1
|
Yeh CY, Chini LCS, Davidson JW, Garcia GG, Gallagher MS, Freichels IT, Calubag MF, Rodgers AC, Green CL, Babygirija R, Sonsalla MM, Pak HH, Trautman ME, Hacker TA, Miller RA, Simcox JA, Lamming DW. Late-life protein or isoleucine restriction impacts physiological and molecular signatures of aging. NATURE AGING 2024; 4:1760-1771. [PMID: 39604703 DOI: 10.1038/s43587-024-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Restricting the intake of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan in young or adult mice. However, their effects when initiated in aged animals are unknown. Here we investigate the consequences of consuming a diet with 67% reduction of all amino acids (low AA) or of isoleucine alone (low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. Both dietary regimens effectively promote overall metabolic health without reducing calorie intake. Both low AA and low Ile diets improve aspects of frailty and slow multiple molecular indicators of aging rate; however, the low Ile diet reduces grip strength in both sexes and has mixed, sexually dimorphic effects on the heart. These results demonstrate that low AA and low Ile diets can promote aspects of healthy aging in aged mice and suggest that similar interventions might promote healthy aging in older adults.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lucas C S Chini
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Meredith S Gallagher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac T Freichels
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison C Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
2
|
Hoffman OR, Koehler JL, Espina JEC, Patterson AM, Gohar ES, Coleman E, Schoenike BA, Espinosa-Garcia C, Paredes F, Varvel NH, Dingledine RJ, Maguire JL, Roopra AS. Disease modification upon brief exposure to tofacitinib during chronic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.07.552299. [PMID: 37662337 PMCID: PMC10473616 DOI: 10.1101/2023.08.07.552299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
All current drug treatments for epilepsy, a neurological disorder affecting over 50 million people( 1, 2 ) merely treat symptoms, and a third of patients do not respond to medication. There are no disease modifying treatments that may be administered briefly to patients to enduringly eliminate spontaneous seizures and reverse cognitive deficits( 3, 4 ). Applying network approaches to rodent models and human temporal lobectomy samples at both whole tissue and single-nuclei resolutions, we observe the well-characterized pattern of rapid induction and subsequent quenching exhibited of the JAK/STAT pathway within days of epileptogenic insult. This is followed by a resurgent activation weeks to months later with the onset of spontaneous seizures. Targeting the first wave of activation after epileptic insult does not prevent disease. However, brief inhibition of the second wave with CP690550 (Tofacitinib) ( 5, 6 ) enduringly suppresses seizures, rescues deficits in spatial memory, and alleviates epilepsy-associated histopathological alterations. Seizure suppression lasts for at least 2 months after the final dose. Using discovery-based transcriptomic analysis across models of epilepsy and validation of putative mechanisms with human data, we demonstrate a powerful approach to identifying disease modifying targets; this may be useful for other neurological disorders. With this approach, we find that reignition of inflammatory JAK/STAT3 signaling in chronic epilepsy opens a window for disease modification with the FDA-approved, orally available drug CP690550.
Collapse
|
3
|
Hopper MA, Dropik AR, Walker JS, Novak JP, Laverty MS, Manske MK, Wu X, Wenzl K, Krull JE, Sarangi V, Maurer MJ, Yang ZZ, Del Busso MD, Habermann TM, Link BK, Rimsza LM, Witzig TE, Ansell SM, Cerhan JR, Jevremovic D, Novak AJ. DEK regulates B-cell proliferative capacity and is associated with aggressive disease in low-grade B-cell lymphomas. Blood Cancer J 2024; 14:172. [PMID: 39384745 PMCID: PMC11464677 DOI: 10.1038/s41408-024-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaosheng Wu
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Bone & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Lu Z, Xu L, Wang X. BIT: Bayesian Identification of Transcriptional Regulators from Epigenomics-Based Query Region Sets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597061. [PMID: 38895220 PMCID: PMC11185535 DOI: 10.1101/2024.06.02.597061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Transcriptional regulators (TRs) are master controllers of gene expression and play a critical role in both normal tissue development and disease progression. However, existing computational methods for identification of TRs regulating specific biological processes have significant limitations, such as relying on distance on a linear chromosome or binding motifs that have low specificity. Many also use statistical tests in ways that lack interpretability and rigorous confidence measures. We introduce BIT, a novel Bayesian hierarchical model for in-silico TR identification. Leveraging a comprehensive library of TR ChIP-seq data, BIT offers a fully integrated Bayesian approach to assess genome-wide consistency between user-provided epigenomic profiling data and the TR binding library, enabling the identification of critical TRs while quantifying uncertainty. It avoids estimation and inference in a sequential manner or numerous isolated statistical tests, thereby enhancing accuracy and interpretability. BIT successfully identified critical TRs in perturbation experiments, functionally essential TRs in various cancer types, and cell-type-specific TRs within heterogeneous cell populations, offering deeper biological insights into transcriptional regulation.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Statistics and Data Science, Moody School of Graduate and Advanced Studies, Southern Methodist University, Dallas, TX, USA
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinlei Wang
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
- Division of Data Science, College of Science, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
5
|
Lu Z, Xiao X, Zheng Q, Wang X, Xu L. Assessing next-generation sequencing-based computational methods for predicting transcriptional regulators with query gene sets. Brief Bioinform 2024; 25:bbae366. [PMID: 39082650 PMCID: PMC11289684 DOI: 10.1093/bib/bbae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
This article provides an in-depth review of computational methods for predicting transcriptional regulators (TRs) with query gene sets. Identification of TRs is of utmost importance in many biological applications, including but not limited to elucidating biological development mechanisms, identifying key disease genes, and predicting therapeutic targets. Various computational methods based on next-generation sequencing (NGS) data have been developed in the past decade, yet no systematic evaluation of NGS-based methods has been offered. We classified these methods into two categories based on shared characteristics, namely library-based and region-based methods. We further conducted benchmark studies to evaluate the accuracy, sensitivity, coverage, and usability of NGS-based methods with molecular experimental datasets. Results show that BART, ChIP-Atlas, and Lisa have relatively better performance. Besides, we point out the limitations of NGS-based methods and explore potential directions for further improvement.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Statistics and Data Science, Moody School of Graduate and Advanced Studies, Southern Methodist University, 3225 Daniel Ave., P.O. Box 750332, Dallas, TX, United States
| | - Xue Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, United States
| | - Qiang Zheng
- Division of Data Science, College of Science, University of Texas at Arlington, 501 S. Nedderman Dr., Arlington, TX 76019, United States
| | - Xinlei Wang
- Division of Data Science, College of Science, University of Texas at Arlington, 501 S. Nedderman Dr., Arlington, TX 76019, United States
- Department of Mathematics, University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, United States
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, United States
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| |
Collapse
|
6
|
Trautman ME, Green CL, MacArthur MR, Chaiyakul K, Alam YH, Yeh CY, Babygirija R, James I, Gilpin M, Zelenovskiy E, Green M, Marshall RN, Sonsalla MM, Flores V, Simcox JA, Ong IM, Malecki KC, Jang C, Lamming DW. Dietary isoleucine content defines the metabolic and molecular response to a Western diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596340. [PMID: 38895446 PMCID: PMC11185563 DOI: 10.1101/2024.05.30.596340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The amino acid composition of the diet has recently emerged as a critical regulator of metabolic health. Consumption of the branched-chain amino acid isoleucine is positively correlated with body mass index in humans, and reducing dietary levels of isoleucine rapidly improves the metabolic health of diet-induced obese male C57BL/6J mice. However, it is unknown how sex, strain, and dietary isoleucine intake may interact to impact the response to a Western Diet (WD). Here, we find that although the magnitude of the effect varies by sex and strain, reducing dietary levels of isoleucine protects C57BL/6J and DBA/2J mice of both sexes from the deleterious metabolic effects of a WD, while increasing dietary levels of isoleucine impairs aspects of metabolic health. Despite broadly positive responses across all sexes and strains to reduced isoleucine, the molecular response of each sex and strain is highly distinctive. Using a multi-omics approach, we identify a core sex- and strain- independent molecular response to dietary isoleucine, and identify mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype. Intriguingly, the metabolic effects of reduced isoleucine in mice are not associated with FGF21 - and we find that in humans plasma FGF21 levels are likewise not associated with dietary levels of isoleucine. Finally, we find that foods contain a range of isoleucine levels, and that consumption of dietary isoleucine is lower in humans with healthy eating habits. Our results demonstrate that the dietary level of isoleucine is critical in the metabolic and molecular response to a WD, and suggest that lowering dietary levels of isoleucine may be an innovative and translatable strategy to protect from the negative metabolic consequences of a WD.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michael R. MacArthur
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Gilpin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Zelenovskiy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Madelyn Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Ryan N. Marshall
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53705, USA
| | - Kristen C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
7
|
Stamatiou K, Huguet F, Serapinas LV, Spanos C, Rappsilber J, Vagnarelli P. Ki-67 is necessary during DNA replication for fork protection and genome stability. Genome Biol 2024; 25:105. [PMID: 38649976 PMCID: PMC11034166 DOI: 10.1186/s13059-024-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The proliferation antigen Ki-67 has been widely used in clinical settings for cancer staging for many years, but investigations on its biological functions have lagged. Recently, Ki-67 has been shown to regulate both the composition of the chromosome periphery and chromosome behaviour in mitosis as well as to play a role in heterochromatin organisation and gene transcription. However, how the different roles for Ki-67 across the cell cycle are regulated and coordinated remain poorly understood. The progress towards understanding Ki-67 function have been limited by the tools available to deplete the protein, coupled to its abundance and fluctuation during the cell cycle. RESULTS Here, we use a doxycycline-inducible E3 ligase together with an auxin-inducible degron tag to achieve a rapid, acute and homogeneous degradation of Ki-67 in HCT116 cells. This system, coupled with APEX2 proteomics and phospho-proteomics approaches, allows us to show that Ki-67 plays a role during DNA replication. In its absence, DNA replication is severely delayed, the replication machinery is unloaded, causing DNA damage that is not sensed by the canonical pathways and dependent on HUWE1 ligase. This leads to defects in replication and sister chromatids cohesion, but it also triggers an interferon response mediated by the cGAS/STING pathway in all the cell lines tested. CONCLUSIONS We unveil a new function of Ki-67 in DNA replication and genome maintenance that is independent of its previously known role in mitosis and gene regulation.
Collapse
Affiliation(s)
- Konstantinos Stamatiou
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Florentin Huguet
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Lukas V Serapinas
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Technische Universitat Berlin, Berlin, 13355, Germany
| | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
8
|
Ferguson CM, Hildebrand S, Godinho BMDC, Buchwald J, Echeverria D, Coles A, Grigorenko A, Vangjeli L, Sousa J, McHugh N, Hassler M, Santarelli F, Heneka MT, Rogaev E, Khvorova A. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024; 20:2632-2652. [PMID: 38375983 PMCID: PMC11032532 DOI: 10.1002/alz.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.
Collapse
Affiliation(s)
- Chantal M. Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Grigorenko
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB)Esch‐sur‐AlzetteLuxembourg
| | - Evgeny Rogaev
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
9
|
Lu Z, Xiao X, Zheng Q, Wang X, Xu L. Assessing NGS-based computational methods for predicting transcriptional regulators with query gene sets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578316. [PMID: 38562775 PMCID: PMC10983863 DOI: 10.1101/2024.02.01.578316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This article provides an in-depth review of computational methods for predicting transcriptional regulators with query gene sets. Identification of transcriptional regulators is of utmost importance in many biological applications, including but not limited to elucidating biological development mechanisms, identifying key disease genes, and predicting therapeutic targets. Various computational methods based on next-generation sequencing (NGS) data have been developed in the past decade, yet no systematic evaluation of NGS-based methods has been offered. We classified these methods into two categories based on shared characteristics, namely library-based and region-based methods. We further conducted benchmark studies to evaluate the accuracy, sensitivity, coverage, and usability of NGS-based methods with molecular experimental datasets. Results show that BART, ChIP-Atlas, and Lisa have relatively better performance. Besides, we point out the limitations of NGS-based methods and explore potential directions for further improvement. Key points An introduction to available computational methods for predicting functional TRs from a query gene set.A detailed walk-through along with practical concerns and limitations.A systematic benchmark of NGS-based methods in terms of accuracy, sensitivity, coverage, and usability, using 570 TR perturbation-derived gene sets.NGS-based methods outperform motif-based methods. Among NGS methods, those utilizing larger databases and adopting region-centric approaches demonstrate favorable performance. BART, ChIP-Atlas, and Lisa are recommended as these methods have overall better performance in evaluated scenarios.
Collapse
|
10
|
Chechushkov AV, Menshchikova EB. An Investigation of the Regulatory Relationship of the Keap1/Nrf2/ARE Signaling System and Transcriptional Regulators of Lysosomal Biogenesis. CELL AND TISSUE BIOLOGY 2023; 17:653-661. [DOI: 10.1134/s1990519x23060056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 01/04/2025]
|
11
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Chang HY, Huynh M, Roopra A, Callander NS, Miyamoto S. HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM. Blood Adv 2023; 7:6859-6872. [PMID: 37647592 PMCID: PMC10685165 DOI: 10.1182/bloodadvances.2023010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
The bone marrow (BM) microenvironment is critical for dissemination, growth, and survival of multiple myeloma (MM) cells. Homing of myeloma cells to the BM niche is a crucial step in MM dissemination, but the mechanisms involved are incompletely understood. In particular, any role of matrikines, neofunctional peptides derived from extracellular matrix proteins, remains unknown. Here, we report that a matrikine derived from hyaluronan and proteoglycan link protein 1 (HAPLN1) induces MM cell adhesion to the BM stromal components, such as fibronectin, endothelial cells, and stromal cells and, furthermore, induces their chemotactic and chemokinetic migration. In a mouse xenograft model, we show that MM cells preferentially home to HAPLN1 matrikine-conditioned BM. The transcription factor STAT1 is activated by HAPLN1 matrikine and is necessary to induce MM cell adhesion, migration, migration-related genes, and BM homing. STAT1 activation is mediated by interferon beta (IFN-β), which is induced by NF-κB after stimulation by HAPLN1 matrikine. Finally, we also provide evidence that higher levels of HAPLN1 in BM samples correlate with poorer progression-free survival of patients with newly diagnosed MM. These data reveal that a matrikine present in the BM microenvironment acts as a chemoattractant, plays an important role in BM homing of MM cells via NF-κB-IFN-β-STAT1 signaling, and may help identify patients with poor outcomes. This study also provides a mechanistic rationale for targeting HAPLN1 matrikine in MM therapy.
Collapse
Affiliation(s)
- Hae Yeun Chang
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Mailee Huynh
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Natalie S. Callander
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
13
|
Anerillas C, Mazan-Mamczarz K, Herman AB, Munk R, Lam KWG, Calvo-Rubio M, Garrido A, Tsitsipatis D, Martindale JL, Altés G, Rossi M, Piao Y, Fan J, Cui CY, De S, Abdelmohsen K, de Cabo R, Gorospe M. The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress. NATURE AGING 2023; 3:1237-1250. [PMID: 37667102 PMCID: PMC11369890 DOI: 10.1038/s43587-023-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-β signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kwan-Wood Gabriel Lam
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amanda Garrido
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gisela Altés
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
14
|
Chandra O, Sharma M, Pandey N, Jha IP, Mishra S, Kong SL, Kumar V. Patterns of transcription factor binding and epigenome at promoters allow interpretable predictability of multiple functions of non-coding and coding genes. Comput Struct Biotechnol J 2023; 21:3590-3603. [PMID: 37520281 PMCID: PMC10371796 DOI: 10.1016/j.csbj.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Understanding the biological roles of all genes only through experimental methods is challenging. A computational approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with biological functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demonstrated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an avenue for predicting the involvement of non-coding genes in various functions.
Collapse
Affiliation(s)
- Omkar Chandra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Madhu Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Neetesh Pandey
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Indra Prakash Jha
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Shreya Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| | - Say Li Kong
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Vibhor Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Ph-III, New Delhi, India
| |
Collapse
|
15
|
Chechushkov AV, Menshchikova EB. Regulatory Relationship between the Keap1/Nrf2/ARE Signaling System and Transcriptional Regulators of Lysosomal Biogenesis. ЦИТОЛОГИЯ 2023; 65:367-375. [DOI: 10.31857/s0041377123040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Despite the key role of the Keap1/Nrf2/ARE redox-sensitive signaling system in cellular metabolism, little is known about its relationship to lysosome biogenesis. In this paper, a theoretical and experimental analysis of the possibility of such a link has been carried out. By forming a position frequency matrix in the transcription factor genes TFEB and TFE3, the presence of a large number of ARE-like sequences was found in the non-coding regions. In vitro exposure to J774 cells by Keap1/Nrf2/ARE activators (original synthetic monophenol TS-13 and tert-butylhydroquinone as comparison compound) results in dose-dependent induction of Tfe3 and Tfeb genes, accompanied by a gradual increase in the lysosome number and autosomal-lysosomal fusion intensity. Thus, it can be assumed that the proteins controlling the ARE-dependent genes are able to influence lysosome biogenesis.
Collapse
|
16
|
de la O S, Yao X, Chang S, Liu Z, Sneddon JB. Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs. Mol Metab 2023; 73:101735. [PMID: 37178817 PMCID: PMC10230264 DOI: 10.1016/j.molmet.2023.101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Collapse
Affiliation(s)
- Sean de la O
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xinkai Yao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sean Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
17
|
Quintela M, James DW, Garcia J, Edwards K, Margarit L, Das N, Lutchman-Singh K, Beynon AL, Rioja I, Prinjha RK, Harker NR, Gonzalez D, Steven Conlan R, Francis LW. In silico enhancer mining reveals SNS-032 and EHMT2 inhibitors as therapeutic candidates in high-grade serous ovarian cancer. Br J Cancer 2023; 129:163-174. [PMID: 37120667 PMCID: PMC10307814 DOI: 10.1038/s41416-023-02274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. METHODS We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. RESULTS Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. CONCLUSION Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.
Collapse
Affiliation(s)
- Marcos Quintela
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - David W James
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Jetzabel Garcia
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Lavinia Margarit
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
- Cwm Taf Morgannwg University Health Board, Swansea, SA2 8QA, UK
| | - Nagindra Das
- Swansea Bay University Health Board, Swansea, SA12 7BR, UK
| | | | | | - Inmaculada Rioja
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nicola R Harker
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Deyarina Gonzalez
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Lewis W Francis
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
18
|
Hoffmann M, Trummer N, Schwartz L, Jankowski J, Lee HK, Willruth LL, Lazareva O, Yuan K, Baumgarten N, Schmidt F, Baumbach J, Schulz MH, Blumenthal DB, Hennighausen L, List M. TF-Prioritizer: a Java pipeline to prioritize condition-specific transcription factors. Gigascience 2022; 12:giad026. [PMID: 37132521 PMCID: PMC10155229 DOI: 10.1093/gigascience/giad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354, Germany
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Leon Schwartz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Jakub Jankowski
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kevin Yuan
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, Singapore
138672, Singapore
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| |
Collapse
|
19
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Matson KJE, Russ DE, Kathe C, Hua I, Maric D, Ding Y, Krynitsky J, Pursley R, Sathyamurthy A, Squair JW, Levi BP, Courtine G, Levine AJ. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat Commun 2022; 13:5628. [PMID: 36163250 PMCID: PMC9513082 DOI: 10.1038/s41467-022-33184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy. Matson et al. performed single nucleus sequencing of the “spared” spinal cord tissue distal to an injury in mice. They found that spinocerebellar neurons expressed a pro-regenerative gene signature and showed axon outgrowth after injury.
Collapse
Affiliation(s)
- Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Johns Hopkins University Department of Biology, Baltimore, MD, USA
| | - Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jonathan Krynitsky
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep 2022; 41:111441. [PMID: 36179680 PMCID: PMC9474420 DOI: 10.1016/j.celrep.2022.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits β-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for β-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.
Collapse
|
22
|
Körner MB, Velluva A, Bundalian L, Radtke M, Lin CC, Zacher P, Bartolomaeus T, Kirstein AS, Mrestani A, Scholz N, Platzer K, Teichmann AC, Hentschel J, Langenhan T, Lemke JR, Garten A, Abou Jamra R, Le Duc D. Altered gene expression profiles impair the nervous system development in individuals with 15q13.3 microdeletion. Sci Rep 2022; 12:13507. [PMID: 35931711 PMCID: PMC9356015 DOI: 10.1038/s41598-022-17604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein–protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes’ haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.
Collapse
Affiliation(s)
- Marek B Körner
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Akhil Velluva
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Pia Zacher
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.,Epilepsy Center Kleinwachau, 01454, Radeberg, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Anna S Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Achmed Mrestani
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | | | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany. .,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Maitra S, Chatterjee M, Roychowdhury A, Panda CK, Sinha S, Mukhopadhyay K. Specific dopaminergic genetic variants influence impulsivity, cognitive deficit, and disease severity of Indian ADHD probands. Mol Biol Rep 2022; 49:7315-7325. [PMID: 35553330 DOI: 10.1007/s11033-022-07521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impulsivity (Imp), being one of the cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD), often leads to inappropriate responses to stimuli. Since the dopaminergic system is the primary target for pharmaceutical intervention in ADHD, we investigated the association between ADHD-related Imp and functional gene variants of the dopamine transporter (SLC6A3) and catechol-O-methyltransferase involved in dopamine clearance. METHODS AND RESULTS Indo-Caucasoid families with ADHD probands (N = 217) were recruited based on the Diagnostic and Statistical Manual of Mental Disorders (DSM). Imp of the probands was assessed using the Domain Specific Imp Scale for Children and DSM. Peripheral blood was collected after obtaining informed written consent for participation, genomic DNA was isolated, and target sites were genotyped by DNA sequencing. The association of genetic variants with Imp was examined by the Quantitative trait analysis (QTA) and Analysis of variance (ANOVA). Post-Hoc analysis following QTA and ANOVA showed significant associations of rs2254408, rs2981359, and rs2239393 with different domains of Imp (P < 0.05). Various haplotypic combinations also showed statistically significant associations with Imp (P < 0.05). Multifactor dimensionality reduction models revealed strong effects of the variants on Imp. ADHD probands harboring the risk alleles exhibited a deficit in performance during cognitive assessment. Longitudinal follow-up revealed a significant association of rs2254408 with trait persistence. CONCLUSION The present study indicates the influence of the studied genetic variants on ADHD-associated imp, executive deficit, and disease persistence. Thus, these variants may be helpful as predictors for the success of individual therapeutic sessions during cognitive training.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India.,Umea University, Umeå, Sweden
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India
| | - Anirban Roychowdhury
- Department of Internal Medicine, Virginia Commonwealth University, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, S.P. Mukherjee Road, Kolkata, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482, Madudah, Plot: I-24, Sector-J, E.M. Bypass, Kolkata, 700107, India.
| |
Collapse
|
24
|
Aronson JK. When I use a word . . . . More medical magic. BMJ 2022; 377:o1154. [PMID: 35523440 DOI: 10.1136/bmj.o1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford
| |
Collapse
|
25
|
Borhani N, Ghaisari J, Abedi M, Kamali M, Gheisari Y. A deep learning approach to predict inter-omics interactions in multi-layer networks. BMC Bioinformatics 2022; 23:53. [PMID: 35081903 PMCID: PMC8793231 DOI: 10.1186/s12859-022-04569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Despite enormous achievements in the production of high-throughput datasets, constructing comprehensive maps of interactions remains a major challenge. Lack of sufficient experimental evidence on interactions is more significant for heterogeneous molecular types. Hence, developing strategies to predict inter-omics connections is essential to construct holistic maps of disease. Results Here, as a novel nonlinear deep learning method, Data Integration with Deep Learning (DIDL) was proposed to predict inter-omics interactions. It consisted of an encoder that performs automatic feature extraction for biomolecules according to existing interactions coupled with a predictor that predicts unforeseen interactions. Applicability of DIDL was assessed on different networks, namely drug–target protein, transcription factor-DNA element, and miRNA–mRNA. Also, validity of the novel predictions was evaluated by literature surveys. According to the results, the DIDL outperformed state-of-the-art methods. For all three networks, the areas under the curve and the precision–recall curve exceeded 0.85 and 0.83, respectively. Conclusions DIDL offers several advantages like automatic feature extraction from raw data, end-to-end training, and robustness to network sparsity. In addition, reliance solely on existing inter-layer interactions and independence of biochemical features of interacting molecules make this algorithm applicable for a wide variety of networks. DIDL paves the way to understand the underlying mechanisms of complex disorders through constructing integrative networks. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04569-2.
Collapse
Affiliation(s)
- Niloofar Borhani
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Maryam Abedi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Kamali
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Pérez N, Fornes O, Leung T, Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A, Lenhard B, Vandepoele K, Wasserman WW, Parcy F, Mathelier A. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2022; 50:D165-D173. [PMID: 34850907 PMCID: PMC8728201 DOI: 10.1093/nar/gkab1113] [Citation(s) in RCA: 1030] [Impact Index Per Article: 343.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
JASPAR (http://jaspar.genereg.net/) is an open-access database containing manually curated, non-redundant transcription factor (TF) binding profiles for TFs across six taxonomic groups. In this 9th release, we expanded the CORE collection with 341 new profiles (148 for plants, 101 for vertebrates, 85 for urochordates, and 7 for insects), which corresponds to a 19% expansion over the previous release. We added 298 new profiles to the Unvalidated collection when no orthogonal evidence was found in the literature. All the profiles were clustered to provide familial binding profiles for each taxonomic group. Moreover, we revised the structural classification of DNA binding domains to consider plant-specific TFs. This release introduces word clouds to represent the scientific knowledge associated with each TF. We updated the genome tracks of TFBSs predicted with JASPAR profiles in eight organisms; the human and mouse TFBS predictions can be visualized as native tracks in the UCSC Genome Browser. Finally, we provide a new tool to perform JASPAR TFBS enrichment analysis in user-provided genomic regions. All the data is accessible through the JASPAR website, its associated RESTful API, the R/Bioconductor data package, and a new Python package, pyJASPAR, that facilitates serverless access to the data.
Collapse
Affiliation(s)
- Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Rafael Riudavets-Puig
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ieva Rauluseviciute
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Roza Berhanu Lemma
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrsF-38054, Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrsF-38054, Grenoble, France
| | - Jeremy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrsF-38054, Grenoble, France
| | - Paul Boddie
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Tiffany Y Leung
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Alejandro Aguirre
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | | | - Daniel Schmelter
- UCSC Genome Browser, University of California Santa Cruz, Santa Cruz, CA95060, USA
| | - Damir Baranasic
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK2200 Copenhagen N, Denmark
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des martyrsF-38054, Grenoble, France
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Zhang L, Yang Y, Chai L, Li Q, Liu J, Lin H, Liu L. A deep learning model to identify gene expression level using cobinding transcription factor signals. Brief Bioinform 2021; 23:6447678. [PMID: 34864886 DOI: 10.1093/bib/bbab501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Gene expression is directly controlled by transcription factors (TFs) in a complex combination manner. It remains a challenging task to systematically infer how the cooperative binding of TFs drives gene activity. Here, we quantitatively analyzed the correlation between TFs and surveyed the TF interaction networks associated with gene expression in GM12878 and K562 cell lines. We identified six TF modules associated with gene expression in each cell line. Furthermore, according to the enrichment characteristics of TFs in these TF modules around a target gene, a convolutional neural network model, called TFCNN, was constructed to identify gene expression level. Results showed that the TFCNN model achieved a good prediction performance for gene expression. The average of the area under receiver operating characteristics curve (AUC) can reach up to 0.975 and 0.976, respectively in GM12878 and K562 cell lines. By comparison, we found that the TFCNN model outperformed the prediction models based on SVM and LDA. This is due to the TFCNN model could better extract the combinatorial interaction among TFs. Further analysis indicated that the abundant binding of regulatory TFs dominates expression of target genes, while the cooperative interaction between TFs has a subtle regulatory effects. And gene expression could be regulated by different TF combinations in a nonlinear way. These results are helpful for deciphering the mechanism of TF combination regulating gene expression.
Collapse
Affiliation(s)
- Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yanchao Yang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lu Chai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qianzhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Junjie Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
28
|
Kelleher AM, Setlem R, Dantzer F, DeMayo FJ, Lydon JP, Kraus WL. Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc Natl Acad Sci U S A 2021; 118:e2109252118. [PMID: 34580230 PMCID: PMC8501838 DOI: 10.1073/pnas.2109252118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.
Collapse
Affiliation(s)
- Andrew M Kelleher
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Institut du Médicament de Strasbourg, UMR 7242-Biotechnologie et Signalisation Cellulaire, CNRS/Université de Strasbourg, 67412 Illkirch, France
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Corso D, Chemello F, Alessio E, Urso I, Ferrarese G, Bazzega M, Romualdi C, Lanfranchi G, Sales G, Cagnin S. MyoData: An expression knowledgebase at single cell/nucleus level for the discovery of coding-noncoding RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J 2021; 19:4142-4155. [PMID: 34527188 PMCID: PMC8342900 DOI: 10.1016/j.csbj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression through non-coding RNAs at single myofiber and nucleus resolution. Reinterpretation of KEGG pathways with microRNA and long non-coding RNA activities. miR-149, -214, and let-7e alter mitochondrial shape. The long non-coding RNA Pvt1 is a sponge for miR-27a. miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3.
Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.
Collapse
Affiliation(s)
- Davide Corso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ilenia Urso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Giulia Ferrarese
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
30
|
Yang GH, Fontaine DA, Lodh S, Blumer JT, Roopra A, Davis DB. TCF19 Impacts a Network of Inflammatory and DNA Damage Response Genes in the Pancreatic β-Cell. Metabolites 2021; 11:metabo11080513. [PMID: 34436454 PMCID: PMC8400192 DOI: 10.3390/metabo11080513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.
Collapse
Affiliation(s)
- Grace H. Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Danielle A. Fontaine
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Joseph T. Blumer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
31
|
Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M, Vermeire S. Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis. Inflamm Bowel Dis 2021; 27:870-886. [PMID: 33313682 PMCID: PMC8128416 DOI: 10.1093/ibd/izaa281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the contribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could potentially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type-specific targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| |
Collapse
|
32
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Yu D, Richardson NE, Green CL, Spicer AB, Murphy ME, Flores V, Jang C, Kasza I, Nikodemova M, Wakai MH, Tomasiewicz JL, Yang SE, Miller BR, Pak HH, Brinkman JA, Rojas JM, Quinn WJ, Cheng EP, Konon EN, Haider LR, Finke M, Sonsalla M, Alexander CM, Rabinowitz JD, Baur JA, Malecki KC, Lamming DW. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab 2021; 33:905-922.e6. [PMID: 33887198 PMCID: PMC8102360 DOI: 10.1016/j.cmet.2021.03.025] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 02/01/2023]
Abstract
Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis. Reducing valine induces similar but more modest metabolic effects, whereas these effects are absent with low leucine. Reducing isoleucine or valine rapidly restores metabolic health to diet-induced obese mice. Finally, we demonstrate that variation in dietary isoleucine levels helps explain body mass index differences in humans. Our results reveal isoleucine as a key regulator of metabolic health and the adverse metabolic response to dietary BCAAs and suggest reducing dietary isoleucine as a new approach to treating and preventing obesity and diabetes.
Collapse
Affiliation(s)
- Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E Richardson
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L Green
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alexandra B Spicer
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michaela E Murphy
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria Nikodemova
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Matthew H Wakai
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Shany E Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Blake R Miller
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Heidi H Pak
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacqueline A Brinkman
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jennifer M Rojas
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Quinn
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunhae P Cheng
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth N Konon
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lexington R Haider
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan Finke
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michelle Sonsalla
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen C Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
35
|
Yang J, Li H. The impact of aging and COVID-19 on our immune system: a high-resolution map from single cell analysis. Protein Cell 2020; 11:703-706. [PMID: 32894404 PMCID: PMC7476254 DOI: 10.1007/s13238-020-00782-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|