802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 06/01/2023]
Abstract
Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide. Oral LCT administration to adult male mice at 3 doses (0.2, 0.4, and 0.8 mg/kg/day) for 6 weeks caused a significant reduction in the weight of the seminal vesicles. The epididymal sperm count was lower in mice that received at the highest dose than in control mice. However, the proportions of live and motile spermatozoa were reduced at both the medium and the high doses compared with control mice. All doses induced an increase in the number of morphologically abnormal spermatozoa. Histopathological observations of the testes, liver, kidneys, and spleen showed dose-related degenerative damage in LCT-treated mice. The results indicate that LCT has reproductive toxicity, hepatotoxicity, nephrotoxicity, and splenotoxicity in male mice at the tested doses. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 750-762, 2014.
Collapse
Affiliation(s)
- Ali S Al-Sarar
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | | | | | | |
Collapse
|
38
|
Tange S, Fujimoto N, Uramaru N, Sugihara K, Ohta S, Kitamura S. In vitro metabolism of cis- and trans-permethrin by rat liver microsomes, and its effect on estrogenic and anti-androgenic activities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:996-1005. [PMID: 24731973 DOI: 10.1016/j.etap.2014.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Permethrin is a widely applied broad-spectrum pyrethroid insecticide that consists of a mixture of cis- and trans-isomers. We examined the changes of estrogenic and anti-androgenic activities resulting from metabolism of the isomers. Both cis- and trans-permethrin were hydrolyzed to 3-phenoxybenzyl alcohol (PBAlc) by rat liver microsomes, but the extent of hydrolysis of trans-permethrin was much greater than that of the cis-isomer. In the presence of NADPH, PBAlc was further transformed to 4'-hydroxylated PBAlc (4'-OH PBAlc), 3-phenoxybenzaldehyde (PBAld) and 3-phenoxybenzoic acid (PBAcid). cis-Permethrin, but not trans-permethrin, also afforded its 4'-hydroxylated derivative (4'-OH cis-permethrin). trans-Permethrin was an anti-androgen, but also showed weak estrogenic activity, while cis-permethrin was a weak estrogen and a weak anti-androgen. After incubation with rat liver microsomes in the presence of NADPH, cis-permethrin but not trans-permethrin was metabolically activated for estrogenic activity. On the other hand, estrogenic activity of trans-permethrin was not changed, but its anti-androgenic activity was enhanced after incubation. 4'-OH PBAlc and PBAlc showed estrogenic activity, while PBAld and PBAlc showed anti-androgenic activity. PBAcid showed neither activity. 4'-OH cis-permethrin showed both estrogenic and anti-androgenic activities. Overall, our results indicate that permethrin is metabolically activated for estrogenic and anti-androgen activities, and the microsomal transformation of permethrin to 4'-OH cis-permethrin, 4'-OH PBAlc and PBAlc contributes to the both metabolic activations.
Collapse
Affiliation(s)
- Satoko Tange
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Science, Hiroshima International University, Hirokoshingai 5-1-1, Kure, Hiroshima 737-0112, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
39
|
Thiphom S, Prapamontol T, Chantara S, Mangklabruks A, Suphavilai C, Ahn KC, Gee SJ, Hammock BD. Determination of the pyrethroid insecticide metabolite 3-PBA in plasma and urine samples from farmer and consumer groups in northern Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:15-22. [PMID: 24138464 PMCID: PMC4020914 DOI: 10.1080/03601234.2013.836862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, the enzyme-linked immunosorbent assays (ELISA) were modified to detect 3-PBA in plasma (including the adducted form) and urine among a large group of consumers and farmers in an agricultural area. The samples were collected on the same day in the morning from 100 consumers (50 females, 50 males) and 100 farmers (50 females, 50 males) in the Fang district, Chiang Mai province, northern Thailand. The ELISA was very sensitive having an IC50 value of 26.7 and 15.3 ng/mL, a limit of quantitation of 5 and 2.5 ng/mL and a limit of detection of 1.08 and 1.94 ng/mL for plasma and urine, respectively. These methods had low (< 5%) intra- and inter-assay coefficients of variation. The extraction technique satisfactorily eliminated the matrix effect from samples before ELISA analysis, yielding good recoveries (85.9-99.4% and 87.3-98.0%, respectively). For the volunteer study, the detection rate for plasma 3-PBA was 24% in consumers and 42% in farmers, but the median and range values were similar (median 5.87 ng/mL, range 5.16-8.44 ng/mL in consumers and 6.27 ng/mL, range 4.29-9.57 ng/mL in farmers). The rate of detection in the urine was similar (76% and 69%, in consumers and in farmers), yet the median concentration was significantly higher in farmers (8.86 μg/g creatinine in consumers vs 16.1 μg/g creatinine in farmers) and the range also much wider in farmers (1.62-80.5 μg/g creatinine in consumers and 0.80-256.2 μg/g creatinine in farmers). There was no correlation between plasma 3-PBA and urinary 3-PBA concentrations in the study presumably because plasma 3-PBA is a measure of cumulative exposures while urinary 3-PBA reflects acute exposures. In addition, metabolism and excretion of pyrethroids varies by individual. Nevertheless, this study demonstrated that these volunteers were exposed to pyrethroids. To our knowledge, this is the first report that compared plasma 3-PBA and urinary 3-PBA in a large group of volunteers. The ELISA method provided higher sample throughput with lower cost as compared to the instrumental analysis.
Collapse
Affiliation(s)
- Sarunya Thiphom
- a Environmental Science Program, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun H, Chen W, Xu X, Ding Z, Chen X, Wang X. Pyrethroid and their metabolite, 3-phenoxybenzoic acid showed similar (anti)estrogenic activity in human and rat estrogen receptor α-mediated reporter gene assays. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:371-7. [PMID: 24388911 DOI: 10.1016/j.etap.2013.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 05/21/2023]
Abstract
Pyrethroids are commonly used as pesticides which are suspected as endocrine disruptors in many studies; however, still we do not know their effects on different species. To compare their effects on human estrogen receptor (hERα) and rat estrogen receptor (rERα), we developed a hERα and rERα mediated luciferase reporter assay to investigate the (anti)estrogenic activities of three frequently used pyrethroids (fenvalerate, cypermethrin, permethrin) and their metabolite 3-phenoxybenzoic acid (3-PBA). All three pyrethroids significantly induced expression of the luciferase, while none of them were antagonistic to 1 nM E₂ mediated induction. Interestingly, 3-PBA, showed antagonist activity by decreasing the effect of 1 nM E₂ to 55.12% in hERα assay and to 45.12% in rERα assay. Our results firstly demonstrated that pyrethroids and 3-PBA showed similar response in the hERα and rERα mediated reporter gene assay, which indicated that data derived from reporter gene assay or other receptor mediated assay systems with rat ER system might be used to predict to estrogenic or anti-estrogenic effects to human systems.
Collapse
Affiliation(s)
- Hong Sun
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing 210009, China
| | - Wen Chen
- Nanjing Medical University, Nanjing 210029, China
| | - Xiaolin Xu
- Nanjing Municipal Center for Disease Prevention and Control, Nanjing 210009, China
| | - Zhen Ding
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing 210009, China
| | - Xiaodong Chen
- Jiangsu Provincial Centre for Disease Prevention and Control, Nanjing 210009, China; Nanjing Medical University, Nanjing 210029, China.
| | - Xinru Wang
- Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
dell'Oro D, Casamassima F, Gesualdo G, Iammarino M, Mambelli P, Nardelli V. Determination of pyrethroids in chicken egg samples: development and validation of a confirmatory analytical method by gas chromatography/mass spectrometry. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Daniela dell'Oro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| | - Francesco Casamassima
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| | - Giuseppe Gesualdo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| | - Marco Iammarino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| | - Paolo Mambelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| | - Valeria Nardelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata; Via Manfredonia 20 Foggia 71121 Italy
| |
Collapse
|
42
|
Allethrin toxicity on human corneal epithelial cells involves mitochondrial pathway mediated apoptosis. Toxicol In Vitro 2013; 27:2242-8. [DOI: 10.1016/j.tiv.2013.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
|
43
|
Jin Y, Wang J, Sun X, Ye Y, Xu M, Wang J, Chen S, Fu Z. Exposure of maternal mice to cis-bifenthrin enantioselectively disrupts the transcription of genes related to testosterone synthesis in male offspring. Reprod Toxicol 2013; 42:156-63. [DOI: 10.1016/j.reprotox.2013.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
44
|
Wu X(M, Bennett DH, Ritz B, Tancredi DJ, Hertz-Picciotto I. Temporal variation of residential pesticide use and comparison of two survey platforms: a longitudinal study among households with young children in Northern California. Environ Health 2013; 12:65. [PMID: 23962276 PMCID: PMC3765515 DOI: 10.1186/1476-069x-12-65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/13/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pesticide use patterns are essential inputs into human pesticide exposure models. Currently, data included for modeling purposes have mostly been collected in cross-sectional surveys. However, it is questionable whether responses to one-time surveys are representative of pesticide use over longer periods, which is needed for assessment of health impact. This study was designed to evaluate population-wide temporal variations and within-household variations in reported residential pesticide use patterns and to compare alternative pesticide data collection methods - web surveys versus telephone interviews. METHOD A total of 481 households in Northern California provided up to 3 annual telephone interviews on residential pesticide use; 182 of these households provided up to 6 quarterly web surveys that covered the same topics for some of the same time periods. Information on frequency and areas of application were collected for outdoor and indoor sprays, indoor foggers, professional applications, and behind-the-neck treatments for pets. Population-wide temporal variation and within-household consistency were examined both within telephone surveys and within web surveys, and quantified using Generalized Estimating Equations and Mixed Effect Modeling. Reporting between the two methods, the telephone survey and the web survey, was also compared. RESULTS Use prevalence of outdoor sprays across the population reported in both the annual telephone surveys and the quarterly web surveys decreased over time, as did behind-the-neck treatment of pets reported in the quarterly web survey. Similarly, frequencies of use of these products decreased in the quarterly web surveys. Indoor sprays showed no statistically significant population-wide temporal variation in either survey. Intraclass correlation coefficients indicated consistent use within a household for behind-the-neck treatment on pets and outdoor sprays but great variability for the use of indoor sprays. Indoor sprays were most consistently applied in the bathroom and kitchen. Outdoor sprays were consistently more often applied by male household members, while indoor sprays were not. The two survey approaches obtained fairly similar results on the prevalence of using pesticides, but found discrepancies in use frequencies. In addition, the number of products purchased was positively correlated with application frequency for outdoor sprays (R = 0.51, p = 0.0005) but not for indoor sprays. CONCLUSIONS In this population, repeated surveys are necessary either to obtain a reliable estimate of the average household use of pesticides or to project potential temporal changes of pesticide use. Web surveys could collect comparable data to traditional telephone surveys for some information. However, researchers need to consider the internet acceptability among the target population and balance lower participant burden against the need for sufficiently accurate time-varying measurement, to improve subject retention in longitudinal surveys.
Collapse
Affiliation(s)
- Xiangmei (May) Wu
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Beate Ritz
- Department of Public Health Sciences, University of California, Los Angeles, CA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
45
|
Sharan S, Nikhil K, Roy P. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells. Toxicol Appl Pharmacol 2013; 269:176-86. [PMID: 23523586 DOI: 10.1016/j.taap.2013.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 01/15/2023]
|
46
|
Xia D, Parvizi N, Zhou Y, Xu K, Jiang H, Li R, Hang Y, Lu Y. Paternal fenvalerate exposure influences reproductive functions in the offspring. Reprod Sci 2013; 20:1308-15. [PMID: 23548413 DOI: 10.1177/1933719113483015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fenvalerate (Fen), a synthetic pyrethroid insecticide, has been shown to have adverse effects on male reproductive system. Thus, the aim of the present study was to elucidate whether these adverse effects are passed from exposed male mice to their offspring. Adult male mice received Fen (10 mg/kg) daily for 30 days and mated with untreated females to produce offspring. Fenvalerate significantly changed the methylation status of angiotensin I-converting enzyme (Ace), forkhead box O3 (Foxo3a), huntingtin-associated protein 1 (Hap1), nuclear receptor subfamily 3 (Nr3c2), promyelocytic leukemia (Pml), and Prostaglandin F2 receptor negative regulator (Ptgfrn) genes in paternal mice sperm genomic DNA. Further, Fen significantly increased sperm abnormalities; serum testosterone and estradiol-17ß level in adult male (F0) and their male offspring (F1). Further, paternal Fen treatment significantly increased the length of estrous cycle, serum estradiol-17ß concentration in estrus, and progesterone levels in diestrus in female offspring (F1). These findings suggest that adverse effects of paternal Fen exposure on reproductive functions can be seen not only in treated males (F0) but also in their offsprings.
Collapse
Affiliation(s)
- Dong Xia
- 1Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Liang X, Xie R, Wang C, Gui W, Zhu G. Development of a broad-selective immunoassay for multi-residue determination of type II pyrethroids in West Lake water. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2011.641169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
48
|
Casas-Zapata JC, Ríos K, Florville-Alejandre TR, Morató J, Peñuela G. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:122-132. [PMID: 23305280 DOI: 10.1080/03601234.2013.726909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.
Collapse
Affiliation(s)
- Juan C Casas-Zapata
- Grupo de investigación Ciencia e Ingeniería en Sistemas Ambientales (GCISA), Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental y Sanitaria, Universidad del Cauca, Popayán, Colombia.
| | | | | | | | | |
Collapse
|
49
|
Tao L, Chen M, Collins E, Lu C. Simultaneous quantitation of seven pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry. J Sep Sci 2012; 36:773-80. [DOI: 10.1002/jssc.201200655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/18/2012] [Accepted: 10/18/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Lin Tao
- Department of Environmental Health; Harvard School of Public Health; Boston; MA; USA
| | - Mei Chen
- Department of Environmental Health; Harvard School of Public Health; Boston; MA; USA
| | - Erin Collins
- Department of Environmental Health; Harvard School of Public Health; Boston; MA; USA
| | - Chensheng Lu
- Department of Environmental Health; Harvard School of Public Health; Boston; MA; USA
| |
Collapse
|
50
|
Brander SM, He G, Smalling KL, Denison MS, Cherr GN. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2848-55. [PMID: 23007834 PMCID: PMC3529915 DOI: 10.1002/etc.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 05/17/2023]
Abstract
Pyrethroids are highly toxic to fish at parts per billion or parts per trillion concentrations. Their intended mechanism is prolonged sodium channel opening, but recent studies reveal that pyrethroids such as permethrin and bifenthrin also have endocrine activity. Additionally, metabolites may have greater endocrine activity than parent compounds. The authors evaluated the in vivo concentration-dependent ability of bifenthrin and permethrin to induce choriogenin (an estrogen-responsive protein) in Menidia beryllina, a fish species known to reside in pyrethroid-contaminated aquatic habitats. The authors then compared the in vivo response with an in vitro assay--chemical activated luciferase gene expression (CALUX). Juvenile M. beryllina exposed to bifenthrin (1, 10, 100 ng/L), permethrin (0.1, 1, 10 µg/L), and ethinylestradiol (1, 10, 50 ng/L) had significantly higher ng/mL choriogenin (Chg) measured in whole body homogenate than controls. Though Chg expression in fish exposed to ethinylestradiol (EE2) exhibited a traditional sigmoidal concentration response, curves fit to Chg expressed in fish exposed to pyrethroids suggest a unimodal response, decreasing slightly as concentration increases. Whereas the in vivo response indicated that bifenthrin and permethrin or their metabolites act as estrogen agonists, the CALUX assay demonstrated estrogen antagonism by the pyrethroids. The results, supported by evidence from previous studies, suggest that bifenthrin and permethrin, or their metabolites, appear to act as estrogen receptor (ER) agonists in vivo, and that the unmetabolized pyrethroids, particularly bifenthrin, act as an ER antagonists in cultured mammalian cells.
Collapse
Affiliation(s)
- Susanne M Brander
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA.
| | | | | | | | | |
Collapse
|