1
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gómez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. JBMR Plus 2025; 9:ziae159. [PMID: 39776615 PMCID: PMC11701521 DOI: 10.1093/jbmrpl/ziae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - W Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Claire J Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Ali R Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Arianna Ericka Gómez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Rajashekar Donaka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
| | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA 95343, United States
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
2
|
Vargas-Galicia AJ, Argüello-García R, Pro-Martínez A, González-Cerón F, Santacruz-Varela A, Osorio-Alonso H, Sosa-Montes E. Effects of allicin on ascites syndrome traits and angiotensin II type 1 receptor gene expression in broilers reared in the Mexican highlands. Avian Pathol 2025:1-12. [PMID: 39743981 DOI: 10.1080/03079457.2024.2447284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Ascites syndrome (AS) is a deadly condition in fast-growing chickens, preceded by pulmonary arterial hypertension (PAH), where the angiotensin II type 1 receptor (ATR1) plays a role. We investigated whether allicin (ALLI), a garlic derivative, could (a) interact with broiler ATR1, (b) affect ascites-related traits [haematocrit content (Hct%), blood oxygen saturation (SaO2), and the right-to-total ventricular weight ratio (RV:TV)], (c) modify ATR1 expression in the lung, heart, and liver, alongside ascites mortality and growth performance in Ross 308 broilers raised at high altitude and under cold temperatures promoting PAH/AS. Three groups (n = 70 each) were studied: 0-ALLI (untreated), 1-ALLI (allicin 1 mg/kg bodyweight/daily at 14-27 days of age by oral-oesophageal route), and 2.5-ALLI. After 3-6 weeks, Hct%, SaO2, RV:TV ratios, and ATR1 expression in the lung, heart, and liver, were evaluated. Weekly productive performance and AS mortality were recorded. Molecular dockings and dynamic simulations predicted that ALLI might inhibit broiler ATR1 in a transitory manner. At 42 days of age, birds in the 2.5-ALLI group exhibited lower Hct% and lower RV:TV values, while ALLI marginally enhanced SaO2. ATR1 expression in the 1-ALLI and 2.5-ALLI groups was higher (i.e. restored) in the lungs and heart, respectively, but not in the liver compared with the untreated group. Productive performance remained unaffected by ALLI, and 2.5-ALLI provided a protection of 4.3% against ascites mortality. In conclusion, 2.5-ALLI mitigated PAH/AS traits in the lungs and heart without compromising broiler productive performance. Further studies adjusting ALLI doses and combinations are warranted. RESEARCH HIGHLIGHTSBroilers bred at >2000 m OSL and <20°C were treated with 1 or 2.5 mg allicin per os.Allicin at 2.5 mg per os decreased haematocrit and right ventricular hypertrophy.Allicin treatments restored ATR1 expression in the heart and lungs.Productive performance of broilers was not affected by allicin treatments.Allicin is a promising candidate to enhance the quality of poultry production.
Collapse
Affiliation(s)
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Pro-Martínez
- Programme of Animal Science, Postgraduate College-Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Fernando González-Cerón
- Department of Animal Husbandry, Autonomous University of Chapingo, Chapingo, State of Mexico, Mexico
| | - Amalio Santacruz-Varela
- Programme of Genetics, Postgraduate College-Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Eliseo Sosa-Montes
- Department of Animal Husbandry, Autonomous University of Chapingo, Chapingo, State of Mexico, Mexico
| |
Collapse
|
3
|
McGraw CM, Baker CM, Poduri A. Enhanced proconvulsant sensitivity, not spontaneous rapid swimming activity, is a robust correlate of scn1lab loss-of-function in stable mutant and F0 crispant hypopigmented zebrafish expressing GCaMP6s. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633275. [PMID: 39868154 PMCID: PMC11760263 DOI: 10.1101/2025.01.15.633275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC). In the present study, we applied a method for combined movement and calcium fluorescence profiling to the study of a zebrafish model of SCN1A, the main gene associated with Dravet syndrome, which encodes the voltage-gated sodium channel alpha1 subunit (Nav1.1). We evaluated for spontaneous and proconvulsant-induced seizure-like activity associated with scn1lab LoF mutations in larval zebrafish expressing a neuronally-driven GECI (elavl3:GCaMP6s) and a nacre mutation causing a common pigmentation defect. In parallel studies of stable scn1lab s552 mutants and F0 crispant larvae generated using a CRISPR/Cas9 multi-sgRNA approach, we find that neither stable nor acute F0 larvae recapitulate the previously reported seizure-like rapid swimming phenotype nor does either group show spontaneous calcium events meeting criteria for seizure-like activity based on a logistic classifier trained on movement and fluorescence features of proconvulsant-induced seizures. This constitutes two independent lines of evidence for a suppressive effect against the scn1lab phenotype, possibly due to the GCaMP6s-derived genetic background (AB) or nacre hypopigmentation. In response to the proconvulsant pentylenetetrazole (PTZ), we see evidence of a separate suppressive effect affecting all conspecific larvae derived from the stable scn1lab s552 line, independent of genotype, possibly related to a maternal effect of scn1lab LoF in mutant parents or the residual TL background. Nonetheless, both stable and F0 crispant fish show enhanced sensitivity to PTZ relative to conspecific larvae, suggesting that proconvulsant sensitivity provides a more robust readout of scn1lab LoF under our experimental conditions. Our study underscores the unexpected challenges associated with the combination of common zebrafish tools with disease alleles in the phenotyping of zebrafish models of genetic epilepsy. Our work further highlights the advantages of using F0 crispants and the evaluation of proconvulsant sensitivity as complementary approaches that faithfully reflect the shared gene-specific pathophysiology underlying spontaneous seizures in stable mutant lines. Future work to understand the molecular mechanisms by which scn1lab-related seizures and PTZ-related hyperexcitability are suppressed under these conditions may shed light on factors contributing to variability in preclinical models of epilepsy more generally and may identify genetic modifiers relevant to Dravet syndrome.
Collapse
Affiliation(s)
- Christopher Michael McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (current affiliation)
| | - Cristina M. Baker
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Norwegian University of Science and Technology, Trondheim, Norway (current affiliation)
| | - Annapurna Poduri
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD (current affiliation)
| |
Collapse
|
4
|
Debaenst S, Jarayseh T, De Saffel H, Bek JW, Boone M, Josipovic I, Kibleur P, Kwon RY, Coucke PJ, Willaert A. Crispant analysis in zebrafish as a tool for rapid functional screening of disease-causing genes for bone fragility. eLife 2025; 13:RP100060. [PMID: 39817421 PMCID: PMC11737869 DOI: 10.7554/elife.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed. Using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish, Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.
Collapse
Affiliation(s)
- Sophie Debaenst
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Tamara Jarayseh
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Matthieu Boone
- Center for X-ray Tomography, Department of Physics and Astronomy, Ghent UniversityGhentBelgium
| | - Ivan Josipovic
- Center for X-ray Tomography, Department of Physics and Astronomy, Ghent UniversityGhentBelgium
| | - Pierre Kibleur
- Center for X-ray Tomography, Department of Physics and Astronomy, Ghent UniversityGhentBelgium
| | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| |
Collapse
|
5
|
He J, Hewett SJ. Nrf2 Regulates Basal Glutathione Production in Astrocytes. Int J Mol Sci 2025; 26:687. [PMID: 39859401 PMCID: PMC11765531 DOI: 10.3390/ijms26020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2-/-) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2+/+) pups. Key components of the GSH synthetic pathway, including xCT (the substrate-specific light chain of the substrate-importing transporter, system xc-), glutamate-cysteine ligase [catalytic (GCLc) and modifying (GCLm) subunits], were affected. To wit: qRT-PCR analysis demonstrates that naïve Nrf2-/- astrocytes have significantly lower basal mRNA levels of xCT and both GCL subunits compared to naïve Nrf2+/+ astrocytes. No change in mRNA levels of glutathione synthetase (GS) or the GSH exporting transporter, Mrp1, was found. Western blot analysis reveals reduced protein levels of both subunits of GCL, while (seleno)cystine uptake into Nrf2-/- astrocytes was reduced compared to Nrf2+/+ astrocytes, confirming decreased system xc- activity. These findings suggest that Nrf2 regulates the basal production of GSH in astrocytes through constitutive transcriptional regulation of GCL and xCT.
Collapse
Affiliation(s)
| | - Sandra J. Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA;
| |
Collapse
|
6
|
ter Horst S, Siekierska A, De Meulemeester AS, Cuvry A, Cools L, Neyts J, de Witte P, Rocha-Pereira J. The Dissemination of Rift Valley Fever Virus to the Eye and Sensory Neurons of Zebrafish Larvae Is Stat1-Dependent. Viruses 2025; 17:87. [PMID: 39861877 PMCID: PMC11768566 DOI: 10.3390/v17010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log10 viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine. The optical transparency of the larvae allowed detection of RVFVeGFP in the liver and sensory nervous system, including the optic tectum and retina, but not the brain or spinal cord. Thus, RVFV-induced blindness likely occurs due to direct damage to the eye and peripheral neurons, rather than the brain. Treatment with the JAK-inhibitor ruxolitinib, as well as knockout of stat1a but not stat1b, enhanced RVFV replication to ~6 log10 viral RNA copies/larva and ultra-bright livers, although without dissemination to sensory neurons or the eye, thereby confirming the critical role of stat1 in RVFV pathogenesis.
Collapse
Affiliation(s)
- Sebastiaan ter Horst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (S.t.H.); (A.C.); (J.N.)
| | - Aleksandra Siekierska
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.S.); (P.d.W.)
- VirusBank Platform, Gaston Geenslaan 3, 3001 Leuven, Belgium
| | - Ann-Sofie De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.S.); (P.d.W.)
| | - Arno Cuvry
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (S.t.H.); (A.C.); (J.N.)
| | - Laura Cools
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (S.t.H.); (A.C.); (J.N.)
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (S.t.H.); (A.C.); (J.N.)
| | - Peter de Witte
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.S.); (P.d.W.)
| | - Joana Rocha-Pereira
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (S.t.H.); (A.C.); (J.N.)
| |
Collapse
|
7
|
Baidoe-Ansah D, Mirzapourdelavar H, Aleshin S, Schott BH, Seidenbecher C, Kaushik R, Dityatev A. Neurocan regulates axon initial segment organization and neuronal activity. Matrix Biol 2025:S0945-053X(25)00001-0. [PMID: 39788215 DOI: 10.1016/j.matbio.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability. Here, we used knockdown and knockout approaches in mouse primary cortical neurons in combination with immunocytochemistry, western blotting and electrophysiological techniques to characterize the role of Ncan in the organization of PNNs and AISs and the upregulation of neuronal activity. We found that reduced Ncan levels led to remodeling of PNNs around neurons via upregulation of Aggrecan mRNA and protein levels, increased expression of activity-dependent c-Fos and FosB genes and elevated spontaneous synaptic activity. The latter correlated with increased levels of Ankyrin-G in the AIS, particularly in excitatory neurons, and with the elevated expression of Nav1.6 channels. Our results suggest that Ncan regulates the expression of key proteins in PNNs and AISs and provide new insights into its role in fine-tuning neuronal functions.
Collapse
Affiliation(s)
- David Baidoe-Ansah
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Stepan Aleshin
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Björn Hendrik Schott
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
8
|
Murphy MR, Ganapathi M, Lee TM, Fisher JM, Patel MV, Jayakar P, Buchanan A, Soni RK, Yin Y, Yang F, Reilly MP, Chung WK, Wu X. Recessive but damaging alleles of muscle-specific ribosomal protein gene RPL3L drive neonatal dilated cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.630345. [PMID: 39803500 PMCID: PMC11722222 DOI: 10.1101/2025.01.02.630345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. RPL3L-linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases. While the autosomal recessive inheritance pattern suggests a loss-of-function mechanism, Rpl3l-knockout mice display only mild phenotypes, attributed to up-regulation of the ubiquitous Rpl3. Interestingly, living human knockouts of RPL3L have been identified. Here, we report two new cases of RPL3L-linked severe neonatal heart failure and uncover an unusual pathogenetic mechanism through integrated analyses of population genetic data, patient cardiac tissue, and isogenic cells expressing RPL3L variants. Our findings demonstrate that patient hearts lack sufficient RPL3 compensation. Moreover, contrary to a simple loss-of-function mechanism often associated with autosomal recessive diseases, RPL3L-linked disease is driven by a combination of gain-of-toxicity and loss-of-function. Most patients carry a recurrent toxic missense variant alongside a non-recurrent loss-of-function variant. The non-recurrent variants trigger partial compensation of RPL3 similar to Rpl3l-knockout mice. In contrast, the recurrent missense variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD1 and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings elucidate the pathogenetic mechanisms underlying muscle-specific ribosome dysfunction in neonatal heart failure, providing critical insights for genetic screening and therapeutic development. Our findings also suggest that gain-of-toxicity mechanisms may be more widespread in autosomal recessive diseases, especially for those involving genes with paralogs.
Collapse
Affiliation(s)
- Michael R. Murphy
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Teresa M. Lee
- Department of Pediatrics, Columbia University Medical Center Irving Medical Center, New York, NY 10032, USA
| | - Joshua M. Fisher
- Department of Pediatrics, Columbia University Medical Center Irving Medical Center, New York, NY 10032, USA
| | - Megha V. Patel
- Department of Pediatrics, Nicklaus Children’s Hospital, Miami, FL 33155, USA
- Current: Children’s Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL 33155, USA
| | | | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Yue Yin
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Feiyue Yang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuebing Wu
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Juvik B, Falcucci L, Lundegaard PR, Stainier DYR. A new hypothesis to explain disease dominance. Trends Genet 2025:S0168-9525(24)00291-9. [PMID: 39788833 DOI: 10.1016/j.tig.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype. Recent studies have challenged the current concepts of haploinsufficiency or poison proteins as the mechanisms underlying certain dominant diseases, including Brugada syndrome, hypertrophic cardiomyopathy, and frontotemporal lobar degeneration. We hypothesize that for these and other dominant diseases, when the underlying mutation leads to mRNA decay, the phenotype is due at least partly to the dysregulation of gene expression via TA.
Collapse
Affiliation(s)
- Brian Juvik
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Pia R Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
10
|
Behnke V, Wolf A, Hector M, Langmann T. C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39775695 PMCID: PMC11717133 DOI: 10.1167/iovs.66.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice. Methods Bright white light with an intensity of 10,000 lux was applied for 30 minutes to complement component 3a receptor 1 (C3ar1) or complement component 5a receptor 1 (C5ar1) KO and wildtype (WT) mice. Analyses of transcriptome changes and migration activity of Iba1+ cells as well as retinal thickness were performed 4 days after light exposure. Results Full body KO mice of either C3aR1 or C5aR1 were tested, but none led to mitigated migration of Iba1+ cells to the subretinal space or decreased expression of complement factors after light damage compared to WT mice. However, a partial rescue of retinal thickness was shown in C3aR1 KO mice, which was mirrored by significant less membrane attack complex (MAC) occurrence in the outer retina. Conclusions We conclude that deletion of the anaphylatoxin receptor C3aR1 cannot modulate mononuclear phagocytes but diminishes retinal degeneration through interference with the complement pathway and thus decreased MAC assembling. C3aR1-targeted therapy may be considered for patients with dry AMD.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Disease Models, Animal
- Retinal Degeneration/metabolism
- Retinal Degeneration/etiology
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Light/adverse effects
- Mice, Inbred C57BL
- Microglia/metabolism
- Microglia/pathology
- Retina/metabolism
- Retina/pathology
- Retina/radiation effects
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/genetics
- Calcium-Binding Proteins
- Microfilament Proteins
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| |
Collapse
|
11
|
Cortázar MA, Jagannathan S. SelectRepair Knockout: Efficient PTC-Free Gene Knockout Through Selectable Homology-Directed DNA Repair. Methods Mol Biol 2025; 2863:397-417. [PMID: 39535722 DOI: 10.1007/978-1-0716-4176-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Generating nonessential gene knockouts using CRISPR/Cas9 technology is becoming increasingly common in biological research. In a typical workflow, the Cas9 endonuclease is used to induce a DNA double-strand break that relies on nonhomologous end-joining (NHEJ) to introduce a premature termination codon (PTC) in the target gene. The goal is to isolate clones in which the gene produces PTC-containing mRNA transcripts that are degraded via nonsense-mediated mRNA decay (NMD) to cause loss of gene function. Unfortunately, this approach is laborious, and not all PTCs trigger NMD. More importantly, mounting evidence suggest that PTC mutations can also result in a transcriptional adaptation response that can mask the effects of a PTC-mediated gene knockout. In this chapter, we present a PTC-free gene knockout strategy that implements homology-directed DNA repair (HDR) with selectable markers to substantially reduce the complexity of the screening and validation of genome edits in cells containing more than one gene copy as in the case of the commonly used hypotriploid HEK293 cell line. We describe how to obtain a complete knockout of the Ligase IV protein (LIG4) and provide considerations for the application of this SelectRepair Knockout method to other genes.
Collapse
Affiliation(s)
- Michael A Cortázar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Revenu C, Lebreton C, Cannata Serio M, Rosello M, Duclaux-Loras R, Duroure K, Nicolle O, Eggeler F, Prospéri MT, Stoufflet J, Vougny J, Lépine P, Michaux G, Cerf-Bensussan N, Coudrier E, Perez F, Parlato M, Del Bene F. Myosin 1b regulates intestinal epithelial morphogenesis via interaction with UNC45A. Cell Rep 2024; 43:114941. [PMID: 39636728 DOI: 10.1016/j.celrep.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Vesicle trafficking and the establishment of apicobasal polarity are essential processes in epithelial morphogenesis. UNC45A deficiency has been reported in a multi-organ syndrome presenting with severe diarrhea associated with enterocyte polarity defects. Myosin 1b, an actin motor able to bind membranes, regulates membrane shaping and vesicle trafficking. Here, we show that MYO1B is part of the UNC45A interactome. In the absence of UNC45A, myosin 1b is degraded and forms aggregates when proteasome activity is inhibited. In 3D Caco-2 cells, lumen formation is impaired in the absence of myosin 1b, associated with spindle orientation defects, Golgi apparatus fragmentation, and trafficking impairment. In zebrafish larvae, loss of myo1b results in intestinal bulb epithelium folding defects associated with terminal web disorganization and vesicle accumulation, reminiscent of villous atrophy. In conclusion, we show that myosin 1b plays an unexpected role in the development of the intestinal epithelium downstream of UNC45A, establishing its contribution in the gut defects reported in UNC45A patients.
Collapse
Affiliation(s)
- Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corinne Lebreton
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Magda Cannata Serio
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marion Rosello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Fanny Eggeler
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Marie-Thérèse Prospéri
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Julie Stoufflet
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Priscilla Lépine
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| |
Collapse
|
13
|
Karkoutly S, Takeuchi Y, Mehrazad Saber Z, Ye C, Tao D, Aita Y, Murayama Y, Shikama A, Masuda Y, Izumida Y, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. FoxO transcription factors regulate urea cycle through Ass1. Biochem Biophys Res Commun 2024; 739:150594. [PMID: 39191148 DOI: 10.1016/j.bbrc.2024.150594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
When amino acids are plentiful in the diet, the liver upregulates most enzymes responsible for amino acid degradation. In particular, the activity of urea cycle enzymes increases in response to high-protein diets to facilitate the excretion of excess nitrogen. KLF15 has been established as a critical regulator of amino acid catabolism including ureagenesis and we have recently identified FoxO transcription factors as an important upstream regulator of KLF15 in the liver. Therefore, we explored the role of FoxOs in amino acid metabolism under high-protein diet. Our findings revealed that the concentrations of two urea cycle-related amino acids, arginine and ornithine, were significantly altered by FoxOs knockdown. Additionally, using KLF15 knockout mice and an in vivo Ad-luc analytical system, we confirmed that FoxOs directly regulate hepatic Ass1 expression under high-protein intake independently from KLF15. Moreover, ChIP analysis showed that the high-protein diet increased FoxOs DNA binding without altering the nuclear protein amount. Therefore, FoxOs play a direct role in regulating ureagenesis via a KLF15-independent pathway in response to high-protein intake.
Collapse
Affiliation(s)
- Samia Karkoutly
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Takeuchi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Zahra Mehrazad Saber
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Chen Ye
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Duhan Tao
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuichi Aita
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukari Masuda
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Zheng QX, Luo JY, Wang QH, Chen HH, Jiang JG. Molecular insights into salt tolerance in Dunaliella tertiolecta involving two betaine aldehyde dehydrogenases. World J Microbiol Biotechnol 2024; 41:8. [PMID: 39690290 DOI: 10.1007/s11274-024-04217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Understanding salt tolerance mechanisms is crucial for addressing the global challenge of soil salinization and advancing sustainable agricultural practices. Dunaliella tertiolecta, thriving in up to 4.5 M NaCl, is a model for studying salt tolerance mechanisms. Two betaine aldehyde dehydrogenase (BADH) genes were identified in D. tertiolecta, namely DtBADH1 and DtBADH2. The phylogenetic analysis revealed that DtBADH1 had similarity to Pseudomonas aeruginosa BADH, while DtBADH2 has high homology to aldehyde dehydrogenase from Chlorella sorokiniana. The 3D models of DtBADH1 and DtBADH2 docking with betaine aldehyde were performed to further validate their binding site, interactions binding the protein and its substrate as well as the conserved amino acids responsible for enzyme activity. We also conducted RNA interference of DtBADH1 and DtBADH2 in D. tertiolecta. Compared to the wild type D. tertiolecta, both BADH-RNAi D. tertiolecta had fewer cell numbers and relatively lower glycine betaine content under high salinity. The findings suggest that both DtBADH1 and DtBADH2 play a crucial role in betaine synthesis, indicating their potential involvement in salt tolerance mechanisms at the molecular level. Additionally, these results highlight D. tertiolecta as a promising candidate for identifying salt stress-responsive genes, which could be utilized for engineering algae or crops to enhance their ability to withstand salinity stress.
Collapse
Affiliation(s)
- Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jia-Yuan Luo
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian-Hui Wang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Dos Santos GG, Jiménez-Andrade JM, Muñoz-Islas E, Candanedo-Quiroz ME, Cardenas AG, Drummond B, Pham P, Stilson G, Hsu CC, Delay L, Navia-Pelaez JM, Lemes JP, Miller YI, Yaksh TL, Corr M. Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis. Arthritis Res Ther 2024; 26:212. [PMID: 39696684 DOI: 10.1186/s13075-024-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. METHODS K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. RESULTS In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP+), tyrosine hydroxylase (TH)+ and GAP43+ nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4-/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4Tmem119 mice which showed a reduction. Both sexes of Tlr4Lyz2, Tlr4Tmem119 and Tlr4Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4Avil, and Tlr4Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4-/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b+ /TMEM119+) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. CONCLUSION These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.
Collapse
Affiliation(s)
| | | | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, México
| | | | - Andrea Gonzalez Cardenas
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Bronwen Drummond
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Peter Pham
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Gwendalynn Stilson
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Chao-Chin Hsu
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Lauriane Delay
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Julia Paes Lemes
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Maripat Corr
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA.
| |
Collapse
|
16
|
Wang D, Zhang M, Wang WS, Chu W, Zhai J, Sun Y, Chen ZJ, Du Y. Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome. Front Med 2024:10.1007/s11684-024-1089-z. [PMID: 39648233 DOI: 10.1007/s11684-024-1089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 12/10/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Collapse
Affiliation(s)
- Dongshuang Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Meiling Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China.
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
17
|
Regoni M, Zanetti L, Sevegnani M, Domenicale C, Magnabosco S, Patel JC, Fernandes MK, Feeley RM, Monzani E, Mini C, Comai S, Cherchi L, De Gregorio D, Soliman I, Ruto F, Croci L, Consalez G, Rodighiero S, Ciammola A, Valtorta F, Morari M, Piccoli G, Rice ME, Sassone J. Dopamine neuron dysfunction and loss in the PrknR275W mouse model of juvenile parkinsonism. Brain 2024; 147:4017-4025. [PMID: 39350737 PMCID: PMC11733804 DOI: 10.1093/brain/awae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 11/07/2024] Open
Abstract
Mutations in the PRKN gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP). Harnessing this mutation to create an early-onset Parkinson's disease mouse model would provide a unique opportunity to clarify the mechanisms involved in the neurodegenerative process and lay the groundwork for the development of neuroprotective strategies. To this end, we created a knock-in mouse carrying the homozygous PrknR275W mutation, which is the missense mutation with the highest allelic frequency in PRKN patients. We evaluated the anatomical and functional integrity of the nigrostriatal dopamine (DA) pathway, as well as motor behaviour in PrknR275W mice of both sexes. We report here that PrknR275W mice show early DA neuron dysfunction, age-dependent loss of DA neurons in the substantia nigra, decreased DA content and stimulus-evoked DA release in the striatum, and progressive motor impairment. Together, these data show that the PrknR275W mouse recapitulates key features of ARJP. Thus, these studies fill a critical need in the field by introducing a promising new Parkinson's disease model in which to study causative mechanisms of the disease and test therapeutic strategies.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Letizia Zanetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Martina Sevegnani
- Dulbecco Telethon Institute, Laboratory of Biology of Synapse, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Magnabosco
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Jyoti C Patel
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Megan K Fernandes
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan M Feeley
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elena Monzani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Mini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Statistics, Computer Science, Applications (DiSIA), University of Florence, 50134 Florence, Italy
| | - Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy
| | - Laura Cherchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isabella Soliman
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ruto
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Andrea Ciammola
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, 20149 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michele Morari
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giovanni Piccoli
- Dulbecco Telethon Institute, Laboratory of Biology of Synapse, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
18
|
MacDonald DI, Jayabalan M, Seaman J, Balaji R, Nickolls A, Chesler A. Pain persists in mice lacking both Substance P and CGRPα signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567208. [PMID: 38076807 PMCID: PMC10705526 DOI: 10.1101/2023.11.15.567208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Jonathan Seaman
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Rakshita Balaji
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alec Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alexander Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
19
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
20
|
Losurdo NA, Bibo A, Bedke J, Link N. A novel adipose loss-of-function mutant in Drosophila. Fly (Austin) 2024; 18:2352938. [PMID: 38741287 PMCID: PMC11095658 DOI: 10.1080/19336934.2024.2352938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.
Collapse
Affiliation(s)
| | - Adriana Bibo
- Department of Neurobiology, University of Utah, Salt Lake, UT, USA
| | - Jacob Bedke
- Department of Neurobiology, University of Utah, Salt Lake, UT, USA
| | - Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake, UT, USA
| |
Collapse
|
21
|
Lopes-Marques M, Peixoto MJ, Cooper DN, Prata MJ, Azevedo L, Castro LFC. Polymorphic pseudogenes in the human genome - a comprehensive assessment. Hum Genet 2024; 143:1465-1479. [PMID: 39488654 DOI: 10.1007/s00439-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Over the past decade, variations of the coding portion of the human genome have become increasingly evident. In this study, we focus on polymorphic pseudogenes, a unique and relatively unexplored type of pseudogene whose inactivating mutations have not yet been fixed in the human genome at the global population level. Thus, polymorphic pseudogenes are characterized by the presence in the population of both coding alleles and non-coding alleles originating from Loss-of-Function (LoF) mutations. These alleles can be found both in heterozygosity and in homozygosity in different human populations and thus represent pseudogenes that have not yet been fixed in the population. RESULTS A methodical cross-population analysis of 232 polymorphic pseudogenes, including 35 new examples, reveals that human olfactory signalling, drug metabolism and immunity are among the systems most impacted by the variable presence of LoF variants at high frequencies. Within this dataset, a total of 179 genes presented polymorphic LoF variants in all analysed populations. Transcriptome and proteome analysis confirmed that although these genes may harbour LoF alleles, when the coding allele is present, the gene remains active and can play a functional role in various metabolic pathways, including drug/xenobiotic metabolism and immunity. The observation that many polymorphic pseudogenes are members of multigene families argues that genetic redundancy may play a key role in compensating for the inactivation of one paralogue. CONCLUSIONS The distribution, expression and integration of cellular/biological networks in relation to human polymorphic pseudogenes, provide novel insights into the architecture of the human genome and the dynamics of gene gain and loss with likely functional impact.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
| | - M João Peixoto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - M João Prata
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FCUP- Faculty of Sciences, Biology Department, University of Porto, Porto, Portugal
| | - Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- FCUP- Faculty of Sciences, Biology Department, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
23
|
Tarhini S, Crespo-Quiles C, Buhler E, Pineau L, Pallesi-Pocachard E, Villain S, Saha S, Silvagnoli L, Stamminger T, Luche H, Cardoso C, Pais de Barros JP, Burnashev N, Szepetowski P, Bauer S. Cytomegalovirus infection of the fetal brain: intake of aspirin during pregnancy blunts neurodevelopmental pathogenesis in the offspring. J Neuroinflammation 2024; 21:298. [PMID: 39548550 PMCID: PMC11566200 DOI: 10.1186/s12974-024-03276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Congenital cytomegalovirus (CMV) infections represent one leading cause of human neurodevelopmental disorders. Despite their high prevalence and severity, no satisfactory therapy is available and pathophysiology remains elusive. The pathogenic involvement of immune processes occurring in infected developing brains has been increasingly documented. Here, we have used our previously validated rat model of CMV infection of the fetal brain in utero to test whether the maternal administration of four different drugs with immunomodulatory properties would have an impact on the detrimental postnatal outcome of CMV infection. METHODS CMV infection of the rat fetal brain was done intracerebroventricularly. Each of the drugs, including acetylsalicylic acid (aspirin, ASA), a classical inhibitor of cyclooxygenases Cox-1 and Cox-2, the two key rate-limiting enzymes of the arachidonic acid-to-prostaglandins (PG) synthesis pathway, was administered to pregnant dams until delivery. ASA was selected for subsequent analyses based on the improvement in postnatal survival. A combination of qRT-PCR, mass spectrometry-based targeted lipidomics, immunohistochemistry experiments, monitoring of neurologic phenotypes and electrophysiological recordings was used to assess the impact of ASA in CMV-infected samples and pups. The postnatal consequences of CMV infection were also analyzed in rats knocked-out (KO) for Cox-1. RESULTS Increased PGE2 levels and increased proportions of Cox-1+ and Cox-2+ microglia were detected in CMV-infected developing brains. Maternal intake of ASA led to decreased proportion of Cox-1+ fetal, but not neonatal, microglia, while leaving the proportions of Cox-2+ microglia unchanged. Maternal intake of ASA also improved the key postnatal in vivo phenotypes caused by CMV infection and dramatically prevented against the spontaneous epileptiform activity recorded in neocortical slices from CMV-infected pups. In contrast with maternal intake of ASA, Cox-1 KO pups displayed no improvement in the in vivo phenotypes after CMV infection. However, as with ASA administration, the spontaneous epileptiform activity was dramatically inhibited in neocortical slices from CMV-infected, Cox-1 KO pups. CONCLUSION Overall, our data indicate that, in the context of CMV infection of the fetal brain, maternal intake of ASA during pregnancy improved CMV-related neurodevelopmental alterations in the offspring, likely via both Cox-1 dependent and Cox-1 independent mechanisms, and provide proof-of-principle for the use of ASA against the detrimental outcomes of congenital CMV infections.
Collapse
Affiliation(s)
- Sarah Tarhini
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Carla Crespo-Quiles
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
- Alicante Neuroscience Institute, Miguel Hernandez University, CSIC, San Juan de Alicante, Alicante, Spain
| | - Emmanuelle Buhler
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Louison Pineau
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
- Institute for Physiology and Pathophysiology, Johannes Gutenberg University, Mainz, Germany
| | - Emilie Pallesi-Pocachard
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Solène Villain
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Saswati Saha
- TAGC, INSERM, Aix Marseille University, Turing Centre for Living Systems, Marseille, France
- Argenx France SAS, 92130, Issy-Les-Moulineaux, France
| | - Lucas Silvagnoli
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | | | - Hervé Luche
- CIPHE, PHENOMIN, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | | | - Nail Burnashev
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France
| | - Pierre Szepetowski
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France.
| | - Sylvian Bauer
- Institut de Neurobiologie de la Méditerranée (INMED), Inserm, UMR1249, Parc Scientifique de Luminy, Aix-Marseille University, BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
24
|
Adli M, Xing D, Bai T, Neyisci O, Paylakhi S, Duval A, Tekin Y. Comparative analysis and directed protein evolution yield an improved degron technology with minimal basal degradation, rapid inducible depletion, and faster recovery of target proteins. RESEARCH SQUARE 2024:rs.3.rs-5348956. [PMID: 39606491 PMCID: PMC11601833 DOI: 10.21203/rs.3.rs-5348956/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Biological mechanisms are inherently dynamic, requiring precise and rapid gene manipulation for effective characterization. Traditional genetic perturbation tools such as siRNA and CRISPR knockout operate on timescales that render them unsuitable for exploring dynamic processes or studying essential genes, where chronic depletion can lead to cell death. Here, we compared four major inducible degron systems-dTAG, HaloPROTAC, and two auxin-inducible degron (AID) tools-in human pluripotent stem cells. We evaluated basal degradation levels, inducible degradation kinetics, and recovery dynamics for endogenously tagged genes. While the AID 2.0 system is the most efficient for rapid protein degradation, it exhibited higher basal degradation and slower recovery after ligand washout. To address these challenges, we applied directed protein evolution, incorporating base-editing-mediated mutagenesis and iterative functional selection and screening. We discovered novel OsTIR1 variants, including S210A, with significantly enhanced overall degron efficiency. The resulting system, designated as AID 3.0, demonstrates minimal basal degradation and rapid and effective target protein depletion and substantially rescues the cellular and molecular phenotypes due to basal degradation or slow target protein recovery in previous systems. We conclude that AID 3.0 represents a superior degron technology, offering a valuable tool for studying gene functions in dynamic biological contexts and exploring therapeutic applications. Additionally, the research strategy used here could be broadly applicable for improving other degron and biological tools.
Collapse
Affiliation(s)
- Mazhar Adli
- Northwestern University, Feinberg School of Medicine
| | - De Xing
- Northwestern University, Feinberg School of Medicine
| | - Tao Bai
- Northwestern University, Feinberg School of Medicine
| | - Ozlem Neyisci
- Northwestern University, Feinberg School of Medicine
| | | | | | - Yasemin Tekin
- Northwestern University, Feinberg School of Medicine
| |
Collapse
|
25
|
Kim H, Jang JW, Sim SE, Lee J, Jeong JH, Park S, Lee YK, Ham HJ, Yu NK, Lim CS, Gao FB, Lee JA, Kaang BK. Crucial role of Snf7-3 in synaptic function and cognitive behavior revealed by conventional and conditional knockout mouse models. Neuroscience 2024; 560:347-356. [PMID: 39369944 DOI: 10.1016/j.neuroscience.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Snf7-3 is a crucial component of the endosomal sorting complexes required for transport (ESCRT) pathway, playing a vital role in endolysosomal functions. To elucidate the role of Snf7-3 in vivo, we developed conventional-like and conditional Snf7-3 knockout (KO) mouse models using a "Knockout-first" strategy. Conventional-like Snf7-3 KO mice showed significantly reduced Snf7-3 mRNA expression, and older mice (25-40 weeks) exhibited impaired social recognition and increased miniature excitatory postsynaptic currents (mEPSCs). Similarly, conditional KO mice aged 8-24 weeks, with Snf7-3 specifically deleted in forebrain excitatory neurons, displayed impaired object location memory and elevated mEPSC frequency. Consistently, Snf7-3 knockdown in cultured mouse hippocampal neurons led to increased densities of pre- and postsynaptic puncta, supporting the observed increase in mEPSC frequency. In addition, enhanced dendritic complexity was observed in the medial prefrontal cortex of these mice, indicating early synaptic disturbances. Our findings underscore the critical role of Snf7-3 in maintaining normal cognitive functions and social behaviors. The observed synaptic and behavioral deficits in both conventional-like and conditional KO mice highlight the importance of Snf7-3 in specific neuronal populations, suggesting that early synaptic changes could precede more pronounced cognitive impairments.
Collapse
Affiliation(s)
- Hyopil Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jae-Woo Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Su-Eon Sim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - June-Hyun Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Semin Park
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Hyun-Ji Ham
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Jeonbuk 54538, South Korea
| | - Fen-Biao Gao
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34141, South Korea.
| |
Collapse
|
26
|
Wu T, Chen Z, Zhang Z, Zhou X, Gu Y, Dinenno FA, Chen J. RBPMS and RBPMS2 Cooperate to Safeguard Cardiac Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622565. [PMID: 39574760 PMCID: PMC11581027 DOI: 10.1101/2024.11.07.622565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Background Mutations in cardiac splicing factors (SFs) cause cardiomyopathy and congenital heart disease, underscoring the critical role of SFs in cardiac development and disease. Cardiac SFs are implicated to cooperatively regulate the splicing of essential cardiac genes, but the functional importance of their collaboration remains unclear. RNA Binding Protein with Multiple Splicing (RBPMS) and RBPMS2 are SFs involved in heart development and exhibit similar splicing regulatory activities in vitro , but it is unknown whether they cooperate to regulate splicing in vivo . Methods Rbpms and Rbpms2 single or double cardiomyocyte (CM)-specific knockout (KO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing was performed to assess gene expression and splicing changes in single and double KOs. In silico analyses were used to dissect the mechanisms underlying distinct and overlapping roles of RBPMS and RBPMS2 in heart development. Results Mice lacking both RBPMS and RBPMS2 in CMs died before embryonic day 13.5 and developed sarcomere disarray, whereas Rbpms or Rbpms2 single CM-specific KO mice had normal sarcomere assembly and survived to adulthood. Defective sarcomere assembly is likely owing to the widespread mis-splicing of genes essential for cardiac contraction in double KO mice, underscoring the overlapping role of RBPMS and RBPMS2 in splicing regulation. Mechanistically, we found RBPMS and RBPMS collectively promote cardiac splicing program while repressing non-cardiac splicing programs. Moreover, RNA splicing maps suggested that the binding location of RBPMS and RBPMS2 on pre-mRNA dictates whether they function as splicing activators or repressors. Lastly, the requirement for RBPMS and/or RBPMS2 for splicing regulation arises from intrinsic features of the target exons. Conclusions Our results demonstrate that RBPMS and RBPMS2 work in concert to safeguard the splicing of genes essential for cardiac contraction, highlighting the importance of SF collaboration in maintaining cardiac splicing signature, which should be taken into consideration when devising future therapeutic approaches through modulating the activity of SFs. Novelty and Significance What Is Known?: Mutations in cardiac splicing factors (SFs) cause cardiomyopathy and congenital heart disease, and the splicing of cardiac genes is regulated by multiple SFs. However, the functional importance of the collaboration among specific cardiac SFs is unknown.RBPMS has emerged as a cardiac SF for sarcomere genes but is not required for sarcomere assembly. RBPMS2 can substitute RBPMS in in vitro splicing assays, yet its role in mammalian cardiomyocytes (CMs) remains unclear. What New Information Does This Article Contribute?: RBPMS and RBPMS2 have both distinct and overlapping roles in CMs.RBPMS and RBPMS2 collectively contribute to the maintenance of cardiac splicing program, which is essential for sarcomere assembly and embryonic survival.RNA splicing map of RBPMS and RBPMS2 reveals that they can function either as splicing activators or repressors, depending on their binding locations on pre-mRNA. This study provides compelling evidence of cooperation between cardiac splicing factors during heart development, which, to our knowledge, has not been demonstrated in vivo . Rbpms and Rbpms2 CM-specific double KO mice die in utero and exhibit sarcomere disarray, whereas single KO mice survive to adulthood with normal sarcomere structure but manifest distinct cardiac phenotypes, suggesting RBPMS and RBPMS2 possess both distinct and overlapping functions in CMs. Although mis-splicing in cardiac genes can be seen in all three KOs, the splicing signature of double KO hearts drastically shifts towards non-cardiac tissues, including more prominent mis-splicing in genes related to cardiac contractile function. Our study further reveals that the splicing regulation of RBPMS and RBPMS2 has the characteristics of "positional effects", i.e., the binding location on pre-mRNA dictates whether they function as splicing activators or repressors; and the intrinsic features of the target exon determine the requirement for one or two RBPMS proteins for splicing regulation. Our study sheds light on the functional importance of cardiac SF cooperation in maintaining cardiac splicing signature during heart development.
Collapse
|
27
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
28
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
30
|
Su T, Liu H, Wu Y, Wang J, He F, Li H, Li S, Wang L, Li L, Cao J, Lu Q, Zhao X, Xiang H, Lin C, Lu S, Liu B, Kong F, Fang C. Soybean hypocotyl elongation is regulated by a MYB33-SWEET11/21-GA2ox8c module involving long-distance sucrose transport. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2859-2872. [PMID: 38861663 PMCID: PMC11536460 DOI: 10.1111/pbi.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The length of hypocotyl affects the height of soybean and lodging resistance, thus determining the final grain yield. However, research on soybean hypocotyl length is scarce, and the regulatory mechanisms are not fully understood. Here, we identified a module controlling the transport of sucrose, where sucrose acts as a messenger moved from cotyledon to hypocotyl, regulating hypocotyl elongation. This module comprises four key genes, namely MYB33, SWEET11, SWEET21 and GA2ox8c in soybean. In cotyledon, MYB33 is responsive to sucrose and promotes the expression of SWEET11 and SWEET21, thereby facilitating sucrose transport from the cotyledon to the hypocotyl. Subsequently, sucrose transported from the cotyledon up-regulates the expression of GA2ox8c in the hypocotyl, which ultimately affects the length of the hypocotyl. During the domestication and improvement of soybean, an allele of MYB33 with enhanced abilities to promote SWEET11 and SWEET21 has gradually become enriched in landraces and cultivated varieties, SWEET11 and SWEET21 exhibit high conservation and have undergone a strong purified selection and GA2ox8c is under a strong artificial selection. Our findings identify a new molecular pathway in controlling soybean hypocotyl elongation and provide new insights into the molecular mechanism of sugar transport in soybean.
Collapse
Affiliation(s)
- Tong Su
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yichun Wu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jianhao Wang
- Vegetables Research Institute, Guangdong Academy of Agricultural SciencesGuangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Fanglei He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
- Institute of Improvement and Utilization of Characteristic Resource Plants, College of Agriculture and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Shichen Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lanxin Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jie Cao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qiulian Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hongtao Xiang
- Heilongjiang Academy of Agricultural SciencesHarbinChina
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery SciencesSuihuaChina
| | - Chun Lin
- Institute of Improvement and Utilization of Characteristic Resource Plants, College of Agriculture and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
31
|
Du L, Liu Q, Wang L, Lyu H, Tang J. Microplastics enhanced the allelopathy of pyrogallol on toxic Microcystis with additional risks: Microcystins release and greenhouse gases emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173864. [PMID: 38879032 DOI: 10.1016/j.scitotenv.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.
Collapse
Affiliation(s)
- Linqing Du
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
32
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
33
|
Takenaka R, Simmerman SM, Schmidt CA, Albanese EH, Rieder LE, Malik HS. The Drosophila maternal-effect gene abnormal oocyte ( ao) does not repress histone gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613536. [PMID: 39345629 PMCID: PMC11429765 DOI: 10.1101/2024.09.17.613536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The abnormal oocyte (ao) gene of Drosophila melanogaster is a maternal-effect lethal gene previously identified as encoding a transcriptional regulator of core histones. However, background genetic mutations in existing ao mutant strains could compromise their utility in manipulating histone levels. To distinguish the true ao phenotype from background effects, we created two new ao reagents: a CRISPR/Cas9-mediated knockout of the ao allele for genetic and molecular analyses and an epitope-tagged ao allele for cytological experiments. Using these reagents, we confirm previous findings that ao exhibits maternal-effect lethality, which can be rescued by either a decrease in the histone gene copy number or by Y chromosome heterochromatin. We also confirm that the Ao protein localizes to the histone locus bodies in ovaries. Our data also suggest that ao genetically interacts with the histone genes and heterochromatin, as previously suggested. However, contrary to prior findings, we find that ao does not repress core histone transcript levels. Thus, the molecular basis for ao-associated maternal-effect lethality remains unknown.
Collapse
Affiliation(s)
- Risa Takenaka
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle WA 98109
| | | | - Casey A. Schmidt
- Department of Biology, Emory University, Atlanta GA 30322
- Biology Department, Lafayette College, Easton PA 18042
| | | | | | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle WA 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle WA 98109
| |
Collapse
|
34
|
Karpińska K, Mehlich D, Sabbasani VR, Łomiak M, Torres-Ayuso P, Wróbel K, Truong VNP, Serwa R, Swenson RE, Brognard J, Marusiak AA. Selective Degradation of MLK3 by a Novel CEP1347-VHL-02 PROTAC Compound Limits the Oncogenic Potential of TNBC. J Med Chem 2024; 67:15012-15028. [PMID: 39207123 PMCID: PMC11403673 DOI: 10.1021/acs.jmedchem.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Dawid Mehlich
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michał Łomiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Katarzyna Wróbel
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Vi Nguyen-Phuong Truong
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Remigiusz Serwa
- Proteomic Core Facility, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| |
Collapse
|
35
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
36
|
Huang C, Liu S, Li W, Zhao S, Ren X, Zhuo F, Zhang K, Li X, Wu J, Zhu Z, Chen C, Zhang W, Yu B. Paxbp1 Is Indispensable for the Maintenance of Epidermal Homeostasis. J Invest Dermatol 2024:S0022-202X(24)02077-3. [PMID: 39236903 DOI: 10.1016/j.jid.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The mammalian epidermis is a structurally complex tissue that serves critical barrier functions, safeguarding the organism from the external milieu. The development of the epidermis is governed by sophisticated regulatory processes. However, the precise mechanism maintaining epidermal homeostasis remains incompletely elucidated. Recent studies have identified Paxbp1, an evolutionarily conserved protein, as being involved in the developmental regulation of various cells, tissues, and organs. Nonetheless, its role in skin development has not been explored. In this study, we report that the targeted deletion of Paxbp1 in epidermal keratinocytes mediated by keratin 14-Cre leads to severe disruption in skin architecture. Mice deficient in Paxbp1 exhibited a substantially reduced epidermal thickness and pronounced separation at the dermal-epidermal junction upon birth. Mechanistically, we demonstrate that the absence of Paxbp1 hinders cellular proliferation, marked by a halt in cell cycle transition, suppressed gene expression of proliferation, and a compromised DNA replication pathway in basal keratinocytes, resulting in the thinning of the skin epidermis. Moreover, molecules and pathways associated with hemidesmosome assembly were impaired in Paxbp1-deficient keratinocytes, culminating in the detachment of the skin epidermal layer. Therefore, our study highlights an indispensable role of Paxbp1 in the maintenance of epidermal homeostasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shenglin Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan Province, China
| | - Wenting Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shizheng Zhao
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Xuanyao Ren
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fan Zhuo
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiahong Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jingwen Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zimo Zhu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chao Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
37
|
Zhu HX, Wright BW, Logel DY, Needham P, Yehl K, Molloy MP, Jaschke PR. IbpAB small heat shock proteins are not host factors for bacteriophage ϕX174 replication. Virology 2024; 597:110169. [PMID: 38996611 DOI: 10.1016/j.virol.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.
Collapse
Affiliation(s)
- Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bradley W Wright
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Patrick Needham
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Kevin Yehl
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Mark P Molloy
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; Kolling Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
38
|
Wang K, Luigi-Sierra MG, Castelló A, Figueiredo-Cardoso T, Mercadé A, Martínez A, Delgado JV, Álvarez JF, Noce A, Wang M, Jordana J, Amills M. Identification of nonsense variants in the genomes of 15 Murciano-Granadina bucks and analysis of their segregation in parent-offspring trios. J Dairy Sci 2024:S0022-0302(24)01097-X. [PMID: 39218071 DOI: 10.3168/jds.2024-24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Nonsense variants can inactivate gene function by causing the synthesis of truncated proteins or by inducing nonsense mediated decay of messenger RNAs. The occurrence of such variants in the genomes of livestock species is modulated by multiple demographic and selective factors. Even though nonsense variants can have causal effects on embryo lethality, abortions, and disease, their genomic distribution and segregation in domestic goats have not been characterized in depth yet. In this work, we have sequenced the genomes of 15 Murciano-Granadina bucks with an average coverage of 32.92 × ± 1.45 × . Bioinformatic analysis revealed 947 nonsense variants consistently detected with SnpEff and Ensembl-VEP. These variants were especially abundant in the 3'end of the protein-coding regions. Genes related to olfactory perception, ATPase activity coupled to transmembrane movement of substances, defense to virus, hormonal response, and sensory perception of taste were particularly enriched in nonsense variants. Seventeen nonsense variants expected to have harmful effects on fitness were genotyped in parent-offspring trios. We observed that several nonsense variants predicted to be lethal based on mouse knockout data did not have such effect, a finding that could be explained by the existence of multiple mechanisms counteracting lethality. These findings demonstrate that predicting the effects of putative nonsense variants on fitness is extremely challenging. As a matter of fact, such a goal could only be achieved by generating a high quality telomere-to-telomere goat reference genome combined with carefully curated annotation and functional testing of promising candidate variants.
Collapse
Affiliation(s)
- Ke Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental Station, Zhanjiang, Guangdong, 524000, China.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Castelló
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Taina Figueiredo-Cardoso
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | | | | | - Antonia Noce
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mingjing Wang
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre de Recerca Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain..
| |
Collapse
|
39
|
Xu R, Pan Y, Zheng K, Chen M, Yin C, Hu Q, Wang J, Yu Q, Li P, Tai Y, Fang J, Liu B, Fang J, Tian G, Liu B. IL-33/ST2 induces macrophage-dependent ROS production and TRPA1 activation that mediate pain-like responses by skin incision in mice. Theranostics 2024; 14:5281-5302. [PMID: 39267790 PMCID: PMC11388077 DOI: 10.7150/thno.97856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Insufficiently managed incisional (INC) pain severely affects patients' life quality and rehabilitation after a major operation. However, mechanisms underlying INC pain still remain poorly understood. Methods: A mouse model of INC pain was established by skin plus deep muscle incision. Biochemistry assay, in vivo reactive oxygen species (ROS) imaging, Ca2+ imaging combined with retrograde labelling, neuron tracing and nocifensive behavior test, etc. were utilized for mechanism investigation. Results: We found pro-nociceptive cytokine interleukin -33 (IL-33) ranked among top up-regulated cytokines in incised tissues of INC pain model mice. IL-33 was predominantly expressed in keratinocytes around the incisional area. Neutralization of IL-33 or its receptor suppression of tumorigenicity 2 protein (ST2) or genetic deletion of St2 gene (St2 -/-) remarkably ameliorated mechanical allodynia and improved gait impairments of model mice. IL-33 contributes to INC pain by recruiting macrophages, which subsequently release ROS in incised tissues via ST2-dependent mechanism. Transfer of excessive macrophages enhanced oxidative injury and reproduced mechanical allodynia in St2 -/- mice upon tissue incision. Overproduced ROS subsequently activated functionally up-regulated transient receptor potential ankyrin subtype-1 (TRPA1) channel innervating the incisional site to produce mechanical allodynia. Neither deleting St2 nor attenuating ROS affected wound healing of model mice. Conclusions: Our work uncovered a previously unrecognized contribution of IL-33/ST2 signaling in mediating mechanical allodynia and gait impairment of a mouse model of INC pain. Targeting IL-33/ST2 signaling could be a novel therapeutic approach for INC pain management.
Collapse
Affiliation(s)
- Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaige Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyan Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
40
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gomez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601974. [PMID: 39026892 PMCID: PMC11257572 DOI: 10.1101/2024.07.10.601974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Human genetic studies have nominated Cadherin-like and PC-esterase Domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W. Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Claire J. Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ali R. Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Arianna Ericka Gomez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA, USA
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
42
|
Mellis IA, Melzer ME, Bodkin N, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. Genome Biol 2024; 25:217. [PMID: 39135102 PMCID: PMC11320884 DOI: 10.1186/s13059-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
43
|
Kiran Kumar KD, Singh S, Schmelzle SM, Vogel P, Fruhner C, Hanswillemenke A, Brun A, Wettengel J, Füll Y, Funk L, Mast V, Botsch JJ, Reautschnig P, Li JB, Stafforst T. An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification. Nat Commun 2024; 15:6615. [PMID: 39103360 DOI: 10.1038/s41467-024-50395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.
Collapse
Affiliation(s)
| | - Shubhangi Singh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Paul Vogel
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Adrian Brun
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lukas Funk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Valentin Mast
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - J Josephine Botsch
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Hur KH, Lee Y, Donio AL, Kim SK, Lee BR, Seo JY, Kundu D, Kim KM, Kohut SJ, Lee SY, Jang CG. Transient receptor potential ankyrin 1 channel modulates the abuse-related mechanisms of methamphetamine through interaction with dopamine transporter. Br J Pharmacol 2024; 181:2794-2809. [PMID: 38644533 PMCID: PMC11230846 DOI: 10.1111/bph.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Behavioral Neuroimaging Laboratory, McLean Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Audrey Lynn Donio
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
45
|
Wang C, Xie Q, Xia X, Zhang C, Jiang S, Wang S, Zhang X, Hua R, Xue J, Zheng H. ZMYND12 serves as an IDAd subunit that is essential for sperm motility in mice. Cell Mol Life Sci 2024; 81:317. [PMID: 39066891 PMCID: PMC11335240 DOI: 10.1007/s00018-024-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Inner dynein arms (IDAs) are formed from a protein complex that is essential for appropriate flagellar bending and beating. IDA defects have previously been linked to the incidence of asthenozoospermia (AZS) and male infertility. The testes-enriched ZMYND12 protein is homologous with an IDA component identified in Chlamydomonas. ZMYND12 deficiency has previously been tied to infertility in males, yet the underlying mechanism remains uncertain. Here, a CRISPR/Cas9 approach was employed to generate Zmynd12 knockout (Zmynd12-/-) mice. These Zmynd12-/- mice exhibited significant male subfertility, reduced sperm motile velocity, and impaired capacitation. Through a combination of co-immunoprecipitation and mass spectrometry, ZMYND12 was found to interact with TTC29 and PRKACA. Decreases in the levels of PRKACA were evident in the sperm of these Zmynd12-/- mice, suggesting that this change may account for the observed drop in male fertility. Moreover, in a cohort of patients with AZS, one patient carrying a ZMYND12 variant was identified, expanding the known AZS-related variant spectrum. Together, these findings demonstrate that ZMYND12 is essential for flagellar beating, capacitation, and male fertility.
Collapse
Affiliation(s)
- Chang Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qingsong Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Xun Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China
| | - Chuanying Zhang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Sihan Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Rong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, 230032, China.
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Haoyu Zheng
- Department of Gynaecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
46
|
LaCoursiere CM, Ullmann JF, Koh HY, Turner L, Baker CM, Robens B, Shao W, Rotenberg A, McGraw CM, Poduri AH. Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. iScience 2024; 27:110172. [PMID: 39021799 PMCID: PMC11253282 DOI: 10.1016/j.isci.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.
Collapse
Affiliation(s)
- Christopher Mark LaCoursiere
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeremy F.P. Ullmann
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyun Yong Koh
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA
| | - Laura Turner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Cristina M. Baker
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Barbara Robens
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher M. McGraw
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annapurna H. Poduri
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Yin E, Esbin MN. Optimized CRISPR-based knockout in BeWo cells. Placenta 2024:S0143-4004(24)00300-X. [PMID: 38997889 DOI: 10.1016/j.placenta.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
CRISPR genome editing is a widely used tool to perturb genes of interest within cells and tissues and can be used as a research tool to study the connection between genotypes and cellular phenotypes. Highly efficient genome editing is limited in certain cell types due to low transfection efficiency or single-cell survivability. This is true for BeWo cells, an in vitro model of placental syncytiotrophoblast cell-cell fusion and hormone secretion. Here we describe an optimized and easy-to-use protocol for knockout in BeWo cells using CRISPR Cas9 ribonucleoprotein (RNP) complexes delivered via electroporation. Further, we describe parameters for successful guide RNA design and how to assess genetic knockouts in BeWo cells so that users can apply this technique to their own genes of interest. We provide a positive control for inducing highly efficient knockout of the cell-cell fusion protein Syncytin-2 (ERVFRD-1) and assessing editing efficiency at this locus. We anticipate that efficient RNP-mediated genetic knockouts in BeWo cells will facilitate the study of new genes involved in cell-cell fusion and hormone secretion in this important cellular model system. Furthermore, this strategy of optimized nucleofection and RNP delivery may be of use in other difficult-to-edit trophoblast cells or could be applied to efficiently deliver transgenes to BeWo cells.
Collapse
Affiliation(s)
- Eric Yin
- University of California, Berkeley, United States
| | | |
Collapse
|
48
|
Sannes AC, Ghani U, Niazi IK, Moberget T, Jonassen R, Haavik H, Gjerstad J. Investigating Whether a Combination of Electro-Encephalography and Gene Expression Profiling Can Predict the Risk of Chronic Pain: A Protocol for an Observational Prospective Cohort Study. Brain Sci 2024; 14:641. [PMID: 39061381 PMCID: PMC11274615 DOI: 10.3390/brainsci14070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite most episodes of low back pain (LBP) being short-lasting, some transition into persistent long-lasting problems. Hence, the need for a deeper understanding of the physiological mechanisms of this is pertinent. Therefore, the aims of the present study are (1) to map pain-induced changes in brain activity and blood gene expression associated with persistent LBP, and (2) to explore whether these brain and gene expression signatures show promise as predictive biomarkers for the development of persistent LBP. The participants will be allocated into three different pain groups (no pain, mild short-lasting, or moderate long-term). One in-person visit, where two blood samples will be collected and sent for RNA sequencing, along with resting 64-channel electro-encephalography measurements before, during, and after a cold pressor test, will be conducted. Thereafter, follow-up questionnaires will be distributed at 2 weeks, 3 months, and 6 months. Recruitment will start during the second quarter of 2024, with expected completion by the last quarter of 2024. The results are expected to provide insight into the relationship between central nervous system activity, gene expression profiles, and LBP. If successful, this study has the potential to provide physiological indicators that are sensitive to the transition from mild, short-term LBP to more problematic, long-term LBP.
Collapse
Affiliation(s)
- Ann-Christin Sannes
- Faculty of Health Science, Oslo Metropolitan University, 0890 Oslo, Norway
- Department for Research and Development in Mental Health, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Usman Ghani
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
- Faculty of Medicine, Aalborg University, 9260 Aalborg, Denmark
| | - Torgeir Moberget
- Faculty of Health Sciences, Kristiania University College, 0107 Oslo, Norway
- Centre for Precision Psychiatry, University of Oslo, 0373 Oslo, Norway
| | - Rune Jonassen
- Faculty of Health Science, Oslo Metropolitan University, 0890 Oslo, Norway
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
| | - Johannes Gjerstad
- Department for Research and Development in Mental Health, Akershus University Hospital, 1474 Lørenskog, Norway
- Faculty of Health Sciences, Kristiania University College, 0107 Oslo, Norway
| |
Collapse
|
49
|
Dominguez-Ortiz J, Álvarez-Gómez RM, Montiel-Manríquez R, Cedro-Tanda A, Alcaraz N, Castro-Hernández C, Bautista-Hinojosa L, Contreras-Espinosa L, Torres-Maldonado L, Fragoso-Ontiveros V, Sánchez-Contreras Y, González-Barrios R, la Fuente-Hernández MAD, Mejía-Aguayo MDLL, Juárez-Figueroa U, Padua-Bracho A, Sosa-León R, Obregon-Serrano G, Vidal-Millán S, Núñez-Martínez PM, Pedroza-Torres A, Nicasio-Arzeta S, Rodríguez A, Luna F, Cisneros-Soberanis F, Frías S, Arriaga-Canon C, Herrera-Montalvo LA. A Molecular Characterization of the Allelic Expression of the BRCA1 Founder Δ9-12 Pathogenic Variant and Its Potential Clinical Relevance in Hereditary Cancer. Int J Mol Sci 2024; 25:6773. [PMID: 38928478 PMCID: PMC11204022 DOI: 10.3390/ijms25126773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.
Collapse
Affiliation(s)
- Julieta Dominguez-Ortiz
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rosa M. Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Alberto Cedro-Tanda
- Núcleo B de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico;
| | - Nicolás Alcaraz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark;
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Luis Bautista-Hinojosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Leda Torres-Maldonado
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Yuliana Sánchez-Contreras
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Marcela Angélica De la Fuente-Hernández
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - María de la Luz Mejía-Aguayo
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Ulises Juárez-Figueroa
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
| | - Alejandra Padua-Bracho
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Rodrigo Sosa-León
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Gabriela Obregon-Serrano
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Paulina María Núñez-Martínez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Abraham Pedroza-Torres
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Av. San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (R.M.Á.-G.); (V.F.-O.); (Y.S.-C.); (M.A.D.l.F.-H.); (M.d.l.L.M.-A.); (A.P.-B.); (R.S.-L.); (G.O.-S.); (S.V.-M.); (P.M.N.-M.); (A.P.-T.)
| | - Sergio Nicasio-Arzeta
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80521, USA;
| | - Alfredo Rodríguez
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Fernando Luna
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK;
| | - Sara Frías
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C. Coyoacán, Mexico City 04530, Mexico; (L.T.-M.); (U.J.-F.); (A.R.); (S.F.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Luis A. Herrera-Montalvo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.D.-O.); (R.M.-M.); (C.C.-H.); (L.B.-H.); (L.C.-E.); (R.G.-B.); (F.L.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
50
|
Marshall GF, Fasol M, Davies FCJ, Le Seelleur M, Fernandez Alvarez A, Bennett-Ness C, Gonzalez-Sulser A, Abbott CM. Face-valid phenotypes in a mouse model of the most common mutation in EEF1A2-related neurodevelopmental disorder. Dis Model Mech 2024; 17:dmm050501. [PMID: 38179821 PMCID: PMC10855229 DOI: 10.1242/dmm.050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.
Collapse
Affiliation(s)
- Grant F. Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Melissa Fasol
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Faith C. J. Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matthew Le Seelleur
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alejandra Fernandez Alvarez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Cavan Bennett-Ness
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|