1
|
Edman S, Jones Iii RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Chambers TL, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth. EMBO Rep 2024:10.1038/s44319-024-00299-z. [PMID: 39482487 DOI: 10.1038/s44319-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.
Collapse
Affiliation(s)
- Sebastian Edman
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Ronald G Jones Iii
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Paulo R Jannig
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Pieter J Koopmans
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Toby L Chambers
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Calvin S Peterson
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Logan N Scott
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Vandre C Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Biological Sciences, Oakland University, Rochester Hills, MI, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Liu Zhengye
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedic Surgery, Region Jönköping County, Eksjö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA.
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Mcleod JC, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza AC, Colenso-Semple L, McKendry J, Morton RW, Mitchell CJ, Oikawa SY, Wahlestedt C, Paul Chapple J, McGlory C, Timmons JA, Phillips SM. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.606848. [PMID: 39416175 PMCID: PMC11482748 DOI: 10.1101/2024.08.11.606848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customised RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n=144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR - which was leukocyte-associated (FDR = 4.9 ×10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C. Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, Canada
| | - Robert W. Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, Canada
| | - James A. Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
4
|
Brown A, Parise G, Thomas ACQ, Ng SY, McGlory C, Phillips SM, Kumbhare D, Joanisse S. Low baseline ribosome-related gene expression and resistance training-induced declines in ribosome-related gene expression are associated with skeletal muscle hypertrophy in young men and women. J Cell Physiol 2024; 239:e31182. [PMID: 38214457 DOI: 10.1002/jcp.31182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Ribosomes are essential cellular machinery for protein synthesis. It is hypothesised that ribosome content supports muscle growth and that individuals with more ribosomes have greater increases in muscle size following resistance training (RT). Aerobic conditioning (AC) also elicits distinct physiological adaptations; however, no measures of ribosome content following AC have been conducted. We used ribosome-related gene expression as a proxy measure for ribosome content and hypothesised that AC and RT would increase ribosome-related gene expression. Fourteen young men and women performed 6 weeks of single-legged AC followed by 10 weeks of double-legged RT. Muscle biopsies were taken following AC and following RT in the aerobically conditioned (AC+RT) and unconditioned (RT) legs. No differences in regulatory genes (Ubf, Cyclin D1, Tif-1a and Polr-1b) involved in ribosomal biogenesis or ribosomal RNA (45S, 5.8S, 18S and 28S rRNAs) expression were observed following AC and RT, except for c-Myc (RT > AC+RT) and 5S rRNA (RT < AC+RT at pre-RT) with 18S external transcribed spacer and 5.8S internal transcribed spacer expression decreasing from pre-RT to post-RT in the RT leg only. When divided for change in leg-lean soft tissue mass (ΔLLSTM) following RT, legs with the greatest ΔLLSTM had lower expression in 11/13 measured ribosome-related genes before RT and decreased expression in 9/13 genes following RT. These results indicate that AC and RT did not increase ribosome-related gene expression. Contrary to previous research, the greatest increase in muscle mass was associated with lower changes in ribosome-related gene expression over the course of the 10-week training programme. This may point to the importance of translational efficiency rather than translational capacity (i.e. ribosome content) in mediating long-term exercise-induced adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Alex Brown
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingha, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Svensson M, Lovric A, Åkerfeldt T, Hellsten D, Haas T, Gustafsson T, Rullman E. Discordant gene expression in subcutaneous adipose and skeletal muscle tissues in response to exercise training. Physiol Rep 2024; 12:e15995. [PMID: 38561245 PMCID: PMC10984804 DOI: 10.14814/phy2.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.
Collapse
Affiliation(s)
- Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports MedicineUmeå UniversityUmeåSweden
| | - Alen Lovric
- Department of Laboratory Medicine, Division of Clinical PhysiologyKarolinska Institutet, and Unit of Clinical Physiology, Karolinska University HospitalStockholmSweden
| | - Torbjörn Åkerfeldt
- Department of Medical Sciences, Clinical ChemistryUppsala UniversityUppsalaSweden
| | - David Hellsten
- Department of Surgical and Perioperative SciencesUmeå UniversityUmeåSweden
| | - Tara Haas
- Faculty of Health, School of Kinesiology and Health ScienceYork UniversityTorontoCanada
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical PhysiologyKarolinska Institutet, and Unit of Clinical Physiology, Karolinska University HospitalStockholmSweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical PhysiologyKarolinska Institutet, and Unit of Clinical Physiology, Karolinska University HospitalStockholmSweden
| |
Collapse
|
6
|
Edman S, Jones RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-Hour Time Course of Integrated Molecular Responses to Resistance Exercise in Human Skeletal Muscle Implicates MYC as a Hypertrophic Regulator That is Sufficient for Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586857. [PMID: 38586026 PMCID: PMC10996609 DOI: 10.1101/2024.03.26.586857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.
Collapse
Affiliation(s)
- Sebastian Edman
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Paulo R. Jannig
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Karolinska Institute, Division of Clinical Physiology, Department of Laboratory Medicine, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Karolinska Institute, Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Nicholas T. Thomas
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Pieter Jan Koopmans
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Francielly Morena
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Calvin S. Peterson
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Logan N. Scott
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Vandre C. Figueiredo
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- Oakland University, Department of Biological Sciences, Rochester Hills, MI, USA
| | - Christopher S. Fry
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Liu Zhengye
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Johanna T. Lanner
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Yuan Wen
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Ferdinand von Walden
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| |
Collapse
|
7
|
Lixandrão ME, Bamman M, Vechin FC, Conceicao MS, Telles G, Longobardi I, Damas F, Lavin KM, Drummer DJ, McAdam JS, Dungan CM, Leitão AE, Riani Costa LA, Aihara AY, Libardi CA, Gualano B, Roschel H. Higher resistance training volume offsets muscle hypertrophy nonresponsiveness in older individuals. J Appl Physiol (1985) 2024; 136:421-429. [PMID: 38174375 DOI: 10.1152/japplphysiol.00670.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The magnitude of muscle hypertrophy in response to resistance training (RT) is highly variable between individuals (response heterogeneity). Manipulations in RT variables may modulate RT-related response heterogeneity; yet, this remains to be determined. Using a within-subject unilateral design, we aimed to investigate the effects of RT volume manipulation on whole muscle hypertrophy [quadriceps muscle cross-sectional area (qCSA)] among nonresponders and responders to a low RT dose (single-set). We also investigated the effects of RT volume manipulation on muscle strength in these responsiveness groups. Eighty-five older individuals [41M/44F, age = 68 ± 4 yr; body mass index (BMI) = 26.4 ± 3.7 kg/m2] had one leg randomly allocated to a single (1)-set and the contralateral leg allocated to four sets of unilateral knee-extension RT at 8-15 repetition maximum (RM) for 10-wk 2 days/wk. Pre- and postintervention, participants underwent magnetic resonance imaging (MRI) and unilateral knee-extension 1-RM strength testing. MRI typical error (2× TE = 3.27%) was used to classify individuals according to responsiveness patterns. n = 51 were classified as nonresponders (≤2× TE) and n = 34 as responders (>2× TE) based on pre- to postintervention change qCSA following the single-set RT protocol. Nonresponders to single-set training showed a dose response, with significant time × set interactions for qCSA and 1-RM strength, indicating greater gains in response to the higher volume prescription (time × set: P < 0.05 for both outcomes). Responders improved qCSA (time: P < 0.001), with a tendency toward higher benefit from the four sets RT protocol (time × set: P = 0.08); on the other hand, 1-RM increased similarly irrespectively of RT volume prescription (time × set: P > 0.05). Our findings support the use of higher RT volume to mitigate nonresponsiveness among older adults.NEW & NOTEWORTHY Using a within-subject unilateral design, we demonstrated that increasing resistance training (RT) volume may be a simple, effective strategy to improve muscle hypertrophy and strength gains among older adults who do not respond to low-volume RT. In addition, it could most likely be used to further improve hypertrophic outcomes in responders.
Collapse
Affiliation(s)
- Manoel E Lixandrão
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcas Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Felipe C Vechin
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Miguel S Conceicao
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Guilherme Telles
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe Damas
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Devin J Drummer
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cory M Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alice E Leitão
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz A Riani Costa
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - André Y Aihara
- Diagnostic Imaging Department, Universidade Federal de Sao Paulo-Escola Paulista de Medicina, São Paulo, Brazil
- Diagnósticos da América S.A. (DASA)/Laboratório Delboni, São Paulo, Brazil
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Bettio C, Banchelli F, Salsi V, Vicini R, Crisafulli O, Ruggiero L, Ricci G, Bucci E, Angelini C, Berardinelli A, Bonanno S, D'Angelo MG, Di Muzio A, Filosto M, Frezza E, Maggi L, Mongini T, Pegoraro E, Rodolico C, Scarlato M, Vattemi G, Velardo D, Tomelleri G, D'Amico R, D'Antona G, Tupler R. Physical activity practiced at a young age is associated with a less severe subsequent clinical presentation in facioscapulohumeral muscular dystrophy. BMC Musculoskelet Disord 2024; 25:35. [PMID: 38183077 PMCID: PMC10768364 DOI: 10.1186/s12891-023-07150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND In facioscapulohumeral muscular dystrophy (FSHD), it is not known whether physical activity (PA) practiced at young age is associated with the clinical presentation of disease. To assess this issue, we performed a retrospective cohort study concerning the previous practice of sports and, among them, those with medium-high cardiovascular commitment in clinically categorized carriers of a D4Z4 reduced allele (DRA). METHODS People aged between 18 and 60 were recruited as being DRA carriers. Subcategory (classical phenotype, A; incomplete phenotype, B; asymptomatic carriers, C; complex phenotype, D) and FSHD score, which measures muscle functional impairment, were assessed for all participants. Information on PAs was retrieved by using an online survey dealing with the practice of sports at a young age. RESULTS 368 participants were included in the study, average age 36.6 years (SD = 9.4), 47.6% male. The FSHD subcategory A was observed in 157 (42.7%) participants with average (± SD) FSHD score of 5.8 ± 3.0; the incomplete phenotype (category B) in 46 (12.5%) participants (average score 2.2 ± 1.7) and the D phenotype in 61 (16.6%, average score 6.5 ± 3.8). Asymptomatic carriers were 104 (subcategory C, 28.3%, score 0.0 ± 0.2). Time from symptoms onset was higher for patients with A (15.8 ± 11.1 years) and D phenotype (13.3 ± 11.9) than for patients with B phenotype (7.3 ± 9.0). The practice of sports was associated with lower FSHD score (-17%) in participants with A phenotype (MR = 0.83, 95% CI = 0.73-0.95, p = 0.007) and by 33% in participants with D phenotype (MR = 0.67, 95% CI = 0.51-0.89, p = 0.006). Conversely, no improvement was observed in participants with incomplete phenotype with mild severity (B). CONCLUSIONS PAs at a young age are associated with a lower clinical score in the adult A and D FSHD subcategories. These results corroborate the need to consider PAs at the young age as a fundamental indicator for the correct clinical stratification of the disease and its possible evolution.
Collapse
Affiliation(s)
- Cinzia Bettio
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, Modena, 41125, Italy
| | - Federico Banchelli
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vicini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Oscar Crisafulli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Elisabetta Bucci
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | | | - Angela Berardinelli
- Unit of Child Neurology and Psychiatry, IRCCS "C. Mondino" Foundation, Pavia, Italy
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia D'Angelo
- NeuroMuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini (Lecco), Italy
| | - Antonio Di Muzio
- Center for Neuromuscular Disease, CeSI, University "G. D'Annunzio", Chieti, Italy
| | | | - Erica Frezza
- Unit Malattie Neuromuscolari, Policlinico e Università di Roma Tor Vergata, Roma, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Mongini
- Department of Neurosciences "Rita Levi Montalcini", Center for Neuromuscular Diseases, University of Turin, Turin, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marina Scarlato
- INSPE and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Daniele Velardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuliano Tomelleri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, Modena, 41125, Italy
| | - Roberto D'Amico
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, Modena, 41125, Italy.
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, USA.
| |
Collapse
|
9
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
10
|
Vintila AR, Slade L, Cooke M, Willis CRG, Torregrossa R, Rahman M, Anupom T, Vanapalli SA, Gaffney CJ, Gharahdaghi N, Szabo C, Szewczyk NJ, Whiteman M, Etheridge T. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216141120. [PMID: 37523525 PMCID: PMC10410709 DOI: 10.1073/pnas.2216141120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.
Collapse
Affiliation(s)
- Adriana Raluca Vintila
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Luke Slade
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Michael Cooke
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, BradfordBD7 1DP, United Kingdom
| | - Roberta Torregrossa
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX74909
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Christopher J. Gaffney
- Lancaster University Medical School, Lancaster University, LancasterLA1 4YW, United Kingdom
| | - Nima Gharahdaghi
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, FribourgCH-1700, Switzerland
| | - Nathaniel J. Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH45701
| | - Matthew Whiteman
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| |
Collapse
|
11
|
Masson SWC, Madsen S, Cooke KC, Potter M, Vegas AD, Carroll L, Thillainadesan S, Cutler HB, Walder KR, Cooney GJ, Morahan G, Stöckli J, James DE. Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance. eLife 2023; 12:RP86961. [PMID: 37494090 PMCID: PMC10371229 DOI: 10.7554/elife.86961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance.
Collapse
Affiliation(s)
- Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Luke Carroll
- Australian Proteome Analysis Facility, Macquarie UniversityMacquarie ParkAustralia
| | - Senthil Thillainadesan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Ken R Walder
- School of Medicine, Deakin UniversityGeelongAustralia
| | - Gregory J Cooney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical ResearchMurdochAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- School of Medical Sciences University of SydneySydneyAustralia
| |
Collapse
|
12
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
13
|
Chaillou T, Montiel-Rojas D. Does the blunted stimulation of skeletal muscle protein synthesis by aging in response to mechanical load result from impaired ribosome biogenesis? FRONTIERS IN AGING 2023; 4:1171850. [PMID: 37256189 PMCID: PMC10225510 DOI: 10.3389/fragi.2023.1171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023]
Abstract
Age-related loss of skeletal muscle mass leads to a reduction of strength. It is likely due to an inadequate stimulation of muscle protein synthesis (MPS) in response to anabolic stimuli, such as mechanical load. Ribosome biogenesis is a major determinant of translational capacity and is essential for the control of muscle mass. This mini-review aims to put forth the hypothesis that ribosome biogenesis is impaired by aging in response to mechanical load, which could contribute to the age-related anabolic resistance and progressive muscle atrophy. Recent animal studies indicate that aging impedes muscle hypertrophic response to mechanical overload. This is associated with an impaired transcription of ribosomal DNA (rDNA) by RNA polymerase I (Pol I), a limited increase in total RNA concentration, a blunted activation of AKT/mTOR pathway, and an increased phosphorylation of AMPK. In contrast, an age-mediated impairment of ribosome biogenesis is unlikely in response to electrical stimulations. In human, the hypertrophic response to resistance exercise training is diminished with age. This is accompanied by a deficit in long-term MPS and an absence of increased total RNA concentration. The results addressing the acute response to resistance exercise suggest an impaired Pol I-mediated rDNA transcription and attenuated activation/expression of several upstream regulators of ribosome biogenesis in muscles from aged individuals. Altogether, emerging evidence indicates that impaired ribosome biogenesis could partly explain age-related anabolic resistance to mechanical load, which may ultimately contribute to progressive muscle atrophy. Future research should develop more advanced molecular tools to provide in-depth analysis of muscle ribosome biogenesis.
Collapse
|
14
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
15
|
Palma-Flores C, Zárate-Segura PB, Hernández-Hernández JM, de los Santos S, Tejeda-Gómez AS, Cano-Martínez LJ, Canto P, Garcia-Rebollar JO, Coral-Vázquez RM. (−)-Epicatechin modulates the expression of myomiRs implicated in exercise response in mouse skeletal muscle. Gene X 2023; 849:146907. [DOI: 10.1016/j.gene.2022.146907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
|
16
|
Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int J Mol Sci 2022; 23:ijms232213823. [PMID: 36430301 PMCID: PMC9696247 DOI: 10.3390/ijms232213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of skeletal myocyte viability. The signaling pathways triggered by mTOR vary according to the type of endogenous and exogenous factors (e.g., redox balance, nutrient availability, physical activity) as well as organismal age. Here, we provide an overview of mTOR signaling in skeletal muscle, with a special focus on the role played by mTOR in the development of sarcopenia. Intervention strategies targeting mTOR in sarcopenia (e.g., supplementation of plant extracts, hormones, inorganic ions, calorie restriction, and exercise) have also been discussed.
Collapse
|
17
|
Gautvik KM, Olstad OK, Raue U, Gautvik VT, Kvernevik KJ, Utheim TP, Ravnum S, Kirkegaard C, Wiig H, Jones G, Pilling LC, Trappe S, Raastad T, Reppe S. Heavy-load exercise in older adults activates vasculogenesis and has a stronger impact on muscle gene expression than in young adults. Eur Rev Aging Phys Act 2022; 19:23. [PMID: 36182918 PMCID: PMC9526277 DOI: 10.1186/s11556-022-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A striking effect of old age is the involuntary loss of muscle mass and strength leading to sarcopenia and reduced physiological functions. However, effects of heavy-load exercise in older adults on diseases and functions as predicted by changes in muscle gene expression have been inadequately studied. METHODS Thigh muscle global transcriptional activity (transcriptome) was analyzed in cohorts of older and younger adults before and after 12-13 weeks heavy-load strength exercise using Affymetrix microarrays. Three age groups, similarly trained, were compared: younger adults (age 24 ± 4 years), older adults of average age 70 years (Oslo cohort) and above 80 years (old BSU cohort). To increase statistical strength, one of the older cohorts was used for validation. Ingenuity Pathway analysis (IPA) was used to identify predicted biological effects of a gene set that changed expression after exercise, and Principal Component Analysis (PCA) was used to visualize differences in muscle gene expressen between cohorts and individual participants as well as overall changes upon exercise. RESULTS Younger adults, showed few transcriptome changes, but a marked, significant impact was observed in persons of average age 70 years and even more so in persons above 80 years. The 249 transcripts positively or negatively altered in both cohorts of older adults (q-value < 0.1) were submitted to gene set enrichment analysis using IPA. The transcripts predicted increase in several aspects of "vascularization and muscle contractions", whereas functions associated with negative health effects were reduced, e.g., "Glucose metabolism disorder" and "Disorder of blood pressure". Several genes that changed expression after intervention were confirmed at the genome level by containing single nucleotide variants associated with handgrip strength and muscle expression levels, e.g., CYP4B1 (p = 9.2E-20), NOTCH4 (p = 9.7E-8), and FZD4 (p = 5.3E-7). PCA of the 249 genes indicated a differential pattern of muscle gene expression in young and elderly. However, after exercise the expression patterns in both young and old BSU cohorts were changed in the same direction for the vast majority of participants. CONCLUSIONS The positive impact of heavy-load strength training on the transcriptome increased markedly with age. The identified molecular changes translate to improved vascularization and muscular strength, suggesting highly beneficial health effects for older adults.
Collapse
Affiliation(s)
- Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Ulrika Raue
- Human Performance Lab, Ball State University, Muncie, IN USA
| | - Vigdis T. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Karl J. Kvernevik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal Surgical Unit, Arendal, Norway
| | - Solveig Ravnum
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Camilla Kirkegaard
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Håvard Wiig
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Garan Jones
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Luke C. Pilling
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Scott Trappe
- Human Performance Lab, Ball State University, Muncie, IN USA
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Deane CS, Phillips BE, Willis CRG, Wilkinson DJ, Smith K, Higashitani N, Williams JP, Szewczyk NJ, Atherton PJ, Higashitani A, Etheridge T. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age. GeroScience 2022:10.1007/s11357-022-00658-5. [PMID: 36161583 PMCID: PMC10400508 DOI: 10.1007/s11357-022-00658-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022] Open
Abstract
Resistance exercise training (RET) can counteract negative features of muscle ageing but older age associates with reduced adaptive capacity to RET. Altered muscle protein networks likely contribute to ageing RET adaptation; therefore, associated proteome-wide responses warrant exploration. We employed quantitative sarcoplasmic proteomics to compare age-related proteome and phosphoproteome responses to RET. Thigh muscle biopsies were collected from eight young (25 ± 1.1 years) and eight older (67.5 ± 2.6 years) adults before and after 20 weeks supervised RET. Muscle sarcoplasmic fractions were pooled for each condition and analysed using Isobaric Tags for Relative and Absolute Quantification (iTRAQ) labelling, tandem mass spectrometry and network-based hub protein identification. Older adults displayed impaired RET-induced adaptations in whole-body lean mass, body fat percentage and thigh lean mass (P > 0.05). iTRAQ identified 73 differentially expressed proteins with age and/or RET. Despite possible proteomic stochasticity, RET improved ageing profiles for mitochondrial function and glucose metabolism (top hub; PYK (pyruvate kinase)) but failed to correct altered ageing expression of cytoskeletal proteins (top hub; YWHAZ (14-3-3 protein zeta/delta)). These ageing RET proteomic profiles were generally unchanged or oppositely regulated post-RET in younger muscle. Similarly, RET corrected expression of 10 phosphoproteins altered in ageing, but these responses were again different vs. younger adults. Older muscle is characterised by RET-induced metabolic protein profiles that, whilst not present in younger muscle, improve untrained age-related proteomic deficits. Combined with impaired cytoskeletal adhesion responses, these results provide a proteomic framework for understanding and optimising ageing muscle RET adaptation.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Bethan E Phillips
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Craig R G Willis
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Daniel J Wilkinson
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Ken Smith
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - John P Williams
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
- University Hospitals Derby & Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK
| | - Nathaniel J Szewczyk
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
| | - Philip J Atherton
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
19
|
Brook MS, Wilkinson DJ, Tarum J, Mitchell KW, Lund JL, Phillips BE, Szewczyk NJ, Kadi F, Greenhaff PL, Smith K, Atherton PJ. Neither myonuclear accretion nor a myonuclear domain size ceiling is a feature of the attenuated hypertrophic potential of aged human skeletal muscle. GeroScience 2022; 45:451-462. [PMID: 36083436 PMCID: PMC9886697 DOI: 10.1007/s11357-022-00651-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023] Open
Abstract
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Kyle W. Mitchell
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Jonathan L. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Paul L. Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK ,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
20
|
Thomas ACQ, Brown A, Hatt AA, Manta K, Costa-Parke A, Kamal M, Joanisse S, McGlory C, Phillips SM, Kumbhare D, Parise G. Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women. FASEB J 2022; 36:e22500. [PMID: 35971745 DOI: 10.1096/fj.202200398rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Factors influencing inter-individual variability of responses to resistance training (RT) remain to be fully elucidated. We have proposed the importance of capillarization in skeletal muscle for the satellite cell (SC) response to RT-induced muscle hypertrophy, and hypothesized that aerobic conditioning (AC) would augment RT-induced adaptations. Fourteen healthy young (22 ± 2 years) men and women underwent AC via 6 weeks of unilateral cycling followed by 10 weeks of bilateral RT to investigate how AC alters SC content, activity, and muscle hypertrophy following RT. Muscle biopsies were taken at baseline (unilateral), post AC (bilateral), and post RT (bilateral) in the aerobically conditioned (AC + RT) and unconditioned (RT) legs. Immunofluorescence was used to determine muscle capillarization, fiber size, SC content, and activity. Type I and type II fiber cross-sectional area (CSA) increased following RT, and when legs were analyzed independently, AC + RT increased type I, type II, and mixed-fiber CSA, where the RT leg tended to increase type II (p = .05), but not type I or mixed-fiber CSA. SC content, activation, and differentiation increased with RT, where type I total and quiescent SC content was greater in AC + RT compared to the RT leg. Those with the greatest capillary-to-fiber perimeter exchange index before RT had the greatest change in CSA following RT and a significant relationship was observed between type II fiber capillarization and the change in type II-fiber CSA with RT (r = 0.35). This study demonstrates that AC prior to RT can augment RT-induced muscle adaptions and that these differences are associated with increases in capillarization.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alex Brown
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aidan A Hatt
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Anamaria Costa-Parke
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Musculoskeletal Sciences and Sport Medicine Research Centre, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
22
|
Giannos P, Prokopidis K, Raleigh SM, Kelaiditi E, Hill M. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer's disease. Sci Rep 2022; 12:11290. [PMID: 35788655 PMCID: PMC9253146 DOI: 10.1038/s41598-022-15578-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has linked Alzheimer's disease (AD) onset with musculoskeletal aging via a muscle-brain crosstalk mediated by dysregulation of the mitochondrial microenvironment. This study investigated gene expression profiles from skeletal muscle tissues of older healthy adults to identify potential gene biomarkers whose dysregulated expression and protein interactome were involved in AD. Screening of the literature resulted in 12 relevant microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880) in musculoskeletal aging and (GSE4757, GSE5281, GSE16759, GSE28146, GSE48350, GSE84422) in AD. Retrieved differentially expressed genes (DEGs) were used to construct two unique protein-protein interaction networks and clustering gene modules were identified. Overlapping module DEGs in the musculoskeletal aging and AD networks were ranked based on 11 topological algorithms and the five highest-ranked ones were considered as hub genes. The analysis revealed that the dysregulated expression of the mitochondrial microenvironment genes, NDUFAB1, UQCRC1, UQCRFS1, NDUFS3, and MRPL15, overlapped between both musculoskeletal aging and AD networks. Thus, these genes may have a potential role as markers of AD occurrence in musculoskeletal aging. Human studies are warranted to evaluate the functional role and prognostic value of these genes in aging populations with sarcopenia and AD.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK. .,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Konstantinos Prokopidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stuart M Raleigh
- Cardiovascular and Lifestyle Medicine Research Group, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Eirini Kelaiditi
- Faculty of Sport, Allied Health and Performance Science, St Mary's University Twickenham, Twickenham, UK
| | - Mathew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
23
|
Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci Rep 2022; 12:7553. [PMID: 35534615 PMCID: PMC9085756 DOI: 10.1038/s41598-022-11621-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 01/05/2023] Open
Abstract
The molecular responses to acute resistance exercise are well characterized. However, how cellular signals change over time to modulate chronic adaptations to more prolonged exercise training is less well understood. We investigated anabolic signaling and muscle protein synthesis rates at several time points after acute and chronic eccentric loading. Adult rat tibialis anterior muscle was stimulated for six sets of ten repetitions, and the muscle was collected at 0 h, 6 h, 18 h and 48 h. In the last group of animals, 48 h after the first exercise bout a second bout was conducted, and the muscle was collected 6 h later (54 h total). In a second experiment, rats were exposed to four exercise sessions over the course of 2 weeks. Anabolic signaling increased robustly 6 h after the first bout returning to baseline between 18 and 48 h. Interestingly, 6 h after the second bout mTORC1 activity was significantly lower than following the first bout. In the chronically exercised rats, we found baseline anabolic signaling was decreased, whereas myofibrillar protein synthesis (MPS) was substantially increased, 48 h after the last bout of exercise. The increase in MPS occurred in the absence of changes to muscle fiber size or mass. In conclusion, we find that anabolic signaling is already diminished after the second bout of acute resistance type exercise. Further, chronic exposure to resistance type exercise training results in decreased basal anabolic signaling but increased overall MPS rates.
Collapse
|
24
|
SARZYNSKI MARKA, RICE TREVAK, DESPRÉS JEANPIERRE, PÉRUSSE LOUIS, TREMBLAY ANGELO, STANFORTH PHILIPR, TCHERNOF ANDRÉ, BARBER JACOBL, FALCIANI FRANCESCO, CLISH CLARY, ROBBINS JEREMYM, GHOSH SUJOY, GERSZTEN ROBERTE, LEON ARTHURS, SKINNER JAMESS, RAO DC, BOUCHARD CLAUDE. The HERITAGE Family Study: A Review of the Effects of Exercise Training on Cardiometabolic Health, with Insights into Molecular Transducers. Med Sci Sports Exerc 2022; 54:S1-S43. [PMID: 35611651 PMCID: PMC9012529 DOI: 10.1249/mss.0000000000002859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the HERITAGE Family Study was to investigate individual differences in response to a standardized endurance exercise program, the role of familial aggregation, and the genetics of response levels of cardiorespiratory fitness and cardiovascular disease and diabetes risk factors. Here we summarize the findings and their potential implications for cardiometabolic health and cardiorespiratory fitness. It begins with overviews of background and planning, recruitment, testing and exercise program protocol, quality control measures, and other relevant organizational issues. A summary of findings is then provided on cardiorespiratory fitness, exercise hemodynamics, insulin and glucose metabolism, lipid and lipoprotein profiles, adiposity and abdominal visceral fat, blood levels of steroids and other hormones, markers of oxidative stress, skeletal muscle morphology and metabolic indicators, and resting metabolic rate. These summaries document the extent of the individual differences in response to a standardized and fully monitored endurance exercise program and document the importance of familial aggregation and heritability level for exercise response traits. Findings from genomic markers, muscle gene expression studies, and proteomic and metabolomics explorations are reviewed, along with lessons learned from a bioinformatics-driven analysis pipeline. The new opportunities being pursued in integrative -omics and physiology have extended considerably the expected life of HERITAGE and are being discussed in relation to the original conceptual model of the study.
Collapse
Affiliation(s)
- MARK A. SARZYNSKI
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - TREVA K. RICE
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - JEAN-PIERRE DESPRÉS
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
| | - LOUIS PÉRUSSE
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - ANGELO TREMBLAY
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - PHILIP R. STANFORTH
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX
| | - ANDRÉ TCHERNOF
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
- School of Nutrition, Laval University, Quebec, QC, CANADA
| | - JACOB L. BARBER
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - FRANCESCO FALCIANI
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UNITED KINGDOM
| | - CLARY CLISH
- Metabolomics Platform, Broad Institute and Harvard Medical School, Boston, MA
| | - JEREMY M. ROBBINS
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - SUJOY GHOSH
- Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Medical School, SINGAPORE
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - ROBERT E. GERSZTEN
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - ARTHUR S. LEON
- School of Kinesiology, University of Minnesota, Minneapolis, MN
| | | | - D. C. RAO
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - CLAUDE BOUCHARD
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
25
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Zhao X, Yuan F, Wan H, Qin H, Jiang N, Yu B. Mechanisms of magnoliae cortex on treating sarcopenia explored by GEO gene sequencing data combined with network pharmacology and molecular docking. BMC Genom Data 2022; 23:15. [PMID: 35176999 PMCID: PMC8851866 DOI: 10.1186/s12863-022-01029-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background Administration of Magnoliae Cortex (MC) could induce remission of cisplatin-induced sarcopenia in mice, however, whether it is effective on sarcopenia patients and the underlying mechanisms remain unclear. Methods Sarcopenia related differentially expressed genes were analysed based on three Gene Expression Omnibus (GEO) transcriptome profiling datasets, which was merged and de duplicated with disease databases to obtain sarcopenia related pathogenic genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were than performed to analyse the role of proteins encoded by sarcopenia related pathogenic genes and the signal regulatory pathways involved in. The main active components and target proteins of MC were obtained by searching traditional Chinese medicine network databases (TCMSP and BATMAN-TCM). MC and sarcopenia related pathogenic genes shared target proteins were identified by matching the two. A protein–protein interaction network was constructed subsequently, and the core proteins were filtered according to the topological structure. GO and KEGG analysis were performed again to analyse the key target proteins and pathways of MC in the treatment of sarcopenia, and build the herbs-components-targets network, as well as core targets-signal pathways network. Molecular docking technology was used to verify the main compounds-targets. Results Sarcopenia related gene products primarily involve in aging and inflammation related signal pathways. Seven main active components (Anonaine, Eucalyptol, Neohesperidin, Obovatol, Honokiol, Magnolol, and beta-Eudesmol) and 26 target proteins of MC-sarcopenia, of which 4 were core proteins (AKT1, EGFR, INS, and PIK3CA), were identified. The therapeutic effect of MC on sarcopenia may associate with PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, longevity regulating pathway, and other cellular and innate immune signaling pathways. Conclusion MC contains potential anti-sarcopenia active compounds. These compounds play a role by regulating the proteins implicated in regulating aging and inflammation related signaling pathways, which are crucial in pathogenesis of sarcopenia. Our study provides new insights into the development of a natural therapy for the prevention and treatment of sarcopenia. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01029-x.
Collapse
Affiliation(s)
- Xingqi Zhao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feifei Yuan
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Haoyang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hanjun Qin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Thome T, Miguez K, Willms AJ, Burke SK, Chandran V, de Souza AR, Fitzgerald LF, Baglole C, Anagnostou ME, Bourbeau J, Jagoe RT, Morais JA, Goddard Y, Taivassalo T, Ryan TE, Hepple RT. Chronic aryl hydrocarbon receptor activity phenocopies smoking-induced skeletal muscle impairment. J Cachexia Sarcopenia Muscle 2022; 13:589-604. [PMID: 34725955 PMCID: PMC8818603 DOI: 10.1002/jcsm.12826] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) patients exhibit skeletal muscle atrophy, denervation, and reduced mitochondrial oxidative capacity. Whilst chronic tobacco smoke exposure is implicated in COPD muscle impairment, the mechanisms involved are ambiguous. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that activates detoxifying pathways with numerous exogenous ligands, including tobacco smoke. Whereas transient AHR activation is adaptive, chronic activation can be toxic. On this basis, we tested the hypothesis that chronic smoke-induced AHR activation causes adverse muscle impact. METHODS We used clinical patient muscle samples, and in vitro (C2C12 myotubes) and in vivo models (mouse), to perform gene expression, mitochondrial function, muscle and neuromuscular junction morphology, and genetic manipulations (adeno-associated virus-mediated gene transfer). RESULTS Sixteen weeks of tobacco smoke exposure in mice caused muscle atrophy, neuromuscular junction degeneration, and reduced oxidative capacity. Similarly, smoke exposure reprogrammed the muscle transcriptome, with down-regulation of mitochondrial and neuromuscular junction genes. In mouse and human patient specimens, smoke exposure increased muscle AHR signalling. Mechanistically, experiments in cultured myotubes demonstrated that smoke condensate activated the AHR, caused mitochondrial impairments, and induced an AHR-dependent myotube atrophy. Finally, to isolate the role of AHR activity, expression of a constitutively active AHR mutant without smoke exposure caused atrophy and mitochondrial impairments in cultured myotubes, and muscle atrophy and neuromuscular junction degeneration in mice. CONCLUSIONS These results establish that chronic AHR activity, as occurs in smokers, phenocopies the atrophy, mitochondrial impairment, and neuromuscular junction degeneration caused by chronic tobacco smoke exposure.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Kayla Miguez
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Alexander J Willms
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Sarah K Burke
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - Angela R de Souza
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Liam F Fitzgerald
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Carolyn Baglole
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | - Jean Bourbeau
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - R Thomas Jagoe
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jose A Morais
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Yana Goddard
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Effect of short-term hindlimb immobilization on skeletal muscle atrophy and the transcriptome in a low compared with high responder to endurance training model. PLoS One 2022; 17:e0261723. [PMID: 35025912 PMCID: PMC8757917 DOI: 10.1371/journal.pone.0261723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.
Collapse
|
29
|
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021; 11:23930. [PMID: 34907264 PMCID: PMC8671437 DOI: 10.1038/s41598-021-03393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.
Collapse
|
30
|
Takeshita LY, Davidsen PK, Herbert JM, Antczak P, Hesselink MKC, Schrauwen P, Weisnagel SJ, Robbins JM, Gerszten RE, Ghosh S, Sarzynski MA, Bouchard C, Falciani F. Genomics and transcriptomics landscapes associated to changes in insulin sensitivity in response to endurance exercise training. Sci Rep 2021; 11:23314. [PMID: 34857871 PMCID: PMC8639975 DOI: 10.1038/s41598-021-98792-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
Despite good adherence to supervised endurance exercise training (EET), some individuals experience no or little improvement in peripheral insulin sensitivity. The genetic and molecular mechanisms underlying this phenomenon are currently not understood. By investigating genome-wide variants associated with baseline and exercise-induced changes (∆) in insulin sensitivity index (Si) in healthy volunteers, we have identified novel candidate genes whose mouse knockouts phenotypes were consistent with a causative effect on Si. An integrative analysis of functional genomic and transcriptomic profiles suggests genetic variants have an aggregate effect on baseline Si and ∆Si, focused around cholinergic signalling, including downstream calcium and chemokine signalling. The identification of calcium regulated MEF2A transcription factor as the most statistically significant candidate driving the transcriptional signature associated to ∆Si further strengthens the relevance of calcium signalling in EET mediated Si response.
Collapse
Affiliation(s)
- Louise Y. Takeshita
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Peter K. Davidsen
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - John M. Herbert
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Philipp Antczak
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK ,grid.411097.a0000 0000 8852 305XCenter for Molecular Medicine Cologne, University Hospital Cologne, 50931 Cologne, Germany
| | - Matthijs K. C. Hesselink
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Centre, Maastricht, The Netherlands
| | - Patrick Schrauwen
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Centre, Maastricht, The Netherlands
| | - S. John Weisnagel
- grid.23856.3a0000 0004 1936 8390Diabetes Research Unit, Endocrinology and Nephrology Axis, CRCHU de Québec, Université Laval, Québec City, Canada
| | - Jeremy M. Robbins
- grid.239395.70000 0000 9011 8547Division of Cardiovascular Medicine, and Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Robert E. Gerszten
- grid.239395.70000 0000 9011 8547Division of Cardiovascular Medicine, and Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Sujoy Ghosh
- grid.428397.30000 0004 0385 0924Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mark A. Sarzynski
- grid.254567.70000 0000 9075 106XDepartment of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| | - Claude Bouchard
- grid.250514.70000 0001 2159 6024Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Francesco Falciani
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
31
|
Preoperative Aerobic Exercise Therapy Prior to Abdominal Surgery: What Is the Evidence? What Dose? CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Gut Microbiota, Microbial Metabolites and Human Physical Performance. Metabolites 2021; 11:metabo11110716. [PMID: 34822374 PMCID: PMC8619554 DOI: 10.3390/metabo11110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
Trillions of microbes inhabiting the gut modulate the metabolism of the host. Cross-sectional studies have reported associations between physical performance and the gut microbiota (GM). Physical activity seems to increase GM diversity and the abundance of certain health-beneficial microbes. We reviewed the evidence from longitudinal studies on the connection between physically active lifestyle or long-term exercise interventions and the GM. We made literature searches using databases of Web of Science and PubMed Medline to collect human studies showing or not the associations between the GM and exercise. Many controversies exist in the studies. However, the longitudinal studies show that frequently, medium-intensity endurance exercise has yielded most beneficial effects on the GM, but the results vary depending on the study population and exercise protocol. In addition, the literature shows that certain microbes own the potency to increase physical activity and performance. Generally, a physically active lifestyle and exercise associate with a “healthy” GM. However, in previously sedentary subjects, the exercise-induced improvements in the GM seem to disappear unless the active lifestyle is continued. Unfortunately, several studies are not controlled for the diet. Thus, in the future, more longitudinal studies on the GM and physical performance are needed, with detailed dietary information.
Collapse
|
33
|
Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proc Natl Acad Sci U S A 2021; 118:2102895118. [PMID: 34426497 DOI: 10.1073/pnas.2102895118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle atrophy is caused by various conditions, including aging, disuse related to a sedentary lifestyle and lack of physical activity, and cachexia. Our insufficient understanding of the molecular mechanism underlying muscle atrophy limits the targets for the development of effective pharmacologic treatments and preventions. Here, we identified Krüppel-like factor 5 (KLF5), a zinc-finger transcription factor, as a key mediator of the early muscle atrophy program. KLF5 was up-regulated in atrophying myotubes as an early response to dexamethasone or simulated microgravity in vitro. Skeletal muscle-selective deletion of Klf5 significantly attenuated muscle atrophy induced by mechanical unloading in mice. Transcriptome- and genome-wide chromatin accessibility analyses revealed that KLF5 regulates atrophy-related programs, including metabolic changes and E3-ubiquitin ligase-mediated proteolysis, in coordination with Foxo1. The synthetic retinoic acid receptor agonist Am80, a KLF5 inhibitor, suppressed both dexamethasone- and microgravity-induced muscle atrophy in vitro and oral Am80 ameliorated disuse- and dexamethasone-induced atrophy in mice. Moreover, in three independent sets of transcriptomic data from human skeletal muscle, KLF5 expression significantly increased with age and the presence of sarcopenia and correlated positively with the expression of the atrophy-related ubiquitin ligase genes FBXO32 and TRIM63 These findings demonstrate that KLF5 is a key transcriptional regulator mediating muscle atrophy and that pharmacological intervention with Am80 is a potentially preventive treatment.
Collapse
|
34
|
Naimo MA, Varanoske AN, Hughes JM, Pasiakos SM. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front Physiol 2021; 12:706699. [PMID: 34421645 PMCID: PMC8376973 DOI: 10.3389/fphys.2021.706699] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle quality (MQ), defined as the amount of strength and/or power per unit of muscle mass, is a novel index of functional capacity that is increasingly relied upon as a critical biomarker of muscle health in low functioning aging and pathophysiological adult populations. Understanding the phenotypical attributes of MQ and how to use it as an assessment tool to explore the efficacy of resistance exercise training interventions that prioritize functional enhancement over increases in muscle size may have implications for populations beyond compromised adults, including healthy young adults who routinely perform physically demanding tasks for competitive or occupational purposes. However, MQ has received far less attention in healthy young populations than it has in compromised adults. Researchers and practitioners continue to rely upon static measures of lean mass or isolated measures of strength and power, rather than using MQ, to assess integrated functional responses to resistance exercise training and physical stress. Therefore, this review will critically examine MQ and the evidence base to establish this metric as a practical and important biomarker for functional capacity and performance in healthy, young populations. Interventions that enhance MQ, such as high-intensity stretch shortening contraction resistance exercise training, will be highlighted. Finally, we will explore the potential to leverage MQ as a practical assessment tool to evaluate function and enhance performance in young populations in non-traditional research settings.
Collapse
Affiliation(s)
- Marshall A Naimo
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Alyssa N Varanoske
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
35
|
Willis CRG, Gallagher IJ, Wilkinson DJ, Brook MS, Bass JJ, Phillips BE, Smith K, Etheridge T, Stokes T, McGlory C, Gorissen SHM, Szewczyk NJ, Phillips SM, Atherton PJ. Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans. FASEB J 2021; 35:e21830. [PMID: 34342902 DOI: 10.1096/fj.202100276rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.
Collapse
Affiliation(s)
- Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Joseph J Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nathaniel J Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
36
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
37
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
García-Casas P, Alvarez-Illera P, Gómez-Orte E, Cabello J, Fonteriz RI, Montero M, Alvarez J. The Mitochondrial Na +/Ca 2+ Exchanger Inhibitor CGP37157 Preserves Muscle Structure and Function to Increase Lifespan and Healthspan in Caenorhabditis elegans. Front Pharmacol 2021; 12:695687. [PMID: 34211399 PMCID: PMC8241105 DOI: 10.3389/fphar.2021.695687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.
Collapse
Affiliation(s)
- Paloma García-Casas
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Rosalba I Fonteriz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| |
Collapse
|
40
|
Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nat Commun 2021; 12:3471. [PMID: 34108459 PMCID: PMC8190306 DOI: 10.1038/s41467-021-23579-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes. Regular exercise promotes overall health and prevents non-communicable diseases, but the adaptation mechanisms are unclear. Here, the authors perform a meta-analysis to reveal time-specific patterns of the acute and long-term exercise response in human skeletal muscle, and identify sex- and age-specific changes.
Collapse
|
41
|
Deane CS, Willis CRG, Phillips BE, Atherton PJ, Harries LW, Ames RM, Szewczyk NJ, Etheridge T. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans. J Cachexia Sarcopenia Muscle 2021; 12:629-645. [PMID: 33951310 PMCID: PMC8200445 DOI: 10.1002/jcsm.12706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance. METHODS Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle. RESULTS Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes. CONCLUSIONS Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ryan M Ames
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute & Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| |
Collapse
|
42
|
Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Rep 2021; 32:107980. [PMID: 32755574 PMCID: PMC7408494 DOI: 10.1016/j.celrep.2020.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.
Collapse
|
43
|
Gueugneau M, Coudy-Gandilhon C, Chambon C, Verney J, Taillandier D, Combaret L, Polge C, Walrand S, Roche F, Barthélémy JC, Féasson L, Béchet D. Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. Int J Mol Sci 2021; 22:4205. [PMID: 33921590 PMCID: PMC8074053 DOI: 10.3390/ijms22084205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and β-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.
Collapse
Affiliation(s)
- Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Christophe Chambon
- Metabolomic and Proteomic Exploration Facility, Université Clermont Auvergne, INRAE, 63000 Clermont-Ferrand, France;
| | - Julien Verney
- Laboratoire AME2P, Université Clermont Auvergne, 3533 Clermont-Ferrand, France;
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Stéphane Walrand
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Frédéric Roche
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Jean-Claude Barthélémy
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Léonard Féasson
- Unité de Myologie, Service de Physiologie Clinique et de l’Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, 42000 CHU de Saint-Etienne, France;
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet Saint-Etienne, 69000 Lyon, France
| | - Daniel Béchet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| |
Collapse
|
44
|
Abstract
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
Collapse
|
45
|
Control of Protein and Energy Metabolism in the Pituitary Gland in Response to Three-Week Running Training in Adult Male Mice. Cells 2021; 10:cells10040736. [PMID: 33810540 PMCID: PMC8065971 DOI: 10.3390/cells10040736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
It is assumed that crosstalk of central and peripheral tissues plays a role in the adaptive response to physical activity and exercise. Here, we wanted to study the effects of training and genetic predisposition in a marathon mouse model on mRNA expression in the pituitary gland. Therefore, we used a mouse model developed by phenotype selection for superior running performance (DUhTP) and non-inbred control mice (DUC). Both mouse lines underwent treadmill training for three weeks or were kept in a sedentary condition. In all groups, total RNA was isolated from the pituitary gland and sequenced. Molecular pathway analysis was performed by ingenuity pathway analysis (IPA). Training induced differential expression of 637 genes (DEGs) in DUC but only 50 DEGs in DUhTP mice. Genetic selection for enhanced running performance strongly affected gene expression in the pituitary gland and identified 1732 DEGs in sedentary DUC versus DUhTP mice. Training appeared to have an even stronger effect on gene expression in both lines and comparatively revealed 3828 DEGs in the pituitary gland. From the list of DEGs in all experimental groups, candidate genes were extracted by comparison with published genomic regions with significant effects on training responses in mice. Bioinformatic modeling revealed induction and coordinated expression of the pathways for ribosome synthesis and oxidative phosphorylation in DUC mice. By contrast, DUhTP mice were resistant to the positive effects of three-week training on protein and energy metabolism in the pituitary gland.
Collapse
|
46
|
West DWD, Doering TM, Thompson JLM, Budiono BP, Lessard SJ, Koch LG, Britton SL, Steck R, Byrne NM, Brown MA, Peake JM, Ashton KJ, Coffey VG. Low responders to endurance training exhibit impaired hypertrophy and divergent biological process responses in rat skeletal muscle. Exp Physiol 2021; 106:714-725. [PMID: 33486778 DOI: 10.1113/ep089301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.
Collapse
Affiliation(s)
- Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, USA.,Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Thomas M Doering
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Jamie-Lee M Thompson
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Boris P Budiono
- School of Community Health, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roland Steck
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nuala M Byrne
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK
| | - Jonathan M Peake
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| | - Vernon G Coffey
- Faculty of Health Sciences and Medicine, Bond University, Robina, Gold Coast, Queensland, Australia
| |
Collapse
|
47
|
Skoglund E, Grönholdt-Klein M, Rullman E, Thornell LE, Strömberg A, Hedman A, Cederholm T, Ulfhake B, Gustafsson T. Longitudinal Muscle and Myocellular Changes in Community-Dwelling Men Over Two Decades of Successful Aging-The ULSAM Cohort Revisited. J Gerontol A Biol Sci Med Sci 2021; 75:654-663. [PMID: 31002330 DOI: 10.1093/gerona/glz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Participants of the population-based Uppsala longitudinal study of adult men (ULSAM) cohort reaching more than 88 years of age (survivors, S) were investigated at age 70, 82, and 88-90 and compared at 70 years with non-survivors (NS) not reaching 82 years. Body composition, muscle mass and muscle histology were remarkably stable over 18 years of advanced aging in S. Analysis of genes involved in muscle remodeling showed that S had higher mRNA levels of myogenic differentiation factors (Myogenin, MyoD), embryonic myosin (eMyHC), enzymes involved in regulated breakdown of myofibrillar proteins (Smad2, Trim32, MuRF1,) and NCAM compared with healthy adult men (n = 8). S also had higher mRNA levels of eMyHC, Smad 2, MuRF1 compared with NS. At 88 years, S expressed decreased levels of Myogenin, MyoD, eMyHC, NCAM and Smad2 towards those seen in NS at 70 years. The gene expression pattern of S at 70 years was likely beneficial since they maintained muscle fiber histology and appendicular lean body mass until advanced age. The expression pattern at 88 years may indicate a diminished muscle remodeling coherent with a decline of reinnervation capacity and/or plasticity at advanced age.
Collapse
Affiliation(s)
- Elisabeth Skoglund
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden.,Department of Integrative Medical Biology, Umeå University, Sweden
| | | | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anna Strömberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anu Hedman
- Heart Centre East-Tallinn Central Hospital, Estonia
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| | - Brun Ulfhake
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, Garcia AM, Smith K, Gallagher IJ, Szewczyk NJ, Cleasby ME, Atherton PJ. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 2020; 42:101059. [PMID: 32771696 PMCID: PMC7475200 DOI: 10.1016/j.molmet.2020.101059] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. METHODS Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. RESULTS Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. CONCLUSION VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Collapse
Affiliation(s)
- Joseph J Bass
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Asif Nakhuda
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Colleen S Deane
- Department of Sport and Health Sciences, University of Exeter, EX1 2LU, UK
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Bethan E Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, 2010, Australia; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Ditte Andersen
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Amadeo Muñoz Garcia
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK; Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, the Netherlands
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Iain J Gallagher
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, FK9 4LA, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Mark E Cleasby
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK.
| |
Collapse
|
49
|
Khan Y, Hammarström D, Rønnestad BR, Ellefsen S, Ahmad R. Increased biological relevance of transcriptome analyses in human skeletal muscle using a model-specific pipeline. BMC Bioinformatics 2020; 21:548. [PMID: 33256614 PMCID: PMC7708234 DOI: 10.1186/s12859-020-03866-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human skeletal muscle responds to weight-bearing exercise with significant inter-individual differences. Investigation of transcriptome responses could improve our understanding of this variation. However, this requires bioinformatic pipelines to be established and evaluated in study-specific contexts. Skeletal muscle subjected to mechanical stress, such as through resistance training (RT), accumulates RNA due to increased ribosomal biogenesis. When a fixed amount of total-RNA is used for RNA-seq library preparations, mRNA counts are thus assessed in different amounts of tissue, potentially invalidating subsequent conclusions. The purpose of this study was to establish a bioinformatic pipeline specific for analysis of RNA-seq data from skeletal muscles, to explore the effects of different normalization strategies and to identify genes responding to RT in a volume-dependent manner (moderate vs. low volume). To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, wherein 25 participants performed both low- and moderate-volume leg RT, allocated to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from m. vastus lateralis before and after the intervention, as well as before and after the fifth training session (Week 2). Result Bioinformatic tools were selected based on read quality, observed gene counts, methodological variation between paired observations, and correlations between mRNA abundance and protein expression of myosin heavy chain family proteins. Different normalization strategies were compared to account for global changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used in library preparation, global mRNA expression increased by 43–53%. At Week 2, this was accompanied by dose-dependent increases for 21 genes in rested-state muscle, most of which were related to the extracellular matrix. In contrast, at Week 12, no readily explainable dose-dependencies were observed. Instead, traditional normalization and non-normalized models resulted in counterintuitive reverse dose-dependency for many genes. Overall, training led to robust transcriptome changes, with the number of differentially expressed genes ranging from 603 to 5110, varying with time point and normalization strategy. Conclusion Optimized selection of bioinformatic tools increases the biological relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover, normalization procedures need to account for global changes in rRNA and mRNA abundance.
Collapse
Affiliation(s)
- Yusuf Khan
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway.,Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Innlandet Hospital Trust, Lillehammer, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway. .,Faculty of Health Sciences, Institute of Clinical Medicine, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway.
| |
Collapse
|
50
|
Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, Brightwell CR, Dupont AM, Neal AC, Fry CS, Accornero F, McCarthy JJ, Peterson CA. Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. FUNCTION 2020; 2:zqaa033. [PMID: 34109314 PMCID: PMC8179974 DOI: 10.1093/function/zqaa033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC-) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.
Collapse
Affiliation(s)
- Davis A Englund
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Alec M Dupont
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ally C Neal
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|