1
|
Rötte M, Höhne MY, Klug D, Ramlow K, Zedler C, Lehne F, Schneider M, Bischoff MC, Bogdan S. CYRI controls epidermal wound closure and cohesion of invasive border cell cluster in Drosophila. J Cell Biol 2024; 223:e202310153. [PMID: 39453414 PMCID: PMC11519390 DOI: 10.1083/jcb.202310153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics. However, the physiological role of CYRI proteins in vivo in healthy tissues is unclear. Here, we used Drosophila as a model system to study CYRI function at the cellular and organismal levels. We found that CYRI is not only a potent WRC regulator in single macrophages that controls lamellipodial spreading but also identified CYRI as a molecular brake on the Rac-WRC-Arp2/3 pathway to slow down epidermal wound healing. In addition, we found that CYRI limits invasive border cell migration by controlling cluster cohesion and migration. Thus, our data highlight CYRI as an important regulator of cellular and epithelial tissue dynamics conserved across species.
Collapse
Affiliation(s)
- Marvin Rötte
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mila Y. Höhne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dennis Klug
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Kirsten Ramlow
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Caroline Zedler
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Lehne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Meike Schneider
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik C. Bischoff
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Wu ML, Yang ZM, Dong HC, Zhang H, Zheng X, Yuan B, Yang Y, Liu J, Li PN. Maggot extract accelerates skin wound healing of diabetic rats via enhancing STAT3 signaling. PLoS One 2024; 19:e0309903. [PMID: 39240845 PMCID: PMC11379160 DOI: 10.1371/journal.pone.0309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND Diabetic skin wound is a complex problem due to the disruption of normal repairing program and lack of effective remedy. Lucilia sericata larvae (maggot) is a folk method to treat chronic skin wound, while its therapeutic effects on that caused by diabetic remains unknown. OBJECTIVE This study aims to investigate the therapeutic effects of maggot extract (M.E.) on diabetic skin wound and its molecular mechanism by establishing the skin wound model of diabetic Sprague Dawley (SD) rats. METHODS Diabetic model was established by injecting intraperitoneally streptozotocin in SD rats under specific pathogen-free (SPF) conditions. The rat fasting blood glucose values were ≧16.7 mmol/L 72 hours after intraperitoneal streptozotocin (60mg/kg body weight) injection. The rats were divided into five groups (n = 10/group): normal group: normal SD rats without any treatment, diabetic blank group: the diabetic rats without any treatment, Vaseline group: the diabetic rats dressed with Vaseline, recombinant human epidermal-growth-factor (rhEGF) group: the diabetic rats dressed with a mixture of Vaseline and 200 μg/g rhEGF, M.E. group: the diabetic rats dressed with a mixture of Vaseline and 150 μg/ml maggot extract. The round open wounds (1.0 cm in diameter) down to the muscle fascia were made on both sides of rat dorsa by removing the skin layer (epidermis and dermis) and were daily photographed for calculating their healing rates. Hematoxylin-eosin (HE) and Masson's trichrome staining were performed on skin wound sections to analyze re-epithelialization and granulation tissue formation. Immunohistochemical (IHC), immunofluorescent (IF) stainings and Western blotting were conducted to analyze the statuses of STAT3 signaling. RESULTS The average wound healing rates on the 14th day were 91.7% in the normal, 79.6% in M.E., 71% in rhEGF, 55.1% in vaseline and 43.3% in the diabetes blank group. Morphological staining showed more active granulation tissue formation, re-epithelialization and neovascularization in M.E.-group than those in the blank and the vaseline-treated groups. Decreased p-STAT3 nuclear tranlocation and down-regulated Bcl-2, CyclinD1 and vascular endothelial growth factor (VEGF) expression were evidenced in the diabetic rats, which could be improved by rhEGF and especially M.E. CONCLUSION Maggot extract would be an alternative and/or adjuvant candidate for the better management of diabetic skin wounds because of its activity in enhancing STAT3 activation.
Collapse
Affiliation(s)
- Mo-Li Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhe-Ming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hai-Chao Dong
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hong Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Yuan
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Sung HH, Li H, Huang YC, Ai CL, Hsieh MY, Jan HM, Peng YJ, Lin HY, Yeh CH, Lin SY, Yeh CY, Cheng YJ, Khoo KH, Lin CH, Chien CT. Galectins induced from hemocytes bridge phosphatidylserine and N-glycosylated Drpr/CED-1 receptor during dendrite pruning. Nat Commun 2024; 15:7402. [PMID: 39191750 DOI: 10.1038/s41467-024-51581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
During neuronal pruning, phagocytes engulf shed cellular debris to avoid inflammation and maintain tissue homeostasis. How phagocytic receptors recognize degenerating neurites had been unclear. Here, we identify two glucosyltransferases Alg8 and Alg10 of the N-glycosylation pathway required for dendrite fragmentation and clearance through genetic screen. The scavenger receptor Draper (Drpr) is N-glycosylated with complex- or hybrid-type N-glycans that interact specifically with galectins. We also identify the galectins Crouching tiger (Ctg) and Hidden dragon (Hdg) that interact with N-glycosylated Drpr and function in dendrite pruning via the Drpr pathway. Ctg and Hdg are required in hemocytes for expression and function, and are induced during dendrite injury to localize to injured dendrites through specific interaction with exposed phosphatidylserine (PS) on the surface membrane of injured dendrites. Thus, the galectins Ctg and Hdg bridge the interaction between PS and N-glycosylated Drpr, leading to the activation of phagocytosis.
Collapse
Affiliation(s)
- Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Lu Ai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Yen Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Huang X, Su Z, Xie XJ. The Enigmas of Tissue Closure: Inspiration from Drosophila. Curr Issues Mol Biol 2024; 46:8710-8725. [PMID: 39194731 DOI: 10.3390/cimb46080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hollow structures are essential for development and physiological activity. The construction and maintenance of hollow structures never cease throughout the lives of multicellular animals. Epithelial tissue closure is the main strategy used by living organisms to build hollow structures. The high diversity of hollow structures and the simplicity of their development in Drosophila make it an excellent model for the study of hollow structure morphogenesis. In this review, we summarize the tissue closure processes in Drosophila that give rise to or maintain hollow structures and highlight the molecular mechanisms and distinct cell biology involved in these processes.
Collapse
Affiliation(s)
- Xiaoying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Jun Xie
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Shin M, Chang E, Lee D, Kim N, Cho B, Cha N, Koranteng F, Song JJ, Shim J. Drosophila immune cells transport oxygen through PPO2 protein phase transition. Nature 2024; 631:350-359. [PMID: 38926577 PMCID: PMC11236712 DOI: 10.1038/s41586-024-07583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Torres M, Diaz-Ortiz J, Davis MG, Schwartz JR, Celis Ramírez AM. Galleria mellonella as a superficial model for Malassezia globosa and its treatment. Access Microbiol 2024; 6:000745.v3. [PMID: 39045242 PMCID: PMC11261708 DOI: 10.1099/acmi.0.000745.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/17/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction. Malassezia globosa is a yeast species that belongs to the mycobiota of humans and animals, associated with dermatological disorders, such as dandruff. This is a chronic scalp skin disorder characterized by flaking and itching. Treatments include commercial shampoo with different formulations that contain antifungal activities like zinc pyrithione (ZPT) or piroctone olamine (PO). The effectiveness of these formulations has been evaluated for decades for dandruff symptom relief of volunteers. To date, non-mammalian, in vivo methods exist to test formulations of these actives. Aim. To evaluate in vivo in Galleria mellonella larva, two commercial antifungal shampoos (shampoo with 1 % ZPT and 1.6 % zinc Carbonate and shampoo with 0.5 % PO) against this species. Methodology. G. mellonella larvae were inoculated with M. globosa on abraded cuticular surface. Then, integument cell viability, histological changes, and fungal burden were evaluated. Results. Larvae inoculated with M. globosa showed higher lesion melanization and tissue damage. In addition, M. globosa population showed to increase over time. Concerning the shampoo's effectiveness, both formulations significantly reduced M. globosa burden and tissue damage. Conclusion. G. mellonella larvae were allowed to evaluate M. globosa superficial infection and antifungal effectiveness. Shampoos with ZPT and PO showed a positive effect on inoculated larvae.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | - Juliana Diaz-Ortiz
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
7
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
8
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Vesala L, Basikhina Y, Tuomela T, Nurminen A, Siukola E, Vale PF, Salminen TS. Mitochondrial perturbation in immune cells enhances cell-mediated innate immunity in Drosophila. BMC Biol 2024; 22:60. [PMID: 38475850 DOI: 10.1186/s12915-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.
Collapse
Affiliation(s)
- Laura Vesala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yuliya Basikhina
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Siukola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
10
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
11
|
Gallois M, Menoret D, Marques-Prieto S, Montigny A, Valenti P, Moussian B, Plaza S, Payre F, Chanut-Delalande H. Pri peptides temporally coordinate transcriptional programs during epidermal differentiation. SCIENCE ADVANCES 2024; 10:eadg8816. [PMID: 38335295 PMCID: PMC10857433 DOI: 10.1126/sciadv.adg8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
To achieve a highly differentiated state, cells undergo multiple transcriptional processes whose coordination and timing are not well understood. In Drosophila embryonic epidermal cells, polished-rice (Pri) smORF peptides act as temporal mediators of ecdysone to activate a transcriptional program leading to cell shape remodeling. Here, we show that the ecdysone/Pri axis concomitantly represses the transcription of a large subset of cuticle genes to ensure proper differentiation of the insect exoskeleton. The repression relies on the transcription factor Ken and persists for several days throughout early larval stages, during which a soft cuticle allows larval crawling. The onset of these cuticle genes normally awaits the end of larval stages when the rigid pupal case assembles, and their premature expression triggers abnormal sclerotization of the larval cuticle. These results uncovered a temporal switch to set up distinct structures of cuticles adapted to the animal lifestyle and which might be involved in the evolutionary history of insects.
Collapse
Affiliation(s)
- Maylis Gallois
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Delphine Menoret
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Simon Marques-Prieto
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Audrey Montigny
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Philippe Valenti
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, CNRS/UPS/INPT, Auzeville-Tolosane, France
| | - François Payre
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Hélène Chanut-Delalande
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
12
|
Miao H, Wei Y, Lee SG, Wu Z, Kaur J, Kim WJ. Glia-specific expression of neuropeptide receptor Lgr4 regulates development and adult physiology in Drosophila. J Neurosci Res 2024; 102:e25271. [PMID: 38284837 DOI: 10.1002/jnr.25271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.
Collapse
Affiliation(s)
- Hongyu Miao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yanan Wei
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Seung Gee Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Jasdeep Kaur
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Kosakamoto H, Miura M, Obata F. Epidermal tyrosine catabolism is crucial for metabolic homeostasis and survival against high-protein diets in Drosophila. Development 2024; 151:dev202372. [PMID: 38165175 DOI: 10.1242/dev.202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The insect epidermis forms the exoskeleton and determines the body size of an organism. How the epidermis acts as a metabolic regulator to adapt to changes in dietary protein availability remains elusive. Here, we show that the Drosophila epidermis regulates tyrosine (Tyr) catabolism in response to dietary protein levels, thereby promoting metabolic homeostasis. The gene expression profile of the Drosophila larval body wall reveals that enzymes involved in the Tyr degradation pathway, including 4-hydroxyphenylpyruvate dioxygenase (Hpd), are upregulated by increased protein intake. Hpd is specifically expressed in the epidermis and is dynamically regulated by the internal Tyr levels. Whereas basal Hpd expression is maintained by insulin/IGF-1 signalling, Hpd induction on high-protein diet requires activation of the AMP-activated protein kinase (AMPK)-forkhead box O subfamily (FoxO) axis. Impairment of the FoxO-mediated Hpd induction in the epidermis leads to aberrant increases in internal Tyr and its metabolites, disrupting larval development on high-protein diets. Taken together, our findings uncover a crucial role of the epidermis as a metabolic regulator in coping with an unfavourable dietary environment.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Cinege G, Magyar LB, Kovács H, Varga V, Bodai L, Zsindely N, Nagy G, Hegedűs Z, Hultmark D, Andó I. Distinctive features of Zaprionus indianus hemocyte differentiation and function revealed by transcriptomic analysis. Front Immunol 2023; 14:1322381. [PMID: 38187383 PMCID: PMC10768004 DOI: 10.3389/fimmu.2023.1322381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background Insects have specialized cell types that participate in the elimination of parasites, for instance, the lamellocytes of the broadly studied species Drosophila melanogaster. Other drosophilids, such as Drosophila ananassae and the invasive Zaprionus indianus, have multinucleated giant hemocytes, a syncytium of blood cells that participate in the encapsulation of the eggs or larvae of parasitoid wasps. These cells can be formed by the fusion of hemocytes in circulation or originate from the lymph gland. Their ultrastructure highly resembles that of the mammalian megakaryocytes. Methods Morphological, protein expressional, and functional features of blood cells were revealed using epifluorescence and confocal microscopy. The respective hemocyte subpopulations were identified using monoclonal antibodies in indirect immunofluorescence assays. Fluorescein isothiocyanate (FITC)-labeled Escherichia coli bacteria were used in phagocytosis tests. Gene expression analysis was performed following mRNA sequencing of blood cells. Results D. ananassae and Z. indianus encapsulate foreign particles with the involvement of multinucleated giant hemocytes and mount a highly efficient immune response against parasitoid wasps. Morphological, protein expressional, and functional assays of Z. indianus blood cells suggested that these cells could be derived from large plasmatocytes, a unique cell type developing specifically after parasitoid wasp infection. Transcriptomic analysis of blood cells, isolated from naïve and wasp-infected Z. indianus larvae, revealed several differentially expressed genes involved in signal transduction, cell movements, encapsulation of foreign targets, energy production, and melanization, suggesting their role in the anti-parasitoid response. A large number of genes that encode proteins associated with coagulation and wound healing, such as phenoloxidase activity factor-like proteins, fibrinogen-related proteins, lectins, and proteins involved in the differentiation and function of platelets, were constitutively expressed. The remarkable ultrastructural similarities between giant hemocytes and mammalian megakaryocytes, and presence of platelets, and giant cell-derived anucleated fragments at wound sites hint at the involvement of this cell subpopulation in wound healing processes, in addition to participation in the encapsulation reaction. Conclusion Our observations provide insights into the broad repertoire of blood cell functions required for efficient defense reactions to maintain the homeostasis of the organism. The analysis of the differentiation and function of multinucleated giant hemocytes gives an insight into the diversification of the immune mechanisms.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Henrietta Kovács
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Viktória Varga
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
15
|
Gordon DM. Collective behavior in relation with changing environments: Dynamics, modularity, and agency. Evol Dev 2023; 25:430-438. [PMID: 37190859 DOI: 10.1111/ede.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Collective behavior operates without central control, using local interactions among participants to adjust to changing conditions. Many natural systems operate collectively, and by specifying what objectives are met by the system, the idea of agency helps to describe how collective behavior is embedded in the conditions it deals with. Ant colonies function collectively, and the enormous diversity of more than 15K species of ants, in different habitats, provides opportunities to look for general ecological patterns in how collective behavior operates. The foraging behavior of harvester ants in the desert regulates activity to manage water loss, while the trail networks of turtle ants in the canopy tropical forest respond to rapidly changing resources and vegetation. These examples illustrate some broad correspondences in natural systems between the dynamics of collective behavior and the dynamics of the surroundings. To outline how interactions among participants, acting in relation with changing surroundings, achieve collective outcomes, I focus on three aspects of collective behavior: the rate at which interactions adjust to conditions, the feedback regime that stimulates and inhibits activity, and the modularity of the network of interactions. To characterize the dynamics of the surroundings, I consider gradients in stability, energy flow, and the distribution of resources and demands. I then propose some hypotheses that link how collective behavior operates with changing environments.
Collapse
Affiliation(s)
- Deborah M Gordon
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
White JS, Su JJ, Ruark EM, Hua J, Hutson MS, Page-McCaw A. Wound-Induced Syncytia Outpace Mononucleate Neighbors during Drosophila Wound Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546442. [PMID: 37425719 PMCID: PMC10327115 DOI: 10.1101/2023.06.25.546442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
All organisms have evolved to respond to injury. Cell behaviors like proliferation, migration, and invasion replace missing cells and close wounds. However, the role of other wound-induced cell behaviors is not understood, including the formation of syncytia (multinucleated cells). Wound-induced epithelial syncytia were first reported around puncture wounds in post-mitotic Drosophila epidermal tissues, but have more recently been reported in mitotically competent tissues such as the Drosophila pupal epidermis and zebrafish epicardium. The presence of wound-induced syncytia in mitotically active tissues suggests that syncytia offer adaptive benefits, but it is unknown what those benefits are. Here, we use in vivo live imaging to analyze wound-induced syncytia in mitotically competent Drosophila pupae. We find that almost half the epithelial cells near a wound fuse to form large syncytia. These syncytia use several routes to speed wound repair: they outpace diploid cells to complete wound closure; they reduce cell intercalation during wound closure; and they pool the resources of their component cells to concentrate them toward the wound. In addition to wound healing, these properties of syncytia are likely to contribute to their roles in development and pathology.
Collapse
Affiliation(s)
- James S. White
- Dept. Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
- Program in Developmental Biology, Vanderbilt University Nashville, TN
| | - Jasmine J. Su
- Dept. Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
- Dept. Biological Sciences, Vanderbilt University, Nashville, TN
| | - Elizabeth M. Ruark
- Dept. Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
| | - Junmin Hua
- Dept. Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
| | - M. Shane Hutson
- Dept. Physics and Astronomy Vanderbilt University Nashville, TN
- Dept. Biological Sciences, Vanderbilt University, Nashville, TN
| | - Andrea Page-McCaw
- Dept. Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN
- Program in Developmental Biology, Vanderbilt University Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
- Lead Contact
| |
Collapse
|
17
|
Dehn AS, Duhaime L, Gogna N, Nishina PM, Kelley K, Losick VP. Epithelial mechanics are maintained by inhibiting cell fusion with age in Drosophila. J Cell Sci 2023; 136:jcs260974. [PMID: 37732459 PMCID: PMC10651104 DOI: 10.1242/jcs.260974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.
Collapse
Affiliation(s)
- Ari S. Dehn
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Levi Duhaime
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kristina Kelley
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Vicki P. Losick
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| |
Collapse
|
18
|
Albahrawy M, Abouelnasr K, Mosbah E, Zaghloul A, Abass M. Biostimulation effect of platelet-rich fibrin augmented with decellularized bovine pericardium on full-thickness cutaneous wound healing in Donkeys (Equus asinus). BMC Vet Res 2023; 19:166. [PMID: 37730587 PMCID: PMC10512557 DOI: 10.1186/s12917-023-03733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
AIM The current research aimed to evaluate the potential effect of adding platelet-rich fibrin (PRF) to the decellularized bovine pericardium (DBP) on the distal limb of donkeys' full-thickness cutaneous wounds healing (Equus asinus). MATERIALS AND METHODS Healthy male donkeys (n = 12) were used in this study. Under general anesthesia, 6 cm2 full-thickness incisions were made on the middle dorsolateral surface of both forelimbs' metacarpi. The left forelimbs were control wounds, while the right wounds were treated with PRF/DBP. Control wounds were bandaged with a standard dressing after saline irrigation and were evaluated at days 4, 7, 10, 13, 16, 19, 22, 25, and 28 post-wounding. PRF/DBP-treated wounds were dressed with a combination of PRF/DBP at the first, second, and third weeks post-wounding. Clinical and histopathological examinations of the wounds were performed to assess the healing process. Additionally, the immunohistochemical evaluation and gene expression profiles of myofibroblastic and angiogenic genes (transforming growth factor-β1, vascular endothelial growth factor-A, fibroblast growth factor 7 (FGF-7), and collagen type 3α1) were analyzed. RESULTS PRF/DBP wounds had a significantly faster healing process (61.3 ± 2.6 days) than control wounds (90.3 ± 1.4 days) (p < 0.05). The immunohistochemical examination and gene expression profile revealed significant enrichment in PRF/DBP wounds compared to control wounds. CONCLUSION PRF/DBP dressing can be considered a natural and cost-effective biomaterial for enhancing the recovery of donkeys' distal limb injuries.
Collapse
Affiliation(s)
- Mohammed Albahrawy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Khaled Abouelnasr
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Esam Mosbah
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
19
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
20
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Dong W, Flaven-Pouchon J, Gao YH, Song CY, El Wakil A, Zhang JZ, Moussian B. Chitinase 6 is required for procuticle thickening and organ shape in Drosophila wing. INSECT SCIENCE 2023; 30:268-278. [PMID: 36114809 DOI: 10.1111/1744-7917.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The polysaccharide chitin is a major scaffolding molecule in the insect cuticle. In order to be functional, both chitin amounts and chitin organization have been shown to be important parameters. Despite great advances in the past decade, the molecular mechanisms of chitin synthesis and organization are not fully understood. Here, we have characterized the function of the Chitinase 6 (Cht6) in the formation of the wing, which is a simple flat cuticle organ, in the fruit fly Drosophila melanogaster. Reduction of Cht6 function by RNA interference during wing development does not affect chitin organization, but entails a thinner cuticle suggesting reduced chitin amounts. This phenotype is opposed to the one reported recently to be caused by reduction of Cht10 expression. Probably as a consequence, cuticle permeability to xenobiotics is enhanced in Cht6-less wings. We also observed massive deformation of these wings. In addition, the shape of the abdomen is markedly changed upon abdominal suppression of Cht6. Finally, we found that suppression of Cht6 transcript levels influences the expression of genes coding for enzymes of the chitin biosynthesis pathway. This finding indicates that wing epidermal cells respond to activity changes of Cht6 probably trying to adjust chitin amounts. Together, in a working model, we propose that Cht6-introduced modifications of chitin are needed for chitin synthesis to proceed correctly. Cuticle thickness, according to our hypothesis, is in turn required for correct organ or body part shape. The molecular mechanisms of this processes shall be characterized in the future.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Chen-Yang Song
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
22
|
Tian H, Liu SQ, Jing WH, Hao ZH, Li YH, Lu ZH, Ding ZK, Huang SL, Xu YS, Wang HB. Imaginal disc growth factor is involved in melanin synthesis and energy metabolism in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21995. [PMID: 36575612 DOI: 10.1002/arch.21995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.
Collapse
Affiliation(s)
- Huan Tian
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hui Jing
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Hua Hao
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Hui Li
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhe-Hao Lu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ze-Kai Ding
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shao-Li Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
24
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
25
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
26
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
27
|
Krämer R, Wolterhoff N, Galic M, Rumpf S. Developmental pruning of sensory neurites by mechanical tearing in Drosophila. J Cell Biol 2023; 222:213805. [PMID: 36648440 PMCID: PMC9856751 DOI: 10.1083/jcb.202205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Mechanical forces actively shape cells during development, but little is known about their roles during neuronal morphogenesis. Developmental neurite pruning, a critical circuit specification mechanism, often involves neurite abscission at predetermined sites by unknown mechanisms. Pruning of Drosophila sensory neuron dendrites during metamorphosis is triggered by the hormone ecdysone, which induces local disassembly of the dendritic cytoskeleton. Subsequently, dendrites are severed at positions close to the soma by an unknown mechanism. We found that ecdysone signaling causes the dendrites to become mechanically fragile. Severing occurs during periods of increased pupal morphogenetic tissue movements, which exert mechanical forces on the destabilized dendrites. Tissue movements and dendrite severing peak during pupal ecdysis, a period of strong abdominal contractions, and abolishing ecdysis causes non-cell autonomous dendrite pruning defects. Thus, our data establish mechanical tearing as a novel mechanism during neurite pruning.
Collapse
Affiliation(s)
- Rafael Krämer
- https://ror.org/00pd74e08Institute for Neurobiology, University of Münster, Münster, Germany
| | - Neele Wolterhoff
- https://ror.org/00pd74e08Institute for Neurobiology, University of Münster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Sebastian Rumpf
- https://ror.org/00pd74e08Institute for Neurobiology, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Yildirim-Aksoy M, Eljack R, Peatman E, Beck BH. Immunological and biochemical changes in Pacific white shrimp, Litopenaeus vannamei, challenged with Vibrioparahaemolyticus. Microb Pathog 2022; 172:105787. [PMID: 36126790 DOI: 10.1016/j.micpath.2022.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Vibrio parahaemolyticus (Vpara) is the causative agent of Acute Hepatopancreatic Necrosis Disease (AHPND), or Early Mortality Syndrome (EMS) in shrimp. Shrimp, like other invertebrates, lack an adaptive immune system and depend solely on innate immunity against invading pathogens. To better understand the defense mechanisms of shrimp to this problematic pathogen, we evaluated the changes in hematology, immunology and biochemical values of the hemolymph from shrimp challenged with V. parahaemolyticus up to 8 days post-challenge. Thirty-six shrimp (12 g) were distributed in 9 tanks (75 L), divided into three groups (non-challenged, challenged with 5 × 102 cfu/shrimp and challenged with 1 × 103 cfu/shrimp) in triplicate. Pacific white shrimp, Litopenaeus vannamei, were administered an inoculum of V. parahaemolyticus under the shell between the 5th and 6th abdominal segment to assess cellular and humoral immune responses. Total hemocyte count (THC) significantly decreased in shrimp challenged with Vpara at 6 h, 12 h and 24 h-post infection. Hemocyte lysate phenoloxidase (PO) activity in Vpara-challenged shrimp at 48 h post challenge was significantly increased compared to that of control shrimp. No significant differences were observed in total plasma protein between plasma from control and Vpara-challenged shrimp. However, shrimp challenged with 5 × 102, and 1 × 103 cfu/shrimp had significantly lower hemocyanin at 6 h and 48 h sampling point, respectively. At 24 h post-challenge, the ≥140 kDa and 70 kDa bands from SDS-PAGE of hemocyanin-concentrated hemolymph lysate samples showed a higher and lower intensity, respectively, in Vpara-challenged group than those of the control group. Plasma from Vpara-challenged shrimp at 6 h and 12 h-post infection significantly suppressed V. parahaemolyticus growth. However, significantly less bacterial growth suppression was observed in plasma of shrimp challenged with higher dose compared to control shrimp at the 192 h post-challenge point. Plasma chemistry parameters did not significantly differ among treatments. The changes observed in hemolymph parameters may be useful indicators of the health status of shrimp.
Collapse
Affiliation(s)
- Mediha Yildirim-Aksoy
- USDA-ARS, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832, USA.
| | - Rashida Eljack
- USDA-ARS, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832, USA
| | - Eric Peatman
- School of Fisheries, Auburn University, AL, 36849, USA
| | - Benjamin H Beck
- USDA-ARS, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832, USA
| |
Collapse
|
29
|
Li H, Sung HH, Huang YC, Cheng YJ, Yeh HF, Pi H, Giniger E, Chien CT. Fringe-positive Golgi outposts unite temporal Furin 2 convertase activity and spatial Delta signal to promote dendritic branch retraction. Cell Rep 2022; 40:111372. [PMID: 36130510 PMCID: PMC11463699 DOI: 10.1016/j.celrep.2022.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.
Collapse
Affiliation(s)
- Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Fong Yeh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
30
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Zechini L, Amato C, Scopelliti A, Wood W. Piezo acts as a molecular brake on wound closure to ensure effective inflammation and maintenance of epithelial integrity. Curr Biol 2022; 32:3584-3592.e4. [PMID: 35835122 PMCID: PMC9616804 DOI: 10.1016/j.cub.2022.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 12/08/2022]
Abstract
Wound healing entails a fine balance between re-epithelialization and inflammation1,2 so that the risk of infection is minimized, tissue architecture is restored without scarring, and the epithelium regains its ability to withstand mechanical forces. How the two events are orchestrated in vivo remains poorly understood, largely due to the experimental challenges of simultaneously addressing mechanical and molecular aspects of the damage response. Here, exploiting Drosophila's genetic tractability and live imaging potential, we uncover a dual role for Piezo-a mechanosensitive channel involved in calcium influx3-during re-epithelialization and inflammation following injury in vivo. We show that loss of Piezo leads to faster wound closure due to increased wound edge intercalation and exacerbated myosin cable heterogeneity. Moreover, we show that loss of Piezo leads to impaired inflammation due to lower epidermal calcium levels and, subsequently, insufficient damage-induced ROS production. Despite initially appearing beneficial, loss of Piezo is severely detrimental to the long-term effectiveness of repair. In fact, wounds inflicted on Piezo knockout embryos become a permanent point of weakness within the epithelium, leading to impaired barrier function and reduced ability of wounded embryos to survive. In summary, our study uncovers a role for Piezo in regulating epithelial cell dynamics and immune cell responsiveness during damage repair in vivo. We propose a model whereby Piezo acts as molecular brake during wound healing, slowing down closure to ensure activation of sustained inflammation and re-establishment of a fully functional epithelial barrier.
Collapse
Affiliation(s)
- Luigi Zechini
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Clelia Amato
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Alessandro Scopelliti
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Will Wood
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
32
|
Pascual C, Rodríguez-Canul R, Huchin-Mian JP, Mascaró M, Briones-Fourzán P, Lozano-Álvarez E, Sánchez A, Escalante K. Immune Response to Natural and Experimental Infection of Panulirus argus Virus 1 (PaV1) in Juveniles of Caribbean Spiny Lobster. Animals (Basel) 2022; 12:ani12151951. [PMID: 35953940 PMCID: PMC9367466 DOI: 10.3390/ani12151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Experimental immunological challenges are widely used to corroborate the success of breeding programs for lines resistant to specific pathogens, to test the efficiency of new vaccines, and to improve immunity of cultured animals. The validation of experimental infection protocols is complex because it requires comparison with naturally infected organisms at different stages of the infection. The present study compares the immune response of lobsters under a natural process of viral infection (PaV1), versus the defense response of experimentally infected organisms. Innate immunity for infected lobsters was measured through cellular and plasmatic components. The results indicate that the immune response of organisms naturally or experimentally infected by PaV1 was similar, and provides the bases to corroborate that the immunological challenge was not exacerbated. Appropriate infection protocols can be useful for research aimed at increasing resistance to infectious diseases and reducing the use of antibiotics in aquaculture. Abstract Experimental infections have been used to better comprehend the immune system of organisms, and to probe for additives that generate greater resistance and help reduce antibiotic use in aquaculture. We compared the immune response of juveniles of the Caribbean spiny lobster, Panulirus argus, infected naturally with Panulirus argus virus 1 (PaV1) versus organisms infected experimentally, to determine the analogy between both infectious processes. The immunological response was measured by hemagglutination activity, hemocyte count, and total phenoloxidase activity in plasma and hemocytes in 211 individuals that were either naturally infected (110), or had been injected with viral inoculum and followed for six months (101). The samples were classified into the following four groups according to the severity of the infection: 0, uninfected; 1, lightly; 2, moderately; and 3, severely infected), which was determined on the basis of PCR and histological criteria. A permutational MANOVA showed that both the origin (natural and experimental), and the severity of the infection contributed significantly to explain the variation in the immune response of lobsters. The lack of significance of the interaction term indicated that the immunological response changed with the severity of the infection in a similar way, regardless of its origin. The results of the present study suggest that the experimental viral infection of PaV1 produces a defense response similar to the natural pathways of contagion, and provides the bases to validate an immunological challenge protocol for the first time in crustaceans. The discussion includes the perspective of the conceptual models of immune response within an ecological context.
Collapse
Affiliation(s)
- Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
- Correspondence:
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico;
| | - Juan Pablo Huchin-Mian
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36000, Mexico;
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Patricia Briones-Fourzán
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Enrique Lozano-Álvarez
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Ariadna Sánchez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Karla Escalante
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| |
Collapse
|
33
|
The Entomopathogenic Nematodes H. bacteriophora and S. carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta nipae (Coleoptera: Chrysomelidae). LIFE (BASEL, SWITZERLAND) 2022; 12:life12071019. [PMID: 35888107 PMCID: PMC9323948 DOI: 10.3390/life12071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Entomopathogenic nematodes are biocontrol agents of invasive insect pests in soil and cryptic habitats. Nipa palm hispid, Octodonta nipae, is a pest of palm trees in Sothern China. To address its increasing damage, environmentally friendly control methods are required. This study aimed to test efficacy of Heterorhabditis bacteriophora and Steinernema carpocapsae on O. nipae and investigated the influence of secondary metabolites, nematodes, and their isolated cuticles on the activation of O. nipae’s prophenoloxidase system using qPCR analysis. Our data revealed that O. nipae were less susceptible to H. bacteriophora than S. carpocapsae and penetrations of infective juveniles were higher with S. carpocapsae treatment than H. bacteriophora. Moreover, expression levels of the serine protease P56, prophenoloxidase activation factor 1, PPO and serine protease inhibitor 28 upon S. carpocapsae and H. bacteriophora infections were generally downregulated at all times. However, upon heating, the cuticles lost their inhibitory effects and resulted in upregulation of the PPO gene. Similarly, the addition of arachidonic acid reversed the process and resulted in the upregulation of the PPO gene compared to the control. Further work is needed to identify toxic substances secreted by these EPNs to evade O. nipae’s immune system.
Collapse
|
34
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
35
|
Waring AL, Hill J, Allen BM, Bretz NM, Le N, Kr P, Fuss D, Mortimer NT. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. INSECTS 2022; 13:insects13050490. [PMID: 35621824 PMCID: PMC9147463 DOI: 10.3390/insects13050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Organisms can be infected by a wide range of pathogens, including bacteria, viruses, and parasites. Following infection, the host mounts an immune response to attempt to eliminate the pathogen. These responses are often specific to the type of pathogen and mediated by the expression of specialized genes. We have characterized the expression changes induced in host Drosophila fruit flies following infection by multiple types of pathogens, and identified a small number of genes that show expression changes in each infection. This includes genes that are known to be involved in pathogen resistance, and others that have not been previously studied as immune response genes. These findings provide new insight into transcriptional changes that accompany Drosophila immunity. They may suggest possible roles for the differentially expressed genes in innate immune responses to diverse classes of pathogens, and serve to identify candidate genes for further empirical study of these processes. Abstract Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from Drosophila melanogaster following infection with a wide array of pathogens. We identified 62 genes that are significantly induced by infection. While many of these infection-induced genes encode known immune response factors, we also identified 21 genes that have not been previously associated with host immunity. Examination of the upstream flanking sequences of the infection-induced genes lead to the identification of two conserved enhancer sites. These sites correspond to conserved binding sites for GATA and nuclear factor κB (NFκB) family transcription factors and are associated with higher levels of transcript induction. We further identified 31 genes with predicted functions in metabolism and organismal development that are significantly downregulated following infection by diverse pathogens. Our study identifies conserved gene expression changes in Drosophila melanogaster following infection with varied pathogens, and transcription factor families that may regulate this immune induction.
Collapse
|
36
|
Charalambous A, Grivogiannis E, Dieronitou I, Michael C, Rahme L, Apidianakis Y. Proteobacteria and Firmicutes Secreted Factors Exert Distinct Effects on Pseudomonas aeruginosa Infection under Normoxia or Mild Hypoxia. Metabolites 2022; 12:449. [PMID: 35629953 PMCID: PMC9146490 DOI: 10.3390/metabo12050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Microbiota may alter a pathogen's virulence potential at polymicrobial infection sites. Here, we developed a multi-modal Drosophila assay, amenable to the assessment of human bacterial interactions using fly survival or midgut regeneration as a readout, under normoxia or mild hypoxia. Deploying a matrix of 12 by 33 one-to-one Drosophila co-infections via feeding, we classified bacterial interactions as neutral, synergistic, or antagonistic, based on fly survival. Twenty six percent of these interactions were antagonistic, mainly occurring between Proteobacteria. Specifically, Pseudomonas aeruginosa infection was antagonized by various Klebsiella strains, Acinetobacter baumannii, and Escherichia coli. We validated these interactions in a second screen of 7 by 34 one-to-one Drosophila co-infections based on assessments of midgut regeneration, and in bacterial co-culture test tube assays, where antagonistic interactions depended on secreted factors produced upon high sugar availability. Moreover, Enterococci interacted synergistically with P. aeruginosa in flies and in test tubes, enhancing the virulence and pyocyanin production by P. aeruginosa. However, neither lactic acid bacteria nor their severely hypoxic culture supernatants provided a survival benefit upon P. aeruginosa infection of flies or mice, respectively. We propose that at normoxic or mildly hypoxic sites, Firmicutes may exacerbate, whereas Proteobacteria secreted factors may ameliorate, P. aeruginosa infections.
Collapse
Affiliation(s)
- Anna Charalambous
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Evangelos Grivogiannis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Irene Dieronitou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Christina Michael
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (A.C.); (E.G.); (I.D.); (C.M.)
| |
Collapse
|
37
|
Yu RR, Zhang R, Liu WM, Zhao XM, Zhu KY, Moussian B, Zhang JZ. The DOMON domain protein LmKnk contributes to correct chitin content, pore canal formation and lipid deposition in the cuticle of Locusta migratoria during moulting. INSECT MOLECULAR BIOLOGY 2022; 31:127-138. [PMID: 34738680 DOI: 10.1111/imb.12745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Insects prevent uncontrolled penetration of water and xenobiotics by producing an impermeable cuticle. The major component of the cuticle is chitin that adopts a crystalline structure thereby contributing to cuticle stability. Our understanding of the contribution of chitin to the cuticle barrier function is limited. Here, we studied the role of the DOMON domain protein Knickkopf (LmKnk) that is involved in chitin organization and cuticle permeability in the migratory locust Locusta migratoria. We show that LmKnk localizes to the chitin layer in the newly produced cuticle. Injection of double-stranded RNA targeting LmKnk (dsLmKnk) in locust nymphs caused failure of moulting to the next stage. Histological experiments revealed that apolysis, i.e., the detachment of the old cuticle from the body surface, was normal; however, the newly synthesized cuticle was thinner than the cuticle of the control insects. Indeed, chitin content dropped after suppression of LmKnk expression. As seen by transmission electron microscopy, crystalline chitin organization was lost in dsLmKnk-treated insects. In addition, the structure of pore canals, which are lipid transporting routes in the cuticle, was abnormal. Consistently, their content was reduced and, probably by consequence, lipid deposition on the cuticle was decreased after injection of dsLmKnk. Suppression of LmKnk transcript levels rendered L. migratoria more susceptible to each of four selected insecticides including malathion, chlorpyrifos, carbaryl and deltamethrin. Overall, our data show that LmKnk is needed for correct chitin amounts and organization, and their changes ultimately affect cuticular permeability in L. migratoria.
Collapse
Affiliation(s)
- R R Yu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - R Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- College of Life Science, Datong University, Datong, China
| | - W M Liu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - X M Zhao
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - B Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - J Z Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
38
|
Abstract
Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.
Collapse
|
39
|
Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J 2022; 41:e109992. [PMID: 35262206 PMCID: PMC9194749 DOI: 10.15252/embj.2021109992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | | | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Rand DM, Mossman JA, Spierer AN, Santiago JA. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E. J Hered 2022; 113:37-47. [PMID: 34964900 PMCID: PMC8851671 DOI: 10.1093/jhered/esab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain eukaryotic metabolism today are processed in mitochondria through coordinated expression of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria are environments for the nuclear genome, and vice versa. We construct factorial combinations of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use development time and genome-wide RNAseq analyses to assess the relative contributions of mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). We show that the nuclear transcriptional response to alternative mitochondrial "environments" (G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to altered dietary environments. These analyses point to specific transcription factors (e.g., giant) that mediated these interactions, and identified coexpressed modules of genes that may account for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an organism's environment.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - James A Mossman
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - John A Santiago
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
- Department of Pathology and Laboratory Medicine, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
41
|
Athilingam T, Parihar SS, Bhattacharya R, Rizvi MS, Kumar A, Sinha P. Proximate larval epidermal cell layer generates forces for Pupal thorax closure in Drosophila. Genetics 2022; 221:6528854. [PMID: 35166774 PMCID: PMC9071563 DOI: 10.1093/genetics/iyac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
During tissue closures, such as embryonic dorsal closure in Drosophila melanogaster, a proximate extra-embryonic layer, amnioserosa, generates forces that drive migration of the flanking lateral embryonic epidermis, thereby zip-shutting the embryo. Arguably, this paradigm of tissue closure is also recapitulated in mammalian wound healing wherein proximate fibroblasts transform into contractile myofibroblasts, develop cell junctions, and form a tissue layer de novo: contraction of the latter then aids in wound closure. Given this parallelism between disparate exemplars, we posit a general principle of tissue closure via proximate cell layer-generated forces. Here, we have tested this hypothesis in pupal thorax closure wherein 2 halves of the presumptive adult thorax of Drosophila, the contralateral heminotal epithelia, migrate over an underlying larval epidermal cell layer. We show that the proximate larval epidermal cell layer promotes thorax closure by its active contraction, orchestrated by its elaborate actomyosin network-driven epithelial cell dynamics, cell delamination, and death-the latter being prefigured by the activation of caspases. Larval epidermal cell dynamics generate contraction forces, which when relayed to the flanking heminota-via their mutual integrin-based adhesions-mediate thorax closure. Compromising any of these contraction force-generating mechanisms in the larval epidermal cell layer slows down heminotal migration, while loss of its relay to the flanking heminota abrogates the thorax closure altogether. Mathematical modeling further reconciles the biophysical underpinning of this emergent mechanism of thorax closure. Revealing mechanism of thorax closure apart, these findings show conservation of an essential principle of a proximate cell layer-driven tissue closure.
Collapse
Affiliation(s)
- Thamarailingam Athilingam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saurabh S Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rachita Bhattacharya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohd S Rizvi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India,Corresponding author: Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
42
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
43
|
Cinege G, Magyar LB, Kovács AL, Lerner Z, Juhász G, Lukacsovich D, Winterer J, Lukacsovich T, Hegedűs Z, Kurucz É, Hultmark D, Földy C, Andó I. Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. J Innate Immun 2021; 14:335-354. [PMID: 34864742 PMCID: PMC9275024 DOI: 10.1159/000520110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Lilla B Magyar
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zita Lerner
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Kurucz
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - István Andó
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
44
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Karkali K, Martin-Blanco E. Dissection of the Regulatory Elements of the Complex Expression Pattern of Puckered, a Dual-Specificity JNK Phosphatase. Int J Mol Sci 2021; 22:ijms222212205. [PMID: 34830088 PMCID: PMC8623796 DOI: 10.3390/ijms222212205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
For developmental processes, we know most of the gene networks controlling specific cell responses. We still have to determine how these networks cooperate and how signals become integrated. The JNK pathway is one of the key elements modulating cellular responses during development. Yet, we still know little about how the core components of the pathway interact with additional regulators or how this network modulates cellular responses in the whole organism in homeostasis or during tissue morphogenesis. We have performed a promoter analysis, searching for potential regulatory sequences of puckered (puc) and identified different specific enhancers directing gene expression in different tissues and at different developmental times. Remarkably, some of these domains respond to the JNK activity, but not all. Altogether, these analyses show that puc expression regulation is very complex and that JNK activities participate in non-previously known processes during the development of Drosophila.
Collapse
|
46
|
Tsai CR, Wang Y, Jacobson A, Sankoorikkal N, Chirinos JD, Burra S, Makthal N, Kumaraswami M, Galko MJ. Pvr and distinct downstream signaling factors are required for hemocyte spreading and epidermal wound closure at Drosophila larval wound sites. G3-GENES GENOMES GENETICS 2021; 12:6423993. [PMID: 34751396 PMCID: PMC8728012 DOI: 10.1093/g3journal/jkab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Tissue injury is typically accompanied by inflammation. In Drosophila melanogaster larvae, wound-induced inflammation involves adhesive capture of hemocytes at the wound surface followed by hemocyte spreading to assume a flat, lamellar morphology. The factors that mediate this cell spreading at the wound site are not known. Here, we discover a role for the platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr) and its ligand, Pvf1, in blood cell spreading at the wound site. Pvr and Pvf1 are required for spreading in vivo and in an in vitro spreading assay where spreading can be directly induced by Pvf1 application or by constitutive Pvr activation. In an effort to identify factors that act downstream of Pvr, we performed a genetic screen in which select candidates were tested to determine if they could suppress the lethality of Pvr overexpression in the larval epidermis. Some of the suppressors identified are required for epidermal wound closure (WC), another Pvr-mediated wound response, some are required for hemocyte spreading in vitro, and some are required for both. One of the downstream factors, Mask, is also required for efficient wound-induced hemocyte spreading in vivo. Our data reveal that Pvr signaling is required for wound responses in hemocytes (cell spreading) and defines distinct downstream signaling factors that are required for either epidermal WC or hemocyte spreading.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yan Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Alec Jacobson
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Niki Sankoorikkal
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Josue D Chirinos
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sirisha Burra
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Michael J Galko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Genetics & Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
47
|
Girard JR, Goins LM, Vuu DM, Sharpley MS, Spratford CM, Mantri SR, Banerjee U. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. eLife 2021; 10:e67516. [PMID: 34713801 PMCID: PMC8610493 DOI: 10.7554/elife.67516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Juliet R Girard
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lauren M Goins
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Dung M Vuu
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Shreya R Mantri
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
48
|
Dziedziech A, Theopold U. Proto-pyroptosis: An Ancestral Origin for Mammalian Inflammatory Cell Death Mechanism in Drosophila melanogaster. J Mol Biol 2021; 434:167333. [PMID: 34756921 DOI: 10.1016/j.jmb.2021.167333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis has been described in mammalian systems to be a form of programmed cell death that is important in immune function through the subsequent release of cytokines and immune effectors upon cell bursting. This form of cell death has been increasingly well-characterized in mammals and can occur using alternative routes however, across phyla, there has been little evidence for the existence of pyroptosis. Here we provide evidence for an ancient origin of pyroptosis in an in vivo immune scenario in Drosophila melanogaster. Crystal cells, a type of insect blood cell, were recruited to wounds and ruptured subsequently releasing their cytosolic content in a caspase-dependent manner. This inflammatory-based programmed cell death mechanism fits the features of pyroptosis, never before described in an in vivo immune scenario in insects and relies on ancient apoptotic machinery to induce proto-pyroptosis. Further, we unveil key players upstream in the activation of cell death in these cells including the apoptosome which may play an alternative role akin to the inflammasome in proto-pyroptosis. Thus, Drosophila may be a suitable model for studying the functional significance of pyroptosis in the innate immune system.
Collapse
Affiliation(s)
- A Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| | - U Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
49
|
Scepanovic G, Hunter MV, Kafri R, Fernandez-Gonzalez R. p38-mediated cell growth and survival drive rapid embryonic wound repair. Cell Rep 2021; 37:109874. [PMID: 34686334 DOI: 10.1016/j.celrep.2021.109874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Embryos repair wounds rapidly, with no inflammation or scarring, in a process that involves polarization of the actomyosin cytoskeleton. Actomyosin polarization results in the assembly of a contractile cable around the wound that drives wound closure. Here, we demonstrate that a contractile actomyosin cable is not sufficient for rapid wound repair in Drosophila embryos. We show that wounding causes activation of the serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) in the cells adjacent to the wound. p38 activation reduces the levels of wound-induced reactive oxygen species in the cells around the wound, limiting wound size. In addition, p38 promotes an increase in volume in the cells around the wound, thus facilitating the collective cell movements that drive rapid wound healing. Our data indicate that p38 regulates cell volumes through the sodium-potassium-chloride cotransporter NKCC1. Our work reveals cell growth and cell survival as cell behaviors critical for embryonic wound repair.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Miranda Victoria Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
50
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|