1
|
Kairis A, Neves BD, Couturier J, Remacle C, Rouhier N. Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119797. [PMID: 39033932 DOI: 10.1016/j.bbamcr.2024.119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
Collapse
Affiliation(s)
- Antoine Kairis
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Institut Universitaire de France, F-75000 Paris, France
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
2
|
Battling S, Pastoors J, Deitert A, Götzen T, Hartmann L, Schröder E, Yordanov S, Büchs J. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands. J Biol Eng 2022; 16:31. [DOI: 10.1186/s13036-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
Historically, complex media are used for the cultivation of Gluconobacter oxydans in industry and research. Using complex media has different drawbacks like higher costs for downstream processing and significant variations in fermentation performances. Synthetic media can overcome those drawbacks, lead to reproducible fermentation performances. However, the development of a synthetic medium is time and labour consuming. Detailed knowledge about auxotrophies and metabolic requirements of G. oxydans is necessary. In this work, we use a systematic approach applying the in-house developed μRAMOS technology to identify auxotrophies and develop a defined minimal medium for cultivation of G. oxydans fdh, improving the production process of the natural sweetener 5-ketofructose.
Results
A rich, defined synthetic medium, consisting of 48 components, including vitamins, amino acids and trace elements, was used as a basis for medium development. In a comprehensive series of experiments, component groups and single media components were individually omitted from or supplemented to the medium and analysed regarding their performance. Main components like salts and trace elements were necessary for the growth of G. oxydans fdh, whereas nucleotides were shown to be non-essential. Moreover, results indicated that the amino acids isoleucine, glutamate and glycine and the vitamins nicotinic acid, pantothenic acid and p-aminobenzoic acid are necessary for the growth of G. oxydans fdh. The glutamate concentration was increased three-fold, functioning as a precursor for amino acid synthesis. Finally, a defined minimal medium called ‘Gluconobacter minimal medium’ was developed. The performance of this medium was tested in comparison with commonly used media for Gluconobacter. Similar/competitive results regarding cultivation time, yield and productivity were obtained. Moreover, the application of the medium in a fed-batch fermentation process was successfully demonstrated.
Conclusion
The systematic investigation of a wide range of media components allowed the successful development of the Gluconobacter minimal medium. This chemically defined medium contains only 14 ingredients, customised for the cultivation of G. oxydans fdh and 5-ketofructose production. This enables a more straightforward process development regarding upstream and downstream processing. Moreover, metabolic demands of G. oxydans were identified, which further can be used in media or strain development for different processes.
Collapse
|
3
|
Koletti A, Dervisi I, Kalloniati C, Zografaki ME, Rennenberg H, Roussis A, Flemetakis E. Selenium-binding Protein 1 (SBD1): A stress response regulator in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 189:2368-2381. [PMID: 35579367 PMCID: PMC9342975 DOI: 10.1093/plphys/kiac230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.
Collapse
Affiliation(s)
- Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Chrysanthi Kalloniati
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Maria-Eleftheria Zografaki
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Chongqing 400715, China
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
4
|
Abstract
Economical production of photosynthetic organisms requires the use of natural day/night cycles. These induce strong circadian rhythms that lead to transient changes in the cells, requiring complex modeling to capture. In this study, we coupled times series transcriptomic data from the model green alga Chlamydomonas reinhardtii to a metabolic model of the same organism in order to develop the first transient metabolic model for diurnal growth of algae capable of predicting phenotype from genotype. We first transformed a set of discrete transcriptomic measurements (D. Strenkert, S. Schmollinger, S. D. Gallaher, P. A. Salomé, et al., Proc Natl Acad Sci U S A 116:2374–2383, 2019, https://doi.org/10.1073/pnas.1815238116) into continuous curves, producing a complete database of the cell’s transcriptome that can be interrogated at any time point. We also decoupled the standard biomass formation equation to allow different components of biomass to be synthesized at different times of the day. The resulting model was able to predict qualitative phenotypical outcomes of a starchless mutant. We also extended this approach to simulate all single-knockout mutants and identified potential targets for rational engineering efforts to increase productivity. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition, and intracellular fluxes for diurnal growth. IMPORTANCE We have developed the first transient metabolic model for diurnal growth of algae based on experimental data and capable of predicting phenotype from genotype. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition and intracellular fluxes of the model green alga, Chlamydomonas reinhardtii. The availability of this model will enable faster and more efficient design of cells for production of fuels, chemicals, and pharmaceuticals.
Collapse
|
5
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
6
|
Park SJ, Ahn JW, Choi JI. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J Microbiol 2021; 60:63-69. [PMID: 34964943 DOI: 10.1007/s12275-022-1491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, Zouein FA. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf) 2021; 231:e13551. [PMID: 32853469 DOI: 10.1111/apha.13551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - George W. Booz
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS USA
| | - Raffaele Altara
- Department of Pathology School of Medicine University of Mississippi Medical Center Jackson MS USA
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- KG Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Dina H. Muhieddine
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Mathias Mericskay
- INSERM Department of Signalling and Cardiovascular Pathophysiology UMR‐S 1180 Université Paris‐Saclay Châtenay‐Malabry France
| | - Marwan M. Refaat
- Department of Internal Medicine Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular Genetics Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
8
|
Kaginkar S, Priya S, Sharma U, D'Souza JS, Sen S. A potential screening method for epigenetic drugs: uncovering stress-induced gene silencing in Chlamydomonas. Free Radic Res 2021; 55:533-546. [PMID: 33455485 DOI: 10.1080/10715762.2021.1876231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Histone modifications and DNA methylation together govern promoter availability, thereby influencing gene expression. This study queries the unicellular chlorophyte, Chlamydomonas reinhardtii using a three step "epigenetic assay" design to phenotypically track the variegation of a randomly integrated Paromomycin resistance transgene(s) (PmR). Based on its position of integration, the PmR gene expression hinged on two epigenetic hallmarks: the spreading of heterochromatin, and the transmissible memory of epigenetic states across generations. Using a spot-dilution analysis, the loss of antibiotic resistance phenotype was scored from 0 to 4, four being maximally silenced. Appropriate construct designs were used to demonstrate that the cis-spread of heterochromatin could be interfered with a stronger euchromatic barrier (TUB2 promoter). When assayed for metal ion stress, a combination of Mn deficiency with excess Cu or Zn stress was shown to induce gene silencing in Chlamydomonas. Cu stress resulted in the accumulation of intracellular ROS, while Zn stress elevated the sensitivity to ROS. As proof of functional conservation, mammalian epigenetic drugs demonstrably interfered with stress-induced gene silencing. Finally, a selected group of transgenic clones responsive to HDACi sodium butyrate, when tested in a gradient plate format showed similarity in phenotype to the plant-derived compound cinnamic acid. This indicated a possible commonality in their mode of action, unlike curcumin which might have a different mechanism. Thus, using binned libraries, based on a common set of responses to known drugs, a cost-effective high-throughput screening strategy for epigenetically active compounds from plants or other sources is described.
Collapse
Affiliation(s)
- Snehal Kaginkar
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Srishti Priya
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Upnishad Sharma
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Subhojit Sen
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
9
|
Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020; 16:e1008691. [PMID: 32764743 PMCID: PMC7444499 DOI: 10.1371/journal.pgen.1008691] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/19/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mihaela Stoyanova
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wu-Lin Charng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathieu Bottier
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Patrick R. Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei-Ning Yin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh Anne Daniels
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hailey Bowen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lawrence E. Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine and the Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Schultz MD, Dadali T, Jacques SA, Muller-Steffner H, Foote JB, Sorci L, Kellenberger E, Botta D, Lund FE. Inhibition of the NAD salvage pathway in schistosomes impairs metabolism, reproduction, and parasite survival. PLoS Pathog 2020; 16:e1008539. [PMID: 32459815 PMCID: PMC7252647 DOI: 10.1371/journal.ppat.1008539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
NAD, a key co-enzyme required for cell metabolism, is synthesized via two pathways in most organisms. Since schistosomes apparently lack enzymes required for de novo NAD biosynthesis, we evaluated whether these parasites, which infect >200 million people worldwide, maintain NAD homeostasis via the NAD salvage biosynthetic pathway. We found that intracellular NAD levels decline in schistosomes treated with drugs that block production of nicotinamide or nicotinamide mononucleotide–known NAD precursors in the non-deamidating salvage pathway. Moreover, in vitro inhibition of the NAD salvage pathway in schistosomes impaired egg production, disrupted the outer membranes of both immature and mature parasites and caused loss of mobility and death. Inhibiting the NAD salvage pathway in schistosome-infected mice significantly decreased NAD levels in adult parasites, which correlated with reduced egg production, fewer liver granulomas and parasite death. Thus, schistosomes, unlike their mammalian hosts, appear limited to one metabolic pathway to maintain NAD-dependent metabolic processes. Schistosomiasis (snail fever) is a deadly parasitic disease that affects more than 200 million people worldwide and, if not treated, can lead to death. This disease is caused by parasitic worms called schistosomes that feed on the host blood and lay hundreds of eggs each day that damage the liver and kidneys. Therapies to treat schistosomiasis are limited. The most widely-used anti-schistosomal drug, praziquantel, is not effective against immature parasites and adult worms can, in some cases, become resistant to this drug. It is therefore important to find new therapies to treat this deadly disease. In this study, we observed that schistosomes cannot use amino acids to make Nicotinamide Adenine Dinucleotide (NAD)–a key cellular metabolite found in all living organisms. Instead, these parasites salvage NAD by scavenging vitamins from the host. We observed that disruption of this NAD salvage pathway negatively impacts metabolism, reproduction and survival of both adult and immature worms. As such, targeting the parasite’s NAD salvage pathway is a promising therapeutic approach for the treatment of snail fever.
Collapse
Affiliation(s)
- Michael D. Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tulin Dadali
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sylvain A. Jacques
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Hélène Muller-Steffner
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Jeremy B. Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Esther Kellenberger
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center, Faculté de Pharmacie, Illkirch, France
| | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Frances E. Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019; 179:909-922.e12. [PMID: 31668805 PMCID: PMC6936269 DOI: 10.1016/j.cell.2019.09.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.
Collapse
Affiliation(s)
- Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Mihaela Stoyanova
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Griffin Rademacher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl Environ Microbiol 2019; 85:AEM.00988-19. [PMID: 31126947 DOI: 10.1128/aem.00988-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Survival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCE The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.
Collapse
|
13
|
Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year Subsistence in Baltic Sea Sediments. mBio 2019; 10:mBio.02376-18. [PMID: 30992358 PMCID: PMC6469976 DOI: 10.1128/mbio.02376-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of life on Earth exists in a very slow-growing state, with microbes from deeply buried marine sediments representing an extreme example. These environments are like natural laboratories that have run multi-thousand-year experiments that are impossible to perform in a laboratory. We borrowed some techniques that are commonly used in laboratory experiments and applied them to these natural samples to make hypotheses about how these microbes subsist for so long at low activity. We found that some methods for stabilizing proteins and nucleic acids might be used by many members of the community. We also found evidence for niche differentiation strategies, and possibly cross-feeding, suggesting that even though they are barely growing, complex ecological interactions continue to occur over ultralong timescales. Energy-starved microbes in deep marine sediments subsist at near-zero growth for thousands of years, yet the mechanisms for their subsistence are unknown because no model strains have been cultivated from most of these groups. We investigated Baltic Sea sediments with single-cell genomics, metabolomics, metatranscriptomics, and enzyme assays to identify possible subsistence mechanisms employed by uncultured Atribacteria, Aminicenantes, Actinobacteria group OPB41, Aerophobetes, Chloroflexi, Deltaproteobacteria, Desulfatiglans, Bathyarchaeota, and Euryarchaeota marine group II lineages. Some functions appeared to be shared by multiple lineages, such as trehalose production and NAD+-consuming deacetylation, both of which have been shown to increase cellular life spans in other organisms by stabilizing proteins and nucleic acids, respectively. Other possible subsistence mechanisms differed between lineages, possibly providing them different physiological niches. Enzyme assays and transcripts suggested that Atribacteria and Actinobacteria group OPB41 catabolized sugars, whereas Aminicenantes and Atribacteria catabolized peptides. Metabolite and transcript data suggested that Atribacteria utilized allantoin, possibly as an energetic substrate or chemical protectant, and also possessed energy-efficient sodium pumps. Atribacteria single-cell amplified genomes (SAGs) recruited transcripts for full pathways for the production of all 20 canonical amino acids, and the gene for amino acid exporter YddG was one of their most highly transcribed genes, suggesting that they may benefit from metabolic interdependence with other cells. Subsistence of uncultured phyla in deep subsurface sediments may occur through shared strategies of using chemical protectants for biomolecular stabilization, but also by differentiating into physiological niches and metabolic interdependencies.
Collapse
|
14
|
Lin H, Zhang Z, Iomini C, Dutcher SK. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii. Open Biol 2019. [PMID: 29514868 PMCID: PMC5881031 DOI: 10.1098/rsob.170211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 (fla9) and IFT121 (ift121-2), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii. The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3′ splice site mutation in IFT81, and a frameshift mutant of FRA10, which suppresses the 5′ splice site mutation in IFT121. Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1, which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Zhengyan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Carlo Iomini
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| |
Collapse
|
15
|
Wu R, Zhang F, Liu L, Li W, Pichersky E, Wang G. MeNA, Controlled by Reversible Methylation of Nicotinate, Is an NAD Precursor that Undergoes Long-Distance Transport in Arabidopsis. MOLECULAR PLANT 2018; 11:1264-1277. [PMID: 30055263 DOI: 10.1016/j.molp.2018.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) biosynthesis, including synthesis from aspartate via the de novo pathway and from nicotinate (NA) via the Preiss-Handler pathway, is conserved in land plants. Diverse species of NA conjugates, which are mainly involved in NA detoxification, were also found in all tested land plants. Among these conjugates, MeNA (NA methyl ester) has been widely detected in angiosperm plants, although its physiological function and the underlying mechanism for its production in planta remain largely unknown. Here, we show that MeNA is an NAD precursor undergoing more efficient long-distance transport between organs than NA and nicotinamide in Arabidopsis. We found that Arabidopsis has one methyltransferase (designated AtNaMT1) capable of catalyzing carboxyl methylation of NA to yield MeNA and one methyl esterase (MES2) predominantly hydrolyzing MeNA back to NA. We further uncovered that the transfer of [14C]MeNA from the root to leaf was significantly increased in both MES2 knockdown and NaMT1-overexpressing lines, suggesting that both NaMT1 and MES2 fine-tune the long-distance transport of MeNA, which is ultimately utilized for NAD production. Abiotic stress (salt, abscisic acid, and mannitol) treatments, which are known to exacerbate NAD degradation, induce the expression of NaMT1 but suppress MES2 expression, suggesting that MeNA may play a role in stress adaption. Collectively, our study indicates that reversible methylation of NA controls the biosynthesis of MeNA in Arabidopsis, which presumably functions as a detoxification form of free NA for efficient long-distance transport and eventually NAD production especially under abiotic stress, providing new insights into the relationship between NAD biosynthesis and NA conjugation in plants.
Collapse
Affiliation(s)
- Ranran Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyun Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Li F, Li YX, Cao YX, Wang L, Liu CG, Shi L, Song H. Modular engineering to increase intracellular NAD(H/ +) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun 2018; 9:3637. [PMID: 30194293 PMCID: PMC6128845 DOI: 10.1038/s41467-018-05995-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/07/2018] [Indexed: 01/08/2023] Open
Abstract
The slow rate of extracellular electron transfer (EET) of electroactive microorganisms remains a primary bottleneck that restricts the practical applications of bioelectrochemical systems. Intracellular NAD(H/+) (i.e., the total level of NADH and NAD+) is a crucial source of the intracellular electron pool from which intracellular electrons are transferred to extracellular electron acceptors via EET pathways. However, how the total level of intracellular NAD(H/+) impacts the EET rate in Shewanella oneidensis has not been established. Here, we use a modular synthetic biology strategy to redirect metabolic flux towards NAD+ biosynthesis via three modules: de novo, salvage, and universal biosynthesis modules in S. oneidensis MR-1. The results demonstrate that an increase in intracellular NAD(H/+) results in the transfer of more electrons from the increased oxidation of the electron donor to the EET pathways of S. oneidensis, thereby enhancing intracellular electron flux and the EET rate. A bottleneck for the application of bioelectrochemical systems is the slow rate of extracellular electron transfer. Here the authors use a synthetic biology approach to redirect metabolic flux to NAD+ biosynthesis, which enhances the intracellular electron flux and the extracellular electron transfer rate.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuan-Xiu Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Xiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Lei Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information Science & Technology, Hainan University, Haikou, 570228, PR China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience in Wuhan, Wuhan, 430074, Hubei, PR China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
17
|
A simple and inexpensive physical lysis method for DNA and RNA extraction from freshwater microalgae. 3 Biotech 2018; 8:354. [PMID: 30105179 DOI: 10.1007/s13205-018-1381-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 07/29/2018] [Indexed: 01/15/2023] Open
Abstract
In this work, a simple and inexpensive physical lysis method using a cordless drill fitted with a plastic pellet pestle and 150 mg of sterile sea sand was established for the extraction of DNA from six strains of freshwater microalgae. This lysis method was also tested for RNA extraction from two microalgal strains. Lysis duration between 15 and 120 s using the cetyltrimethyl ammonium bromide (CTAB) buffer significantly increased the yield of DNA from four microalgalstrains (Monoraphidium griffithii NS16, Scenedesmus sp. NS6, Scenedesmus sp. DPBC1 and Acutodesmus sp. DPBB10) compared to control. It was also found that grinding was not required to obtain DNA from two strains of microalgae (Choricystis sp. NPA14 and Chlamydomonas sp. BM3). The average DNA yield obtained using this lysis method was between 62.5 and 78.9 ng/mg for M. griffithii NS16, 42.2-247.0 ng/mg for Scenedesmus sp. NS6, 70.2-110.9 ng/mg for Scenedesmus sp. DPBC1 and 142.8-164.8 ng/mg for Acutodesmus sp. DPBB10. DNA obtained using this method was sufficiently pure for PCR amplification. Extraction of total RNA from M. griffithii NS16 and Mychonastes sp. NPD7 using this lysis method yielded high-quality RNA suitable for RT-PCR. This lysis method is simple, cheap and would enable rapid nucleic acid extraction from freshwater microalgae without requiring costly materials and equipment such as liquid nitrogen or beadbeaters, and would facilitate molecular studies on microalgae in general.
Collapse
|
18
|
Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes. Sci Rep 2017; 7:10101. [PMID: 28855622 PMCID: PMC5577192 DOI: 10.1038/s41598-017-10388-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022] Open
Abstract
Ancient endosymbiotic relationships have led to extreme genomic reduction in many bacterial and eukaryotic algal endosymbionts. Endosymbionts in more recent and/or facultative relationships can also experience genomic reduction to a lesser extent, but little is known about the effects of the endosymbiotic transition on the organellar genomes of eukaryotes. To understand how the endosymbiotic lifestyle has affected the organellar genomes of photosynthetic green algae, we generated the complete plastid genome (plastome) and mitochondrial genome (mitogenome) sequences from three green algal endosymbionts (Chlorella heliozoae, Chlorella variabilis and Micractinium conductrix). The mitogenomes and plastomes of the three newly sequenced endosymbionts have a standard set of genes compared with free-living trebouxiophytes, providing no evidence for functional genomic reduction. Instead, their organellar genomes are generally larger and more intron rich. Intron content is highly variable among the members of Chlorella, suggesting very high rates of gain and/or loss of introns during evolution. Phylogenetic analysis of plastid and mitochondrial genes demonstrated that the three endosymbionts do not form a monophyletic group, indicating that the endosymbiotic lifestyle has evolved multiple times in Chlorellaceae. In addition, M. conductrix is deeply nested within the Chlorella clade, suggesting that taxonomic revision is needed for one or both genera.
Collapse
|
19
|
Ramsden DB, Waring RH, Barlow DJ, Parsons RB. Nicotinamide N-Methyltransferase in Health and Cancer. Int J Tryptophan Res 2017; 10:1178646917691739. [PMID: 35185340 PMCID: PMC8851132 DOI: 10.1177/1178646917691739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, the roles of nicotinamide N-methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.
Collapse
Affiliation(s)
- David B Ramsden
- Institute of Metabolism and Systems Research, The Medical School, University of Birmingham, Birmingham, UK
| | | | - David J Barlow
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King’s College London, London, UK
| |
Collapse
|
20
|
Skliros D, Kalatzis PG, Katharios P, Flemetakis E. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell. Front Microbiol 2016; 7:1807. [PMID: 27895630 PMCID: PMC5107563 DOI: 10.3389/fmicb.2016.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| | - Panos G Kalatzis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HeraklionCrete, Greece; Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion Crete, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| |
Collapse
|
21
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
22
|
Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Mar Drugs 2015; 13:7403-18. [PMID: 26694422 PMCID: PMC4699246 DOI: 10.3390/md13127073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.
Collapse
Affiliation(s)
- Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
23
|
Imam S, Schäuble S, Valenzuela J, de Lomana ALG, Carter W, Price ND, Baliga NS. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1239-56. [PMID: 26485611 PMCID: PMC4715634 DOI: 10.1111/tpj.13059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 05/11/2023]
Abstract
Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae.
Collapse
Affiliation(s)
- Saheed Imam
- Institute for Systems Biology, Seattle, WA, USA
| | - Sascha Schäuble
- Institute for Systems Biology, Seattle, WA, USA
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Bioengineering and Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA
- Correspondence: Nitin S. Baliga, Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, Telephone: 206.732.1266, Fax: 206.732.1299,
| |
Collapse
|
24
|
Li W, Zhang F, Chang Y, Zhao T, Schranz ME, Wang G. Nicotinate O-Glucosylation Is an Evolutionarily Metabolic Trait Important for Seed Germination under Stress Conditions in Arabidopsis thaliana. THE PLANT CELL 2015; 27:1907-24. [PMID: 26116607 PMCID: PMC4531354 DOI: 10.1105/tpc.15.00223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
The glycosylation of nicotinate (NA), a key intermediate of the NAD salvage pathway, occurs widely in land plants. However, the physiological function of NA glycosylation is not well understood in planta, and no gene encoding NA glycosyltransferase has been reported to date. NA glycosylation in Arabidopsis thaliana occurs at either the N- or the O-position of the NA molecule, and O-glucosylation appears to be unique to the Brassicaceae. Using gene-enzyme correlations focused on Family 1 glycosyltransferases (GTs; EC 2.4), we identified and characterized three Arabidopsis GTs, which are likely involved in NA glycosylation. These include one NAOGT (UGT74F2; previously identified as a salicylic acid glycosyltransferases) and two NANGTs (UGT76C4 and UGT76C5). Arabidopsis mutants of UGT74F2 accumulate higher levels of free NA, but not salicylic acid, than that of the wild type, and this inversely correlated with seed germination rates under various abiotic stresses. The germination defect of the ugt74f2-1 mutant could be fully complemented by overexpression of UGT74F2. These observations, together with comprehensive chemical analysis, suggest that NA glycosylation may function to protect plant cells from the toxicity of NA overaccumulation during seed germination. Combined with phylogenetic analysis, our results suggest that NAOGTs arose recently in the Brassicaceae family and may provide a fitness benefit. The multifunctionality of UGT74F2 in Arabidopsis is also investigated and discussed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwei Chang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Ternes CM, Schönknecht G. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes. Genome Biol Evol 2015; 6:2335-49. [PMID: 25169983 PMCID: PMC4217691 DOI: 10.1093/gbe/evu185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers.
Collapse
|
26
|
Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. PLANT PHYSIOLOGY 2015; 168:752-64. [PMID: 25922058 PMCID: PMC4453788 DOI: 10.1104/pp.15.00319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/24/2015] [Indexed: 05/17/2023]
Abstract
Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Akira Ando
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Misako Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Masafumi Hirono
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Naoki Sato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| |
Collapse
|
27
|
Colinas M, Fitzpatrick TB. Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:98-106. [PMID: 26005929 DOI: 10.1016/j.pbi.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 05/01/2015] [Indexed: 05/06/2023]
Abstract
Plants use B vitamin compounds as cofactors for metabolism. Biosynthesis de novo of these metabolites in plants is almost fully elucidated. However, salvaging of precursors as well as cofactor derivatives is only being unraveled. Furthermore, processing of these compounds when damaged by cellular activities to prevent deleterious effects on metabolism is emerging. Recent investigations indicate that the role of B vitamins goes beyond metabolism and are being linked with epigenetic traits, specific developmental cues, the circadian clock, as well as abiotic and biotic stress responses. More in depth investigations on the regulation of the provision of these compounds through biosynthesis de novo, salvage and transport is suggesting that plants may share the cost of this load by division of labor.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
28
|
Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H. Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 2015; 10:e0120446. [PMID: 25764133 PMCID: PMC4357444 DOI: 10.1371/journal.pone.0120446] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Several microalgae accumulate high levels of squalene, and as such provide a potentially valuable source of this useful compound. However, the molecular mechanism of squalene biosynthesis in microalgae is still largely unknown. We obtained the sequences of two enzymes involved in squalene synthesis and metabolism, squalene synthase (CrSQS) and squalene epoxidase (CrSQE), from the model green alga Chlamydomonas reinhardtii. CrSQS was functionally characterized by expression in Escherichia coli and CrSQE by complementation of a budding yeast erg1 mutant. Transient expression of CrSQS and CrSQE fused with fluorescent proteins in onion epidermal tissue suggested that both proteins were co-localized in the endoplasmic reticulum. CrSQS-overexpression increased the rate of conversion of 14C-labeled farnesylpyrophosphate into squalene but did not lead to over-accumulation of squalene. Addition of terbinafine caused the accumulation of squalene and suppression of cell survival. On the other hand, in CrSQE-knockdown lines, the expression level of CrSQE was reduced by 59-76% of that in wild-type cells, and significant levels of squalene (0.9-1.1 μg mg-1 cell dry weight) accumulated without any growth inhibition. In co-transformation lines with CrSQS-overexpression and CrSQE-knockdown, the level of squalene was not increased significantly compared with that in solitary CrSQE-knockdown lines. These results indicated that partial knockdown of CrSQE is an effective strategy to increase squalene production in C. reinhardtii cells.
Collapse
Affiliation(s)
| | - Seiko Kinohira
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akira Ando
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Miki Shimoyama
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Lin H, Dutcher SK. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 2015; 127:349-86. [PMID: 25837400 DOI: 10.1016/bs.mcb.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Flagellar assembly requires intraflagellar transport of components from the cell body to the flagellar tip for assembly. The understanding of flagellar assembly has been aided by the ease of biochemistry and the availability of mutants in the unicellular green alga, Chlamydomonas reinhardtii. In this chapter, we discuss means to identify genes involved in these processes using forward and reverse genetics. In particular, the ease and low cost of whole genome sequencing (WGS) will help to make gene identification easier and promote the understanding of this important process.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
30
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Carneiro J, Duarte-Pereira S, Azevedo L, Castro LFC, Aguiar P, Moreira IS, Amorim A, Silva RM. The evolutionary portrait of metazoan NAD salvage. PLoS One 2013; 8:e64674. [PMID: 23724078 PMCID: PMC3665594 DOI: 10.1371/journal.pone.0064674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs) and Nicotinamidases (PNCs) have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.
Collapse
Affiliation(s)
- João Carneiro
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sara Duarte-Pereira
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Luísa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - L. Filipe C. Castro
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR), CIMAR Associate Laboratory, University of Porto, Porto, Portugal
| | - Paulo Aguiar
- CMUP - Centro de Matemática da Universidade do Porto, Porto, Portugal
| | - Irina S. Moreira
- REQUIMTE - Rede de Química e Tecnologia, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Raquel M. Silva
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
32
|
Rallis A, Lu B, Ng J. Molecular chaperones protect against JNK- and Nmnat-regulated axon degeneration in Drosophila. J Cell Sci 2012; 126:838-49. [PMID: 23264732 DOI: 10.1242/jcs.117259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Axon degeneration is observed at the early stages of many neurodegenerative conditions and this often leads to subsequent neuronal loss. We previously showed that inactivating the c-Jun N-terminal kinase (JNK) pathway leads to axon degeneration in Drosophila mushroom body (MB) neurons. To understand this process, we screened candidate suppressor genes and found that the Wallerian degeneration slow (Wld(S)) protein blocked JNK axonal degeneration. Although the nicotinamide mononucleotide adenylyltransferase (Nmnat1) portion of Wld(S) is required, we found that its nicotinamide adenine dinucleotide (NAD(+)) enzyme activity and the Wld(S) N-terminus (N70) are dispensable, unlike axotomy models of neurodegeneration. We suggest that Wld(S)-Nmnat protects against axonal degeneration through chaperone activity. Furthermore, ectopically expressed heat shock proteins (Hsp26 and Hsp70) also protected against JNK and Nmnat degeneration phenotypes. These results suggest that molecular chaperones are key in JNK- and Nmnat-regulated axonal protective functions.
Collapse
Affiliation(s)
- Andrew Rallis
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
33
|
Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, Thornton KC, Giacalone JC, Albee AJ, Wilson KS, Turner EH, Nickerson DA, Shendure J, Bayly PV, Leigh MW, Knowles MR, Brody SL, Dutcher SK, Ferkol TW. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 2012; 91:685-93. [PMID: 23040496 DOI: 10.1016/j.ajhg.2012.08.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/05/2012] [Accepted: 08/24/2012] [Indexed: 01/23/2023] Open
Abstract
Motile cilia are essential components of the mucociliary escalator and are central to respiratory-tract host defenses. Abnormalities in these evolutionarily conserved organelles cause primary ciliary dyskinesia (PCD). Despite recent strides characterizing the ciliome and sensory ciliopathies through exploration of the phenotype-genotype associations in model organisms, the genetic bases of most cases of PCD remain elusive. We identified nine related subjects with PCD from geographically dispersed Amish communities and performed exome sequencing of two affected individuals and their unaffected parents. A single autosomal-recessive nonsynonymous missense mutation was identified in HEATR2, an uncharacterized gene that belongs to a family not previously associated with ciliary assembly or function. Airway epithelial cells isolated from PCD-affected individuals had markedly reduced HEATR2 levels, absent dynein arms, and loss of ciliary beating. MicroRNA-mediated silencing of the orthologous gene in Chlamydomonas reinhardtii resulted in absent outer dynein arms, reduced flagellar beat frequency, and decreased cell velocity. These findings were recapitulated by small hairpin RNA-mediated knockdown of HEATR2 in airway epithelial cells from unaffected donors. Moreover, immunohistochemistry studies in human airway epithelial cells showed that HEATR2 was localized to the cytoplasm and not in cilia, which suggests a role in either dynein arm transport or assembly. The identification of HEATR2 contributes to the growing number of genes associated with PCD identified in both individuals and model organisms and shows that exome sequencing in family studies facilitates the discovery of novel disease-causing gene mutations.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Whole-Genome Sequencing to Identify Mutants and Polymorphisms in Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2012; 2:15-22. [PMID: 22384377 PMCID: PMC3276182 DOI: 10.1534/g3.111.000919] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/31/2011] [Indexed: 12/26/2022]
Abstract
Whole-genome sequencing (WGS) provides a new platform for the identification of mutations that produce a mutant phenotype. We used Illumina sequencing to identify the mutational profile of three Chlamydomonas reinhardtii mutant strains. The three strains have more than 38,000 changes from the reference genome. NG6 is aflagellate and maps to 269 kb with only one nonsynonymous change; the V(12)E mutation falls in the FLA8 gene. Evidence that NG6 is a fla8 allele comes from swimming revertants that are either true or pseudorevertants. NG30 is aflagellate and maps to 458 kb that has six nonsynonomous changes. Evidence that NG30 has a causative nonsense allele in IFT80 comes from rescue of the nonswimming phenotype with a fragment bearing only this gene. This gene has been implicated in Jeune asphyxiating thoracic dystrophy. Electron microscopy of ift80-1 (NG30) shows a novel basal body phenotype. A bar or cap is observed over the distal end of the transition zone, which may be an intermediate in preparing the basal body for flagellar assembly. In the acetate-requiring mutant ac17, we failed to find a nonsynonymous change in the 676 kb mapped region, which is incompletely assembled. In these strains, 43% of the changes occur on two of the 17 chromosomes. The excess on chromosome 6 surrounds the mating-type locus, which has numerous rearrangements and suppressed recombination, and the changes extend beyond the mating-type locus. Unexpectedly, chromosome 16 shows an unexplained excess of single nucleotide polymorphisms and indels. Overall, WGS in combination with limited mapping allows fast and accurate identification of point mutations in Chlamydomonas.
Collapse
|
35
|
Laiakis EC, Hyduke DR, Fornace AJ. Comparison of mouse urinary metabolic profiles after exposure to the inflammatory stressors γ radiation and lipopolysaccharide. Radiat Res 2011; 177:187-99. [PMID: 22128784 DOI: 10.1667/rr2771.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolomics on easily accessible biofluids has the potential to provide rapid identification and distinction between stressors and inflammatory states. In the event of a radiological event, individuals with underlying medical conditions could present with similar symptoms to radiation poisoning, prominently nausea, diarrhea, vomiting and fever. Metabolomics of radiation exposure in mice has provided valuable biomarkers, and in this study we aimed to identify biomarkers of lipopolysaccharide (LPS) exposure to compare and contrast with ionizing radiation. LPS treatment leads to a severe inflammatory response and a cytokine storm, events similar to radiation exposure, and LPS exposure can recapitulate many of the responses seen in sepsis. Urine from control mice, LPS-treated mice, and mice irradiated with 3, 8 and 15 Gy of γ rays was analyzed by LCMS, and markers were extracted using SIMCA-P(+) and Random Forests. Markers were validated through tandem mass spectrometry against pure chemicals. Five metabolites, cytosine, cortisol, adenine, O-propanoylcarnitine and isethionic acid, showed increased excretion at 24 h after LPS treatment (P < 0.0001, 0.0393, 0.0393, <0.0001 and 0.0004, respectively). Of these, cytosine, adenine and O-propanoylcarnitine showed specificity to LPS treatment when compared to radiation. On the other hand, increased excretion of cortisol after LPS and radiation treatments indicated a rapid systemic response to inflammatory agents. Isethionic acid excretion, however, showed elevated levels not only after LPS treatment but also after a very high dose of radiation (15 Gy), while additional metabolites showed responsiveness to radiation but not LPS. Metabolomics therefore has the potential to distinguish between different inflammatory responses based on differential ion signatures. It can also provide quick and reliable assessment of medical conditions in a mass casualty radiological scenario and aid in effective triaging.
Collapse
Affiliation(s)
- Evagelia C Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
36
|
Elam CA, Wirschell M, Yamamoto R, Fox LA, York K, Kamiya R, Dutcher SK, Sale WS. An axonemal PP2A B-subunit is required for PP2A localization and flagellar motility. Cytoskeleton (Hoboken) 2011; 68:363-72. [PMID: 21692192 DOI: 10.1002/cm.20519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 11/10/2022]
Abstract
Analysis of Chlamydomonas axonemes revealed that the protein phosphatase, PP2A, is localized to the outer doublet microtubules and is implicated in regulation of dynein-driven motility. We tested the hypothesis that PP2A is localized to the axoneme by a specialized, highly conserved 55-kDa B-type subunit identified in the Chlamydomonas flagellar proteome. The B-subunit gene is defective in the motility mutant pf4. Consistent with our hypothesis, both the B- and C- subunits of PP2A fail to assemble in pf4 axonemes, while the dyneins and other axonemal structures are fully assembled in pf4 axonemes. Two pf4 intragenic revertants were recovered that restore PP2A to the axonemes and re-establish nearly wild-type motility. The revertants confirmed that the slow-swimming Pf4 phenotype is a result of the defective PP2A B-subunit. These results demonstrate that the axonemal B-subunit is, in part, an anchor protein required for PP2A localization and that PP2A is required for normal ciliary motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
De Block M, Van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:275-82. [PMID: 21411363 DOI: 10.1016/j.pbi.2011.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/04/2023]
Abstract
The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.
Collapse
|