1
|
Barnini C, Russo E, Leoncini G, Ghinatti MC, Macciò L, Piaggio M, Viazzi F, Pontremoli R. Asymptomatic Hyperuricemia and the Kidney: Lessons from the URRAH Study. Metabolites 2025; 15:11. [PMID: 39852354 PMCID: PMC11767115 DOI: 10.3390/metabo15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Chronic kidney disease (CKD) is a prevalent global health concern affecting approximately 850 million people worldwide, with a significant and rising mortality rate. CKD often coexists with hyperuricemia (HSUA), which is also increasingly common due to its association with hypertension, obesity, and diabetes. The interplay between hyperuricemia and CKD is complex; while in vitro studies and animal models support a role for uric acid mediating glomerular and tubule-interstitial damage, and HSUA has been shown to predict the onset and progression of CKD, the expectations of renal protection by the use of urate lowering treatment (ULT) are inconsistent. A significant challenge in managing asymptomatic HSUA in CKD patients lies in determining the appropriate SUA threshold values. Recent research, including the URRAH project, has sought to identify SUA cut-offs predictive of cardiovascular mortality, but these thresholds may vary depending on the severity of CKD. This variability complicates the establishment of universal guidelines for treating asymptomatic HSUA, leading to a lack of specific recommendations in clinical practice. In conclusion, while hyperuricemia is recognized as a prognostic factor for CKD and cardiovascular risk, more research is needed to refine the threshold values for SUA and to identify which patients may benefit from ULT. Stratification based on glomerular filtration rate may be necessary to tailor the treatments and improve outcomes in this population.
Collapse
Affiliation(s)
- Cecilia Barnini
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, 6020 Innsbruck, Tirol, Austria;
| | - Elisa Russo
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; (E.R.); (G.L.); (L.M.); (F.V.)
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Giovanna Leoncini
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; (E.R.); (G.L.); (L.M.); (F.V.)
- Internal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Carla Ghinatti
- Internal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Lucia Macciò
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; (E.R.); (G.L.); (L.M.); (F.V.)
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Michela Piaggio
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Francesca Viazzi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; (E.R.); (G.L.); (L.M.); (F.V.)
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Roberto Pontremoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; (E.R.); (G.L.); (L.M.); (F.V.)
- Internal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
2
|
Pommereau A, Sassone F, Poli A, De Silvestris M, Scarabottolo L, Zuschlag Y, Licher T, Bärenz F. The development of a novel high-throughput membrane potential assay and a solid-supported membrane (SSM)-based electrophysiological assay to study the pharmacological inhibition of GLUT9/SLC2A9 isoforms in a drug discovery program. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100193. [PMID: 39522878 DOI: 10.1016/j.slasd.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
GLUT9/SLC2A9 is a urate transporter and takes a fundamental role in the maintenance of normal serum urate levels. GLUT9 is the sole transporter of reabsorbed urate from renal epithelial cells to blood, thus making it an ideal pharmacological target for the development of urate-lowering drugs. None of the three currently available assays for studying GLUT9 pharmacological inhibition can support a high throughput drug discovery screening campaign. In this manuscript we present two novel assay technologies which can be used in a drug discovery screening cascade for GLUT9: a GLUT9 membrane potential assay for primary screening; and a solid-supported membrane (SSM)-based supported electrophysiological assay for secondary screening.
Collapse
Affiliation(s)
- Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | | | | | | | - Yasmin Zuschlag
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Jiao L, Wang R, Dong Y, Su J, Yu J, Yan M, Chen S, Lv G. The impact of chrysanthemi indici flos-enriched flavonoid part on the model of hyperuricemia based on inhibiting synthesis and promoting excretion of uric acid. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118488. [PMID: 38925319 DOI: 10.1016/j.jep.2024.118488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.
Collapse
MESH Headings
- Animals
- Hyperuricemia/drug therapy
- Hyperuricemia/chemically induced
- Uric Acid/blood
- Male
- Flavonoids/pharmacology
- Flavonoids/analysis
- Mice
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Disease Models, Animal
- Kidney/drug effects
- Kidney/pathology
- Kidney/metabolism
- Flowers/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Organic Anion Transporters, Sodium-Independent/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Allopurinol/pharmacology
- Mice, Inbred ICR
Collapse
Affiliation(s)
- Lin Jiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Rou Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Yingjie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China.
| |
Collapse
|
4
|
Chi J, Chen Y, Li C, Liu S, Che K, Kong Z, Guo Z, Chu Y, Huang Y, Yang L, Sun C, Wang Y, Lv W, Zhang Q, Guo H, Zhao H, Yang Z, Xu L, Wang P, Dong B, Hu J, Liu S, Wang F, Zhao Y, Qi M, Xin Y, Nan H, Zhao X, Zhang W, Xiao M, Si K, Wang Y, Cao Y. NUMB dysfunction defines a novel mechanism underlying hyperuricemia and gout. Cell Discov 2024; 10:106. [PMID: 39433541 PMCID: PMC11494200 DOI: 10.1038/s41421-024-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/03/2024] [Indexed: 10/23/2024] Open
Abstract
Defective renal excretion and increased production of uric acid engender hyperuricemia that predisposes to gout. However, molecular mechanisms underlying defective uric acid excretion remain largely unknown. Here, we report a rare genetic variant of gout-unprecedented NUMB gene within a hereditary human gout family, which was identified by an unbiased genome-wide sequencing approach. This dysfunctional missense variant within the conserved region of the NUMB gene (NUMBR630H) underwent intracellular redistribution and degradation through an autophagy-dependent mechanism. Mechanistically, we identified the uric acid transporter, ATP Binding Cassette Subfamily G Member 2 (ABCG2), as a novel NUMB-binding protein through its intracellular YxNxxF motif. In polarized renal tubular epithelial cells (RTECs), NUMB promoted ABCG2 trafficking towards the apical plasma membrane. Genetic loss-of-function of NUMB resulted in redistribution of ABCG2 in the basolateral domain and ultimately defective excretion of uric acid. To recapitulate the clinical situation in human gout patients, we generated a NUMBR630H knock-in mouse strain, which showed marked increases of serum urate and decreased uric acid excretion. The NUMBR630H knock-in mice exhibited clinically relevant hyperuricemia. In summary, we have uncovered a novel NUMB-mediated mechanism of uric acid excretion and a functional missense variant of NUMB in humans, which causes hyperuricemia and gout.
Collapse
Affiliation(s)
- Jingwei Chi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changgui Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kui Che
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanchen Chu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yajing Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Libo Yang
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Cunwei Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhitao Yang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanyun Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Qi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Xin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huiqi Nan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Xiao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Si
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Karimian M, Shabani M, Nikzad H. Association of Functional Genetic Variations in Uric Acid Transporters with the Risk of Idiopathic Male Infertility: A Genetic Association Study and Bioinformatic Analysis. Biochem Genet 2024:10.1007/s10528-024-10902-6. [PMID: 39141156 DOI: 10.1007/s10528-024-10902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Uric acid plays an important role in sustaining and improving sperm morphology, viability, and motility. It is known that SLC2A9 and ABCG2 protein are the main urate transporter and genetic variations in these genes could be associated with the levels of serum uric acid. This study aimed to investigate the association between single-nucleotide polymorphisms (SNPs) SLC2A9-rs16890979, SLC2A9-rs3733591, ABCG2-rs2231142, and ABCG2-rs2231137 with male infertility. Additionally, the correlation of these SNPs with the uric acid level in seminal plasma of infertile men was examined. Subsequently, an in silico analysis was performed. In a case-control study, 193 infertile and 154 healthy controls were recruited. After semen sample collection, the uric acid level of seminal plasma was measured by a commercial kit. After genomic DNA extraction from sperm samples, SNPs genotyping was performed by PCR-RFLP method. Lastly, the effects of SNPs on the SLC2A9 and ABCG2 gene function were evaluated by bioinformatics tools. The genetic association study revealed that there are significant associations between rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations and increased risk of male infertility. Also, these variations were associated with oligozoospermia and teratozoospermia, and sometimes with asthenozoospermia. Also, we found that four studied SNPs could be associated with a decreased level of uric acid of seminal plasma in teratozoospermia and asthenozoospermia. Bioinformatic analysis revealed that the mentioned polymorphisms could affect molecular aspects of SLC2A9 and ABCG2 genes. In this preliminary study, the rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations could be considered as genetic risk factors for male infertility by interfering with the uric acid level of seminal plasma.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Maryam Shabani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran.
| |
Collapse
|
6
|
Leask MP, Crișan TO, Ji A, Matsuo H, Köttgen A, Merriman TR. The pathogenesis of gout: molecular insights from genetic, epigenomic and transcriptomic studies. Nat Rev Rheumatol 2024; 20:510-523. [PMID: 38992217 DOI: 10.1038/s41584-024-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
The pathogenesis of gout involves a series of steps beginning with hyperuricaemia, followed by the deposition of monosodium urate crystal in articular structures and culminating in an innate immune response, mediated by the NLRP3 inflammasome, to the deposited crystals. Large genome-wide association studies (GWAS) of serum urate levels initially identified the genetic variants with the strongest effects, mapping mainly to genes that encode urate transporters in the kidney and gut. Other GWAS highlighted the importance of uncommon genetic variants. More recently, genetic and epigenetic genome-wide studies have revealed new pathways in the inflammatory process of gout, including genetic associations with epigenomic modifiers. Epigenome-wide association studies are also implicating epigenomic remodelling in gout, which perhaps regulates the responsiveness of the innate immune system to monosodium urate crystals. Notably, genes implicated in gout GWAS do not include those encoding components of the NLRP3 inflammasome itself, but instead include genes encoding molecules involved in its regulation. Knowledge of the molecular mechanisms underlying gout has advanced through the translation of genetic associations into specific molecular mechanisms. Notable examples include ABCG2, HNF4A, PDZK1, MAF and IL37. Current genetic studies are dominated by participants of European ancestry; however, studies focusing on other population groups are discovering informative population-specific variants associated with gout.
Collapse
Affiliation(s)
- Megan P Leask
- Department of Physiology, University of Otago, Dunedin, Aotearoa, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aichang Ji
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
7
|
Shen Z, Xu L, Wu T, Wang H, Wang Q, Ge X, Kong F, Huang G, Pan X. Structural basis for urate recognition and apigenin inhibition of human GLUT9. Nat Commun 2024; 15:5039. [PMID: 38866775 PMCID: PMC11169512 DOI: 10.1038/s41467-024-49420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.
Collapse
Affiliation(s)
- Zilin Shen
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Li Xu
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China
| | - Tong Wu
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Huan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qifan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaofei Ge
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
8
|
Cho C, Kim B, Kim DS, Hwang MY, Shim I, Song M, Lee YC, Jung SH, Cho SK, Park WY, Myung W, Kim BJ, Do R, Choi HK, Merriman TR, Kim YJ, Won HH. Large-scale cross-ancestry genome-wide meta-analysis of serum urate. Nat Commun 2024; 15:3441. [PMID: 38658550 PMCID: PMC11043400 DOI: 10.1038/s41467-024-47805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Hyperuricemia is an essential causal risk factor for gout and is associated with cardiometabolic diseases. Given the limited contribution of East Asian ancestry to genome-wide association studies of serum urate, the genetic architecture of serum urate requires exploration. A large-scale cross-ancestry genome-wide association meta-analysis of 1,029,323 individuals and ancestry-specific meta-analysis identifies a total of 351 loci, including 17 previously unreported loci. The genetic architecture of serum urate control is similar between European and East Asian populations. A transcriptome-wide association study, enrichment analysis, and colocalization analysis in relevant tissues identify candidate serum urate-associated genes, including CTBP1, SKIV2L, and WWP2. A phenome-wide association study using polygenic risk scores identifies serum urate-correlated diseases including heart failure and hypertension. Mendelian randomization and mediation analyses show that serum urate-associated genes might have a causal relationship with serum urate-correlated diseases via mediation effects. This study elucidates our understanding of the genetic architecture of serum urate control.
Collapse
Affiliation(s)
- Chamlee Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Dan Say Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Injeong Shim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Minku Song
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeong Chan Lee
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine (AUSOM), Suwon, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyon K Choi
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tony R Merriman
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. A Possible Therapeutic Application of the Selective Inhibitor of Urate Transporter 1, Dotinurad, for Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease. Cells 2024; 13:450. [PMID: 38474414 PMCID: PMC10931163 DOI: 10.3390/cells13050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
10
|
Vávra J, Pavelcová K, Mašínová J, Hasíková L, Bubeníková E, Urbanová A, Mančíková A, Stibůrková B. Examining the Association of Rare Allelic Variants in Urate Transporters SLC22A11, SLC22A13, and SLC17A1 with Hyperuricemia and Gout. DISEASE MARKERS 2024; 2024:5930566. [PMID: 38222853 PMCID: PMC10787658 DOI: 10.1155/2024/5930566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Genetic variations in urate transporters play a significant role in determining human urate levels and have been implicated in developing hyperuricemia or gout. Polymorphism in the key urate transporters, such as ABCG2, URAT1, or GLUT9 was well-documented in the literature. Therefore in this study, our objective was to determine the frequency and effect of rare nonsynonymous allelic variants of SLC22A11, SLC22A13, and SLC17A1 on urate transport. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined all coding regions and exon-intron boundaries of SLC22A11, SLC22A13, and SLC17A1 using PCR amplification and Sanger sequencing. For comparison, we used a control group consisting of 115 normouricemic subjects. To examine the effects of the rare allelic nonsynonymous variants on the expression, intracellular processing, and urate transporter protein function, we performed a functional characterization using the HEK293A cell line, immunoblotting, fluorescent microscopy, and site directed mutagenesis for preparing variants in vitro. Variants p.V202M (rs201209258), p.R343L (rs75933978), and p.P519L (rs144573306) were identified in the SLC22A11 gene (OAT4 transporter); variants p.R16H (rs72542450), and p.R102H (rs113229654) in the SLC22A13 gene (OAT10 transporter); and the p.W75C variant in the SLC17A1 gene (NPT1 transporter). All variants minimally affected protein levels and cytoplasmic/plasma membrane localization. The functional in vitro assay revealed that contrary to the native proteins, variants p.P519L in OAT4 (p ≤ 0.05), p.R16H in OAT10 (p ≤ 0.05), and p.W75C in the NPT1 transporter (p ≤ 0.01) significantly limited urate transport activity. Our findings contribute to a better understanding of (1) the risk of urate transporter-related hyperuricemia/gout and (2) uric acid handling in the kidneys.
Collapse
Affiliation(s)
- Jiří Vávra
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | | | - Eliška Bubeníková
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aneta Urbanová
- 1st Department of Medicine, Department of Hematology; First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Mančíková
- Department of Staphylococcal and Food-Borne Bacterial Infections, The National Institute of Public Health, Prague, Czech Republic
| | - Blanka Stibůrková
- Institute of Rheumatology, Prague, Czech Republic
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
11
|
Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N, Khakpai F, Naseroleslami M. Tyrosol-loaded Nano-niosomes Attenuate Diabetic Injury by TargetingGlucose Metabolism, Inflammation, and Glucose Transfer. Pharm Nanotechnol 2024; 12:351-364. [PMID: 37927074 DOI: 10.2174/0122117385251271231018104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes, has become a global concern, making it imperative to control. Chemical drugs commonly recommended for diabetes treatment cause many complications and drug resistance over time. METHODS The polyphenol tyrosol has many health benefits, including anti-diabetes properties. Tyrosol's efficacy can be significantly increased when it is used as a niosome in the treatment of diabetes. In this study, Tyrosol and nano-Tyrosol are examined for their effects on genes implicated in type 2 diabetes in streptozotocin-treated rats. Niosome nanoparticles containing 300 mg surfactant (span60: tween60) and 10 mg cholesterol were hydrated in thin films with equal molar ratios. After 72 hours, nano-niosomal formulas were assessed for their physicochemical properties. MTT assays were conducted on HFF cells to assess the cellular toxicity of the nano niosome contacting optimal Tyrosol. Finally, the expression of PEPCK, GCK, TNF-ɑ, IL6, GLUT2 and GLUT9 was measured by real-time PCR. Physiochemical properties of the SEM images of niosomes loaded with Tyrosol revealed the nanoparticles had a vehicular structure. RESULTS In this study, there were two stages of release: initial release (8 hours) and sustainable release (72 hours). Meanwhile, free-form drugs were considerably more toxic than niosomal drugs in terms of their cellular toxicity. An in vivo comparison of oral Tyrosol gavage with nano-Tyrosol showed a significant increase in GCK (P < 0.001), GLUT2 (P < 0.001), and GLUT9 (P < 0.001). Furthermore, nano-Tyrosol decreased the expression of TNF-ɑ (P < 0.05), PEPCK (P < 0.001), and IL-6 (P < 0.05) which had been increased by diabetes mellitus. The results confirmed nano-Tyrosol's anti-diabetes and anti-inflammatory effects. CONCLUSION These findings suggest that nano-Tyrosol has potential applications in diabetes treatment and associated inflammation. Further research is needed to better understand the mechanism of action.
Collapse
Affiliation(s)
- Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Ichida K. [Uric Acid Metabolism, Uric Acid Transporters and Dysuricemia]. YAKUGAKU ZASSHI 2024; 144:659-674. [PMID: 38825475 DOI: 10.1248/yakushi.23-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.
Collapse
MESH Headings
- Humans
- Hyperuricemia/etiology
- Hyperuricemia/metabolism
- Hyperuricemia/genetics
- Uric Acid/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Xanthine Dehydrogenase/metabolism
- Xanthine Dehydrogenase/genetics
- Xanthine Dehydrogenase/deficiency
- Animals
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/etiology
- Renal Tubular Transport, Inborn Errors/metabolism
- Urinary Calculi/etiology
- Urinary Calculi/metabolism
- Urinary Calculi/genetics
- Metabolism, Inborn Errors
Collapse
Affiliation(s)
- Kimiyoshi Ichida
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
- Division of Kidney and Hypertension, The Jikei University School of Medicine
| |
Collapse
|
13
|
Tang C, Cen L, Zeng H, Zhang X, Liu P, Chen Y, Song X, Lin B, Zhang X, Yu C, Xu C. Inhibiting Hepatocyte Uric Acid Synthesis and Reabsorption Ameliorates Acetaminophen-Induced Acute Liver Injury in Mice. Cell Mol Gastroenterol Hepatol 2023; 17:251-265. [PMID: 37879407 PMCID: PMC10765060 DOI: 10.1016/j.jcmgh.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is the most common cause of drug-induced liver injury worldwide. Uric acid (UA) is involved in sterile inflammation in many organs, but its role in APAP-induced liver injury remains elusive. METHODS We quantified the concentration of UA in the serum and liver tissues of APAP-overdosed mice and explored the changes in proteins involved in UA synthesis, absorption, and degeneration on APAP stimulation. We also examined the effects of inhibiting hepatocyte UA synthesis or reabsorption on APAP-induced liver injury in mice. Furthermore, we explored the process of UA clearance by peripheral macrophages. RESULTS APAP overdose significantly increased intrahepatic UA contents, which occurred earlier than apparent hepatocyte injury in APAP-overdosed mice. APAP overdose induced significant DNA leakage and may thereby increase the substrate of UA synthesis. APAP overdose also significantly increased the enzymatic activity of xanthine oxidase and urate oxidase and decreased the expression of the UA reabsorption transporter GLUT9 in hepatocytes. Inhibiting hepatocyte UA synthesis by febuxostat or reabsorption by hepatic-specific knockout of GLUT9 alleviated APAP-induced liver injury. Further experiments showed that monosodium urate but not soluble UA may be a major form of UA mediating hepatocyte injury. Additionally, monosodium urate further recruited circulating macrophages into the liver and then aggravated inflammation by increasing the levels of inflammatory factors and reactive oxygen species. Deletion of macrophages significantly ameliorated APAP-induced liver injury in mice. CONCLUSIONS APAP overdose induces excessive UA production and leads to local high concentrations in the liver, which further injures cells and induces liver inflammation. Inhibiting the production of UA may be a potential therapeutic option for treating APAP-induced liver injury.
Collapse
Affiliation(s)
- Chenxi Tang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zeng
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Liu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuequn Zhang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Taylor SI, Cherng HR, Yazdi ZS, Montasser ME, Whitlatch HB, Mitchell BD, Shuldiner AR, Streeten EA, Beitelshees AL. Pharmacogenetics of SGLT2 Inhibitors: Validation of a sex-agnostic pharmacodynamic biomarker. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286875. [PMID: 36945579 PMCID: PMC10029014 DOI: 10.1101/2023.03.07.23286875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Aim SGLT2 inhibitors provide multiple benefits to patients with type 2 diabetes - including improved glycemic control and decreased risks of cardiorenal disease. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Methods Canagliflozin (300 mg) was administered to 30 healthy volunteers. Several endpoints were measured to assess clinically relevant responses - including drug-induced increases in urinary excretion of glucose, sodium, and uric acid. Results This pilot study confirmed that canagliflozin (300 mg) triggered acute changes in mean levels of several biomarkers: fasting plasma glucose (-4.1 mg/dL; p=6x10), serum creatinine (+0.05 mg/dL; p=8×10 -4 ), and serum uric acid (-0.90 mg/dL; p=5×10 -10 ). The effects of sex on glucosuria depended upon how data were normalized. Whereas males' responses were ∼60% greater when data were normalized to body surface area, males and females exhibited similar responses when glucosuria was expressed as grams of urinary glucose per gram-creatinine. The magnitude of glucosuria was not significantly correlated with fasting plasma glucose, estimated GFR, or age in these healthy non-diabetic individuals with estimated GFR>60 mL/min/1.73m 2 . Conclusions Normalizing data relative to creatinine excretion will facilitate including data from males and females in a single analysis. Furthermore, because our ongoing pharmacogenomic study ( NCT02891954 ) is conducted in healthy individuals, this will facilitate detection of genetic associations with limited confounding by other factors such as age and renal function. Registration NCT02462421 ( clinicaltrials.gov ). Funding Research grants from the National Institute of Diabetes and Digestive and Kidney Diseases: R21DK105401, R01DK108942, T32DK098107, and P30DK072488.
Collapse
Affiliation(s)
- Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Hua-Ren Cherng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Zhinous Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Hilary B. Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Elizabeth A. Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Amber L. Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
15
|
Ashimi MHBN, Taib WRW, Ismail I, Mutalib NSA, Rahim SM. The regulatory role of miRNA towards expressed genes in the pathogenesis of gout: A review. HUMAN GENE 2023; 36:201163. [DOI: 10.1016/j.humgen.2023.201163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Li M, Zhang J, Yang G, Zhang J, Han M, Zhang Y, Liu Y. Effects of sodium-glucose cotransporter 2 inhibitors on renal risk factors in patients with abnormal glucose metabolism: a meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2023; 79:859-871. [PMID: 37097298 DOI: 10.1007/s00228-023-03490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
AIMS Several trials have assessed the antihyperglycemic effects of sodium-glucose cotransporter 2 inhibitors (SGLT2Is) in patients with type 2 diabetes mellitus (T2DM). We conducted a quantitative analysis to assess the effects of SGLT2Is on renal risk factors in patients with abnormal glucose metabolism. MATERIALS AND METHODS Randomized controlled trials (RCTs) were identified by searching the PubMed, Embase, Scopus, and Web of Science databases published before September 30, 2022. The intervention group received SGLT2Is as monotherapy or add-on treatment, and the control group received placebos, standard care, or active control. Risk of bias assessment was performed using the Cochrane risk of bias assessment tool. Meta-analysis was performed on studies with abnormal glucose metabolism populations and studies using the weighted mean differences (WMDs) as the measure of the effect size. Clinical trials providing changes in serum uric acid (SUA) were included. The mean change of SUA, glycated hemoglobin (HbA1c), body mass index (BMI), and estimated glomerular filtration rate (eGFR) were calculated. RESULTS After a literature search and detailed evaluation, a total of 11 RCTs were included for quantitative analysis to analyze the differences between the SGLT2I group and the control group. The results showed that SGLT2I significantly reduced SUA (MD = -0.56, 95% CI = -0.66 ~ -0.46, I2 = 0%, P < 0.00001), HbA1c (MD = -0.20, 95% CI = -0.26 ~ -0.13, I2 = 0%, P < 0.00001), and BMI (MD = -1.19, 95% CI = -1.84 ~ -0.55, I2 = 0%, P = 0.0003). There was no significant difference in the reduction of eGFR observed in the SGLT2I group (MD = -1.60, 95% CI = -3.82 ~ 0.63, I2 = 13%, P = 0.16). CONCLUSIONS These results showed that the SGLT2I group caused greater reductions in SUA, HbA1c, and BMI but had no effect on eGFR. These data suggested that SGLT2Is may have numerous potentially beneficial clinical effects in patients with abnormal glucose metabolism. However, these results need to be consolidated by further studies.
Collapse
Affiliation(s)
- Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
17
|
Feng J, Huang Y, Wang H, Wang C, Xu H, Ke P, He Y, Tian Q, Cao S, Lu Z. Association between adherence to the Dietary Approaches to Stop Hypertension diet and serum uric acid. Sci Rep 2023; 13:6347. [PMID: 37072454 PMCID: PMC10113210 DOI: 10.1038/s41598-023-31762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
To explore the relationship between Dietary Approaches to Stop Hypertension (DASH) diet and serum uric acid (SUA) levels among the Chinese adult population, and verify the mediating effect of BMI between DASH diet and SUA levels. A total of 1125 adults were investigated using a self-administered food frequency questionnaire. SUA levels were determined by uricase colorimetry. The total DASH score ranged from 9 to 72. The relationship between the DASH diet and SUA levels was examined by multiple adjusted regression analysis. Method of Bootstrap was used to test the mediation effect of BMI in the correlation of the DASH diet and SUA levels. After multivariable adjustment, there was a significant linear relationship between the DASH diet and SUA (P < 0.001). Compared with the lowest group, SUA of participants in group of highest DASH diet score decreased by 34.907 (95% CI - 52.227, - 17.588; P trend < 0.001) μmol/L. The association between the DASH diet scores and SUA levels was partly mediated by BMI (- 0.26, Bootstrap 95% CI - 0.49, - 0.07), with 10.53% of the total effect being mediated. Adopting the DASH diet might be helpful in reducing SUA level, and the effect might be partly mediated by BMI.
Collapse
Affiliation(s)
- Jie Feng
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchai Huang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haozhuo Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Chao Wang
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Hongbin Xu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Ke
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfeng Tian
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyi Cao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Urate Transporter 1 Can Be a Therapeutic Target Molecule for Chronic Kidney Disease and Diabetic Kidney Disease: A Retrospective Longitudinal Study. Biomedicines 2023; 11:biomedicines11020567. [PMID: 36831103 PMCID: PMC9953369 DOI: 10.3390/biomedicines11020567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem for which there are no curative drug treatments. Hyperuricemia is one of risk factors for CKD. The evidence on effects of uric acid (UA)-lowering treatments on the progression of CKD was very limited and previous meta-analyses used only trials which primarily used xanthin oxidase (XO) inhibitors because the reports on fulminant hepatitis due to benzbromarone kept us from using uricosuric agents for hyperuricemia patients. Dotinurad, a novel selective urate reabsorption inhibitor for the treatment of hyperuricemia, reduces serum UA levels by selectively inhibiting urate transporter 1 (URAT1). We retrospectively picked up patients who had taken dotinurad from June 2018 to August 2021 and compared metabolic parameters at baseline with the data at 3 and 6 months after the start of dotinurad. We found 84 patients, and approximately 74% of patients were complicated with CKD. After the start of dotinurad, improvements in serum lipids, systolic blood pressure, body weight, and albuminuria, in addition to reduction in serum UA, were observed. Dotinurad increased urinary UA excretion, and was effective to reduce serum UA in patients with both UA underexcretion type and renal UA overload type. Furthermore, urinary UA excretion was significantly and negatively correlated with serum creatine levels at baseline and at 6 months after the start of dotinurad, and the change in urinary UA excretion after 3 months was significantly and negatively correlated with change in serum creatine levels. The property of dotinurad, which selectively inhibits URAT1, but not other UA transporters, such as ATP-binding cassette, subfamily G, and 2 (ABCG2), which ABCG2 is a UA and uremic toxin exporter, may be beneficially associated with pathology of CKD. URAT1 can be a therapeutic target molecule for CKD and DKD.
Collapse
|
19
|
Shibata R, Taguchi K, Kaida Y, Fukami K. Effect of dapagliflozin on the initial estimated glomerular filtration rate dip in chronic kidney disease patients without diabetes mellitus. Clin Exp Nephrol 2023; 27:44-53. [PMID: 36114995 DOI: 10.1007/s10157-022-02277-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dapagliflozin (DAPA), a sodium-glucose transporter 2 inhibitor (SGLT2i), attenuates kidney outcomes in patients with not only diabetes mellitus (DM) but also chronic kidney disease (CKD). SGLT2i-derived initial dip in estimated glomerular filtration rate (eGFR) has been considered to reduce excess glomerular pressure, followed by renal protection in patients with DM. However, whether DAPA confers the eGFR dip and its independent determinants for CKD patients without DM are unclear. METHODS A total of 126 patients with CKD treated with 10 mg DAPA daily was retrospectively registered. After participants with missing data and DM were excluded, 51 participants were enrolled. RESULTS An initial eGFR dip was observed 1 month after initiation of DAPA, which was sustained until 2 months. DAPA did not affect urinary protein excretion; however, serum uric acid was decreased, while hemoglobin level was increased. Multiple regression analysis revealed that eGFR at baseline was the only independent determinant of the initial dip of eGFR. The patients currently showing exacerbation of glomerular hyperfiltration exhibited the larger initial eGFR dip rather than those showing progressive renal dysfunction. The patients meeting exclusion criteria of DAPA-CKD trial exhibited same degree of the initial eGFR dip as others. CONCLUSIONS DAPA causes an initial dip of eGFR in CKD patients without DM at 1 month after starting DAPA treatment. A higher eGFR at baseline predicts a large initial eGFR dip, which might be linked to the subsequent recovery in eGFR in CKD patients without DM.
Collapse
Affiliation(s)
- Ryo Shibata
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume City, Fukuoka, Japan
| | - Kensei Taguchi
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume City, Fukuoka, Japan.
| | - Yusuke Kaida
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume City, Fukuoka, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume City, Fukuoka, Japan
| |
Collapse
|
20
|
Zeng H, Tang C, Lin B, Yu M, Wang X, Wang J, Chen S, Yu C. The regulation effect of GLUT9/SLC2A9 on intrahepatic uric acid level and metabolic associated fatty liver disease. Hepatol Int 2022; 16:1064-1074. [PMID: 36006548 DOI: 10.1007/s12072-022-10371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. The important role of urid acid (UA) in MAFLD has been widely investigated. Our previous studies unveiled the elevation of serum UA levels independently predicts an increased risk of incident MAFLD. However, the role of intrahepatic UA in MAFLD has not been investigated yet. Glucose transporter 9 (GLUT9) is a key transporter that mediates the uptake of UA in hepatocytes. METHODS In this study, we first explored the clinical association between GLUT9 polymorphism and MAFLD. Blood samples of 247 male Chinese (127 were MAFLD patients) were collected and tested for the blood UA levels and genotype of the single nucleotide polymorphism (SNP) of GLUT9 (rs1014290). Next, Glut9 hepatic-specific knockout mice (Glut9Hep-ko) were generated to investigate the role of hepatic GLUT9 in MAFLD in male mice. RESULTS We found that the GA/AA genotypes (rs1014290) were associated with elevated serum UA levels in MAFLD patients. Meanwhile, we found that Glut9Hep-ko mice displayed lower intrahepatic UA levels, down-regulated lipogenesis genes expressions, and attenuated MAFLD symptoms after 12 weeks of high-fat diet feeding, compared with Glut9Fl/Fl littermates. However, Glut9Hep-ko mice and wild-type littermates showed no significant difference on hepatic fatty acid oxidation or inflammation. CONCLUSIONS Our results suggested that GLUT9 polymorphism was significantly associated with MAFLD, and hepatic-specific knockout of Glut9 significantly decreased intrahepatic contents and ameliorated diet-induced MAFLD in mice.
Collapse
Affiliation(s)
- Hang Zeng
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Chenxi Tang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinyu Wang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinghua Wang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
21
|
Kanbay M, Xhaard C, Le Floch E, Dandine‐Roulland C, Girerd N, Ferreira JP, Boivin J, Wagner S, Bacq‐Daian D, Deleuze J, Zannad F, Rossignol P. Weak Association Between Genetic Markers of Hyperuricemia and Cardiorenal Outcomes: Insights From the STANISLAS Study Cohort With a 20-Year Follow-Up. J Am Heart Assoc 2022; 11:e023301. [PMID: 35470676 PMCID: PMC9238600 DOI: 10.1161/jaha.121.023301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
Background Hyperuricemia is associated with poor cardiovascular outcomes, although it is uncertain whether this relationship is causal in nature. This study aimed to: (1) assess the heritability of serum uric acid (SUA) levels, (2) conduct a genome-wide association study on SUA levels, and (3) investigate the association between certain single-nucleotide polymorphisms and target organ damage. Methods and Results The STANISLAS (Suivi Temporaire Annuel Non-Invasif de la Santé des Lorrains Assurés Sociaux) study cohort is a single-center longitudinal cohort recruited between 1993 and 1995 (visit 1), with a last visit (visit 4 [V4]) performed ≈20 years apart. Serum lipid profile, SUA, urinary albumin/creatinine ratio, estimated glomerular filtration rate, 24-hour ambulatory blood pressure monitoring, transthoracic echocardiography, pulse wave velocity, and genotyping for each participant were assessed at V4. A total of 1573 participants were included at V4, among whom 1417 had available SUA data at visit 1. Genome-wide association study results highlighted multiple single-nucleotide polymorphisms on the SLC2A9 gene linked to SUA levels. Carriers of the most associated mutated SLC2A9 allele (rs16890979) had significantly lower SUA levels. Although SUA level at V4 was highly associated with diabetes, prediabetes, higher body mass index, CRP (C-reactive protein) levels, estimated glomerular filtration rate variation (visit 1-V4), carotid intima-media thickness, and pulse wave velocity, rs16890979 was only associated with higher carotid intima-media thickness. Conclusions Our findings demonstrate that rs16890979, a genetic determinant of SUA levels located on the SLC2A9 gene, is associated with carotid intima-media thickness despite significant associations between SUA levels and several clinical outcomes, thereby lending support to the hypothesis of a link between SUA and cardiovascular disease.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of NephrologyDepartment of MedicineKoc University School of MedicineIstanbulTurkey
| | - Constance Xhaard
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Edith Le Floch
- Centre National de Recherche en Génomique HumaineInstitut François JacobCEAUniversité Paris‐SaclayEvryFrance
| | - Claire Dandine‐Roulland
- Centre National de Recherche en Génomique HumaineInstitut François JacobCEAUniversité Paris‐SaclayEvryFrance
| | - Nicolas Girerd
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - João Pedro Ferreira
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Jean‐Marc Boivin
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Sandra Wagner
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Delphine Bacq‐Daian
- Centre National de Recherche en Génomique HumaineInstitut François JacobCEAUniversité Paris‐SaclayEvryFrance
| | - Jean‐François Deleuze
- Centre National de Recherche en Génomique HumaineInstitut François JacobCEAUniversité Paris‐SaclayEvryFrance
| | - Faiez Zannad
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Patrick Rossignol
- Université de LorraineINSERM CIC‐P 1433CHRU de NancyINSERM U1116F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| |
Collapse
|
22
|
Otani N, Ouchi M, Misawa K, Hisatome I, Anzai N. Hypouricemia and Urate Transporters. Biomedicines 2022; 10:biomedicines10030652. [PMID: 35327453 PMCID: PMC8945357 DOI: 10.3390/biomedicines10030652] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Hypouricemia is recognized as a rare disorder, defined as a serum uric acid level of 2.0 mg/dL or less. Hypouricemia is divided into an overexcretion type and an underproduction type. The former typical disease is xanthinuria, and the latter is renal hypouricemia (RHUC). The frequency of nephrogenic hypouricemia due to a deficiency of URAT1 is high in Japan, accounting for most asymptomatic and persistent cases of hypouricemia. RHUC results in a high risk of exercise-induced acute kidney injury and urolithiasis. It is vital to promote research on RHUC, as this will lead not only to the elucidation of its pathophysiology but also to the development of new treatments for gout and hyperuricemia.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan;
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Ichiro Hisatome
- Yonago Medical Center, National Hospital Organization, Yonago 683-0006, Tottori, Japan;
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago 680-8550, Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan
- Correspondence:
| |
Collapse
|
23
|
Cong R, Zhang X, Song Z, Chen S, Liu G, Liu Y, Pang X, Dong F, Xing W, Wang Y, Xu X. Assessing the Causal Effects of Adipokines on Uric Acid and Gout: A Two-Sample Mendelian Randomization Study. Nutrients 2022; 14:nu14051091. [PMID: 35268067 PMCID: PMC8912555 DOI: 10.3390/nu14051091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Previous observational studies have highlighted associations between adipokines and hyperuricemia, as well as gout, but the causality and direction of these associations are not clear. Therefore, we attempted to assess whether there are causal effects of specific adipokines (such as adiponectin (ADP) and soluble leptin receptors (sOB-R)) on uric acid (UA) or gout in a two-sample Mendelian randomization (MR) analysis, based on summary statistics from large genome-wide association studies. The inverse-variance weighted (IVW) method was performed as the primary analysis. Sensitivity analyses (including MR-Egger regression, weighted median, penalized weighted median, and MR pleiotropy residual sum and outlier methods) were also performed, to ensure reliable results. In the IVW models, no causal effect was found for sOB-R (odds ratios (OR), 1.002; 95% confidence intervals (CI), 0.999–1.004; p = 0.274) on UA, or ADP (OR, 1.198; 95% CI, 0.865–1.659; p = 0.277) or sOB-R (OR, 0.988; 95% CI, 0.940–1.037; p = 0.616) on gout. The results were confirmed in sensitivity analyses. There was no notable directional pleiotropy or heterogeneity. This study suggests that these specific adipokines may not play causal roles in UA or gout development.
Collapse
Affiliation(s)
- Ruyi Cong
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Xiaoyu Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China;
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China;
| | - Zihong Song
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Shanshan Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Guanhua Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Yizhi Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Xiuyu Pang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Fang Dong
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China;
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China; (R.C.); (Z.S.); (S.C.); (G.L.); (Y.L.); (X.P.); (F.D.); (W.X.)
- The Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, China
- Correspondence: ; Tel.: +86-0538-623-1238
| |
Collapse
|
24
|
Yanai H, Katsuyama H, Hakoshima M. Effects of a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator, Pemafibrate, on Metabolic Parameters: A Retrospective Longitudinal Study. Biomedicines 2022; 10:biomedicines10020401. [PMID: 35203610 PMCID: PMC8962310 DOI: 10.3390/biomedicines10020401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 12/07/2022] Open
Abstract
The modulation of peroxisome proliferator-activated receptors (PPARs), the superfamily of steroid–thyroid–retinoid nuclear receptors, is expected to induce an amazing crosstalk between energy-demanding organs. Here, we aimed to study the effects of the novel selective PPARα modulator, pemafibrate, on metabolic parameters in patients with dyslipidemia. We retrospectively studied patients who had taken pemafibrate and compared metabolic parameters at baseline with the data at 3, 6 and 12 months after the start of pemafibrate. Serum triglyceride significantly decreased and high-density lipoprotein-cholesterol significantly increased at 3, 6 and 12 months after the start of pemafibrate. Serum aspartate aminotransferase levels significantly decreased at 3 and 6 after the start of pemafibrate as compared with baseline. Serum alanine aminotransferase and gamma-glutamyl transferase significantly decreased and albumin significantly increased after 3, 6 and 12 months. HbA1c levels significantly decreased after 3 months. Further, serum uric acid significantly decreased after 12 months. Such metabolic favorable changes due to pemafibrate were significantly correlated with changes in serum lipids. In conclusion, we observed a significant improvement of liver function, HbA1c and serum uric acid along with an amelioration of dyslipidemia after the start of pemafibrate.
Collapse
|
25
|
Tin A, Schlosser P, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Yu Z, Weihs A, Hoppmann A, Grundner-Culemann F, Min JL, Kuhns VLH, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Bressler J, Breteler MMB, Carmeli C, Chaker L, Coresh J, Corre T, Correa A, Cox SR, Delgado GE, Eckardt KU, Ekici AB, Endlich K, Floyd JS, Fraszczyk E, Gao X, Gào X, Gelber AC, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kronenberg F, Kühnel B, Ladd-Acosta C, Lehtimäki T, Lind L, Liu D, Lloyd-Jones DM, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Völker U, Winkelmann J, Wolffenbuttel BHR, Zhao W, Zheng Y, Loh M, Snieder H, Waldenberger M, Levy D, Akilesh S, Woodward OM, Susztak K, Teumer A, Köttgen A. Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nat Commun 2021; 12:7173. [PMID: 34887389 PMCID: PMC8660809 DOI: 10.1038/s41467-021-27198-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.
Collapse
Affiliation(s)
- Adrienne Tin
- Department of Medicine, University of Mississippi Medical Center, Jackson, 39216, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roby Joehanes
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hongbo Liu
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Nasir A Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andrea Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Monique M B Breteler
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cristian Carmeli
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tanguy Corre
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-UniversitätErlangen-Nürnberg, 91054, Erlangen, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, 98101, WA, USA
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xu Gao
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xīn Gào
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Allan C Gelber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
- Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA, USA
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim and Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Ludwig-Maximilians Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, 98101, WA, USA
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
- Department of Health Services, University of Washington, Seattle, 98101, WA, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
| | - Ben Schöttker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
| | - Hannah R Stocker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Chair Neurogenetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int J Mol Sci 2021; 22:ijms22179221. [PMID: 34502127 PMCID: PMC8431537 DOI: 10.3390/ijms22179221] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Uric acid (UA) is synthesized mainly in the liver, intestines, and vascular endothelium as the end product of an exogenous purine from food and endogenously from damaged, dying, and dead cells. The kidney plays a dominant role in UA excretion, and the kidney excretes approximately 70% of daily produced UA; the remaining 30% of UA is excreted from the intestine. When UA production exceeds UA excretion, hyperuricemia occurs. Hyperuricemia is significantly associated with the development and severity of the metabolic syndrome. The increased urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression, and glycolytic disturbances due to insulin resistance may be associated with the development of hyperuricemia in metabolic syndrome. Hyperuricemia was previously thought to be simply the cause of gout and gouty arthritis. Further, the hyperuricemia observed in patients with renal diseases was considered to be caused by UA underexcretion due to renal failure, and was not considered as an aggressive treatment target. The evidences obtained by basic science suggests a pathogenic role of hyperuricemia in the development of chronic kidney disease (CKD) and cardiovascular diseases (CVD), by inducing inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells, and activation of the renin-angiotensin system. Further, clinical evidences suggest that hyperuricemia is associated with the development of CVD and CKD. Further, accumulated data suggested that the UA-lowering treatments slower the progression of such diseases.
Collapse
|
27
|
Xu C, Wen J, Yang H, You Y, Zhan D, Yu J, Fu L, Zhang T, Liu Y, Yan T. Factors Influencing Early Serum Uric Acid Fluctuation After Bariatric Surgery in Patients with Hyperuricemia. Obes Surg 2021; 31:4356-4362. [PMID: 34309788 DOI: 10.1007/s11695-021-05579-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE In the short-term after bariatric surgery, the incidence of gout flare was increased. Patients with hyperuricemia are among the high-risk group of postoperative gout attacks. The drastic fluctuation of uric acid is a risk factor for gout flare. This study aimed to explore factors that influenced the magnitudes of serum uric acid (sUA) fluctuation post-surgery in patients with hyperuricemia. MATERIALS AND METHODS One hundred and sixty-five patients with preoperative hyperuricemia undergoing bariatric surgery were reviewed. Pre- and postoperative parameters were collected at baseline and each follow-up point. Univariable and multiple linear regression analyses were performed to explore independent factors that influenced the magnitudes of sUA change. RESULTS The sUA significantly declined from 489.4 ± 93.7 to 372.6 ± 101.4 μmmol/L in 1 day after surgery, then increased to 531.6 ± 175.5 μmmol/L at 1-month follow-up, and then dropped to 415.2 ± 105.6 and 396.5 ± 114.2 μmmol/L at 3-month and 6-month follow-up, respectively. Preoperative estimated glomerular filtration rate (eGFR), glycated hemoglobin (HbA1c), magnesium (Mg), sex, and the change of zinc concentration during the first month are significantly related to magnitudes of sUA fluctuation in the short-term post-surgery period. Multiple linear regression analyses showed preoperative eGFR and HbA1c independently influenced the magnitudes of sUA change at 1 day after surgery; sex, the change of zinc concentration, and HbA1c at 1-month follow-up independently influenced the magnitudes of sUA change at 1-month follow-up. CONCLUSION Preoperative eGFR, HbA1c, sex, and the change of zinc concentration postoperative are independent factors affecting the magnitude of the fluctuation. Large-scale studies are warranted to support these findings.
Collapse
Affiliation(s)
- Chenxin Xu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Jun Wen
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Huawu Yang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Yueting You
- Department of Cardiovascular Disease, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Cardiovascular Disease Research Institute of Chengdu, Chengdu, Sichuan, China
| | - Dafang Zhan
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Luo Fu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China. .,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| | - Tong Yan
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China. .,Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, No. 82 Qinglong Road, Chengdu, 610031, Sichuan Province, China.
| |
Collapse
|
28
|
Arakawa H, Amezawa N, Kawakatsu Y, Tamai I. Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biol Pharm Bull 2021; 43:1792-1798. [PMID: 33132325 DOI: 10.1248/bpb.b20-00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xanthine and hypoxanthine are intermediate metabolites of uric acid and a source of reactive oxidative species (ROS) by xanthine oxidoreductase (XOR), suggesting that facilitating their elimination is beneficial. Since they are reabsorbed in renal proximal tubules, we investigated their reabsorption mechanism by focusing on the renal uric acid transporters URAT1 and GLUT9, and examined the effect of clinically used URAT1 inhibitor on their renal clearance when their plasma concentration is increased by XOR inhibitor. Uptake study for [3H]xanthine and [3H]hypoxanthine was performed using URAT1- and GLUT9-expressing Xenopus oocytes. Transcellular transport study for [3H]xanthine was carried out using Madin-Darby canine kidney (MDCK)II cells co-expressing URAT1 and GLUT9. In in vivo pharmacokinetic study, renal clearance of xanthine was estimated based on plasma concentration and urinary recovery. Uptake by URAT1- and GLUT9-expressing oocytes demonstrated that xanthine is a substrate of URAT1 and GLUT9, while hypoxanthine is not. Transcellular transport of xanthine in MDCKII cells co-expressing URAT1 and GLUT9 was significantly higher than those in mock cells and cells expressing URAT1 or GLUT9 alone. Furthermore, dotinurad, a URAT1 inhibitor, increased renal clearance of xanthine in rats treated with topiroxostat to inhibit XOR. It was suggested that xanthine is reabsorbed in the same manner as uric acid through URAT1 and GLUT9, while hypoxanthine is not. Accordingly, it is expected that treatment with XOR and URAT1 inhibitors will effectively decrease purine pools in the body and prevent cell injury due to ROS generated during XOR-mediated reactions.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Natsumi Amezawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yu Kawakatsu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
29
|
Zhu C, Sun B, Zhang B, Zhou Z. An update of genetics, co-morbidities and management of hyperuricaemia. Clin Exp Pharmacol Physiol 2021; 48:1305-1316. [PMID: 34133780 DOI: 10.1111/1440-1681.13539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Hyperuricaemia (HU) caused by disorders of purine metabolism is a metabolic disease. A number of epidemiological reports have confirmed that HU is correlated with multiple disorders, such as chronic kidney diseases, cardiovascular disease and gout. Recent studies showed that the expression and functional changes of uric acid transporters, including URAT1, GLUT9 and ABCG2, were associated with HU. Moreover, a large number of genome-wide association studies have shown that these transporters' dysfunction leads to HU. In this review, we describe the recent progress of aetiology and related transporters of HU, and we also summarise the common co-morbidities possible mechanisms, as well as the potential pharmacological and non-pharmacological treatment methods for HU, aiming to provide new ideas for the treatment of HU.
Collapse
Affiliation(s)
- Chunsheng Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med 2021; 13:83. [PMID: 34001247 PMCID: PMC8127495 DOI: 10.1186/s13073-021-00904-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Thomas J Balmat
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Florica J Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ephraim L Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Mark R DeLong
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC, 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, 27705, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
31
|
Sandoval-Plata G, Morgan K, Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank. Ann Rheum Dis 2021; 80:1220-1226. [PMID: 33832965 DOI: 10.1136/annrheumdis-2020-219796] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To perform a genome-wide association study (GWAS) of gout cases versus asymptomatic hyperuricaemia (AH) controls, and gout cases versus normouricaemia controls, and to generate a polygenic risk score (PRS) to determine gout-case versus AH-control status. METHODS Gout cases and AH controls (serum urate (SU) ≥6.0 mg/dL) from the UK Biobank were divided into discovery (4934 cases, 56 948 controls) and replication (2115 cases, 24 406 controls) cohorts. GWAS was conducted and PRS generated using summary statistics in discovery cohort as the base dataset and the replication cohort as the target dataset. The predictive ability of the model was evaluated. GWAS were performed to identify variants associated with gout compared with normouricaemic controls using SU <6.0 mg/dL and <7.0 mg/dL thresholds, respectively. RESULTS Thirteen independent single nucleotide polymorphisms (SNPs) in ABCG2, SLC2A9, SLC22A11, GCKR, MEPE, PPM1K-DT, LOC105377323 and ADH1B reached genome-wide significance and replicated as predictors of AH to gout transition. Twelve of 13 associations were novel for this transition, and rs1229984 (ADH1B) was identified as GWAS locus for gout for the first time. The best PRS model was generated from association data of 17 SNPs; and had predictive ability of 58.5% that increased to 69.2% on including demographic factors. Two novel SNPs rs760077(MTX1) and rs3800307(PRSS16) achieved GWAS significance for association with gout compared with normouricaemic controls using both SU thresholds. CONCLUSION The association of urate transporters with gout supports the central role of hyperuricaemia in its pathogenesis. Larger GWAS are required to identify if variants in inflammatory pathways contribute to progression from AH to gout.
Collapse
Affiliation(s)
- Gabriela Sandoval-Plata
- Academic Rheumatology, University of Nottingham, Nottingham, UK .,Nottingham Biomedical Research Centre, NIHR, Nottingham, UK.,Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, NIHR, Nottingham, UK
| |
Collapse
|
32
|
Köttgen A, Köttgen M. A novel mouse model of hyperuricemia expressing a human functional ABCG2 variant. Kidney Int 2021; 99:12-14. [PMID: 33390224 DOI: 10.1016/j.kint.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Michael Köttgen
- Department of Medicine, Renal Division, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Ko YL. Genetics of hyperuricemia and gout: Insights from recent genome-wide association studies and Mendelian randomization studies. Tzu Chi Med J 2021; 34:261-269. [PMID: 35912057 PMCID: PMC9333104 DOI: 10.4103/tcmj.tcmj_117_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Gout is the most common form of inflammatory arthritis in adults. Elevation serum uric acid (SUA) concentration is known to be the key to gout pathogenesis. Since the first genome-wide association study (GWAS) for SUA was performed in 2007, the number of gene loci known to be associated with hyperuricemia and gout has grown rapidly. GWASs and Mendelian randomization studies have also reported numerous novel results regarding the genetics of hyperuricemia and gout since 2018. We concisely review recent advances in scholarship on the effects of genetics on hyperuricemia and gout risk. We also review data from genetic association studies in Taiwan and perform GWASs of SUA levels among Taiwan Biobank participants.
Collapse
|
34
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.20.20248572. [PMID: 33398303 PMCID: PMC7781346 DOI: 10.1101/2020.12.20.20248572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Florica J. Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Micah T. McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ephraim L. Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark R. DeLong
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center Durham, NC 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Lead contact
| |
Collapse
|
35
|
Lukkunaprasit T, Rattanasiri S, Turongkaravee S, Suvannang N, Ingsathit A, Attia J, Thakkinstian A. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:210. [PMID: 33087043 PMCID: PMC7580000 DOI: 10.1186/s12881-020-01147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Replication studies showed conflicting effects of ABCG2 and SLC2A9 polymorphisms on gout and serum urate. This meta-analysis therefore aimed to pool their effects across studies. Methods Studies were located from MEDLINE and Scopus from inception to 17th June 2018. Observational studies in adults with any polymorphism in ABCG2 or SLC2A9, and outcome including gout, hyperuricemia, and serum urate were included for pooling. Data extractions were performed by two independent reviewers. Genotype effects were pooled stratified by ethnicity using a mixed-effect logistic model and a multivariate meta-analysis for dichotomous and continuous outcomes. Results Fifty-two studies were included in the analysis. For ABCG2 polymorphisms, mainly studied in Asians, carrying 1–2 minor-allele-genotypes of rs2231142 and rs72552713 were respectively about 2.1–4.5 and 2.5–3.9 times higher odds of gout than non-minor-allele-genotypes. The two rs2231142-risk-genotypes also had higher serum urate about 11–18 μmol/l. Conversely, carrying 1–2 minor alleles of rs2231137 was about 36–57% significantly lower odds of gout. For SLC2A9 polymorphisms, mainly studied in Caucasians, carrying 1–2 minor alleles of rs1014290, rs6449213, rs6855911, and rs7442295 were about 25–43%, 31–62%, 33–64%, and 35–65% significantly lower odds of gout than non-minor-allele-genotypes. In addition, 1–2 minor-allele-genotypes of the latter three polymorphisms had significantly lower serum urate about 20–49, 21–51, and 18–54 μmol/l than non-minor-allele-genotypes. Conclusions Our findings should be useful in identifying patients at risk for gout and high serum urate and these polymorphisms may be useful in personalized risk scores. Trial registration PROSPERO registration number: CRD42018105275. Supplementary information The online version contains supplementary material available at 10.1186/s12881-020-01147-2.
Collapse
Affiliation(s)
- Thitiya Lukkunaprasit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.,Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Sasivimol Rattanasiri
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand.
| | - Saowalak Turongkaravee
- Social and Administrative Pharmacy Excellence Research (SAPER) Unit, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Naravut Suvannang
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Atiporn Ingsathit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - John Attia
- Centre for Clincial Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
36
|
Hong M, Park JW, Yang PS, Hwang I, Kim TH, Yu HT, Uhm JS, Joung B, Lee MH, Jee SH, Pak HN. A mendelian randomization analysis: The causal association between serum uric acid and atrial fibrillation. Eur J Clin Invest 2020; 50:e13300. [PMID: 32474920 DOI: 10.1111/eci.13300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Observational studies have shown that high levels of serum uric acid (UA) were associated with atrial fibrillation (AF). However, the causal effect of urate on the risk of AF is still unknown. To clarify the potential causal association between UA and AF, we performed a Mendelian randomization (MR) analysis using genetic instrumental variables (IVs). MATERIALS AND METHODS From the Korean GWAS dataset of 633 patients with AF (mean age 50.6 ± 7.8 years, 80.9% male, Yonsei AF Ablation cohort) who underwent radiofrequency catheter ablation and the data from 3533 controls (from the Korea Genome Epidemiology Study), we selected 9 SNPs, with a P value less than .05, associated with an increased UA serum level. Additionally, we calculated the weighted genetic risk score (wGRS) using the selected 9 SNPs, to use it as an instrumental variable. A Mendelian randomization analysis was calculated by a 2-stage estimator method. RESULTS The conventional association between the serum UA and AF was significant (P = .001) after adjusting for potential confounding factors. The SNP rs1165196 on SLC17A1 (F-statistics = 208.34, 0.18 mg/mL per allele change, P < .001) and wGRS (F-statistics = 222.26, 0.20 mg/mL per 1SD change, P < .001) were significantly associated with an increase in the UA level. The MR analysis was causally associated with rs1165196 (estimated odds ratio (OR), 0.21, 95% confidence interval (CI), 0.06-0.75, P = .017), but not wGRS (estimated OR, 1.07, 95% CI, 0.57-2.01, P = .832). CONCLUSION The serum UA level was independently associated with the AF risk.
Collapse
Affiliation(s)
- Myunghee Hong
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Je-Wook Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Pil-Sung Yang
- Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Inseok Hwang
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Yonsei University, Seoul, Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
37
|
Xu YT, Leng YR, Liu MM, Dong RF, Bian J, Yuan LL, Zhang JG, Xia YZ, Kong LY. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol 2020; 87:106842. [DOI: 10.1016/j.intimp.2020.106842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
|
38
|
Stevenson M, Pagnamenta AT, Reichart S, Philpott C, Lines KE, Gorvin CM, Lhotta K, Taylor JC, Thakker RV. Whole genome sequence analysis identifies a PAX2 mutation to establish a correct diagnosis for a syndromic form of hyperuricemia. Am J Med Genet A 2020; 182:2521-2528. [PMID: 32776440 PMCID: PMC7611017 DOI: 10.1002/ajmg.a.61814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Hereditary hyperuricemia may occur as part of a syndromic disorder or as an isolated nonsyndromic disease, and over 20 causative genes have been identified. Here, we report the use of whole genome sequencing (WGS) to establish a diagnosis in a family in which individuals were affected with gout, hyperuricemia associated with reduced fractional excretion of uric acid, chronic kidney disease (CKD), and secondary hyperparathyroidism, that are consistent with familial juvenile hyperuricemic nephropathy (FJHN). However, single gene testing had not detected mutations in the uromodulin (UMOD) or renin (REN) genes, which cause approximately 30-90% of FJHN. WGS was therefore undertaken, and this identified a heterozygous c.226G>C (p.Gly76Arg) missense variant in the paired box gene 2 (PAX2) gene, which co-segregated with renal tubulopathy in the family. PAX2 mutations are associated with renal coloboma syndrome (RCS), which is characterized by abnormalities in renal structure and function, and anomalies of the optic nerve. Ophthalmological examination in two adult brothers affected with hyperuricemia, gout, and CKD revealed the presence of optic disc pits, consistent with optic nerve coloboma, thereby revising the diagnosis from FJHN to RCS. Thus, our results demonstrate the utility of WGS analysis in establishing the correct diagnosis in disorders with multiple etiologies.
Collapse
Affiliation(s)
- Mark Stevenson
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | | | - Silvia Reichart
- Department of Ophthalmology, Academic Teaching Hospital, Feldkirch, Austria
| | - Charlotte Philpott
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | - Kate E. Lines
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | | | - Caroline M. Gorvin
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| | - Karl Lhotta
- Department of Internal Medicine III (Nephrology and Dialysis), Academic Teaching Hospital, Feldkirch, Austria
| | | | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Ferenc K, Pilžys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep 2020; 10:13029. [PMID: 32747736 PMCID: PMC7400765 DOI: 10.1038/s41598-020-69856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies in the FTO gene have identified SNPs correlating with obesity and type 2 diabetes. In mice, lack of Fto function leads to intrauterine growth retardation and lean phenotype, whereas in human it is lethal. The aim of this study in a pig model was to determine the localization of the FTO protein in different tissues and cell compartments, in order to investigate potential targets of FTO action. To better understand physiological role of FTO protein, its expression was studied in pigs of different age, metabolic status and nutrition, using both microscopic methods and Western blot analysis. For the first time, FTO protein was found in vivo in the cytoplasm, of not all, but specific tissues and cells e.g. in the pancreatic β-cells. Abundant FTO protein expression was found in the cerebellum, salivary gland and kidney of adult pigs. No FTO protein expression was detected in blood, saliva, and bile, excluding its role in cell-to-cell communication. In the pancreas, FTO protein expression was positively associated with energy intake, whereas in the muscles it was strictly age-related. In IUGR piglets, FTO protein expression was much higher in the cerebellum and kidneys, as compared to normal birth body weight littermates. In conclusion, our data suggest that FTO protein may play a number of distinct, yet unknown intracellular functions due to its localization. Moreover, it may play a role in animal growth/development and metabolic state, although additional studies are necessary to clarify the detailed mechanism(s) of action.
Collapse
Affiliation(s)
- Karolina Ferenc
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Zdzisław Gajewski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Romuald Zabielski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| |
Collapse
|
40
|
Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum 2020; 50:1089-1100. [PMID: 32916560 DOI: 10.1016/j.semarthrit.2020.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Gout, the most common inflammatory arthritis, is the result of hyperuricemia and inflammation induced by monosodium urate (MSU) crystal deposition. However, most people with hyperuricemia will never develop gout, implying a molecular-genetic contribution to the development of gout. Recent genomic studies reveal links between certain genetic variations and gout. We highlight recent advances in our understanding of gout as an auto-inflammatory disease. We review the auto-inflammatory aspects of gout, including the inflammasome and thirteen gout-associated inflammatory-pathway genes and associated comorbidities. This information provides important insights into emerging immune-modulating targets in the management of gout, and future novel therapeutic targets in gout treatment. Cumulatively, this has important implications for treating gout as an auto-inflammatory disease, as opposed to a purely metabolic disease.
Collapse
Affiliation(s)
- Shari Bodofsky
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - T J Thomas
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
41
|
Hayashi M, Yamada S, Tanabe H, Takami H, Inokawa Y, Sonohara F, Shimizu D, Hattori N, Kanda M, Tanaka C, Nakayama G, Koike M, Fujiwara M, Kodera Y. High Serum Uric Acid Levels Could Be a Risk Factor of Hepatocellular Carcinoma Recurrences. Nutr Cancer 2020; 73:996-1003. [PMID: 32538144 DOI: 10.1080/01635581.2020.1779758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The Apolipoprotein-related MORtality RISk (AMORIS) study in Sweden revealed that serum uric acid (SUA) was significantly associated with hepatobiliary cancer occurrence. However, the association with postoperative hepatocellular carcinoma (HCC) recurrence has not been reported. METHODS A total of 256 surgically resected HCC patients were included (from January 2003 to December 2017) in this study. Comparisons in terms of clinicopathologic factors and long-term outcomes were made between patients with high SUA (>6.1 mg/dl) at the time of hepatectomy and low SUA. Besides, SUA data at one postoperative year (1POY) of the same cohort were collected and analyzed in the same manner. RESULTS About 88.8% of tumor relapse sites were the remnant liver. High SUA levels were associated with male and well-differentiated HCCs. Recurrence-free survival (RFS) of high SUA patients was significantly inferior to low SUA patients [median survival time (MST): 22.7 vs. 28.5 mo, P = 0.033], whereas no difference was observed in overall survival (MST: both not reached, P = 0.771). RFS of high SUA patients at 1POY also showed significantly poorer outcomes than low SUA patients (MST: 29.3 vs. 57.0 mo, P = 0.049). CONCLUSIONS High SUA implies a significant risk factor of activating hepatocarcinogenesis. Keeping the SUA level low may be recommended after HCC resections.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Tanabe
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
42
|
Panevin TS, Eliseev MS, Shestakova MV, Nasonov EL. [Advantages of therapy with sodium glucose cotransporter type 2 inhibitors in patients with type 2 diabetes mellitus in combination with hyperuricemia and gout]. TERAPEVT ARKH 2020; 92:110-118. [PMID: 32598783 DOI: 10.26442/00403660.2020.05.000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/27/2022]
Abstract
Currently, only two drugs for reducing uric acid (UA), allopurinol and febuxostat, are registered in the Russian Federation, but their use does not allow to achieve the target level of UA in all cases. According to the results of numerous randomized trials, hyperuricemia and gout are associated with the corresponding components of the metabolic syndrome, including diabetes mellitus. The influence of factors is due to the need to search for new drugs that have a complex effect on several components of metabolic syndrome at once. Potentially attractive in this regard is a new group of drugs for the treatment of type 2 diabetes mellitus inhibitors of the sodium-glucose cotransporter of type 2, which, in addition to the main hypoglycemic actions, showed positive effects on the cardiovascular system, kidneys, as well as lowering UA.
Collapse
Affiliation(s)
- T S Panevin
- Nasonova Research Institute of Rheumatology.,National Medical Research Center for Endocrinology
| | | | | | | |
Collapse
|
43
|
Mehmood A, Zhao L, Ishaq M, Usman M, Zad OD, Hossain I, Raka RN, Naveed M, Zhao L, Wang C, Nadeem M. Uricostatic and uricosuric effect of grapefruit juice in potassium oxonate-induced hyperuricemic mice. J Food Biochem 2020; 44:e13213. [PMID: 32347580 DOI: 10.1111/jfbc.13213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to examine the preventive action of grapefruit juice (GFJ) against potassium oxonate-induced hyperuricemic mice. The results showed that GFJ significantly (p < .05) inhibit the serum and hepatic xanthine oxidase enzyme, lower uric acid level, serum creatinine, uromodulin, and blood urea nitrogen levels to normal and lower inflammation related genes IL-1β, caspase-1, NLRP3, and ASC. Furthermore, histopathology analysis revealed that GFJ markedly improve the renal and intestinal morphology. The mRNA expression of urate transporter 1, glucose transporter 9 were downregulated, whereas ATP-binding cassette transporter (ABCG2) was upregulated in the GFJ-treated group. The results of immunohistochemistry revealed that the ABCG2 protein expression in the small and large intestine was significantly upregulated after the GFJ administration. These results suggested that GFJ can be used as a urate lowering agent and future mechanistic studies should be conducted. PRACTICAL APPLICATIONS: The results of current study indicated that utilization of GFJ as an anti-hyperuricemic agent for the treatment of hyperuricemia. This article will be very valuable for all those peoples which are directly or indirectly linked with this disease.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossain
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Rifat Nowshin Raka
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
44
|
Otani N, Ouchi M, Kudo H, Tsuruoka S, Hisatome I, Anzai N. Recent approaches to gout drug discovery: an update. Expert Opin Drug Discov 2020; 15:943-954. [PMID: 32329387 DOI: 10.1080/17460441.2020.1755251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Inflammation induced by urate deposition in joints causes gout. Healthy individuals maintain serum levels of urate by balancing urate production/excretion, whereas a production/excretion imbalance increases urate levels. Hyperuricemia is diagnosed when the serum urate level is continuously above 7 mg/dl as the solubility limit, and urate accumulates in the kidneys and joints. Because hyperuricemia increases the risk of gout, therapies aim to eliminate urate deposition to prevent gouty arthritis and kidney injury. AREAS COVERED This review discusses the mechanism underlying hyperuricemia with respect to urate production and urate transport, along with urate-lowering therapeutics, including urate synthesis inhibitors, uricolytic enzymes, and uricosuric agents. The authors asses published data on relevant commercial therapy development projects and clinical trials. EXPERT OPINION Available treatment options for hyperuricemia are limited. Allopurinol, a urate synthesis inhibitor, is generally administered at a reduced dosage to patients with renal impairment. Some URAT1 inhibitors have an unfavorable side effect profile. A promising strategy for treatment is the use of uricosuric agents that inhibit transporters (e.g. URAT1, URATv1/GLUT9, OAT10) which reabsorb urate from the urine.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine , Oita, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine , Tochigi, Japan
| | - Hideo Kudo
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine , Oita, Japan
| | | | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science , Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine , Chiba, Japan
| |
Collapse
|
45
|
Khaliq OP, Konoshita T, Moodely J, Ramsuran V, Naicker T. Gene polymorphisms of uric acid are associated with pre-eclampsia in South Africans of African ancestry. Hypertens Pregnancy 2020; 39:103-116. [PMID: 32255363 DOI: 10.1080/10641955.2020.1741608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: To investigate the association of uric acid gene polymorphisms and Pre-eclampsia.Methods: 637 women of African ancestry [280 controls, 357 pre-eclampsia (early-onset = 187, late-onset = 170]) retrospectively. The rs505802, rs1212986, and rs1014290 SNPs were genotyped from purified DNA using real-time PCR.Results: CT genotype (rs505802) was higher in pre-eclampsia [Adjusted p = 0.028*: OR (95% CI) = 1.73 (1.258-2.442)] and late-onset pre-eclampsia [Adjusted p = 0.027*: OR (95% CI) = 1.75 (1.165-2.2628)] than controls. CT genotype (rs1014290) was higher in early-onset pre-eclampsia [Adjusted p-value = 0.040*: OR (95% CI) = 1.60 (1.102-2.325)] than controls.Conclusion: The genotyped rs505802 and rs1014290 are significantly associated with pre-eclampsia.
Collapse
Affiliation(s)
- Olive P Khaliq
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medicine Sciences, Fukui, Japan
| | - Jagidesa Moodely
- Department of Obstetrics and Gynecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
46
|
Serum Uric Acid is Associated with Renal Prognosis of Lupus Nephritis in Women but not in Men. J Clin Med 2020; 9:jcm9030773. [PMID: 32178386 PMCID: PMC7141287 DOI: 10.3390/jcm9030773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Lupus nephritis (LN) is a major complication of systemic lupus erythematosus. Early intervention in lupus nephritis improves prognosis. There is an association between hyperuricemia and lupus nephritis; nevertheless, the sex-specific role of uric acid in lupus nephritis remains unclear. We retrospectively analyzed 578 patients diagnosed with LN by renal biopsy. We determine the relationship of serum uric acid to progression of LN using Kaplan–Meier survival analyses and Cox proportional hazards models. The primary end point was LN progression defined as the initiation of dialysis or kidney transplantation. Men had higher mean serum uric acid levels than did women. Every 1 mg/dL increase in baseline uric acid level increased the risk of LN progression by 15.1%. The serum uric acid level was an independent risk factor for LN progression in women (hazard ratio [HR], 1.158; confidence interval [CI], 1.018–1.317; p = 0.028) but not in men (HR, 1.499; CI, 0.964–2.331; p = 0.072). Sensitivity analysis involving serum uric acid terciles generated consistent and robust results. Serum uric acid level was an independent risk factor for LN progression in women but not in men.
Collapse
|
47
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
48
|
The Effects of Hyperuricemia on the Prognosis of IgA Nephropathy are More Potent in Females. J Clin Med 2020; 9:jcm9010176. [PMID: 31936416 PMCID: PMC7019531 DOI: 10.3390/jcm9010176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia is a potential risk factor for immunoglobulin A nephropathy (IgAN) progression but its sex-specific effects on IgAN progression remain unclear. This study aimed to determine the effect of serum uric acid on IgAN progression and whether its effect varied according to sex. A total of 4339 patients who diagnosed with IgAN by renal biopsy were retrospectively analyzed. We assessed the association of serum uric acid on IgAN progression using Kaplan–Meier survival analyses and Cox proportional hazards models. The study’s primary end point was IgAN progression that was defined as a 50% decline in the estimated glomerular filtration rate or the initiation of dialysis. On average, the serum uric acid levels were higher in the men than in the women. In the fully adjusted Cox proportional hazards model that considered all subjects, the risk of IgAN progression increased by about 25.6% for every 1 mg/dL increase in the baseline uric acid level. The serum uric acid level was an independent risk factor for IgAN progression in both sexes but its effect was more pronounced in the women (hazard ratio [HR], 1.383; confidence interval [CI],1.263 to 1.514; p < 0.001) than in the men (HR, 1.181; CI, 1.097 to 1.272; p < 0.001) (pinteraction < 0.001). A sensitivity analysis involving serum uric acid quartiles generated consistent and robust results. In conclusion, the serum uric acid level was an independent risk factor for IgAN progression and its effect was more pronounced among the women compared with that among the men.
Collapse
|
49
|
Comprehensive analysis of mechanism underlying hypouricemic effect of glucosyl hesperidin. Biochem Biophys Res Commun 2020; 521:861-867. [DOI: 10.1016/j.bbrc.2019.10.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
|
50
|
Zhao R, Wang Y, Fu T, Zhou W, Ge X, Sha X, Guo J, Dong C, Guo G. Gout and risk of diabetes mellitus: meta-analysis of observational studies. PSYCHOL HEALTH MED 2019; 25:917-930. [PMID: 31870181 DOI: 10.1080/13548506.2019.1707241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To determine the prevalence of diabetes mellitus (DM) in people with gout, and investigate the relationship between gout and the occurrence of DM. Systematic review and meta-analysis of epidemiological studies. Data sources: MEDLINE, Web of Science, EMBASE and CINAHL databases, hand-searched reference lists, citation history and contact with authors. Eligibility criteria: cohort, case-control or cross-sectional studies which examined the occurrence of DM amongst adults with gout (with or without gout group) in primary care or general population samples. Prevalence and risk estimate meta-analyses were performed using a random-effects model. A total of 23 identified studies matched the inclusion criteria, reporting on a total of 575 284 gout patients. Meta-analyses revealed that the prevalence of DM in gout patients was 16% (95% CI, 14-18%, I2 = 99.8%) according to clinical interviews. In the subgroup analysis, the prevalence of DM was higher in the female population (18%, 95%CI 2.7-33.3%) than the male population (12.6%, 95%CI 8.2-17.1%). As age increased, the incidence of diabetes in gout population increased. DM is commonly found among patients with gout. Patients with gout should be actively screened for DM and its consequences.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Nursing, Affiliated Hospital of Nantong University , Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China.,Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University , Nantong, China
| | - Yilin Wang
- Department of Nursing, Affiliated Hospital of Nantong University , Nantong, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China
| | - Wei Zhou
- Department of Nursing, Affiliated Hospital of Nantong University , Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China.,Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University , Nantong, China
| | - Xingyu Ge
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China.,Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Xiaoqi Sha
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China.,Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jiaxin Guo
- Department of Nursing, Affiliated Hospital of Nantong University , Nantong, China
| | - Chen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University , Nantong, China.,Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University , Nantong, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China.,Department of Internal Medicine, Division of Nephrology, The First Affiliated Hospital of Soochow University , Suzhou, China
| |
Collapse
|