1
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
2
|
Formstone C, Aldeiri B, Davenport M, Francis-West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2024. [PMID: 39319771 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, UK
| | - Bashar Aldeiri
- Department of Paediatric Surgery, Chelsea and Westminster Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | | |
Collapse
|
3
|
Chen J, Wang H, Wu S, Zhang A, Qiu Z, Huang P, Qu JY, Xu J. col1a2+ fibroblasts/muscle progenitors finetune xanthophore countershading by differentially expressing csf1a/1b in embryonic zebrafish. SCIENCE ADVANCES 2024; 10:eadj9637. [PMID: 38578990 PMCID: PMC10997200 DOI: 10.1126/sciadv.adj9637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Animals evolve diverse pigment patterns to adapt to the natural environment. Countershading, characterized by a dark-colored dorsum and a light-colored ventrum, is one of the most prevalent pigment patterns observed in vertebrates. In this study, we reveal a mechanism regulating xanthophore countershading in zebrafish embryos. We found that csf1a and csf1b mutants altered xanthophore countershading differently: csf1a mutants lack ventral xanthophores, while csf1b mutants have reduced dorsal xanthophores. Further study revealed that csf1a is expressed throughout the trunk, whereas csf1b is expressed dorsally. Ectopic expression of csf1a or csf1b in neurons attracted xanthophores into the spinal cord. Blocking csf1 signaling by csf1ra mutants disrupts spinal cord distribution and normal xanthophores countershading. Single-cell RNA sequencing identified two col1a2+ populations: csf1ahighcsf1bhigh muscle progenitors and csf1ahighcsf1blow fibroblast progenitors. Ablation of col1a2+ fibroblast and muscle progenitors abolished xanthophore patterns. Our study suggests that fibroblast and muscle progenitors differentially express csf1a and csf1b to modulate xanthophore patterning, providing insights into the mechanism of countershading.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honggao Wang
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ao Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Zhongkai Qiu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Jin Xu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Tzika AC, Ullate-Agote A, Zakany S, Kummrow M, Milinkovitch MC. Somitic positional information guides self-organized patterning of snake scales. SCIENCE ADVANCES 2023; 9:eadf8834. [PMID: 37315141 DOI: 10.1126/sciadv.adf8834] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Two influential concepts in tissue patterning are Wolpert's positional information and Turing's self-organized reaction-diffusion (RD). The latter establishes the patterning of hair and feathers. Here, our morphological, genetic, and functional-by CRISPR-Cas9-mediated gene disruption-characterization of wild-type versus "scaleless" snakes reveals that the near-perfect hexagonal pattern of snake scales is established through interactions between RD in the skin and somitic positional information. First, we show that ventral scale development is guided by hypaxial somites and, second, that ventral scales and epaxial somites guide the sequential RD patterning of the dorsolateral scales. The RD intrinsic length scale evolved to match somite periodicity, ensuring the alignment of ribs and scales, both of which play a critical role in snake locomotion.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Szabolcs Zakany
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Hieu HT, Tanaka M, Kuwamura M, Mashimo T, Serikawa T, Kuramoto T. The rat Downunder (Du) coat color mutation is associated with eye anomalies and embryonic lethality and maps to a 3.9-Mb region on chromosome 3. Exp Anim 2023; 72:88-94. [PMID: 36123037 PMCID: PMC9978131 DOI: 10.1538/expanim.22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rodent coat color genes have been studied as a bioresource to understand developmental and cellular processes. The Downunder rat is a fancy variety with a marking on its belly that runs from the neck to the breech and appears to mirror the dorsal hooded marking. Here, we established a congenic strain carrying the Downunder (Du) gene in an F344 genetic background. In addition to the ventral marking, Du/+ rats exhibit anophthalmia or microphthalmia with incomplete penetrance. Du/Du embryos die in the early stages of organogenesis. Genetic linkage analysis mapped the Du gene to rat chromosome 3 and haplotype mapping with congenic rats localized the Du locus to a 3.9-Mb region. The Du locus includes two functional genes, glycosyltransferase-like domain-containing 1 (Gtdc1) and zinc finger E-box binding homeobox 2 (Zeb2). Although we found no functional variation within any of Zeb2's exons or intron-exon boundaries, Zeb2 mRNA levels were significantly lower in Du/+ rats compared with wild-type rats. It is known that melanocyte-specific Zeb2 deletion results in the congenital loss of hair pigmentation in mice. Taken together, our results indicate that the Du mutation exerts pleiotropic effects on hair pigmentation, eye morphology, and development. Moreover, the Zeb2 gene is a strong candidate for the Du mutation.
Collapse
Affiliation(s)
- Hoang Trung Hieu
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-ourai-kita, Izumisano, Osaka 598-8531,
Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-ourai-kita, Izumisano, Osaka 598-8531,
Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan,Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan,Kyoto Disease Model Institute, The Kyoto Technoscience Center, 14 Yoshida-kawara-cho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Takashi Kuramoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Promoter-Adjacent DNA Hypermethylation Can Downmodulate Gene Expression: TBX15 in the Muscle Lineage. EPIGENOMES 2022; 6:epigenomes6040043. [PMID: 36547252 PMCID: PMC9778270 DOI: 10.3390/epigenomes6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.
Collapse
|
7
|
Hidalgo M, Curantz C, Quenech’Du N, Neguer J, Beck S, Mohammad A, Manceau M. A conserved molecular template underlies color pattern diversity in estrildid finches. SCIENCE ADVANCES 2022; 8:eabm5800. [PMID: 36044564 PMCID: PMC9432839 DOI: 10.1126/sciadv.abm5800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
| | - Nicole Quenech’Du
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Neguer
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Samantha Beck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ammara Mohammad
- Genomic Facility, Institute of Biology of the Ecole Normale Supérieure, CNRS, INSERM Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
8
|
Qian Y, Xiong Z, Li Y, Kayser M, Liu L, Liu F. The effects of Tbx15 and Pax1 on facial and other physical morphology in mice. FASEB Bioadv 2021; 3:1011-1019. [PMID: 34938962 PMCID: PMC8664010 DOI: 10.1096/fba.2021-00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
DNA variants in or close to the human TBX15 and PAX1 genes have been repeatedly associated with facial morphology in independent genome-wide association studies, while their functional roles in determining facial morphology remain to be understood. We generated Tbx15 knockout (Tbx15 -/-) and Pax1 knockout (Pax1 -/-) mice by applying the one-step CRISPR/Cas9 method. A total of 75 adult mice were used for subsequent phenotype analysis, including 38 Tbx15 mice (10 homozygous Tbx15 -/-, 18 heterozygous Tbx15 +/-, 10 wild-type Tbx15 +/+ WT littermates) and 37 Pax1 mice (12 homozygous Pax1 -/-, 15 heterozygous Pax1 +/-, 10 Pax1 +/+ WT littermates). Facial and other physical morphological phenotypes were obtained from three-dimensional (3D) images acquired with the HandySCAN BLACK scanner. Compared to WT littermates, the Tbx15 -/- mutant mice had significantly shorter faces (p = 1.08E-8, R2 = 0.61) and their ears were in a significantly lower position (p = 3.54E-8, R2 = 0.62) manifesting a "droopy ear" characteristic. Besides these face alternations, Tbx15 -/- mutant mice displayed significantly lower weight as well as shorter body and limb length. Pax1 -/- mutant mice showed significantly longer noses (p = 1.14E-5, R2 = 0.46) relative to WT littermates, but otherwise displayed less obvious morphological alterations than Tbx15 -/- mutant mice did. We provide the first direct functional evidence that two well-known and replicated human face genes, Tbx15 and Pax1, impact facial and other body morphology in mice. The general agreement between our findings in knock-out mice with those from previous GWASs suggests that the functional evidence we established here in mice may also be relevant in humans.
Collapse
Affiliation(s)
- Yu Qian
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyi Xiong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Lei Liu
- Department of Plastic and Burn SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| |
Collapse
|
9
|
Abousoliman I, Reyer H, Oster M, Murani E, Mohamed I, Wimmers K. Genome-Wide Analysis for Early Growth-Related Traits of the Locally Adapted Egyptian Barki Sheep. Genes (Basel) 2021; 12:1243. [PMID: 34440417 PMCID: PMC8394750 DOI: 10.3390/genes12081243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Sheep play a critical role in the agricultural and livestock sector in Egypt. For sheep meat production, growth traits such as birth and weaning weights are very important and determine the supply and income of local farmers. The Barki sheep originates from the northeastern coastal zone of Africa, and due to its good adaptation to the harsh environmental conditions, it contributes significantly to the meat production in these semi-arid regions. This study aimed to use a genome-wide SNP panel to identify genomic regions that are diversified between groups of individuals of Egyptian Barki sheep with high and low growth performance traits. In this context, from a phenotyped population of 140 lambs of Barki sheep, 69 lambs were considered for a genome-wide scan with the Illumina OvineSNP50 V2 BeadChip. The selected lambs were grouped into divergent subsets with significantly different performance for birth weight and weaning weight. After quality control, 63 animals and 40,383 SNPs were used for analysis. The fixation index (FST) for each SNP was calculated between the groups. The results verified genomic regions harboring some previously proposed candidate genes for traits related to body growth, i.e., EYA2, GDF2, GDF10, MEF2B, SLC16A7, TBX15, TFAP2B, and TNNC2. Moreover, novel candidate genes were proposed with known functional implications on growth processes such as CPXM2 and LRIG3. Subsequent association analysis showed significant effects of the considered SNPs on birth and weaning weights. Results highlight the genetic diversity associated with performance traits and thus the potential to improve growth traits in the Barki sheep breed.
Collapse
Affiliation(s)
- Ibrahim Abousoliman
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Ismail Mohamed
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 7, 18059 Rostock, Germany
| |
Collapse
|
10
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 462] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Haupaix N, Curantz C, Manceau M. The embryonic origin of periodic colour patterns. C R Biol 2020; 343:143-153. [PMID: 33108119 DOI: 10.5802/crbiol.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Abstract
Because they vary extensively, the periodic colour motifs that adorn the coat of vertebrates historically served to study the formation and evolution of biological patterns. While two major patterning strategies, namely instructional signalling and self-organisation, have been theorised from numerical and empirical work in model organisms, the origin, nature, and mode of action of factors underlying these strategies in vivo remains unclear. To address this question our laboratory designed a method based on opportunistic surveys of natural variation in periodic plumage motifs. We linked common and varying elements of the striped pattern seen in juvenile poultry birds to early embryonic instruction from the somite and late dose-dependent mechanisms occurring during skin development. These results reconciled patterning theories, showing they combine in a two-step process shaping natural variation in a typical periodic pattern.
Collapse
Affiliation(s)
- Nicolas Haupaix
- Center for Interdisciplinary Research in Biology, CNRS UMR7040, INSERM U1050, Collège de France and Paris Sciences et Lettres University, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, CNRS UMR7040, INSERM U1050, Collège de France and Paris Sciences et Lettres University, France
- Sorbonne University, UPMC Paris VI, Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR7040, INSERM U1050, Collège de France and Paris Sciences et Lettres University, France
| |
Collapse
|
12
|
Xi Y, Liu H, Li L, Xu Q, Liu Y, Wang L, Ma S, Wang J, Bai L, Zhang R, Han C. Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Front Cell Dev Biol 2020; 8:560766. [PMID: 33117797 PMCID: PMC7559526 DOI: 10.3389/fcell.2020.560766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Certain animals exhibit a special dorsoventral pattern with a lighter ventral side compared to the dorsal one and this phenomenon was preserved in the long-term evolution process. Birds also retain this trait. Recently, Inaba et al. (2019) found that ASIP (agouti signal protein) regulated interconversion between different melanocyte types leads to dorsal stripe pattern, which may partly explain the birds' dorsoventral plumage color difference. In this study, we used the embryo samples of LBM (light brown mottling) ducks (Anas platyrhynchos) with white ventral and dark dorsal body parts to investigate the mechanism of dorsoventral color variation. Firstly, melanin deposition process of duck embryos was investigated. The result indicated that E13 and E16 were the active stages of melanin synthesis. Moreover, the melanin deposition on the dorsum of LBM ducks was higher than that on the ventral side throughout. Then, RNA-seq was conducted for the dorsal and ventral skin tissues from E7 (early), E13 (middle) and E19 (late) of LBM ducks. Expression pattern analysis showed that the mRNA expression of most melanin synthesis related genes were at the highest level at E13, which was consistent with the section analysis. A correlation was found between melanogenesis pathway and dorsoventral color difference by co-expression analysis. In the DEG (differentially expressed gene) analysis, we added the dorsal skin transcriptome of embryonic white and black duck of same subspecies (Anas platyrhynchos domestica) for horizontal comparison. The results showed that 8 melanogenesis related genes (TYR, TYRP1, MLANA, RAB38, OCA2, TSPAN10, MC1R, and MSLN) were the common DEGs (Differential expressed genes) in the comparisons of body parts and breeds suggesting that the underlying molecular regulatory mechanism of dorsoventral plumage color difference may be similar to that of albino and melanic duck, which were caused by the different expression of multiple genes in melanin synthesis pathway. In addition, the molecular regulation of melanin synthesis pathway in the dorsal and ventral side of LBM ducks was analyzed. In this pathway, ASIP, MC1R, TYR, and TYRP1 have differential mRNA expression. ASIP, as an upstream gene in this pathway, was likely to play a decisive role in determining the dorsoventral plumage pattern.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferreira MS, Alves PC, Callahan CM, Giska I, Farelo L, Jenny H, Mills LS, Hackländer K, Good JM, Melo‐Ferreira J. Transcriptomic regulation of seasonal coat color change in hares. Ecol Evol 2020; 10:1180-1192. [PMID: 32076506 PMCID: PMC7029059 DOI: 10.1002/ece3.5956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Color molts from summer brown to winter white coats have evolved in several species to maintain camouflage year-round in environments with seasonal snow. Despite the eco-evolutionary relevance of this key phenological adaptation, its molecular regulation has only recently begun to be addressed. Here, we analyze skin transcription changes during the autumn molt of the mountain hare (Lepus timidus) and integrate the results with an established model of gene regulation across the spring molt of the closely related snowshoe hare (L. americanus). We quantified differences in gene expression among three stages of molt progression-"brown" (early molt), "intermediate," and "white" (late molt). We found 632 differentially expressed genes, with a major pulse of expression early in the molt, followed by a milder one in late molt. The functional makeup of differentially expressed genes anchored the sampled molt stages to the developmental timeline of the hair growth cycle, associating anagen to early molt and the transition to catagen to late molt. The progression of color change was characterized by differential expression of genes involved in pigmentation, circadian, and behavioral regulation. We found significant overlap between differentially expressed genes across the seasonal molts of mountain and snowshoe hares, particularly at molt onset, suggesting conservatism of gene regulation across species and seasons. However, some discrepancies suggest seasonal differences in melanocyte differentiation and the integration of nutritional cues. Our established regulatory model of seasonal coat color molt provides an important mechanistic context to study the functional architecture and evolution of this crucial seasonal adaptation.
Collapse
Affiliation(s)
- Mafalda S. Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| | - Paulo C. Alves
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
| | | | - Iwona Giska
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Liliana Farelo
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Hannes Jenny
- Amt für Jagd und Fischerei GraubündenChurSwitzerland
| | - L. Scott Mills
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Office of Research and Creative ScholarshipUniversity of MontanaMissoulaMTUSA
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game ManagementBOKU—University of Natural Resources and Life SciencesViennaAustria
| | - Jeffrey M. Good
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - José Melo‐Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| |
Collapse
|
14
|
Sun W, Zhao X, Wang Z, Chu Y, Mao L, Lin S, Gao X, Song Y, Hui X, Jia S, Tang S, Xu Y, Xu A, Loomes K, Wang C, Wu D, Nie T. Tbx15 is required for adipocyte browning induced by adrenergic signaling pathway. Mol Metab 2019; 28:48-57. [PMID: 31352005 PMCID: PMC6822144 DOI: 10.1016/j.molmet.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The T-box gene Tbx15 is abundantly expressed in adipose tissues, especially subcutaneous and brown fat. Although its expression is correlated with obesity, its precise biological role in adipose tissue is poorly understood in vivo. Here we investigated the function of Tbx15 in brown adipose thermogenesis and white adipose browning in vivo. METHODS In the present study, we generated adipose-specific Tbx15 knockout (AKO) mice by crossing Tbx15 floxed mice with adiponectin-Cre mice to delineate Tbx15 function in adipose tissues. We systematically investigated the influence of Tbx15 on brown adipose thermogenesis and white adipose browning in mice, as well as the possible underlying molecular mechanism. RESULTS Upon cold exposure, adipocyte browning in inguinal adipose tissue was significantly impaired in Tbx15 AKO mice. Furthermore, ablation of Tbx15 blocked adipocyte browning induced by β3 adrenergic agonist CL 316243, which did not appear to alter the expression of Tbx15. Analysis of DNA binding sites using chromatin-immunoprecipitation (ChIP) revealed that TBX15 bound directly to a key region in the Prdm16 promoter, indicating it regulates transcription of Prdm16, the master gene for adipocyte thermogenesis and browning. Compared to control mice, Tbx15 AKO mice displayed increased body weight gain and decreased whole body energy expenditure in response to high fat diets. CONCLUSION Taken together, these findings suggest that Tbx15 regulates adipocyte browning and might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuemei Zhao
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong, 510080, PR China
| | - Zhengqi Wang
- Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yi Chu
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liufeng Mao
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaoqiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong, 510080, PR China
| | - Xuefei Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuna Song
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong, 510080, PR China
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shiqi Jia
- Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shibing Tang
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kerry Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Cunchuan Wang
- Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Tao Nie
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong, 510080, PR China; Central Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Neshati Z, Kerachian MA. T- Box20 inhibits osteogenic differentiation in adipose-derived human mesenchymal stem cells: the role of T- Box20 on osteogenesis. ACTA ACUST UNITED AC 2019; 26:8. [PMID: 31548928 PMCID: PMC6751895 DOI: 10.1186/s40709-019-0099-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Background Skeletal development and its cellular function are regulated by various transcription factors. The T-box (Tbx) family of transcription factors have critical roles in cellular differentiation as well as heart and limbs organogenesis. These factors possess activator and/or repressor domains to modify the expression of target genes. Despite the obvious effects of Tbx20 on heart development, its impact on bone development is still unknown. Methods To investigate the consequence by forced Tbx20 expression in the osteogenic differentiation of human mesenchymal stem cells derived from adipose tissue (Ad-MSCs), these cells were transduced with a bicistronic lentiviral vector encoding Tbx20 and an enhanced green fluorescent protein. Results Tbx20 gene delivery system suppressed the osteogenic differentiation of Ad-MSCs, as indicated by reduction in alkaline phosphatase activity and Alizarin Red S staining. Consistently, reverse transcription-polymerase chain reaction analyses showed that Tbx20 gain-of-function reduced the expression levels of osteoblast marker genes in osteo-inductive Ad-MSCs cultures. Accordingly, Tbx20 negatively affected osteogenesis through modulating expression of key factors involved in this process. Conclusion The present study suggests that Tbx20 could inhibit osteogenic differentiation in adipose-derived human mesenchymal stem cells.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- 1Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- 2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,3Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,4School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Neshati
- 2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antoine A F de Vries
- 5Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hojjat Naderi-Meshkin
- 6Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Majid Mojarad
- 7Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,8Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Neshati
- 9Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- 7Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,8Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Ackermann RR, Arnold ML, Baiz MD, Cahill JA, Cortés-Ortiz L, Evans BJ, Grant BR, Grant PR, Hallgrimsson B, Humphreys RA, Jolly CJ, Malukiewicz J, Percival CJ, Ritzman TB, Roos C, Roseman CC, Schroeder L, Smith FH, Warren KA, Wayne RK, Zinner D. Hybridization in human evolution: Insights from other organisms. Evol Anthropol 2019; 28:189-209. [PMID: 31222847 PMCID: PMC6980311 DOI: 10.1002/evan.21787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.
Collapse
Affiliation(s)
- Rebecca R. Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Marcella D. Baiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - James A. Cahill
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Ben J. Evans
- Biology Department, Life Sciences Building, McMaster University, Hamilton, Canada
| | - B. Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Peter R. Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Robyn A. Humphreys
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Clifford J. Jolly
- Center for the Study of Human Origins, Department of Anthropology, New York University, and NYCEP, New York, New York
| | - Joanna Malukiewicz
- Biodesign Institute, Arizona State University, Tempe, Arizona
- Federal University of Vicosa, Department of Animal Biology, Brazil
| | - Christopher J. Percival
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Anthropology, Stony Brook University, New York
| | - Terrence B. Ritzman
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Anthropology, Washington University, St. Louis, Missouri
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| | - Charles C. Roseman
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lauren Schroeder
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Canada
| | - Fred H. Smith
- Department of Sociology and Anthropology, Illinois State University, Normal, Illinois
| | - Kerryn A. Warren
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
17
|
Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 2019; 76:1919-1934. [PMID: 30830237 PMCID: PMC11105195 DOI: 10.1007/s00018-019-03049-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- DAMBI, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Stuckert AMM, Moore E, Coyle KP, Davison I, MacManes MD, Roberts R, Summers K. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol Biol 2019; 19:85. [PMID: 30995908 PMCID: PMC6472079 DOI: 10.1186/s12862-019-1410-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. Results Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). Conclusions Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog. Electronic supplementary material The online version of this article (10.1186/s12862-019-1410-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA. .,Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA. .,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA.
| | - Emily Moore
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kaitlin P Coyle
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian Davison
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Matthew D MacManes
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA.,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Reade Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
19
|
Johnson MR, Barsh GS, Mallarino R. Periodic patterns in Rodentia: Development and evolution. Exp Dermatol 2019; 28:509-513. [PMID: 30506729 PMCID: PMC6488409 DOI: 10.1111/exd.13852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Mammalian periodic pigment patterns, such as spots and stripes, have long interested mathematicians and biologists because they arise from non-random developmental processes that are programmed to be spatially constrained, and can therefore be used as a model to understand how organized morphological structures develop. Despite such interest, the developmental and molecular processes underlying their formation remain poorly understood. Here, we argue that Arvicanthines, a clade of African rodents that naturally evolved a remarkable array of coat patterns, represent a tractable model system in which to dissect the mechanistic basis of pigment pattern formation. Indeed, we review recent insights into the process of stripe formation that were obtained using an Arvicanthine species, the African striped mouse (Rhabdomys pumilio), and discuss how these rodents can be used to probe deeply into our understanding of the factors that specify and implement positional information in the skin. By combining naturally evolved pigment pattern variation in rodents with classic and novel experimental approaches, we can substantially advance our understanding of the processes by which spatial patterns of cell differentiation are established during embryogenesis, a fundamental question in developmental biology.
Collapse
Affiliation(s)
- Matthew R. Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
20
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Feather follicles transcriptome profiles in Bashang long-tailed chickens with different plumage colors. Genes Genomics 2018; 41:1357-1367. [PMID: 30229509 DOI: 10.1007/s13258-018-0740-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Despite the rich variety in plumage color found in nature, genetic studies on how feather follicles affect pigmentation are often limited to animals that have black and white pigment. To test how gene expression influences plumage color, transcriptomes of chicken feather follicles with white, black, hemp, reed catkins, silvery grey, and landscape plumage colors were generated using Illumina sequencing. We generated six RNA-Seq libraries with over 25 million paired-end clean reads per library with percentage of paired-end clean reads ranging from 96.73 to 96.98%. 78% of the reads mapped to the chicken genome, and approximately 70% of the reads were mapped to exons and 6% mapped to introns. Transcriptomes of feather follicles producing hemp and land plumage were similar, but these two showed moderate differences compared with gray and reed colored plumage. The black and white follicle transcriptomes were most divergent from the other colors. We identified several candidate genes, including GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. All of these genes are known to induce pigment formation in mice. White feathers result from the lack of pigment formation, and our results suggest that the white chickens due to the recessive insertion mutation of TYR. The formation of black area size and color depth may be due to the expression levels of GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. The GO analysis of the differentially expressed genes (DEGs) revealed that DEGs in our transcriptome analysis were enriched in cytoskeleton and cell structure related pathways. The black plumage transcriptome showed significant differences in melanogenesis, tyrosine metabolism, and riboflavin metabolism compared with transcriptomes of other plumage colors. The transcriptome profiles of the different chicken plumage colors provide a valuable resource to understand how gene expression influences plumage color, and will be an important resource for identifying candidate genes in breeding programs.
Collapse
|
22
|
Endo C, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Tsunemi Y, Kamatani N, Kawashima M. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci Rep 2018; 8:8974. [PMID: 29895819 PMCID: PMC5997657 DOI: 10.1038/s41598-018-27145-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Skin trait variation impacts quality-of-life, especially for females from the viewpoint of beauty. To investigate genetic variation related to these traits, we conducted a GWAS of various skin phenotypes in 11,311 Japanese women and identified associations for age-spots, freckles, double eyelids, straight/curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. Novel signals for skin-spot traits neighboured AKAP1/MSI2 (rs17833789; P = 2.2 × 10-9), BNC2 (rs10810635; P = 2.1 × 10-22), HSPA12A (rs12259842; P = 7.1 × 10-11), PPARGC1B (rs251468; P = 1.3 × 10-21), and RAB11FIP2 (rs10444039; P = 5.6 × 10-21). HSPA12A SNPs were the only protein-coding gene eQTLs identified across skin-spot loci. Double edged eyelid analysis identified that a signal around EMX2 (rs12570134; P = 8.2 × 10-15) was also associated with expression of EMX2 and the antisense-RNA gene EMX2OS in brain putamen basal ganglia tissue. A known hair morphology signal in EDAR was associated with both eyebrow thickness (rs3827760; P = 1.7 × 10-9) and straight/curly hair (rs260643; P = 1.6 × 10-103). Excessive hairiness signals' top SNPs were also eQTLs for TBX15 (rs984225; P = 1.6 × 10-8), BCL2 (rs7226979; P = 7.3 × 10-11), and GCC2 and LIMS1 (rs6542772; P = 2.2 × 10-9). For excessive sweating, top variants in two signals in chr2:28.82-29.05 Mb (rs56089836; P = 1.7 × 10-11) were eQTLs for either PPP1CB or PLB1, while a top chr16:48.26-48.45 Mb locus SNP was a known ABCC11 missense variant (rs6500380; P = 6.8 × 10-10). In total, we identified twelve loci containing sixteen association signals, of which fifteen were novel. These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations.
Collapse
Affiliation(s)
- Chihiro Endo
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Makoto Kawashima
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
23
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
24
|
Shaffer JR, Li J, Lee MK, Roosenboom J, Orlova E, Adhikari K, Gallo C, Poletti G, Schuler-Faccini L, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, González-José R, Pfeffer PE, Wollenschlaeger CA, Hecht JT, Wehby GL, Moreno LM, Ding A, Jin L, Yang Y, Carlson JC, Leslie EJ, Feingold E, Marazita ML, Hinds DA, Cox TC, Wang S, Ruiz-Linares A, Weinberg SM. Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment. Am J Hum Genet 2017; 101:913-924. [PMID: 29198719 PMCID: PMC5812923 DOI: 10.1016/j.ajhg.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
The genetic basis of earlobe attachment has been a matter of debate since the early 20th century, such that geneticists argue both for and against polygenic inheritance. Recent genetic studies have identified a few loci associated with the trait, but large-scale analyses are still lacking. Here, we performed a genome-wide association study of lobe attachment in a multiethnic sample of 74,660 individuals from four cohorts (three with the trait scored by an expert rater and one with the trait self-reported). Meta-analysis of the three expert-rater-scored cohorts revealed six associated loci harboring numerous candidate genes, including EDAR, SP5, MRPS22, ADGRG6 (GPR126), KIAA1217, and PAX9. The large self-reported 23andMe cohort recapitulated each of these six loci. Moreover, meta-analysis across all four cohorts revealed a total of 49 significant (p < 5 × 10-8) loci. Annotation and enrichment analyses of these 49 loci showed strong evidence of genes involved in ear development and syndromes with auricular phenotypes. RNA sequencing data from both human fetal ear and mouse second branchial arch tissue confirmed that genes located among associated loci showed evidence of expression. These results provide strong evidence for the polygenic nature of earlobe attachment and offer insights into the biological basis of normal and abnormal ear development.
Collapse
Affiliation(s)
- John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jinxi Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kaustabh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 430 Cercado de Lima, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 430 Cercado de Lima, Peru
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México, Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile
| | - Gabriel Bedoya
- Grupo Genética Molecular GENMOL, Universidad de Antioquia, Medellín 050003, Colombia
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Científico Tecnológico, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn U9120, Argentina
| | - Paige E Pfeffer
- Center for Advanced Dental Education, Orthodontics Program, Saint Louis University, St. Louis, MO 63104, USA
| | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas, Houston, TX 77030, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA 52246, USA
| | - Lina M Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA 52242, USA
| | - Anan Ding
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jenna C Carlson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Hinds
- 23andMe Inc., 899 West Evelyn Avenue, Mountain View, CA 94041, USA
| | - Timothy C Cox
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Anatomy & Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sijia Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London, UK; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China; Laboratory of Biocultural Anthropology, Law, Ethics, and Health, Centre National de la Recherche Scientifique and Etablissement Français du Sang, UMR 7268, Aix-Marseille University, Marseille 13284, France
| | - Seth M Weinberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Aldeiri B, Roostalu U, Albertini A, Wong J, Morabito A, Cossu G. Transgelin-expressing myofibroblasts orchestrate ventral midline closure through TGFβ signalling. Development 2017; 144:3336-3348. [PMID: 28807903 PMCID: PMC5612253 DOI: 10.1242/dev.152843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023]
Abstract
Ventral body wall (VBW) defects are among the most common congenital malformations, yet their embryonic origin and underlying molecular mechanisms remain poorly characterised. Transforming growth factor beta (TGFβ) signalling is essential for VBW closure, but the responding cells are not known. Here, we identify in mouse a population of migratory myofibroblasts at the leading edge of the closing VBW that express the actin-binding protein transgelin (TAGLN) and TGFβ receptor (TGFβR). These cells respond to a temporally regulated TGFβ2 gradient originating from the epithelium of the primary body wall. Targeted elimination of TGFβR2 in TAGLN+ cells impairs midline closure and prevents the correct subsequent patterning of the musculature and skeletal components. Remarkably, deletion of Tgfbr2 in myogenic or chondrogenic progenitor cells does not manifest in midline defects. Our results indicate a pivotal significance of VBW myofibroblasts in orchestrating ventral midline closure by mediating the response to the TGFβ gradient. Altogether, our data enable us to distinguish highly regulated epithelial-mesenchymal signalling and successive cellular migration events in VBW closure that explain early morphological changes underlying the development of congenital VBW defects. Summary: A population of migratory myofibroblasts at the leading edge of the closing ventral body wall expresses cytoskeletal components and TGFβR2 and responds to an epithelial TGFβ2 morphogen gradient to drive midline closure.
Collapse
Affiliation(s)
- Bashar Aldeiri
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.,Royal Manchester Children's Hospital, Manchester M13 9WL, UK
| | - Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Alessandra Albertini
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Jason Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.,University Hospitals of South Manchester, Manchester M23 9LT, UK
| | - Antonino Morabito
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.,Royal Manchester Children's Hospital, Manchester M13 9WL, UK
| | - Giulio Cossu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
26
|
Wu HJ, Oh JW, Spandau DF, Tholpady S, Diaz J, Schroeder LJ, Offutt CD, Glick AB, Plikus MV, Koyama S, Foley J. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 2017; 144:1498-1509. [PMID: 28289136 DOI: 10.1242/dev.141630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.
Collapse
Affiliation(s)
- Hsing-Jung Wu
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Korea
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesus Diaz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Laura J Schroeder
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Carlos D Offutt
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sachiko Koyama
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Racimo F, Gokhman D, Fumagalli M, Ko A, Hansen T, Moltke I, Albrechtsen A, Carmel L, Huerta-Sánchez E, Nielsen R. Archaic Adaptive Introgression in TBX15/WARS2. Mol Biol Evol 2017; 34:509-524. [PMID: 28007980 PMCID: PMC5430617 DOI: 10.1093/molbev/msw283] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A recent study conducted the first genome-wide scan for selection in Inuit from Greenland using single nucleotide polymorphism chip data. Here, we report that selection in the region with the second most extreme signal of positive selection in Greenlandic Inuit favored a deeply divergent haplotype that is closely related to the sequence in the Denisovan genome, and was likely introgressed from an archaic population. The region contains two genes, WARS2 and TBX15, and has previously been associated with adipose tissue differentiation and body-fat distribution in humans. We show that the adaptively introgressed allele has been under selection in a much larger geographic region than just Greenland. Furthermore, it is associated with changes in expression of WARS2 and TBX15 in multiple tissues including the adrenal gland and subcutaneous adipose tissue, and with regional DNA methylation changes in TBX15.
Collapse
Affiliation(s)
- Fernando Racimo
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Matteo Fumagalli
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Amy Ko
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | | | - Rasmus Nielsen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
- Department of Statistics, University of California Berkeley, Berkeley, CA
- Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Racimo F, Marnetto D, Huerta-Sánchez E. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations. Mol Biol Evol 2017; 34:296-317. [PMID: 27756828 PMCID: PMC5400396 DOI: 10.1093/molbev/msw216] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comparisons of DNA from archaic and modern humans show that these groups interbred, and in some cases received an evolutionary advantage from doing so. This process-adaptive introgression-may lead to a faster rate of adaptation than is predicted from models with mutation and selection alone. Within the last couple of years, a series of studies have identified regions of the genome that are likely examples of adaptive introgression. In many cases, once a region was ascertained as being introgressed, commonly used statistics based on both haplotype as well as allele frequency information were employed to test for positive selection. Introgression by itself, however, changes both the haplotype structure and the distribution of allele frequencies, thus confounding traditional tests for detecting positive selection. Therefore, patterns generated by introgression alone may lead to false inferences of positive selection. Here we explore models involving both introgression and positive selection to investigate the behavior of various statistics under adaptive introgression. In particular, we find that the number and allelic frequencies of sites that are uniquely shared between archaic humans and specific present-day populations are particularly useful for detecting adaptive introgression. We then examine the 1000 Genomes dataset to characterize the landscape of uniquely shared archaic alleles in human populations. Finally, we identify regions that were likely subject to adaptive introgression and discuss some of the most promising candidate genes located in these regions.
Collapse
Affiliation(s)
- Fernando Racimo
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Davide Marnetto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
29
|
Wang Q, Oh JW, Lee HL, Dhar A, Peng T, Ramos R, Guerrero-Juarez CF, Wang X, Zhao R, Cao X, Le J, Fuentes MA, Jocoy SC, Rossi AR, Vu B, Pham K, Wang X, Mali NM, Park JM, Choi JH, Lee H, Legrand JMD, Kandyba E, Kim JC, Kim M, Foley J, Yu Z, Kobielak K, Andersen B, Khosrotehrani K, Nie Q, Plikus MV. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. eLife 2017; 6:22772. [PMID: 28695824 PMCID: PMC5610035 DOI: 10.7554/elife.22772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/29/2017] [Indexed: 01/27/2023] Open
Abstract
The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States
| | - Ji Won Oh
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea,Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Anukriti Dhar
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Tao Peng
- Department of Mathematics, University of California, Irvine, United States
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Christian Fernando Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Ran Zhao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoling Cao
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jonathan Le
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Melisa A Fuentes
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Shelby C Jocoy
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Antoni R Rossi
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Brian Vu
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Kim Pham
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Xiaoyang Wang
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States
| | - Nanda Maya Mali
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Min Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - June-Hyug Choi
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsu Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Korea
| | - Julien M D Legrand
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Eve Kandyba
- Department of Pathology, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
| | - Jung Chul Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Moonkyu Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - John Foley
- Department of Dermatology, Medical Sciences Program, Indiana University School of Medicine, Bloomington, United States
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Krzysztof Kobielak
- Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Centre of New Technologies, CeNT, University of Warsaw, Warsaw, Poland
| | - Bogi Andersen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States,Departments of Medicine and Biological Chemistry, University of California, Irvine, United States
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, Experimental Dermatology Group, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, United States,Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States, (QN)
| | - Maksim V Plikus
- Center for Complex Biological Systems, University of California, Irvine, United States,Department of Developmental and Cell Biology, University of California, Irvine, United States,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, United States, (MVP)
| |
Collapse
|
30
|
Developmental mechanisms of stripe patterns in rodents. Nature 2016; 539:518-523. [PMID: 27806375 DOI: 10.1038/nature20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
Abstract
Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.
Collapse
|
31
|
Budnick I, Hamburg-Shields E, Chen D, Torre E, Jarrell A, Akhtar-Zaidi B, Cordovan O, Spitale RC, Scacheri P, Atit RP. Defining the identity of mouse embryonic dermal fibroblasts. Genesis 2016; 54:415-30. [PMID: 27265328 DOI: 10.1002/dvg.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023]
Abstract
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isadore Budnick
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | | | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Eduardo Torre
- Epithelial Biology Program, Department of Dermatology, Stanford University, California
| | - Andrew Jarrell
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Batool Akhtar-Zaidi
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Olivia Cordovan
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Rob C Spitale
- Epithelial Biology Program, Department of Dermatology, Stanford University, California.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Peter Scacheri
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmaceutical Sciences, University of California, Irvine, California.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Arribas J, Cajuso T, Rodio A, Marcos R, Leonardi A, Velázquez A. NF-κB Mediates the Expression of TBX15 in Cancer Cells. PLoS One 2016; 11:e0157761. [PMID: 27327083 PMCID: PMC4915632 DOI: 10.1371/journal.pone.0157761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
TBX15 is a T-box transcription factor essential for development, also proposed as a marker in prostate cancer; and, recently, its antiapoptotic function indicates a role in carcinogenesis. Regulation of TBX15 is uncovered. In this study, we investigated the regulation of TBX15 expression in human cancer cells, by analyzing the regulatory function of a 5’-distal conserved region of TBX15. Bisulfite sequencing showed high methylation of the CpG island contained in this region that was not correlated with TBX15 mRNA levels, in the cancer cell lines analyzed; however, after 5-aza-dC treatment of TPC-1 cells an increase of TBX15 expression was observed. We also found a significant response of TBX15 to TNF-α activation of the NF-κB pathway using five cancer cell lines, and similar results were obtained when NF-κB was activated with PMA/ionomycin. Next, by luciferase reporter assays, we identified the TBX15 regulatory region containing two functional NF-κB binding sites with response to NF-κBp65, mapping on the -3302 and -3059 positions of the TBX15 gene. Moreover, a direct interaction of NF-κBp65 with one of the two NF-κB binding sites was indicated by ChIP assays. In summary, we provide novel data showing that NF-κB signaling up-regulates TBX15 expression in cancer cells. Furthermore, the link between TBX15 and NF-κB found in this study may be important to understand cancer and development processes.
Collapse
Affiliation(s)
- Jéssica Arribas
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- * E-mail:
| | - Tatiana Cajuso
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
| | - Angela Rodio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, Italy
| | - Ricard Marcos
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III (SCIII), Madrid, Spain
| | - Antonio Leonardi
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, Italy
| | - Antonia Velázquez
- Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Instituto de Salud Carlos III (SCIII), Madrid, Spain
| |
Collapse
|
33
|
Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genet 2015; 11:e1005607. [PMID: 26523602 PMCID: PMC4629907 DOI: 10.1371/journal.pgen.1005607] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. Formation of the face, mandible, and skull is determined in part by genetic factors, but the relationship between genetic variation and craniofacial development is not well understood. We demonstrate how recent advances in mouse genomics and statistical methods can be used to identify genes involved in craniofacial development. We use outbred mice together with a dense panel of genetic markers to identify genetic loci affecting craniofacial shape. Some of the loci we identify are also known from past studies to contribute to craniofacial development and bone formation. For example, the top candidate gene identified in this study, Mn1, is a gene that appeared at a time when animals started to form bony skulls, suggesting that it may be a key gene in this evolutionary innovation. This further suggests that Mn1 and other genes involved in head formation are also responsible for more fine-grained regulation of its shape. Our results confirm that the outbred mouse population used in this study is suitable to identify single genetic factors even under conditions where many genes cooperate to generate a complex phenotype.
Collapse
|
34
|
Poelstra JW, Vijay N, Hoeppner MP, Wolf JBW. Transcriptomics of colour patterning and coloration shifts in crows. Mol Ecol 2015; 24:4617-28. [DOI: 10.1111/mec.13353] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/12/2023]
Affiliation(s)
- J. W. Poelstra
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| | - N. Vijay
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| | - M. P. Hoeppner
- Bioinformatics Infrastructure for Life Sciences (BILS); Linköpings Universitet Victoria Westling; Hus Galaxen 58183 Linköping Sweden
- Department of Medical Biochemistry and Microbiology; Uppsala University; Box 582 75123 Uppsala Sweden
| | - J. B. W. Wolf
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
- Science for Life Laboratory; Box 1031 17121 Solna Sweden
| |
Collapse
|
35
|
Lee KY, Singh MK, Ussar S, Wetzel P, Hirshman MF, Goodyear LJ, Kispert A, Kahn CR. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nat Commun 2015; 6:8054. [PMID: 26299309 PMCID: PMC4552045 DOI: 10.1038/ncomms9054] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. The transcriptional regulator Tbx15 has a role in organ development. Here Lee et al. show that Tbx15 influences fibre-type determination in murine skeletal muscles, explaining local and systemic metabolic derangements in heterozygous Tbx15 knockout mice.
Collapse
Affiliation(s)
- Kevin Y Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Manvendra K Singh
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.,Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, National Heart Centre Singapore, 8 College Road, Singapore 169857, Singapore
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA.,Institute for Diabetes and Obesity, Helmholtz Center, Parkring, 1385748 Munich/Garching, Germany
| | - Petra Wetzel
- Zentrum Physiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Plaza, Boston, Massachusetts 02215, USA
| |
Collapse
|
36
|
Tickle C. How the embryo makes a limb: determination, polarity and identity. J Anat 2015; 227:418-30. [PMID: 26249743 DOI: 10.1111/joa.12361] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
37
|
Adhikari K, Reales G, Smith AJP, Konka E, Palmen J, Quinto-Sanchez M, Acuña-Alonzo V, Jaramillo C, Arias W, Fuentes M, Pizarro M, Barquera Lozano R, Macín Pérez G, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, Calderón R, Rosique J, Cheeseman M, Bhutta MF, Humphries SE, Gonzalez-José R, Headon D, Balding D, Ruiz-Linares A. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun 2015; 6:7500. [PMID: 26105758 PMCID: PMC4491814 DOI: 10.1038/ncomms8500] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10(-8) to 3 × 10(-14)). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1.
Collapse
Affiliation(s)
- Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Guillermo Reales
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Andrew J P Smith
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Sciences, University College London, Rayne Building, London WC1E 6JF, UK
| | - Esra Konka
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Jutta Palmen
- Centre for Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Sciences, University College London, Rayne Building, London WC1E 6JF, UK
| | | | - Victor Acuña-Alonzo
- 1] Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK [2] National Institute of Anthropology and History, Mexico City 4510, Mexico
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Macarena Fuentes
- Instituto de Alta Investigación, Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile and Centro de Investigaciones del Hombre en el Desierto, Arica 1000000, Chile
| | - María Pizarro
- Instituto de Alta Investigación, Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile and Centro de Investigaciones del Hombre en el Desierto, Arica 1000000, Chile
| | - Rodrigo Barquera Lozano
- 1] National Institute of Anthropology and History, Mexico City 4510, Mexico [2] Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Gastón Macín Pérez
- 1] National Institute of Anthropology and History, Mexico City 4510, Mexico [2] Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Tábita Hunemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Virginia Ramallo
- 1] Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina [2] Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Peru
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Programa de Genética Humana ICBM Facultad de Medicina Universidad de Chile and Centro de Investigaciones del Hombre en el Desierto, Arica 1000000, Chile
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Javier Rosique
- Departamento de Antropología, Facultad de Ciencias Sociales y Humanas, Universidad de Antioquia, Medellín 5001000, Colombia
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mahmood F Bhutta
- 1] UCL Ear Institute, University College London, London WC1X 8EE, UK [2] Royal National Throat Nose and Ear Hospital, London WC1X 8EE, UK
| | - Steve E Humphries
- 1] Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK [2] Centre for Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Sciences, University College London, Rayne Building, London WC1E 6JF, UK
| | | | - Denis Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - David Balding
- 1] Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK [2] Schools of BioSciences and Mathematics &Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
38
|
Ceinos RM, Guillot R, Kelsh RN, Cerdá-Reverter JM, Rotllant J. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell Melanoma Res 2014; 28:196-209. [PMID: 25469713 DOI: 10.1111/pcmr.12335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
Dorso-ventral pigment pattern differences are the most widespread pigmentary adaptations in vertebrates. In mammals, this pattern is controlled by regulating melanin chemistry in melanocytes using a protein, agouti-signalling peptide (ASIP). In fish, studies of pigment patterning have focused on stripe formation, identifying a core striping mechanism dependent upon interactions between different pigment cell types. In contrast, mechanisms driving the dorso-ventral countershading pattern have been overlooked. Here, we demonstrate that, in fact, zebrafish utilize two distinct adult pigment patterning mechanisms - an ancient dorso-ventral patterning mechanism, and a more recent striping mechanism based on cell-cell interactions; remarkably, the dorso-ventral patterning mechanism also utilizes ASIP. These two mechanisms function largely independently, with resultant patterns superimposed to give the full pattern.
Collapse
Affiliation(s)
- Rosa M Ceinos
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas (CSIC), Vigo, Spain
| | | | | | | | | |
Collapse
|
39
|
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development 2014; 141:3819-33. [PMID: 25294936 DOI: 10.1242/dev.104471] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
40
|
Johansson JA, Headon DJ. Regionalisation of the skin. Semin Cell Dev Biol 2013; 25-26:3-10. [PMID: 24361971 DOI: 10.1016/j.semcdb.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023]
Abstract
The skin displays marked anatomical variation in thickness, colour and in the appendages that it carries. These regional distinctions arise in the embryo, likely founded on a combinatorial positional code of transcription factor expression. Throughout adult life, the skin's distinct anatomy is maintained through both cell autonomous epigenetic processes and by mesenchymal-epithelial induction. Despite the readily apparent anatomical differences in skin characteristics across the body, several fundamental questions regarding how such regional differences first arise and then persist are unresolved. However, it is clear that the skin's positional code is at the molecular level far more detailed than that discernible at the phenotypic level. This provides a latent reservoir of anatomical complexity ready to surface if perturbed by mutation, hormonal changes, ageing or experiment.
Collapse
Affiliation(s)
- Jeanette A Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
41
|
Fat depot-specific mRNA expression of novel loci associated with waist-hip ratio. Int J Obes (Lond) 2013; 38:120-5. [PMID: 23670221 DOI: 10.1038/ijo.2013.56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/08/2013] [Accepted: 03/10/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We hypothesized that genes within recently identified loci associated with waist-hip ratio (WHR) exhibit fat depot-specific mRNA expression, which correlates with obesity-related traits. METHODS Adipose tissue (AT) mRNA expression of 6 genes (TBX15/WARS2, STAB1, PIGC, ZNRF3 and GRB14) within these loci showing coincident cis-expression quantitative trait loci was measured in 222 paired samples of human visceral (vis) and subcutaneous (sc) AT. The relationship of mRNA expression levels with obesity-related quantitative traits was assessed by Pearson's correlation analyses. Multivariate linear relationships were assessed by generalized linear regression models. RESULTS Whereas only PIGC, ZNFR3 and STAB1 mRNA expression in sc AT correlated nominally with WHR (P<0.05, adjusted for age and sex), mRNA expression of all studied genes in at least one of the fat depots correlated significantly with vis and/or sc fat area (P ranging from 0.05 to 4.0 × 10(6), adjusted for age and sex). Consistently, the transcript levels of WARS, PIGC and GRB14 were nominally associated with body mass index (BMI) (P ranging from 0.02 to 9.2 × 10(5), adjusted for age and sex). Moreover, independent of sex, obesity and diabetes status, differential expression between vis and sc AT was observed for all tested genes (P<0.01). Finally, the rs10195252 T-allele was nominally associated with increased GRB14 sc mRNA expression (P=0.025 after adjusting for age, sex and BMI). CONCLUSIONS Our data including the inter-depot variability of mRNA expression suggests that genes within the WHR-associated loci might be involved in the regulation of fat distribution.
Collapse
|
42
|
Dreger DL, Parker HG, Ostrander EA, Schmutz SM. Identification of a mutation that is associated with the saddle tan and black-and-tan phenotypes in Basset Hounds and Pembroke Welsh Corgis. ACTA ACUST UNITED AC 2013; 104:399-406. [PMID: 23519866 DOI: 10.1093/jhered/est012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The causative mutation for the black-and-tan (a (t) ) phenotype in dogs was previously shown to be a SINE insertion in the 5' region of Agouti Signaling Protein (ASIP). Dogs with the black-and-tan phenotype, as well as dogs with the saddle tan phenotype, genotype as a (t) /_ at this locus. We have identified a 16-bp duplication (g.1875_1890dupCCCCAGGTCAGAGTTT) in an intron of hnRNP associated with lethal yellow (RALY), which segregates with the black-and-tan phenotype in a group of 99 saddle tan and black-and-tan Basset Hounds and Pembroke Welsh Corgis. In these breeds, all dogs with the saddle tan phenotype had RALY genotypes of +/+ or +/dup, whereas dogs with the black-and-tan phenotype were homozygous for the duplication. The presence of an a (y) /_ fawn or e/e red genotype is epistatic to the +/_ saddle tan genotype. Genotypes from 10 wolves and 1 coyote indicated that the saddle tan (+) allele is the ancestral allele, suggesting that black-and-tan is a modification of saddle tan. An additional 95 dogs from breeds that never have the saddle tan phenotype have all three of the possible RALY genotypes. We suggest that a multi-gene interaction involving ASIP, RALY, MC1R, DEFB103, and a yet-unidentified modifier gene is required for expression of saddle tan.
Collapse
Affiliation(s)
- Dayna L Dreger
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, Canada.
| | | | | | | |
Collapse
|
43
|
Abstract
Color variation in companion animals has long been of interest to the breeding and scientific communities. Simple traits, like black versus brown or yellow versus black, have helped to explain principles of transmission genetics and continue to serve as models for studying gene action and interaction. We present a molecular genetic review of pigmentary variation in dogs and cats using a nomenclature and logical framework established by early leaders in the field. For most loci in which molecular variants have been identified (nine in dogs and seven in cats), homologous mutations exist in laboratory mice and/or humans. Exceptions include the K locus in dogs and the Tabby locus in cats, which give rise to alternating stripes or marks of different color, and which illustrate the continued potential of coat color genetics to provide insight into areas that transcend pigment cell biology.
Collapse
Affiliation(s)
- Christopher B. Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 and Department of Genetics, Stanford University, Stanford, California 94305;,
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 and Department of Genetics, Stanford University, Stanford, California 94305;,
| |
Collapse
|
44
|
Tanaka M. Molecular and evolutionary basis of limb field specification and limb initiation. Dev Growth Differ 2012; 55:149-63. [PMID: 23216351 DOI: 10.1111/dgd.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
Specification of limb field and initiation of limb development involve multiple steps, each of which is tightly regulated both spatially and temporally. Recent developmental analyses on various vertebrates have provided insights into the molecular mechanisms that specify limb field and have revealed several genetic interactions of signals involved in limb initiation processes. Furthermore, new approaches to the study of the developmental mechanisms of the lateral plate mesoderm of amphioxus and lamprey embryos have given us clues to understand the evolutionary scenarios that led to the acquisition of paired appendages during evolution. This review highlights such recent findings and discusses the mechanisms of limb field specification and limb bud initiation during development and evolution.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan.
| |
Collapse
|
45
|
Tanaka M, Onimaru K. Acquisition of the paired fins: a view from the sequential evolution of the lateral plate mesoderm. Evol Dev 2012; 14:412-20. [DOI: 10.1111/j.1525-142x.2012.00561.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Jackson I. Evolution in action: highlighting a role for the Agouti gene in development? Pigment Cell Melanoma Res 2012; 24:398-400. [PMID: 22489317 DOI: 10.1111/j.1755-148x.2011.00852.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Itoh K, Washio Y, Fujinami Y, Shimizu D, Uji S, Yokoi H, Suzuki T. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder. Gen Comp Endocrinol 2012; 176:215-21. [PMID: 22326352 DOI: 10.1016/j.ygcen.2012.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
In order to better understand the endocrine aberrations related to abnormal metamorphic pigmentation that appear in flounder larvae reared in tanks, this study examined the effects of continuous 24-h illumination (LL) through larval development on the expression of tyrosine hydroxylase-1 (th1), proopiomelanocortin (pomc), α-melanophore-stimulating hormone (α-MSH) and melanin concentrating hormone (MCH), which are known to participate in the control of background adaptation of body color. We observed two conspicuous deviations in the endocrine system under LL when compared with natural light conditions (LD). First, LL severely suppressed th1 expression in the dopaminergic neurons in the anterior diencephalon, including the suprachiasmatic nucleus (SCN). Second, pomc and α-MSH expression in the pars intermedia melanotrophs was enhanced by LL. Skin color was paler under LL than LD before metamorphic pigmentation, and abnormal metamorphic pigmentation occurred at a higher ratio in LL. We therefore hypothesize that continuous LL inhibited dopamine synthesis in the SCN, which resulted in up-regulation of pomc mRNA expression in the melanotrophs. In spite of the up-regulation of pomc in the melanotrophs, larval skin was adjusted to be pale by MCH which was not affected by LL. Accumulation of α-MSH in the melanotrophs is caused by uncoupling of α-MSH synthesis and secretion due to inhibitory role of MCH on α-MSH secretion, which results in abnormal metamorphic pigmentation by affecting differentiation of adult-type melanophores. Our data demonstrate that continuous illumination at the post-embryonic stage has negative effects on the neuroendocrine system and pituitary in flounder.
Collapse
Affiliation(s)
- Kae Itoh
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Onimaru K, Shoguchi E, Kuratani S, Tanaka M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol 2011; 359:124-136. [PMID: 21864524 DOI: 10.1016/j.ydbio.2011.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.
Collapse
Affiliation(s)
- Koh Onimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan.
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Riken, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
49
|
García-Gámez E, Reverter A, Whan V, McWilliam SM, Arranz JJ, Kijas J. Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PLoS One 2011; 6:e21158. [PMID: 21701676 PMCID: PMC3119053 DOI: 10.1371/journal.pone.0021158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/22/2011] [Indexed: 01/12/2023] Open
Abstract
Extending genome wide association analysis by the inclusion of gene expression data may assist in the dissection of complex traits. We examined piebald, a pigmentation phenotype in both human and Merino sheep, by analysing multiple data types using a systems approach. First, a case control analysis of 49,034 ovine SNP was performed which confirmed a multigenic basis for the condition. We combined these results with gene expression data from five tissue types analysed with a skin-specific microarray. Promoter sequence analysis of differentially expressed genes allowed us to reverse-engineer a regulatory network. Likewise, by testing two-loci models derived from all pair-wise comparisons across piebald-associated SNP, we generated an epistatic network. At the intersection of both networks, we identified thirteen genes with insulin-like growth factor binding protein 7 (IGFBP7), platelet-derived growth factor alpha (PDGFRA) and the tetraspanin platelet activator CD9 at the kernel of the intersection. Further, we report a number of differentially expressed genes in regions containing highly associated SNP including ATRN, DOCK7, FGFR1OP, GLI3, SILV and TBX15. The application of network theory facilitated co-analysis of genetic variation with gene expression, recapitulated aspects of the known molecular biology of skin pigmentation and provided insights into the transcription regulation and epistatic interactions involved in piebald Merino sheep.
Collapse
Affiliation(s)
- Elsa García-Gámez
- Livestock Industries, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
- Departamento de Producción Animal, Universidad de León, León, Spain
| | - Antonio Reverter
- Livestock Industries, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Vicki Whan
- Livestock Industries, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Sean M. McWilliam
- Livestock Industries, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Juan José Arranz
- Departamento de Producción Animal, Universidad de León, León, Spain
| | | | - James Kijas
- Livestock Industries, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
50
|
Manceau M, Domingues VS, Mallarino R, Hoekstra HE. The developmental role of Agouti in color pattern evolution. Science 2011; 331:1062-5. [PMID: 21350176 DOI: 10.1126/science.1200684] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animal color patterns can affect fitness in the wild; however, little is known about the mechanisms that control their formation and subsequent evolution. We took advantage of two locally camouflaged populations of Peromyscus mice to show that the negative regulator of adult pigmentation, Agouti, also plays a key developmental role in color pattern evolution. Genetic and functional analyses showed that ventral-specific embryonic expression of Agouti establishes a prepattern by delaying the terminal differentiation of ventral melanocytes. Moreover, a skin-specific increase in both the level and spatial domain of Agouti expression prevents melanocyte maturation in a regionalized manner, resulting in a novel and adaptive color pattern. Thus, natural selection favors late-acting, tissue-specific changes in embryonic Agouti expression to produce large changes in adult color pattern.
Collapse
Affiliation(s)
- Marie Manceau
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|