1
|
Shcheslavskiy VI, Shirmanova MV, Yashin KS, Rück AC, Skala MC, Becker W. Fluorescence Lifetime Imaging Techniques-A Review on Principles, Applications and Clinical Relevance. JOURNAL OF BIOPHOTONICS 2025:e202400450. [PMID: 39973086 DOI: 10.1002/jbio.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
This article gives an overview of the most frequently used fluorescence-lifetime imaging (FLIM) techniques, their capabilities, and typical applications. Starting from a general introduction to fluorescence and phosphorescence lifetime, we will show that the fluorescence lifetime or, more accurately, the fluorescence decay function of a fluorophore is a direct indicator of the interaction with its molecular environment. FLIM is therefore more than a simple contrast technique in microscopy-it is a technique of molecular imaging. FLIM techniques can be classified into time-domain and frequency-domain techniques, analogue and photon counting techniques, and scanning and wide-field techniques. Starting from an overview of these general technical principles we will describe the features and peculiarities of the different FLIM techniques in use. An extended section is dedicated to TCSPC FLIM, addressing unique capabilities that make the technique especially interesting to FLIM of biological systems.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Becker&Hickl GmbH, Berlin, Germany
| | - M V Shirmanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - K S Yashin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A C Rück
- Centre for Biomedical Research, Microscopy/Neurology Group, University Ulm, Ulm, Germany
| | - M C Skala
- Morgridge Institute for Research, Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - W Becker
- Becker&Hickl GmbH, Berlin, Germany
| |
Collapse
|
2
|
Pian Q, Li B, Şencan-Eğilmez I, Cheng X, Dubb J, Huang X, Fu B, Rao Allu S, Yaseen MA, Devor A, Vinogradov SA, Sakadžić S. Out-of-focus signal rejection for in vivo pO 2 measurements using two-photon phosphorescence lifetime microscopy. BIOMEDICAL OPTICS EXPRESS 2025; 16:159-176. [PMID: 39816157 PMCID: PMC11729295 DOI: 10.1364/boe.532084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 01/18/2025]
Abstract
Two-photon phosphorescence lifetime microscopy has been a key tool for studying cerebral oxygenation in mice. However, the accuracy of the partial pressure of oxygen (pO2) measurements is affected by out-of-focus signal. In this work, we applied reconfigurable differential aberration imaging to characterize and correct for out-of-focus signal contamination in intravascular pO2 imaging. Our results show that signal contamination is higher in more oxygenated vessels and that it could be effectively removed using the proposed method.
Collapse
Affiliation(s)
- Qi Pian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Biophotonics Research Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jay Dubb
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyue Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Kanno H, Hiramatsu K, Mikami H, Nakayashiki A, Yamashita S, Nagai A, Okabe K, Li F, Yin F, Tominaga K, Bicer OF, Noma R, Kiani B, Efa O, Büscher M, Wazawa T, Sonoshita M, Shintaku H, Nagai T, Braun S, Houston JP, Rashad S, Niizuma K, Goda K. High-throughput fluorescence lifetime imaging flow cytometry. Nat Commun 2024; 15:7376. [PMID: 39231964 PMCID: PMC11375057 DOI: 10.1038/s41467-024-51125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Flow cytometry is a vital tool in biomedical research and laboratory medicine. However, its accuracy is often compromised by undesired fluctuations in fluorescence intensity. While fluorescence lifetime imaging microscopy (FLIM) bypasses this challenge as fluorescence lifetime remains unaffected by such fluctuations, the full integration of FLIM into flow cytometry has yet to be demonstrated due to speed limitations. Here we overcome the speed limitations in FLIM, thereby enabling high-throughput FLIM flow cytometry at a high rate of over 10,000 cells per second. This is made possible by using dual intensity-modulated continuous-wave beam arrays with complementary modulation frequency pairs for fluorophore excitation and acquiring fluorescence lifetime images of rapidly flowing cells. Moreover, our FLIM system distinguishes subpopulations in male rat glioma and captures dynamic changes in the cell nucleus induced by an anti-cancer drug. FLIM flow cytometry significantly enhances cellular analysis capabilities, providing detailed insights into cellular functions, interactions, and environments.
Collapse
Grants
- R35 GM152076 NIGMS NIH HHS
- This work was supported by JSPS Core-to-Core Program (K. G.), JSPS KAKENHI Grant Numbers 19H05633 and 20H00317 (K. G.), Ogasawara Foundation (K. G.), Nakatani Foundation (K. G.), Konica Minolta Foundation (K. G.), Philipp Franz von Siebold Award (K. G.), Humboldt Association of Japan (K. G.), Precise Measurement Technology Promotion Foundation (H. M.), JST PRESTO (JPMJPR1878) (K. H.), JST FOREST (21470594) (K. H.), JSPS Gran-in-Aid for Scientific Research (B) (22538379) (K. H.), JSPS Grant-in-Aid for Young Scientists (20K15227) (K. H.), Research Foundation for Opto-Science and Technology (K. H.), JSPS KAKENHI Grant Numbers 21J10600 and 24K18149 (H. K.), Konica Minolta Light Future Incentive Award (H. K.). We thank Mayu Sehara for her help with the cell sample preparation. The manuscript underwent editing with the assistance of a large language model (LLM).
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Hideharu Mikami
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shota Yamashita
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Arata Nagai
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fan Li
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Fei Yin
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Keita Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Ryohei Noma
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Bahareh Kiani
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olga Efa
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martin Büscher
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | | | - Hirofumi Shintaku
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jessica P Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Institute of Technological Sciences, Wuhan University, Hubei, China.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
5
|
Mei X, Fang Q, Selvaganapathy PR. Three-dimensional oxygen concentration monitoring in hydrogels using low-cost phosphorescence lifetime imaging for tissue engineering. BIOMEDICAL OPTICS EXPRESS 2023; 14:4759-4774. [PMID: 37791279 PMCID: PMC10545174 DOI: 10.1364/boe.493340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 10/05/2023]
Abstract
Oxygen concentration measurement in 3D hydrogels is vital in 3D cell culture and tissue engineering. However, standard 3D imaging systems capable of measuring oxygen concentration with adequate precision are based on advanced microscopy platforms, which are not accessible in many laboratories due to the system's complexity and the high price. In this work, we present a fast and low-cost phosphorescence lifetime imaging design for measuring the lifetime of oxygen-quenched phosphorescence emission with 0.25 µs temporal precision and sub-millimeter spatial resolution in 3D. By combining light-sheet illumination and the frequency-domain lifetime measurement using a commercial rolling-shutter CMOS camera in the structure of a conventional optical microscope, this design is highly customizable to accommodate application-specific research needs while also being low-cost as compared to advanced instruments. As a demonstration, we made a fluidic device with a gas-permeable film to create an artificial oxygen gradient in the hydrogel sample. Dye-embedded beads were distributed in the hydrogel to conduct continuous emission lifetime monitoring when nitrogen was pumped through the fluidic channel and changed oxygen distribution in the sample. The dynamics of the changes in lifetime co-related with their location in the gel of size 0.5 mm×1.5 mm×700 µm demonstrate the ability of this design to measure the oxygen concentration stably and precisely in 3D samples.
Collapse
Affiliation(s)
- Xu Mei
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - P. Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Image improvement of temporal focusing multiphoton microscopy via superior spatial modulation excitation and Hilbert-Huang transform decomposition. Sci Rep 2022; 12:10079. [PMID: 35710746 PMCID: PMC9203560 DOI: 10.1038/s41598-022-14367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Temporal focusing-based multiphoton excitation microscopy (TFMPEM) just provides the advantage of widefield optical sectioning ability with axial resolution of several micrometers. However, under the plane excitation, the photons emitted from the molecules in turbid tissues undergo scattering, resulting in complicated background noise and an impaired widefield image quality. Accordingly, this study constructs a general and comprehensive numerical model of TFMPEM utilizing Fourier optics and performs simulations to determine the superior spatial frequency and orientation of the structured pattern which maximize the axial excitation confinement. It is shown experimentally that the optimized pattern minimizes the intensity of the out-of-focus signal, and hence improves the quality of the image reconstructed using the Hilbert transform (HT). However, the square-like reflection components on digital micromirror device leads to pattern residuals in the demodulated image when applying high spatial frequency of structured pattern. Accordingly, the HT is replaced with Hilbert-Huang transform (HHT) in order to sift out the low-frequency background noise and pattern residuals in the demodulation process. The experimental results obtained using a kidney tissue sample show that the HHT yields a significant improvement in the TFMPEM image quality.
Collapse
|
7
|
Liu C, Chisholm A, Fu B, Su CTY, Şencan İ, Sakadžić S, Yaseen MA. Quantitation of cerebral oxygen tension using phasor analysis and phosphorescence lifetime imaging microscopy (PLIM). BIOMEDICAL OPTICS EXPRESS 2021; 12:4192-4206. [PMID: 34457408 PMCID: PMC8367232 DOI: 10.1364/boe.428873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 05/06/2023]
Abstract
Time-domain measurements for fluorescence lifetime imaging microscopy (FLIM) and phosphorescence lifetime imaging microscopy (PLIM) are conventionally computed by nonlinear curve fitting techniques to model the time-resolved profiles as mono- or multi-exponential decays. However, these techniques are computationally intensive and prone to fitting errors. The phasor or "polar plot" analysis method has recently gained attention as a simple method to characterize fluorescence lifetime. Here, we adapted the phasor analysis method for absolute quantitation of phosphorescence lifetimes of oxygen-sensitive phosphors and used the phasor-derived lifetime values to quantify oxygen partial pressure (pO2) in cortical microvessels of awake mice. Our results, both experimental and simulated, demonstrate that oxygen measurements obtained from computationally simpler phasor analysis agree well with traditional curve fitting calculations. To our knowledge, the current study constitutes the first application of the technique for characterizing microsecond-length, time-domain phosphorescence measurements and absolute, in vivo quantitation of a vital physiological parameter. The method shows promise for monitoring cerebral metabolism and pathological changes in preclinical rodent models.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Amanda Chisholm
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Clover T.-Y. Su
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Mohammad A. Yaseen
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
8
|
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4003-4019. [PMID: 34457395 PMCID: PMC8367245 DOI: 10.1364/boe.424533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/06/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Abstract
Two-photon Phosphorescence Lifetime Microscopy (2PLM) is an emerging nonlinear optical technique that has great potential to improve our understanding of the basic biology underlying human health and disease. Although analogous to 2-photon Fluorescence Lifetime Imaging Microscopy (2P-FLIM), the contrast in 2PLM is fundamentally different from various intensity-based forms of imaging since it is based on the lifetime of an excited state and can be regarded as a "functional imaging" technique. 2PLM signal originates from the deactivation of the excited triplet state (phosphorescence) [1, 2]. Typically, this triplet state is a much longer-lived excited state than the singlet excited state resulting in phosphorescence emission times of microseconds to milliseconds at room temperature as opposed to nanoseconds for fluorescence emission [3]. The long-lived nature of the triplet state makes it highly sensitive to quenching molecules in the surrounding environment such as biomolecular oxygen (O2). Therefore, 2PLM can provide not only information on the distribution pattern of the probe in the sample (via intensity) but also determine the local oxygen tension (via phosphorescence lifetime quenching) [1]. The ability to create three-dimensional optical sections in the plane of focus within a thick biological specimen while maintaining relatively low phototoxicity due to the use of near-infrared wavelengths for two-photon excitation gives 2PLM powerful advantages over other techniques for longitudinal imaging and monitoring of oxygen within living organisms [4]. In this chapter, we will provide background on the development of 2PLM, discuss the most common oxygen sensing measurement methods and concepts, and explain the general principles and optical configuration of a 2PLM system. We also discuss the key characteristics and strategies for improvement of the technique. Finally, we will present an overview of the current primary scientific literature of how 2PLM has been used for oxygen sensing in biological applications and how this technique is improving our understanding of the basic biology underlying several areas of human health.
Collapse
|
10
|
Chang CY, Lin CY, Hu YY, Tsai SF, Hsu FC, Chen SJ. Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200171RR. [PMID: 33386708 PMCID: PMC7778456 DOI: 10.1117/1.jbo.26.1.016501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Line scanning-based temporal focusing multiphoton microscopy (TFMPM) has superior axial excitation confinement (AEC) compared to conventional widefield TFMPM, but the frame rate is limited due to the limitation of the single line-to-line scanning mechanism. The development of the multiline scanning-based TFMPM requires only eight multiline patterns for full-field uniform multiphoton excitation and it still maintains superior AEC. AIM The optimized parallel multiline scanning TFMPM is developed, and the performance is verified with theoretical simulation. The system provides a sharp AEC equivalent to the line scanning-based TFMPM, but fewer scans are required. APPROACH A digital micromirror device is integrated in the TFMPM system and generates the multiline pattern for excitation. Based on the result of single-line pattern with sharp AEC, we can further model the multiline pattern to find the best structure that has the highest duty cycle together with the best AEC performance. RESULTS The AEC is experimentally improved to 1.7 μm from the 3.5 μm of conventional TFMPM. The adopted multiline pattern is akin to a pulse-width-modulation pattern with a spatial period of four times the diffraction-limited line width. In other words, ideally only four π / 2 spatial phase-shift scans are required to form a full two-dimensional image with superior AEC instead of image-size-dependent line-to-line scanning. CONCLUSIONS We have demonstrated the developed parallel multiline scanning-based TFMPM has the multiline pattern for sharp AEC and the least scans required for full-field uniform excitation. In the experimental results, the temporal focusing-based multiphoton images of disordered biotissue of mouse skin with improved axial resolution due to the near-theoretical limit AEC are shown to clearly reduce background scattering.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
| | - Chun-Yun Lin
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| | - Yvonne Y. Hu
- National Cheng Kung University, Department of Photonics, Tainan, Taiwan
| | - Sheng-Feng Tsai
- National Cheng Kung University, Department of Cell Biology and Anatomy, Tainan, Taiwan
| | - Feng-Chun Hsu
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| | - Shean-Jen Chen
- National Chiao Tung University, College of Photonics, Tainan, Taiwan
| |
Collapse
|
11
|
Wang C, Cheng Z, Gan W, Cui M. Line scanning mechanical streak camera for phosphorescence lifetime imaging. OPTICS EXPRESS 2020; 28:26717-26723. [PMID: 32906940 PMCID: PMC7679193 DOI: 10.1364/oe.402870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Phosphorescence lifetime measurement holds great importance in life sciences and material sciences. Due to the long lifetime of phosphorescence emission, conventional approaches based on point scanning time-domain recording suffer from long recording time and low signal-to-noise ratio (SNR). To overcome these difficulties, we developed a line scanning mechanical streak camera for parallel and high SNR imaging. This design offers three key advantages. First, hundreds to thousands of pixels can be recorded simultaneously at high throughput. Second, hundreds of excitation can be accumulated on a single camera frame and read out at once with high quantum efficiency (QE) and low read noise. Third, the system is very simple, only requiring a camera and a scanner. Using a confocal line scanning configuration, we imaged samples of various lifetime ranging from tens of nanoseconds to hundreds of microseconds, which demonstrated the versatility and advantages of this method.
Collapse
Affiliation(s)
- Chenmao Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
12
|
Lin W, Wang D, Meng Y, Chen SC. Multi-focus microscope with HiLo algorithm for fast 3-D fluorescent imaging. PLoS One 2019; 14:e0222729. [PMID: 31539402 PMCID: PMC6754165 DOI: 10.1371/journal.pone.0222729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
In this paper, we present a new multi-focus microscope (MFM) system based on a phase mask and HiLo algorithm, achieving high-speed (20 volumes per second), high-resolution, low-noise 3-D fluorescent imaging. During imaging, the emissions from the specimen at nine different depths are simultaneously modulated and focused to different regions on a single CCD chip, i.e., the CCD chip is subdivided into nine regions to record images from the different selected depths. Next, HiLo algorithm is applied to remove the background noises and to form clean 3-D images. To visualize larger volumes, the nine layers are scanned axially, realizing fast 3-D imaging. In the imaging experiments, a mouse kidney sample of ~ 60 × 60 × 16 μm3 is visualized with only 10 raw images, demonstrating substantially enhanced resolution and contrast as well as suppressed background noises. The new method will find important applications in 3-D fluorescent imaging, e.g., recording fast dynamic events at multiple depths in vivo.
Collapse
Affiliation(s)
- Wei Lin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin, China
| | - Dongping Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yunlong Meng
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- * E-mail:
| |
Collapse
|
13
|
Abstract
Light-sheet microscopy is an imaging approach that offers unique advantages for a diverse range of neuroscience applications. Unlike point-scanning techniques such as confocal and two-photon microscopy, light-sheet microscopes illuminate an entire plane of tissue, while imaging this plane onto a camera. Although early implementations of light sheet were optimized for longitudinal imaging of embryonic development in small specimens, emerging implementations are capable of capturing light-sheet images in freely moving, unconstrained specimens and even the intact in vivo mammalian brain. Meanwhile, the unique photobleaching and signal-to-noise benefits afforded by light-sheet microscopy's parallelized detection deliver the ability to perform volumetric imaging at much higher speeds than can be achieved using point scanning. This review describes the basic principles and evolution of light-sheet microscopy, followed by perspectives on emerging applications and opportunities for both imaging large, cleared, and expanded neural tissues and high-speed, functional imaging in vivo.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Venkatakaushik Voleti
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Wenze Li
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Hang Yu
- Departments of Biomedical Engineering and Radiology and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
14
|
Weisenburger S, Tejera F, Demas J, Chen B, Manley J, Sparks FT, Martínez Traub F, Daigle T, Zeng H, Losonczy A, Vaziri A. Volumetric Ca 2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell 2019; 177:1050-1066.e14. [PMID: 30982596 DOI: 10.1016/j.cell.2019.03.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.
Collapse
Affiliation(s)
- Siegfried Weisenburger
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Frank Tejera
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Chen
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA; Research Institute of Molecular Pathology, Vienna, Austria; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Alemohammad M, Shin J, Tran DN, Stroud JR, Chin SP, Tran TD, Foster MA. Widefield compressive multiphoton microscopy. OPTICS LETTERS 2018; 43:2989-2992. [PMID: 29905741 PMCID: PMC6058977 DOI: 10.1364/ol.43.002989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/11/2018] [Indexed: 05/10/2023]
Abstract
A single-pixel compressively sensed architecture is exploited to simultaneously achieve a 10× reduction in acquired data compared with the Nyquist rate, while alleviating limitations faced by conventional widefield temporal focusing microscopes due to scattering of the fluorescence signal. Additionally, we demonstrate an adaptive sampling scheme that further improves the compression and speed of our approach.
Collapse
Affiliation(s)
- Milad Alemohammad
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jaewook Shin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Dung N. Tran
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jasper R. Stroud
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sang Peter Chin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Boston University, Boston, Massachusetts 02215, USA
| | - Trac D. Tran
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Mark A. Foster
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
16
|
Yannas IV, Tzeranis DS, So PTC. Regeneration mechanism for skin and peripheral nerves clarified at the organ and molecular scales. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:1-7. [PMID: 29392187 PMCID: PMC5788464 DOI: 10.1016/j.cobme.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This article is a review of current research on the mechanism of regeneration of skin and peripheral nerves based on use of collagen scaffolds, particularly the dermis regeneration template (DRT), which is widely used clinically. DRT modifies the normal wound healing process, converting it from wound closure by contraction and scar formation to closure by regeneration. DRT achieves this modification by blocking wound contraction, which spontaneously leads to cancellation of scar formation, a process secondary to contraction. Contraction blocking by DRT is the result of a dramatic phenotype change in contractile cells (myofibroblasts, MFB) which follows specific binding of integrins α1β1 and α2β1 onto hexapeptide ligands, probably GFOGER and GLOGER, that are naturally present on the surface of collagen fibers in DRT. The methodology of organ regeneration based on use of DRT has been recently extended from traumatized skin to diseased skin. Successful extension of the method to other organs in which wounds heal by contraction is highly likely though not yet attempted. This regenerative paradigm is much more advanced both in basic mechanistic understanding and clinical use than methods based on tissue culture or stem cells. It is also largely free of risk and has shown decisively lower morbidity and lower cost than organ transplantation.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitrios S Tzeranis
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter T C So
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Chang CY, Lin CH, Lin CY, Sie YD, Hu YY, Tsai SF, Chen SJ. Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201600287. [PMID: 28464488 DOI: 10.1002/jbio.201600287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/29/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm-1 spatially modulated illumination at 90° (center) and 0° (right) orientations.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Center for Micro/Nano Science and Technology, National Cheng Kung University, 701, Tainan, Taiwan
- Department of Engineering Science, National Cheng Kung University, 701, Tainan, Taiwan
| | - Cheng-Han Lin
- Department of Engineering Science, National Cheng Kung University, 701, Tainan, Taiwan
| | - Chun-Yu Lin
- Advanced Optoelectronic Technology Center, National Cheng Kung University, 701, Tainan, Taiwan
| | - Yong-Da Sie
- Department of Engineering Science, National Cheng Kung University, 701, Tainan, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, 701, Tainan, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, 701, Tainan, Taiwan
| | - Shean-Jen Chen
- Advanced Optoelectronic Technology Center, National Cheng Kung University, 701, Tainan, Taiwan
- College of Photonics, National Chiao Tung University, 711 Tainan, Taiwan
| |
Collapse
|
18
|
Owyong M, Hosseini-Nassab N, Efe G, Honkala A, van den Bijgaart RJE, Plaks V, Smith BR. Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resist Updat 2017; 33-35:23-35. [PMID: 29145972 DOI: 10.1016/j.drup.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The advent of cancer immunotherapy (CIT) and its success in treating primary and metastatic cancer may offer substantially improved outcomes for patients. Despite recent advancements, many malignancies remain resistant to CIT, among which are brain metastases, a particularly virulent disease with no apparent cure. The immunologically unique niche of the brain has prompted compelling new questions in immuno-oncology such as the effects of tissue-specific differences in immune response, heterogeneity between primary tumors and distant metastases, and the role of spatiotemporal dynamics in shaping an effective anti-tumor immune response. Current methods to examine the immunobiology of metastases in the brain are constrained by tissue processing methods that limit spatial data collection, omit dynamic information, and cannot recapitulate the heterogeneity of the tumor microenvironment. In the current review, we describe how high-resolution, live imaging tools, particularly intravital microscopy (IVM), are instrumental in answering these questions. IVM of pre-clinical cancer models enables short- and long-term observations of critical immunobiology and metastatic growth phenomena to potentially generate revolutionary insights into the spatiotemporal dynamics of brain metastasis, interactions of CIT with immune elements therein, and influence of chemo- and radiotherapy. We describe the utility of IVM to study brain metastasis in mice by tracking the migration and growth of fluorescently-labeled cells, including cancer cells and immune subsets, while monitoring the physical environment within optical windows using imaging dyes and other signal generation mechanisms to illuminate angiogenesis, hypoxia, and/or CIT drug expression within the metastatic niche. Our review summarizes the current knowledge regarding brain metastases and the immune milieu, presents the current status of CIT and its prospects in targeting brain metastases to circumvent therapeutic resistance, and proposes avenues to utilize IVM to study CIT drug delivery and therapeutic efficacy in preclinical models that will ultimately facilitate novel drug discovery and innovative combination therapies.
Collapse
Affiliation(s)
- Mark Owyong
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA
| | | | - Gizem Efe
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA
| | - Alexander Honkala
- Department of Radiology, Stanford University, Stanford, CA 94306, USA
| | - Renske J E van den Bijgaart
- Department of Radiation Oncology, Radiotherapy and Oncoimmunology Laboratory, Radboudumc, Geert Grooteplein Zuid 32, 6525, GA, Nijmegen, The Netherlands
| | - Vicki Plaks
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
19
|
Rowlands CJ, Park D, Bruns OT, Piatkevich KD, Fukumura D, Jain RK, Bawendi MG, Boyden ES, So PTC. Wide-field three-photon excitation in biological samples. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16255. [PMID: 29152380 PMCID: PMC5687557 DOI: 10.1038/lsa.2016.255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 05/11/2023]
Abstract
Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two- and three-photon microscopy. Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown, and a penetration depth of more than 700 μm into fixed scattering brain tissue is achieved, approximately twice as deep as that achieved using two-photon wide-field excitation. Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse; a complete focal stack was obtained without any evidence of photodamage. As an additional validation of the utility of wide-field three-photon excitation, functional excitation is demonstrated by performing three-photon optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin; action potentials could reliably be excited without causing photodamage.
Collapse
Affiliation(s)
- Christopher J Rowlands
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Demian Park
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver T Bruns
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kiryl D Piatkevich
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, McGovern Institute and MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Peter TC So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device. MICROMACHINES 2017; 8. [PMID: 29387484 PMCID: PMC5788041 DOI: 10.3390/mi8030085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Collapse
|
21
|
Prevedel R, Verhoef AJ, Pernía-Andrade AJ, Weisenburger S, Huang BS, Nöbauer T, Fernández A, Delcour JE, Golshani P, Baltuska A, Vaziri A. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat Methods 2016; 13:1021-1028. [PMID: 27798612 DOI: 10.1038/nmeth.4040] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/29/2016] [Indexed: 01/17/2023]
Abstract
Although whole-organism calcium imaging in small and semi-transparent animals has been demonstrated, capturing the functional dynamics of large-scale neuronal circuits in awake behaving mammals at high speed and resolution has remained one of the main frontiers in systems neuroscience. Here we present a method based on light sculpting that enables unbiased single- and dual-plane high-speed (up to 160 Hz) calcium imaging as well as in vivo volumetric calcium imaging of a mouse cortical column (0.5 mm × 0.5 mm × 0.5 mm) at single-cell resolution and fast volume rates (3-6 Hz). We achieved this by tailoring the point-spread function of our microscope to the structures of interest while maximizing the signal-to-noise ratio using a home-built fiber laser amplifier with pulses that are synchronized to the imaging voxel speed. This enabled in vivo recording of calcium dynamics of several thousand neurons across cortical layers and in the hippocampus of awake behaving mice.
Collapse
Affiliation(s)
- Robert Prevedel
- Research Institute of Molecular Pathology, Vienna, Austria.,Max F. Perutz Laboratories Support GmbH, University of Vienna, Vienna, Austria.,Research Platform Quantum Phenomena &Nanoscale Biological Systems (QuNaBioS), University of Vienna, Vienna, Austria.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aart J Verhoef
- Photonics Institute, TU Wien, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Siegfried Weisenburger
- Research Institute of Molecular Pathology, Vienna, Austria.,The Rockefeller University, New York, New York, USA
| | - Ben S Huang
- Department of Neurology and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tobias Nöbauer
- Research Institute of Molecular Pathology, Vienna, Austria.,The Rockefeller University, New York, New York, USA
| | - Alma Fernández
- Photonics Institute, TU Wien, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Peyman Golshani
- Department of Neurology and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,West Los Angeles Virginia Medical Center, Los Angeles, California, USA
| | | | - Alipasha Vaziri
- Research Institute of Molecular Pathology, Vienna, Austria.,Max F. Perutz Laboratories Support GmbH, University of Vienna, Vienna, Austria.,Research Platform Quantum Phenomena &Nanoscale Biological Systems (QuNaBioS), University of Vienna, Vienna, Austria.,The Rockefeller University, New York, New York, USA
| |
Collapse
|
22
|
Petrášek Z, Bolivar JM, Nidetzky B. Confocal Luminescence Lifetime Imaging with Variable Scan Velocity and Its Application to Oxygen Sensing. Anal Chem 2016; 88:10736-10743. [PMID: 27690248 DOI: 10.1021/acs.analchem.6b03363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dependence of the luminescence lifetime on the probe environment is the basis of a range of sensing techniques. The major advantage of using the lifetime as the sensitive parameter is its independence on the probe concentration. However, the instrumentation for lifetime measurements is complex, generally requiring time-resolved excitation and detection. Here, we present a simple method for the measurement of luminescence lifetimes on the microsecond scale based on variable excitation time determined by the scanning velocity. The technique is implemented in a confocal laser scanning microscope (CLSM), thus allowing not only simple lifetime measurement but also phosphorescence lifetime imaging. Since the method exploits the spatiotemporal dependence of sample excitation in a CLSM, there is no need for a pulsed or modulated light source or for additional time-resolved detection. The method can be realized in a standard CLSM without any modifications. The principle is demonstrated on oxygen sensing by collisional quenching of an oxygen-sensitive ruthenium(II) complex.
Collapse
Affiliation(s)
- Zdeněk Petrášek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
23
|
Chang CY, Hu YY, Lin CY, Lin CH, Chang HY, Tsai SF, Lin TW, Chen SJ. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:1727-36. [PMID: 27231617 PMCID: PMC4871077 DOI: 10.1364/boe.7.001727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 05/27/2023]
Abstract
Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Yu Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Han Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Yu Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzu-Wei Lin
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
|
25
|
So PTC, Yew EYS, Rowlands C. High-throughput nonlinear optical microscopy. Biophys J 2014; 105:2641-54. [PMID: 24359736 DOI: 10.1016/j.bpj.2013.08.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field.
Collapse
Affiliation(s)
- Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts; BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| | - Elijah Y S Yew
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christopher Rowlands
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
26
|
Abdul Rahim NA, Pelet S, Mofrad MRK, So PTC, Kamm RD. Quantifying intracellular protein binding thermodynamics during mechanotransduction based on FRET spectroscopy. Methods 2014; 66:208-21. [PMID: 24184188 PMCID: PMC4094350 DOI: 10.1016/j.ymeth.2013.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/24/2013] [Accepted: 10/12/2013] [Indexed: 11/29/2022] Open
Abstract
Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Nur Aida Abdul Rahim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states
| | - Serge Pelet
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States; Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Room 2406, CH-1015 Lausanne, Switzerland
| | - Mohammad R K Mofrad
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall MC #1762, Berkeley, CA 94720-1762, United States
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States; Laser Biomedical Research Center, A NIH NIBIB Research Resource, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United states; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, United States
| |
Collapse
|
27
|
Rajendran M, Yapici E, Miller LW. Lanthanide-based imaging of protein-protein interactions in live cells. Inorg Chem 2014; 53:1839-53. [PMID: 24144069 PMCID: PMC3944735 DOI: 10.1021/ic4018739] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) were imaged at high signal-to-noise ratio with fast (1-3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive, and technically simple imaging of protein-protein interactions in live cells.
Collapse
Affiliation(s)
- Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Engin Yapici
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| |
Collapse
|
28
|
Baggaley E, Sazanovich IV, Williams JAG, Haycock JW, Botchway SW, Weinstein JA. Two-photon phosphorescence lifetime imaging of cells and tissues using a long-lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(ii) complex. RSC Adv 2014. [DOI: 10.1039/c4ra04489d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ‘longer’ picture: emission bio-imaging over microsecond time frame with scanning, multi-photon posphorescence-lifetime-imaging-microscopy (PLIM).
Collapse
Affiliation(s)
| | - Igor V. Sazanovich
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF, U.K
- Central Laser Facility
- Science and Technology Facilities Council
| | | | - John W. Haycock
- Department of Engineering Materials
- The Kroto Research Institute
- University of Sheffield
- Sheffield, UK
| | | | | |
Collapse
|
29
|
Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Krishnan R, Arora RP, Alexander M, White SM, Lamb MW, Foster CE, Choi B, Lakey JRT. Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 2013; 35:891-8. [PMID: 24176195 DOI: 10.1016/j.biomaterials.2013.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 01/25/2023]
Abstract
Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell injury and rejection; however, poor vascular perfusion results in graft failure. Since existing imaging models are incapable of quantifying the vascular response to biomaterial implants after transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared after implantation into the mouse dorsal window chamber (N = 4 per implant group). Images obtained over a 14-day period using LSI and WiFI were analyzed using algorithms to quantify blood flow, hemoglobin oxygen saturation and vascular density. Using our method, we were able to monitor the changes in the peri-implant microvasculature noninvasively without the use of fluorescent dyes. Significant changes in blood flow, hemoglobin oxygen saturation and vascular density were noted as early as the first week post-transplant. The dorsal window chamber model enables comparison of host responses to transplanted biomaterials. Future experiments will study the effect of changes in alginate composition on the vascular and immune responses.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Choi H, Yew EYS, Hallacoglu B, Fantini S, Sheppard CJR, So PTC. Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination. BIOMEDICAL OPTICS EXPRESS 2013; 4:995-1005. [PMID: 23847726 PMCID: PMC3704103 DOI: 10.1364/boe.4.000995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
Although temporally focused wide-field two-photon microscopy (TFM) can perform depth resolved wide field imaging, it cannot avoid the image degradation due to scattering of excitation and emission photons when imaging in a turbid medium. Further, its axial resolution is inferior to standard point-scanning two-photon microscopy. We implemented a structured light illumination for TFM and have shown that it can effectively reject the out-of-focus scattered emission photons improving image contrast. Further, the depth resolution of the improved system is dictated by the spatial frequency of the structure light with the potential of attaining depth resolution better than point-scanning two-photon microscopy.
Collapse
Affiliation(s)
- Heejin Choi
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Elijah Y. S. Yew
- Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Bertan Hallacoglu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Colin J. R. Sheppard
- Department of Nanophysics, Istituto Italiano di Tecnologia, Via Morego, 30, 1613 Genova, Italy
| | - Peter T. C. So
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
32
|
Abstract
The advent of scanning two-photon microscopy (2PM) has created a fertile new avenue for noninvasive investigation of brain activity in depth. One principal weakness of this method, however, lies with the limit of scanning speed, which makes optical interrogation of action potential-like activity in a neuronal network problematic. Encoded multisite two-photon microscopy (eMS2PM), a scanless method that allows simultaneous imaging of multiple targets in depth with high temporal resolution, addresses this drawback. eMS2PM uses a liquid crystal spatial light modulator to split a high-power femto-laser beam into multiple subbeams. To distinguish them, a digital micromirror device encodes each subbeam with a specific binary amplitude modulation sequence. Fluorescence signals from all independently targeted sites are then collected simultaneously onto a single photodetector and site-specifically decoded. We demonstrate that eMS2PM can be used to image spike-like voltage transients in cultured cells and fluorescence transients (calcium signals in neurons and red blood cells in capillaries from the cortex) in depth in vivo. These results establish eMS2PM as a unique method for simultaneous acquisition of neuronal network activity.
Collapse
|