1
|
Douglas KO, Payne K, Sabino-Santos G, Chami P, Lorde T. The Impact of Climate on Human Dengue Infections in the Caribbean. Pathogens 2024; 13:756. [PMID: 39338947 PMCID: PMC11434940 DOI: 10.3390/pathogens13090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024] Open
Abstract
Climate change is no longer a hypothetical problem in the Caribbean but a new reality to which regional public health systems must adapt. One of its significant impacts is the increased transmission of infectious diseases, such as dengue fever, which is endemic in the region, and the presence of the Aedes aegypti mosquito vector responsible for transmitting the disease. (1) Methods: To assess the association between climatic factors and human dengue virus infections in the Caribbean, we conducted a systematic review of published studies on MEDLINE and Web of Science databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. (2) Results: In total, 153 papers were identified, with 27 studies selected that met the inclusion criteria ranging from the northern and southern Caribbean. Rainfall/precipitation and vapor pressure had a strong positive association with dengue incidence, whereas the evidence for the impact of temperatures was mixed. (3) Conclusions: The interaction between climate and human dengue disease in the Caribbean is complex and influenced by multiple factors, including waste management, infrastructure risks, land use changes, and challenged public health systems. Thus, more detailed research is necessary to understand the complexity of dengue within the wider Caribbean and achieve better dengue disease management.
Collapse
Affiliation(s)
- Kirk Osmond Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados
| | - Karl Payne
- Centre for Environmental Resource Management, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| | - Gilberto Sabino-Santos
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave Rm. 5718, New Orleans, LA 70112, USA;
- Centre for Virology Research, School of Medicine in Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Ave, Ribeirao Preto 14049-900, SP, Brazil
| | - Peter Chami
- Department of Computer Science, Mathematics, & Physics, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| | - Troy Lorde
- Department of Economics, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| |
Collapse
|
2
|
Zhu J, Khan F, Khan SU, Sumelka W, Khan FU, AlQahtani SA. Computational investigation of stochastic Zika virus optimal control model using Legendre spectral method. Sci Rep 2024; 14:18112. [PMID: 39103482 PMCID: PMC11300638 DOI: 10.1038/s41598-024-69096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study presents a computational investigation of a stochastic Zika virus along with optimal control model using the Legendre spectral collocation method (LSCM). By accumulation of stochasticity into the model through the proposed stochastic differential equations, we appropriating the random fluctuations essential in the progression and disease transmission. The stability, convergence and accuracy properties of the LSCM are conscientiously analyzed and also demonstrating its strength for solving the complex epidemiological models. Moreover, the study evaluates the various control strategies, such as treatment, prevention and treatment pesticide control, and identifies optimal combinations that the intervention costs and also minimize the proposed infection rates. The basic properties of the given model, such as the reproduction number, were determined with and without the presence of the control strategies. ForR 0 < 0 , the model satisfies the disease-free equilibrium, in this case the disease die out after some time, while forR 0 > 1 , then endemic equilibrium is satisfied, in this case the disease spread in the population at higher scale. The fundamental findings acknowledge the significant impact of stochastic phonemes on the robustness and effectiveness of control strategies that accelerating the need for cost-effective and multi-faceted approaches. In last the results provide the valuable insights for public health department to enabling more impressive mitigation of Zika virus outbreaks and management in real-world scenarios.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Mathematics, Shandong University, Jinan, 250100, China
- School of Mathematics and Data Sciences, Changji University, Changji, 831100, China
| | - Feroz Khan
- Department of Mathematics, City University of Science and Information Technology Peshawar, Peshawar, KP, 2500, Pakistan
| | - Sami Ullah Khan
- Department of Mathematics, City University of Science and Information Technology Peshawar, Peshawar, KP, 2500, Pakistan.
| | - Wojciech Sumelka
- Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5 Street, 60-965, Poznan, Poland
| | - Farman U Khan
- Department of Mathematics, HITEC University, Taxila Cantt, Taxila, 47080, Pakistan
| | - Salman A AlQahtani
- Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Mataba GR, Munishi L, Brendonck L, Vanschoenwinkel B. The role of anthropogenic container habitats as mosquito oviposition habitats in rural settlements in northern Tanzania. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2022; 47:69-80. [PMID: 36629358 DOI: 10.52707/1081-1710-47.1.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/26/2022] [Indexed: 06/17/2023]
Abstract
In many areas, the main sources of mosquito vectors are not natural habitats but small artificial water bodies that are provided unintentionally by humans. Such container habitats have been linked to outbreaks of dengue fever and other arboviral diseases. However, in many parts of the world the possible risks associated with container habitats have not been assessed. Here, we focused on a human population expansion area in northern Tanzania with a high incidence of dengue and other cases of high fever. We explored the importance of anthropogenic container habitats for mosquito production in the Lake Manyara Basin. We also assessed how biotic and physicochemical habitat characteristics limit mosquito abundance in containers. Results showed that Aedes aegypti (Linnaeus), vector of dengue and other arboviruses, and Culex quinquefasciatus (Say), vector of filarial worms, were the dominant mosquitoes ovipositing in large numbers in different containers. Old tires were the dominant and most productive container habitat for mosquitoes in the region. However, there were strong differences among villages, illustrating that the mosquito burden associated with container habitats varies locally. We concluded that in this region, removal of artificial container habitats could be a simple strategy to reduce the mosquito-mediated disease burden within the local population.
Collapse
Affiliation(s)
- Gordian Rocky Mataba
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania,
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Linus Munishi
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
4
|
Kanhai LDK, Asmath H, Gobin JF. The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980-2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118919. [PMID: 35114304 DOI: 10.1016/j.envpol.2022.118919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A 'Clean Ocean' is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980-2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991-2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
Collapse
Affiliation(s)
- La Daana K Kanhai
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Hamish Asmath
- The Institute of Marine Affairs, Hilltop Lane, Chaguaramas, Trinidad and Tobago
| | - Judith F Gobin
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
5
|
Murugan K, Panneerselvam C, Subramaniam J, Paulpandi M, Rajaganesh R, Vasanthakumaran M, Madhavan J, Shafi SS, Roni M, Portilla-Pulido JS, Mendez SC, Duque JE, Wang L, Aziz AT, Chandramohan B, Dinesh D, Piramanayagam S, Hwang JS. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci Rep 2022; 12:4765. [PMID: 35306526 PMCID: PMC8933857 DOI: 10.1038/s41598-022-08397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.
Collapse
Affiliation(s)
- Kadarkarai Murugan
- University of Science & Technology, Techno City, Kiling Road, Baridua, Meghalaya, 793 101, India.
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| | | | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manickam Paulpandi
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Jagannathan Madhavan
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore, 632 115, India
| | - S Syed Shafi
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore, 632 115, India
| | - Mathath Roni
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Johan S Portilla-Pulido
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
- Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia
| | - Stelia C Mendez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Balamurugan Chandramohan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Devakumar Dinesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
6
|
Al-Badi A, Khan A. Technological Transition in Higher Education Institution in the Time of Covid-19. PROCEDIA COMPUTER SCIENCE 2022; 203:157-164. [PMID: 35974964 PMCID: PMC9374312 DOI: 10.1016/j.procs.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This research aims to investigate the transition in the Higher Education Institution (HEIs) as a result of Covid-19 pandemic and how the HEIs in the Sultanate of Oman reacted to this change. It seeks to explore and analyze the online teaching and learning, online assessment and examinations, technical and non-technical support at HEIs during Covid-19 qualitatively. The study found that HEIs have faced constraints such as adaptation to the new system, infrastructure, etc., but they are now more prepared for technology acceptance and use than before. It is suggested to work on enhancing infrastructure, software platforms/tools, online class management, assessment and examinations, and capacity building.
Collapse
|
7
|
Vicente Santos AC, Guedes-da-Silva FH, Dumard CH, Ferreira VNS, da Costa IPS, Machado RA, Barros-Aragão FGQ, Neris RLS, dos-Santos JS, Assunção-Miranda I, Figueiredo CP, Dias AA, Gomes AMO, de Matos Guedes HL, Oliveira AC, Silva JL. Yellow fever vaccine protects mice against Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0009907. [PMID: 34735450 PMCID: PMC8594798 DOI: 10.1371/journal.pntd.0009907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak. Zika virus (ZIKV) is as an important infectious that may result in severe congenital neurological disorders. Our study reports that the current attenuated yellow fever vaccine is effective in immunizing against the infection caused by the Zika virus, due to the similarity between the two viruses. To study the efficacy of the vaccine, we used different mouse strains, including both animals with a healthy immune system (immunocompetent) and animals with compromised immune systems and therefore more susceptible to viral (immunocompromised) infections. The vaccine was given subcutaneously, as it does in humans. The animals were inoculated with the Zika virus directly into the brain—a protocol normally adopted in vaccine studies to simulate a high lethality infection. In all cases, the vaccinated mice developed a high degree of protection against Zika infection. Altogether, we demonstrate that the YFV vaccine elicits an immune response that protects against cerebral infection by ZIKV. Our findings suggest the possibility of using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.
Collapse
Affiliation(s)
- Ana C. Vicente Santos
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vivian N. S. Ferreira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor P. S. da Costa
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruana A. Machado
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rômulo L. S. Neris
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio S. dos-Santos
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André A. Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Andrea C. Oliveira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Jerson L. Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| |
Collapse
|
8
|
Jonkmans N, D'Acremont V, Flahault A. Scoping future outbreaks: a scoping review on the outbreak prediction of the WHO Blueprint list of priority diseases. BMJ Glob Health 2021; 6:e006623. [PMID: 34531189 PMCID: PMC8449939 DOI: 10.1136/bmjgh-2021-006623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The WHO's Research and Development Blueprint priority list designates emerging diseases with the potential to generate public health emergencies for which insufficient preventive solutions exist. The list aims to reduce the time to the availability of resources that can avert public health crises. The current SARS-CoV-2 pandemic illustrates that an effective method of mitigating such crises is the pre-emptive prediction of outbreaks. This scoping review thus aimed to map and identify the evidence available to predict future outbreaks of the Blueprint diseases. METHODS We conducted a scoping review of PubMed, Embase and Web of Science related to the evidence predicting future outbreaks of Ebola and Marburg virus, Zika virus, Lassa fever, Nipah and Henipaviral disease, Rift Valley fever, Crimean-Congo haemorrhagic fever, Severe acute respiratory syndrome, Middle East respiratory syndrome and Disease X. Prediction methods, outbreak features predicted and implementation of predictions were evaluated. We conducted a narrative and quantitative evidence synthesis to highlight prediction methods that could be further investigated for the prevention of Blueprint diseases and COVID-19 outbreaks. RESULTS Out of 3959 articles identified, we included 58 articles based on inclusion criteria. 5 major prediction methods emerged; the most frequent being spatio-temporal risk maps predicting outbreak risk periods and locations through vector and climate data. Stochastic models were predominant. Rift Valley fever was the most predicted disease. Diseases with complex sociocultural factors such as Ebola were often predicted through multifactorial risk-based estimations. 10% of models were implemented by health authorities. No article predicted Disease X outbreaks. CONCLUSIONS Spatiotemporal models for diseases with strong climatic and vectorial components, as in River Valley fever prediction, may currently best reduce the time to the availability of resources. A wide literature gap exists in the prediction of zoonoses with complex sociocultural and ecological dynamics such as Ebola, COVID-19 and especially Disease X.
Collapse
Affiliation(s)
- Nils Jonkmans
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Valérie D'Acremont
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
9
|
Strategies for the Production of Soluble Interferon-Alpha Consensus and Potential Application in Arboviruses and SARS-CoV-2. Life (Basel) 2021; 11:life11060460. [PMID: 34063766 PMCID: PMC8223780 DOI: 10.3390/life11060460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.
Collapse
|
10
|
Pinchoff J, Silva M, Spielman K, Hutchinson P. Use of effective lids reduces presence of mosquito larvae in household water storage containers in urban and peri-urban Zika risk areas of Guatemala, Honduras, and El Salvador. Parasit Vectors 2021; 14:167. [PMID: 33741050 PMCID: PMC7977570 DOI: 10.1186/s13071-021-04668-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2015, an outbreak of Zika virus spread across Latin America and the Caribbean (LAC). Public health programs promoted vector control behaviors, including covering water storage containers with lids. Such approaches disrupt Zika transmission by eliminating the habitats of the Aedes aegypti mosquito, which breeds in stagnant water. METHODS A quantitative household survey and observation checklist with trained enumerators were undertaken between August and October 2018 in selected urban/peri-urban USAID implementation communities in El Salvador, Guatemala, and Honduras. The survey included questions regarding knowledge, attitudes, and practices related to Zika virus. An accompanying checklist was implemented to observe water storage containers, including for short-term and long-term water use. The characteristics of these containers were tabulated, including the presence of a lid. The lids were examined for key features to determine their potential effectiveness to prevent mosquito breeding: fully covering and sealing the container, not having holes, and not having water on them (potentially creating a secondary breeding site). Multivariate logistic regression was used to estimate the effectiveness of lid types and characteristics on the presence of larvae. RESULTS Overall, in adjusted models, using an effective lid versus no lid was associated with a 94% decrease in odds of larval presence in long-term water storage containers (odds ratio = 0.06; 95% confidence interval [0.029, 0.152]); however, similar impacts were not observed for washbasins in the adjusted models. Models adjusted for household wealth, receiving a visit from a vector control technician, scrubbing the container in the last 7 days, and perception of more mosquitoes around. CONCLUSIONS Effective lids, if made available and coupled with complementary behavioral messaging, may reduce transmission of Zika and other Aedes mosquito-borne diseases in the LAC region.
Collapse
|
11
|
Chaves LF, Valerín Cordero JA, Delgado G, Aguilar-Avendaño C, Maynes E, Gutiérrez Alvarado JM, Ramírez Rojas M, Romero LM, Marín Rodríguez R. Modeling the association between Aedes aegypti ovitrap egg counts, multi-scale remotely sensed environmental data and arboviral cases at Puntarenas, Costa Rica (2017-2018). CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100014. [PMID: 35284867 PMCID: PMC8906134 DOI: 10.1016/j.crpvbd.2021.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Problems with vector surveillance are a major barrier for the effective control of vector-borne disease transmission through Latin America. Here, we present results from a 80-week longitudinal study where Aedes aegypti (L.) (Diptera: Culicidae) ovitraps were monitored weekly at 92 locations in Puntarenas, a coastal city in Costa Rica with syndemic Zika, chikungunya and dengue transmission. We used separate models to investigate the association of either Ae. aegypti-borne arboviral cases or Ae. aegypti egg counts with remotely sensed environmental variables. We also evaluated whether Ae. aegypti-borne arboviral cases were associated with Ae. aegypti egg counts. Using cross-correlation and time series modeling, we found that arboviral cases were not significantly associated with Ae. aegypti egg counts. Through model selection we found that cases had a non-linear response to multi-scale (1-km and 30-m resolution) measurements of temperature standard deviation (SD) with a lag of up to 4 weeks, while simultaneously increasing with finely-grained NDVI (30-m resolution). Meanwhile, median ovitrap Ae. aegypti egg counts increased, and respectively decreased, with temperature SD (1-km resolution) and EVI (30-m resolution) with a lag of 6 weeks. A synchrony analysis showed that egg counts had a travelling wave pattern, with synchrony showing cyclic changes with distance, a pattern not observed in remotely sensed data with 30-m and 10-m resolution. Spatially, using generalized additive models, we found that eggs were more abundant at locations with higher temperatures and where EVI was leptokurtic during the study period. Our results suggest that, in Puntarenas, remotely sensed environmental variables are associated with both Ae. aegypti-borne arbovirus transmission and Ae. aegypti egg counts from ovitraps.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - José Angel Valerín Cordero
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Pacífico Central, Ministerio de Salud, Puntarenas, Puntarenas, Código Postal 60101, Costa Rica
| | - Gabriela Delgado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Carlos Aguilar-Avendaño
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Ezequías Maynes
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - José Manuel Gutiérrez Alvarado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Melissa Ramírez Rojas
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Luis Mario Romero
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Heredia, Apartado Postal 304-3000, Costa Rica
| | - Rodrigo Marín Rodríguez
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| |
Collapse
|
12
|
Carabali M, Jaramillo-Ramirez GI, Rivera VA, Mina Possu NJ, Restrepo BN, Zinszer K. Assessing the reporting of Dengue, Chikungunya and Zika to the National Surveillance System in Colombia from 2014-2017: A Capture-recapture analysis accounting for misclassification of arboviral diagnostics. PLoS Negl Trop Dis 2021; 15:e0009014. [PMID: 33539393 PMCID: PMC7888590 DOI: 10.1371/journal.pntd.0009014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/17/2021] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chikungunya, dengue, and Zika are three different arboviruses which have similar symptoms and are a major public health issue in Colombia. Despite the mandatory reporting of these arboviruses to the National Surveillance System in Colombia (SIVIGILA), it has been reported that the system captures less than 10% of diagnosed cases in some cities. METHODOLOGY/PRINCIPAL FINDINGS To assess the scope and degree of arboviruses reporting in Colombia between 2014-2017, we conducted an observational study of surveillance data using the capture-recapture approach in three Colombian cities. Using healthcare facility registries (capture data) and surveillance-notified cases (recapture data), we estimated the degree of reporting by clinical diagnosis. We fit robust Poisson regressions to identify predictors of reporting and estimated the predicted probability of reporting by disease and year. To account for the potential misclassification of the clinical diagnosis, we used the simulation extrapolation for misclassification (MC-SIMEX) method. A total of 266,549 registries were examined. Overall arboviruses' reporting ranged from 5.3% to 14.7% and varied in magnitude according to age and year of diagnosis. Dengue was the most notified disease (21-70%) followed by Zika (6-45%). The highest reporting rate was seen in 2016, an epidemic year. The MC-SIMEX corrected rates indicated underestimation of the reporting due to the potential misclassification bias. CONCLUSIONS These findings reflect challenges on arboviruses' reporting, and therefore, potential challenges on the estimation of arboviral burden in Colombia and other endemic settings with similar surveillance systems.
Collapse
Affiliation(s)
- Mabel Carabali
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | | | | | | | - Berta N. Restrepo
- Instituto Colombiano de Medicina Tropical- Universidad CES, Medellín, Colombia
| | - Kate Zinszer
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Manrique-Saide P, Dean NE, Halloran ME, Longini IM, Collins MH, Waller LA, Gomez-Dantes H, Lenhart A, Hladish TJ, Che-Mendoza A, Kirstein OD, Romer Y, Correa-Morales F, Palacio-Vargas J, Mendez-Vales R, Pérez PG, Pavia-Ruz N, Ayora-Talavera G, Vazquez-Prokopec GM. The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials 2020; 21:839. [PMID: 33032661 PMCID: PMC7542575 DOI: 10.1186/s13063-020-04780-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Current urban vector control strategies have failed to contain dengue epidemics and to prevent the global expansion of Aedes-borne viruses (ABVs: dengue, chikungunya, Zika). Part of the challenge in sustaining effective ABV control emerges from the paucity of evidence regarding the epidemiological impact of any Aedes control method. A strategy for which there is limited epidemiological evidence is targeted indoor residual spraying (TIRS). TIRS is a modification of classic malaria indoor residual spraying that accounts for Aedes aegypti resting behavior by applying residual insecticides on exposed lower sections of walls (< 1.5 m), under furniture, and on dark surfaces. METHODS/DESIGN We are pursuing a two-arm, parallel, unblinded, cluster randomized controlled trial to quantify the overall efficacy of TIRS in reducing the burden of laboratory-confirmed ABV clinical disease (primary endpoint). The trial will be conducted in the city of Merida, Yucatan State, Mexico (population ~ 1million), where we will prospectively follow 4600 children aged 2-15 years at enrollment, distributed in 50 clusters of 5 × 5 city blocks each. Clusters will be randomly allocated (n = 25 per arm) using covariate-constrained randomization. A "fried egg" design will be followed, in which all blocks of the 5 × 5 cluster receive the intervention, but all sampling to evaluate the epidemiological and entomological endpoints will occur in the "yolk," the center 3 × 3 city blocks of each cluster. TIRS will be implemented as a preventive application (~ 1-2 months prior to the beginning of the ABV season). Active monitoring for symptomatic ABV illness will occur through weekly household visits and enhanced surveillance. Annual sero-surveys will be performed after each transmission season and entomological evaluations of Ae. aegypti indoor abundance and ABV infection rates monthly during the period of active surveillance. Epidemiological and entomological evaluation will continue for up to three transmission seasons. DISCUSSION The findings from this study will provide robust epidemiological evidence of the efficacy of TIRS in reducing ABV illness and infection. If efficacious, TIRS could drive a paradigm shift in Aedes control by considering Ae. aegypti behavior to guide residual insecticide applications and changing deployment to preemptive control (rather than in response to symptomatic cases), two major enhancements to existing practice. TRIAL REGISTRATION ClinicalTrials.gov NCT04343521 . Registered on 13 April 2020. The protocol also complies with the WHO International Clinical Trials Registry Platform (ICTRP) (Additional file 1). PRIMARY SPONSOR National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID).
Collapse
Affiliation(s)
- Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Merida, Mexico
| | - Natalie E Dean
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - M Elizabeth Halloran
- Center for Inference and Dynamics of Infectious Diseases, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA, 98109, USA
| | - Ira M Longini
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, 30030, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Hector Gomez-Dantes
- Health Systems Research Center, National Institute of Public Health, Cuernavaca, Mexico
| | - Audrey Lenhart
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas J Hladish
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Azael Che-Mendoza
- Unidad Colaborativa de Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Merida, Mexico
| | - Oscar D Kirstein
- Department of Environmental Sciences, Math and Science Center, Emory University, 400 Dowman Drive, 5th floor, Suite E530, Atlanta, GA, 30322, USA
| | - Yamila Romer
- Department of Environmental Sciences, Math and Science Center, Emory University, 400 Dowman Drive, 5th floor, Suite E530, Atlanta, GA, 30322, USA
| | - Fabian Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE) Secretaría de Salud Mexico, Mexico City, Mexico
| | | | | | | | - Norma Pavia-Ruz
- Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autonoma de Yucatan, Merida, Mexico
| | - Guadalupe Ayora-Talavera
- Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autonoma de Yucatan, Merida, Mexico
| | - Gonzalo M Vazquez-Prokopec
- Department of Environmental Sciences, Math and Science Center, Emory University, 400 Dowman Drive, 5th floor, Suite E530, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Benitez EM, Ludueña-Almeida F, Frías-Céspedes M, Almirón WR, Estallo EL. Could land cover influence Aedes aegypti mosquito populations? MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:138-144. [PMID: 31840284 DOI: 10.1111/mve.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 10/02/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti is mainly found in urban environments, where human activity guarantees the permanent availability of potential larval habitats. The present study aimed to test for a possible association between Ae. aegypti infestation and land cover classes. From 23 February to 22 May 2015, immature mosquitoes (except eggs) were sampled in artificial containers identified in dwellings in Córdoba city, Argentina. The proportion of each land cover class was determined by SPOT-5 (Satellites Pour 1'Observation de la Terre or Earth-observing Satellites) image classification. Generalized linear models were developed to assess a suite of predetermined hypotheses and identified cover class variables associated with Ae. aegypti infestation. Arboreal vegetation was identified as the land cover with the greatest relative importance, negatively associated with Ae. aegypti mosquitoes. More infestation was find in areas with less arboreal vegetation, which corresponds to more urbanized areas.
Collapse
Affiliation(s)
- E M Benitez
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Ludueña-Almeida
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Cátedra de Matemática (Cs. Biológicas). Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Frías-Céspedes
- Ministerio de Salud de la Provincia de Córdoba- Dirección de Epidemiología, Córdoba, Argentina
| | - W R Almirón
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E L Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Prado R, Macedo-Salles PA, Duprat RC, Baptista ARS, Feder D, Lima JBP, Butt T, Ratcliffe NA, Mello CB. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:454-462. [PMID: 31559435 DOI: 10.1093/jme/tjz161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Dengue, yellow fever, Zika, and chikungunya arboviruses are endemic in tropical countries and are transmitted by Aedes aegypti. Resistant populations of this mosquito against chemical insecticides are spreading worldwide. This study aimed to evaluate the biological effects of exposure of pesticide-sensitive Ae. aegypti larvae (Rockefeller) to conidia of the entomopathogen, Metarhizium brunneum, laboratory strains ARSEF 4556 and V275, and any synergistic activity of phenylthiourea (PTU). In addition, to investigate the nature of any cross-resistance mechanisms, these M. brunneum strains were tested against the Rockefeller larvae and two temephos- and deltamethrin-resistant wild mosquito populations from Rio de Janeiro. Treatment of Rockefeller larvae with 106 conidia/ml of ARSEF 4556 and V275 fungal strains resulted in significant decreased survival rates to 40 and 53.33%, respectively (P < 0.0001), compared with untreated controls. In contrast, exposure to 104 or 105 conidia/ml showed no such significant survival differences. However, the addition of PTU to the conidia in the bioassays significantly increased mortalities in all groups and induced a molt block. Experiments also showed no differences in Ae. aegypti mortalities between the fungal treated, wild pesticide-resistant populations and the Rockefeller sensitive strain. The results show the efficacy of M. brunneum in controlling Ae. aegypti larvae and the synergistic role of PTU in this process. Importantly, there was no indication of any cross-resistance mechanisms between Ae. aegypti sensitive or resistant to pesticides following treatment with the fungi. These results further support using M. brunneum as an alternative biological control agent against mosquito populations resistant to chemical insecticides.
Collapse
Affiliation(s)
- Rodrigo Prado
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pãmella A Macedo-Salles
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Rodrigo C Duprat
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Andrea R S Baptista
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Denise Feder
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Norman A Ratcliffe
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP Wales, UK
| | - Cicero Brasileiro Mello
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Portilla-Pulido JS, Castillo-Morales RM, Barón-Rodríguez MA, Duque JE, Mendez-Sanchez SC. Design of a Repellent Against Aedes aegypti (Diptera: Culicidae) Using in silico Simulations With AaegOBP1 Protein. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:463-476. [PMID: 31670811 PMCID: PMC7530563 DOI: 10.1093/jme/tjz171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Skin irritation has been reported to be the main adverse effect of excessive use of N,N-diethyl-m-toluamide (DEET) and ethyl 3-acetyl(butyl)amino (IR3535) commercial repellents. Therefore, there is an interest in alternatives of natural origin such as essential oils (EOs) and major compounds, which have repellent effects but have no contraindications. The main purpose of the present study was to identify the repellent effect of selected terpenes on Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) by in silico analysis based on their affinity with the odorant protein AaegOBP1. The protein-metabolite interactions in 20 terpenes were analyzed using the SwissDock tool. Terpenes presenting the highest affinity compared with commercial repellents were selected to evaluate repellent activity at concentrations 0.1, 10, and 25% against Ae. aegypti. Different periods (0-2, 2-15, 15-60 min) were evaluated with DEET as a positive control. The toxicity of terpenes was verified through Osiris and Molinspiration Cheminformatics Software, and cytotoxicity assays in Vero and HepaRG cells were performed using the MTT method. Two formulations were prepared with polyethylene glycol to evaluate skin long-lasting in vivo assay. The results showed four terpenes: geranyl acetate, nerolidol, α-bisabolol, and nerol, with affinity to AaegOBP1 comparable with DEET and IR3535. Geranyl acetate, nerolidol, and their mixtures showed no cytotoxicity and protection percentages close to 100% during the test at concentrations 10 and 25%. Long-lasting assays with geranyl acetate and nerolidol formulate showed 3 h as maximum protection time with 100% protection percentage. These metabolites and their mixtures are candidates to repellent formulations with times and protection percentages similar to DEET.
Collapse
Affiliation(s)
- Johan Sebastián Portilla-Pulido
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A., Colombia
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP. Facultad de Salud. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Piedecuesta, Santander, Colombia
| | - Ruth Mariela Castillo-Morales
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP. Facultad de Salud. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Piedecuesta, Santander, Colombia
| | | | - Jonny Edward Duque
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP. Facultad de Salud. Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Piedecuesta, Santander, Colombia
| | - Stelia Carolina Mendez-Sanchez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A., Colombia
| |
Collapse
|
18
|
Garae C, Kalo K, Pakoa GJ, Baker R, Isaacs P, Millar DS. Validation of the easyscreen flavivirus dengue alphavirus detection kit based on 3base amplification technology and its application to the 2016/17 Vanuatu dengue outbreak. PLoS One 2020; 15:e0227550. [PMID: 31951602 PMCID: PMC6968865 DOI: 10.1371/journal.pone.0227550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The family flaviviridae and alphaviridae contain a diverse group of pathogens that cause significant morbidity and mortality worldwide. Diagnosis of the virus responsible for disease is essential to ensure patients receive appropriate clinical management. Very few real-time RT-PCR based assays are able to detect the presence of all members of these families using a single primer and probe set. We have developed a novel chemistry, 3base, which simplifies the viral nucleic acids allowing the design of RT-PCR assays capable of pan-family identification. METHODOLOGY/PRINCIPAL FINDING Synthetic constructs, viral nucleic acids, intact viral particles and characterised reference materials were used to determine the specificity and sensitivity of the assays. Synthetic constructs demonstrated the sensitivities of the pan-flavivirus detection component were in the range of 13 copies per PCR. The pan-alphavirus assay had a sensitivity range of 10-25 copies per reaction depending on the viral strain. Lower limit of detection studies using whole virus particles demonstrated that sensitivity for assays was in the range of 1-2 copies per reaction. No cross reactivity was observed with a number of commonly encountered viral strains. Proficiency panels showed 100% concordance with the expected results and the assays performed as well as, if not better than, other assays used in laboratories worldwide. After initial assay validation the pan-viral assays were then tested during the 2016-2017 Vanuatu dengue-2 outbreak. Positive results were detected in 116 positives from a total of 187 suspected dengue samples. CONCLUSIONS/SIGNIFICANCE The pan-viral screening assays described here utilise a novel 3base technology and are shown to provide a sensitive and specific method to screen and thereafter speciate flavi- and/or alpha- viruses in clinical samples. The assays performed well in an outbreak situation and can be used to detect positive clinical samples containing any flavivirus or alphavirus in approximately 3 hours 30 minutes.
Collapse
|
19
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
20
|
Shoukat A, Vilches T, Moghadas SM. Cost-effectiveness of Prophylactic Zika Virus Vaccine in the Americas. Emerg Infect Dis 2019; 25:2191-2196. [PMID: 31742512 PMCID: PMC6874261 DOI: 10.3201/eid2512.181324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Zika virus remains a major public health concern because of its association with microcephaly and other neurologic disorders in newborns. A prophylactic vaccine has the potential to reduce disease incidence and eliminate birth defects resulting from prenatal Zika virus infection in future outbreaks. We evaluated the cost-effectiveness of a Zika vaccine candidate, assuming a protection efficacy of 60%–90%, for 18 countries in the Americas affected by the 2015–2017 Zika virus outbreaks. Encapsulating the demographics of these countries in an agent-based model, our results show that vaccinating women of reproductive age would be very cost-effective for sufficiently low (<$16) vaccination costs per recipient, depending on the country-specific Zika attack rate. In all countries studied, the median reduction of microcephaly was >75% with vaccination. These findings indicate that targeted vaccination of women of reproductive age is a noteworthy preventive measure for mitigating the effects of Zika virus infection in future outbreaks.
Collapse
|
21
|
Rodriguez AK, Muñoz AL, Segura NA, Rangel HR, Bello F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI JOURNAL 2019; 18:988-1006. [PMID: 31762724 PMCID: PMC6868920 DOI: 10.17179/excli2019-1825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Viruses transmitted by arthropods (arboviruses) are the etiological agents of several human diseases with worldwide distribution; including dengue (DENV), zika (ZIKV), yellow fever (YFV), and chikungunya (CHIKV) viruses. These viruses are especially important in tropical and subtropical regions; where, ZIKV and CHIKV are involved in epidemics worldwide, while the DENV remains as the biggest problem in public health. Factors, such as, environmental conditions promote the distribution of vectors, deficiencies in health services, and lack of effective vaccines, guarantee the presence of these vector-borne diseases. Treatment against these viral diseases is only palliative since available therapies formulated lack to demonstrate specific antiviral activity and vaccine candidates fail to demonstrate enough effectiveness. The use of natural products, as therapeutic tools, is an ancestral practice in different cultures. According to WHO 80 % of the population of some countries from Africa and Asia depend on the use of traditional medicines to deal with some diseases. Molecular characteristics of these viruses are important in determining its cellular pathogenesis, emergence, and dispersion mechanisms, as well as for the development of new antivirals and vaccines to control strategies. In this review, we summarize the current knowledge of the molecular structure and replication mechanisms of selected arboviruses, as well as their mechanism of entry into host cells, and a brief overview about the potential targets accessed to inhibit these viruses in vitro and a summary about their treatment with natural extracts from plants.
Collapse
Affiliation(s)
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá, 110231, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Héctor Rafael Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas, 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, 110131, Colombia
| |
Collapse
|
22
|
Pinchoff J, Serino A, Merritt AP, Hunter G, Silva M, Parikh P, Hewett PC. Evidence-Based Process for Prioritizing Positive Behaviors for Promotion: Zika Prevention in Latin America and the Caribbean and Applicability to Future Health Emergency Responses. GLOBAL HEALTH: SCIENCE AND PRACTICE 2019; 7:404-417. [PMID: 31558597 PMCID: PMC6816817 DOI: 10.9745/ghsp-d-19-00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022]
Abstract
To maximize the impact of Zika prevention programming efforts, a prioritization process for social and behavior change programming was developed based on a combination of research evidence and programmatic experience. Prioritized behaviors were: application of mosquito repellent, use of condoms, removing unintentional standing water, covering and scrubbing walls of water storage containers, seeking prenatal care, and seeking counseling on family planning if not planning to get pregnant. Since the 2015 Zika outbreak in Latin America and the Caribbean, a plethora of behavior change messages have been promoted to reduce Zika transmission. One year after the United States Agency for International Development (USAID) initiated its Zika response, more than 30 variants of preventive behaviors were being promoted. This situation challenged social and behavior change (SBC) programming efforts that require a coordinated response and agreed upon set of focus behaviors to be effective. To support USAID implementing partners in harmonizing prevention efforts to reduce Zika infection, we developed an evidence-based process to identify behaviors with the highest potential to reduce Zika infection and transmission. We compiled a full list of behaviors and selected the most promising for a full evidence review. The review included systematic keyword searches on Google Scholar, extraction of all relevant published articles on Aedes-borne diseases between 2012 and 2018, review of seminal papers, and review of gray literature. We examined articles to determine each behavior's potential effectiveness in preventing Zika transmission or reducing the Aedes aegypti population. We also developed assessment criteria to delineate the ease with which the target population could adopt each behavior, including: (1) required frequency; (2) feasibility of the behavior; and (3) accessibility and cost of the necessary materials in the setting. These behaviors were refined through a consensus-building process with USAID's Zika implementing partners, considering contextual factors. The resulting 7 evidence-based preventive behaviors have high potential to strengthen SBC programming's impact in USAID's Zika response: (1) apply mosquito repellent, (2) use condoms during pregnancy, (3) remove standing water, (4) cover water storage containers, (5) clean/remove mosquito eggs from water containers, (6) seek antenatal care, and (7) seek family planning counseling. This case study documents a flexible process that can be adapted to inform the prioritization of behaviors when there is limited evidence available, as during many emergency responses.
Collapse
Affiliation(s)
| | - Arianna Serino
- United States Agency for International Development, Washington DC, USA
| | | | - Gabrielle Hunter
- Johns Hopkins Center for Communication Programs, Baltimore MD, USA
| | | | - Priya Parikh
- Johns Hopkins Center for Communication Programs, Baltimore MD, USA
| | | |
Collapse
|
23
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
24
|
Counotte MJ, Meili KW, Taghavi K, Calvet G, Sejvar J, Low N. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: A living systematic review. F1000Res 2019; 8:1433. [PMID: 31754425 PMCID: PMC6852328 DOI: 10.12688/f1000research.19918.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The Zika virus (ZIKV) caused a large outbreak in the Americas leading to the declaration of a Public Health Emergency of International Concern in February 2016. A causal relation between infection and adverse congenital outcomes such as microcephaly was declared by the World Health Organization (WHO) informed by a systematic review structured according to a framework of ten dimensions of causality, based on the work of Bradford Hill. Subsequently, the evidence has continued to accumulate, which we incorporate in regular updates of the original work, rendering it a living systematic review. Methods: We present an update of our living systematic review on the causal relation between ZIKV infection and adverse congenital outcomes and between ZIKV and GBS for four dimensions of causality: strength of association, dose-response, specificity, and consistency. We assess the evidence published between January 18, 2017 and July 1, 2019. Results: We found that the strength of association between ZIKV infection and adverse outcomes from case-control studies differs according to whether exposure to ZIKV is assessed in the mother (OR 3.8, 95% CI: 1.7-8.7, I
2=19.8%) or the foetus/infant (OR 37.4, 95% CI: 11.0-127.1, I
2=0%). In cohort studies, the risk of congenital abnormalities was 3.5 times higher after ZIKV infection (95% CI: 0.9-13.5, I
2=0%). The strength of association between ZIKV infection and GBS was higher in studies that enrolled controls from hospital (OR: 55.8, 95% CI: 17.2-181.7, I
2=0%) than in studies that enrolled controls at random from the same community or household (OR: 2.0, 95% CI: 0.8-5.4, I
2=74.6%). In case-control studies, selection of controls from hospitals could have biased results. Conclusions: The conclusions that ZIKV infection causes adverse congenital outcomes and GBS are reinforced with the evidence published between January 18, 2017 and July 1, 2019.
Collapse
Affiliation(s)
| | - Kaspar Walter Meili
- Institute of Social and Preventive Medicine, University Bern, Bern, Switzerland
| | - Katayoun Taghavi
- Institute of Social and Preventive Medicine, University Bern, Bern, Switzerland
| | - Guilherme Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - James Sejvar
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Low
- Institute of Social and Preventive Medicine, University Bern, Bern, Switzerland
| |
Collapse
|
25
|
Yrad FM, Castañares JM, Alocilja EC. Visual Detection of Dengue-1 RNA Using Gold Nanoparticle-Based Lateral Flow Biosensor. Diagnostics (Basel) 2019; 9:E74. [PMID: 31336721 PMCID: PMC6787709 DOI: 10.3390/diagnostics9030074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023] Open
Abstract
Dengue is a rapidly spreading mosquito-borne viral disease. Early diagnosis is important for clinical screening, medical management, and disease surveillance. The objective of this study was to develop a colorimetric lateral flow biosensor (LFB) for the visual detection of dengue-1 RNA using dextrin-capped gold nanoparticle (AuNP) as label. The detection was based on nucleic acid sandwich-type hybridization among AuNP-labeled DNA reporter probe, dengue-1 target RNA, and dengue-1 specific DNA capture probe immobilized on the nitrocellulose membrane. Positive test generated a red test line on the LFB strip, which enabled visual detection. The optimized biosensor has a cut-off value of 0.01 µM using synthetic dengue-1 target. Proof-of-concept application of the biosensor detected dengue-1 virus in pooled human sera with a cut-off value of 1.2 × 104 pfu/mL. The extracted viral RNA, when coupled with nucleic acid sequence-based amplification (NASBA), was detected on the LFB in 20 min. This study first demonstrates the applicability of dextrin-capped AuNP as label for lateral flow assay. The biosensor being developed provides a promising diagnostic platform for early detection of dengue infection in high-risk resource-limited areas.
Collapse
Affiliation(s)
- Flora M Yrad
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, University of San Carlos, Talamban, Cebu 6000, Philippines
- Department of Chemistry, Silliman University, Dumaguete 6200, Philippines
| | | | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Branche E, Simon AY, Sheets N, Kim K, Barker D, Nguyen AVT, Sahota H, Young MP, Salgado R, Mamidi A, Viramontes KM, Carnelley T, Qiu H, Elong Ngono A, Regla-Nava JA, Susantono MX, Valls Cuevas JM, Kennedy K, Kodihalli S, Shresta S. Human Polyclonal Antibodies Prevent Lethal Zika Virus Infection in Mice. Sci Rep 2019; 9:9857. [PMID: 31285451 PMCID: PMC6614477 DOI: 10.1038/s41598-019-46291-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that represents a major threat to global health. ZIKV infections in adults are generally asymptomatic or present with mild symptoms. However, recent outbreaks of ZIKV have revealed that it can cause Congenital Zika Syndrome in neonates and Guillain-Barré syndrome in adults. Currently, no ZIKV-specific vaccines or antiviral treatments are available. In this study, we tested the efficacy of convalescent plasma IgG hyperimmune product (ZIKV-IG) isolated from individuals with high neutralizing anti-ZIKV titers as a therapeutic candidate against ZIKV infection using a model of ZIKV infection in Ifnar1-/- mice. ZIKV-IG successfully protected mice from lethal ZIKV challenge. In particular, ZIKV-IG treatment at 24 hours after lethal ZIKV infection improved survival by reducing weight loss and tissue viral burden and improving clinical score. Additionally, ZIKV-IG eliminated ZIKV-induced tissue damage and inflammation in the brain and liver. These results indicate that ZIKV-IG is efficacious against ZIKV, suggesting this human polyclonal antibody is a viable candidate for further development as a treatment against human ZIKV infection.
Collapse
Affiliation(s)
- Emilie Branche
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ayo Yila Simon
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Nicholas Sheets
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Anh-Viet T Nguyen
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Harpreet Sahota
- Medical Affairs, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Matthew Perry Young
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rebecca Salgado
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Anila Mamidi
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Trevor Carnelley
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Hongyu Qiu
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Annie Elong Ngono
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Joan M Valls Cuevas
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Kieron Kennedy
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc, 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada.
| | - Sujan Shresta
- La Jolla Institute for Immunology 9420 Athena Circle, La Jolla, CA, 92037, USA.
| |
Collapse
|
27
|
Almeida IMLMD, Ramos CV, Rodrigues DC, Sousa ACD, Nascimento MDLCAPCD, Silva MVBD, Batista FMA, Santos JPD, de Oliveira RS, Soares FADF, Xavier SCDC, Carvalho‐Costa FA. Clinical and epidemiological aspects of microcephaly in the state of Piauí, northeastern Brazil, 2015‐2016. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2019. [DOI: 10.1016/j.jpedp.2018.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Almeida IMLMD, Ramos CV, Rodrigues DC, Sousa ACD, Nascimento MDLCAPCD, Silva MVBD, Batista FMA, Santos JPD, Oliveira RSD, Soares FADF, Xavier SCDC, Carvalho-Costa FA. Clinical and epidemiological aspects of microcephaly in the state of Piauí, northeastern Brazil, 2015-2016. J Pediatr (Rio J) 2019; 95:466-474. [PMID: 29963988 DOI: 10.1016/j.jped.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To describe aspects of the microcephaly epidemic in the state of Piauí. METHODS All cases of congenital microcephaly confirmed in the state between 2015 and 2016 were included (n=100). Investigation forms of the Regional Reference Center for Microcephaly were reviewed. Discarded cases (n=63) were used as a comparison group. RESULTS In October, November, and December 2015 incidence rates reached 4.46, 6.33 and 3.86/1000 live births, respectively; 44 cases were reported in the state capital. Among the mothers of confirmed and discarded cases, the frequency of skin rash during pregnancy was 50/97 (51.5%) and 8/51 (15.7%), respectively (p<0.001); 33 confirmed cases (35.9%) had a head circumference z-score between -2 and -3, 23 (25%) between -3 and -4, and 8 (8.7%) had a z-score of less than -4. Head computer tomography scans revealed calcifications in 78/95 (82.1%) cases. Lissencephaly, hydrocephalus and agenesis of the corpus callosum were also frequently observed. Ophthalmic findings included retinal pigment epithelium rarefaction and atrophy. Absence of otoacoustic emissions was observed in 21/70 cases. One newborn also presented lower limb muscle atrophy. There were no significant differences in vaccination rates for influenza, diphtheria-tetanus-acellular pertussis, and hepatitis B in either group. CONCLUSIONS The state of Piauí, like others in the northeastern region, faced an epidemic of congenital microcephaly between 2015 and 2016, presumably related to congenital Zika virus infection, more intense in the capital. Current challenges include the improvement of vector control, basic research, scaling-up of diagnostic tools for pre-natal screening of Zika virus, vaccines, and health care for affected children.
Collapse
Affiliation(s)
| | - Carmen Viana Ramos
- Centro Regional de Referência Regional em Microcefalia/Governo do Estado do Piauí, Teresina, PI, Brazil
| | | | - Amanda Carvalho de Sousa
- Centro Regional de Referência Regional em Microcefalia/Governo do Estado do Piauí, Teresina, PI, Brazil
| | | | | | | | - Jéssica Pereira Dos Santos
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Escritório Regional Fiocruz Piauí, Teresina, PI, Brazil
| | | | | | | | - Filipe Anibal Carvalho-Costa
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Escritório Regional Fiocruz Piauí, Teresina, PI, Brazil.
| |
Collapse
|
29
|
Wong SY, Tan BH. Megatrends in Infectious Diseases: The Next 10 to 15 Years. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2019. [DOI: 10.47102/annals-acadmedsg.v48n6p188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been about 100 years since the Spanish influenza pandemic of 1918-19 that killed an estimated 50 million individuals globally. While we have made remarkable progress in reducing infection-related mortality, infections still account for 13 to 15 million deaths annually. This estimate is projected to remain unchanged until 2050. We have identified 4 megatrends in infectious diseases and these are “emerging and re-emerging infections”, “antimicrobial resistance”, “demographic changes” and “technological advances”. Understanding these trends and challenges should lead to opportunities for the medical community to reshape the future. Further inroads will also require broad approaches involving surveillance, public health and translating scientific discoveries into disease control efforts.
Key words: Antimicrobial resistance, Demographic changes, Emerging infections, Technological advances
Collapse
Affiliation(s)
- Sin Yew Wong
- Infectious Disease Partners Pte Ltd, Gleneagles Medical Centre, Singapore
| | | |
Collapse
|
30
|
Fox SJ, Bellan SE, Perkins TA, Johansson MA, Meyers LA. Downgrading disease transmission risk estimates using terminal importations. PLoS Negl Trop Dis 2019; 13:e0007395. [PMID: 31199809 PMCID: PMC6594658 DOI: 10.1371/journal.pntd.0007395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/26/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
As emerging and re-emerging infectious arboviruses like dengue, chikungunya, and Zika threaten new populations worldwide, officials scramble to assess local severity and transmissibility, with little to no epidemiological history to draw upon. Indirect estimates of risk from vector habitat suitability maps are prone to great uncertainty, while direct estimates from epidemiological data are only possible after cases accumulate and, given environmental constraints on arbovirus transmission, cannot be widely generalized beyond the focal region. Combining these complementary methods, we use disease importation and transmission data to improve the accuracy and precision of a priori ecological risk estimates. We demonstrate this approach by estimating the spatiotemporal risks of Zika virus transmission throughout Texas, a high-risk region in the southern United States. Our estimates are, on average, 80% lower than published ecological estimates-with only six of 254 Texas counties deemed capable of sustaining a Zika epidemic-and they are consistent with the number of autochthonous cases detected in 2017. Importantly our method provides a framework for model comparison, as our mechanistic understanding of arbovirus transmission continues to improve. Real-time updating of prior risk estimates as importations and outbreaks arise can thereby provide critical, early insight into local transmission risks as emerging arboviruses expand their global reach.
Collapse
Affiliation(s)
- Spencer J. Fox
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven E. Bellan
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Gerogia, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren Ancel Meyers
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
31
|
Verberk JDM, Vos RA, Mollema L, van Vliet J, van Weert JWM, de Melker HE, van der Klis FRM. Third national biobank for population-based seroprevalence studies in the Netherlands, including the Caribbean Netherlands. BMC Infect Dis 2019; 19:470. [PMID: 31138148 PMCID: PMC6537387 DOI: 10.1186/s12879-019-4019-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This paper outlines the methodology, study population and response rate of a third large Dutch population-based cross-sectional serosurvey carried-out in 2016/2017, primarily aiming to obtain insight into age-specific seroprevalence of vaccine-preventable diseases to evaluate the National Immunization Programme (NIP). In addition, Caribbean Netherlands (CN) was included, which enables additional research into tropical pathogens. METHODS A two-stage cluster sampling technique was used to draw a sample of Dutch residents (0-89 years) (NS), including an oversampling of non-Western migrants, persons living in low vaccination coverage (LVC) areas, and an extra sample of persons born in Suriname, Aruba and the former Dutch Antilles (SAN). A separate sample was drawn for each Caribbean island. At the consultation hours, questionnaires, blood samples, oro- and nasopharyngeal swabs, faeces, - and only in the Netherlands (NL) saliva and a diary about contact patterns - were obtained from participants. Vaccination- and medical history was retrieved, and in CN anthropometric measurements were taken. RESULTS In total, blood samples and questionnaires were collected from 9415 persons: 5745 (14.4%) in the NS (including the non-Western migrants), 1354 (19.8%) in LVC areas, 501 (6.9%) SAN, and 1815 (23.4%) in CN. CONCLUSIONS This study will give insight into protection of the population against infectious diseases included in the NIP. Research based on this large biobank will contribute to public health (policy) in NL and CN, e.g., regarding outbreak management and emerging pathogens. Further, we will be able to extend our knowledge on infectious diseases and its changing dynamics by linking serological data to results from additional materials collected, environmental- and pharmacological data.
Collapse
Affiliation(s)
- Janneke Doortje Maria Verberk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Regnerus Albertus Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Liesbeth Mollema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jeffrey van Vliet
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Hester Ellen de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fiona Regina Maria van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
32
|
Machado-Silva A, Guindalini C, Fonseca FL, Pereira-Silva MV, Fonseca BDP. Scientific and technological contributions of Latin America and Caribbean countries to the Zika virus outbreak. BMC Public Health 2019; 19:530. [PMID: 31072386 PMCID: PMC6507135 DOI: 10.1186/s12889-019-6842-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/16/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The recent Zika virus (ZIKAV) epidemics disclosed a major public health threat and a scientific and technological (S&T) challenge. The lessons learned from the S&T response of Latin America and the Caribbean (LAC) countries are critical to inform further research and guide scientific investments. The present study aimed to assess how new S&T knowledge produced and disseminated regionally can contribute to address global health challenges. METHODS Scientometric and social network analysis methods were used to assess the LAC scientific contribution and potential technological development on ZIKAV up to December 2017. ZIKAV-related publications were retrieved from the Web of Science, Scopus, and PubMed databases. Regionally published articles were obtained from SciELO (Scientific Electronic Library Online) and LILACS (Literature in the Health Sciences in Latin America and the Caribbean) databases. Patent registries were retrieved using Orbit Intelligence and Derwent Innovation. Records from each database were individually downloaded, integrated, standardized and analyzed. RESULTS We retrieved 5421 ZIKAV-related publications, revealing a sharp increase from 2015 onwards. LAC countries accounted for 20% of all publications and Brazil was among the top three most central countries in the global network for ZIKAV research. A total of 274 patent families backed up by experimental evidence were retrieved. Only 5% were filed by LAC assignees, all of them based in Brazil. The largest contribution of LAC research was on the clinical manifestations of the ZIKAV infection, along with vector control, which was also the main focus of patents. CONCLUSIONS Our analysis offered a comprehensive overview of ZIKAV's research and development and showed that (i) LAC countries had a key role in generating and disseminating scientific knowledge on ZIKAV; (ii) LAC countries have expressively contributed to research on ZIKAV clinical manifestations; (iii) the Brazilian scientific community was potentially very effective in knowledge sharing and diffusion in the ZIKAV research network; (iv) Brazil was the single LAC country filing patents, mostly represented by independent inventors and low-tech patents. The paper advocates the need for a continued interdisciplinary approach to improve LAC countries ability to prevent, prepare for and control future outbreaks.
Collapse
Affiliation(s)
- Alice Machado-Silva
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
- Instituto René Rachou, Fiocruz, Minas Gerais, Brazil
| | - Camila Guindalini
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
- Observatório em Ciência, Tecnologia e Inovação em Saúde da Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Lopes Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
- Observatório em Ciência, Tecnologia e Inovação em Saúde da Fiocruz, Rio de Janeiro, Brazil
| | - Marcus Vinicius Pereira-Silva
- Casa de Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Observatório em Ciência, Tecnologia e Inovação em Saúde da Fiocruz, Rio de Janeiro, Brazil
| | - Bruna de Paula Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
- Observatório em Ciência, Tecnologia e Inovação em Saúde da Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Beck S, Zhu Z, Oliveira MF, Smith DM, Rich JN, Bernatchez JA, Siqueira-Neto JL. Mechanism of Action of Methotrexate Against Zika Virus. Viruses 2019; 11:E338. [PMID: 30974762 PMCID: PMC6521145 DOI: 10.3390/v11040338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV), which is associated with microcephaly in infants and Guillain-Barré syndrome, reemerged as a serious public health threat in Latin America in recent years. Previous high-throughput screening (HTS) campaigns have revealed several potential hit molecules against ZIKV, including methotrexate (MTX), which is clinically used as an anti-cancer chemotherapy and anti-rheumatoid agent. We studied the mechanism of action of MTX against ZIKV in relation to its inhibition of dihydrofolate reductase (DHFR) in vitro using Vero and human neural stem cells (hNSCs). As expected, an antiviral effect for MTX against ZIKV was observed, showing up to 10-fold decrease in virus titer during MTX treatment. We also observed that addition of leucovorin (a downstream metabolite of DHFR pathway) rescued the ZIKV replication impaired by MTX treatment in ZIKV-infected cells, explaining the antiviral effect of MTX through inhibition of DHFR. We also found that addition of adenosine to ZIKV-infected cells was able to rescue ZIKV replication inhibited by MTX, suggesting that restriction of de novo synthesis adenosine triphosphate (ATP) pools suppresses viral replication. These results confirm that the DHFR pathway can be targeted to inhibit replication of ZIKV, similar to other published results showing this effect in related flaviviruses.
Collapse
Affiliation(s)
- Sungjun Beck
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Zhe Zhu
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michelli F Oliveira
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92093, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92093, USA.
| | - Jeremy N Rich
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Characteristics of Transformational Adaptation in Climate-Land-Society Interactions. SUSTAINABILITY 2019. [DOI: 10.3390/su11020356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Countries across the world aspire towards climate resilient sustainable development. The interacting processes of climate change, land change, and unprecedented social and technological change pose significant obstacles to these aspirations. The pace, intensity, and scale of these sizeable risks and vulnerabilities affect the central issues in sustainable development: how and where people live and work, access to essential resources and ecosystem services needed to sustain people in given locations, and the social and economic means to improve human wellbeing in the face of disruptions. This paper addresses the question: What are the characteristics of transformational adaptation and development in the context of profound changes in land and climate? To explore this question, this paper contains four case studies: managing storm water runoff related to the conversion of rural land to urban land in Indonesia; using a basket of interventions to manage social impacts of flooding in Nepal; combining a national glacier protection law with water rights management in Argentina; and community-based relocation in response to permafrost thaw and coastal erosion in Alaska. These case studies contribute to understanding characteristics of adaptation which is commensurate to sizeable risks and vulnerabilities to society in changing climate and land systems. Transformational adaptation is often perceived as a major large-scale intervention. In practice, the case studies in this article reveal that transformational adaptation is more likely to involve a bundle of adaptation interventions that are aimed at flexibly adjusting to change rather than reinforcing the status quo in ways of doing things. As a global mosaic, transformational change at a grand scale will occur through an inestimable number of smaller steps to adjust the central elements of human systems proportionate to the changes in climate and land systems. Understanding the characteristics of transformational adaptation will be essential to design and implement adaptation that keeps society in step with reconfiguring climate and land systems as they depart from current states.
Collapse
|
35
|
O'Reilly KM, Lowe R, Edmunds WJ, Mayaud P, Kucharski A, Eggo RM, Funk S, Bhatia D, Khan K, Kraemer MUG, Wilder-Smith A, Rodrigues LC, Brasil P, Massad E, Jaenisch T, Cauchemez S, Brady OJ, Yakob L. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med 2018; 16:180. [PMID: 30285863 PMCID: PMC6169075 DOI: 10.1186/s12916-018-1158-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) emerged in Latin America and the Caribbean (LAC) region in 2013, with serious implications for population health in the region. In 2016, the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern following a cluster of associated neurological disorders and neonatal malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain due to gaps in our understanding, considerable variation in surveillance and the lack of a comprehensive collation of data from affected countries. METHODS Our analysis combines information on confirmed and suspected Zika cases across LAC countries and a spatio-temporal dynamic transmission model for ZIKV infection to determine key transmission parameters and projected incidence in 90 major cities within 35 countries. Seasonality was determined by spatio-temporal estimates of Aedes aegypti vectorial capacity. We used country and state-level data from 2015 to mid-2017 to infer key model parameters, country-specific disease reporting rates, and the 2018 projected incidence. A 10-fold cross-validation approach was used to validate parameter estimates to out-of-sample epidemic trajectories. RESULTS There was limited transmission in 2015, but in 2016 and 2017 there was sufficient opportunity for wide-spread ZIKV transmission in most cities, resulting in the depletion of susceptible individuals. We predict that the highest number of cases in 2018 would present within some Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and French Guiana, but the estimated number of cases were no more than a few hundred. Model estimates of the timing of the peak in incidence were correlated (p < 0.05) with the reported peak in incidence. The reporting rate varied across countries, with lower reporting rates for those with only confirmed cases compared to those who reported both confirmed and suspected cases. CONCLUSIONS The findings suggest that the ZIKV epidemic is by and large over within LAC, with incidence projected to be low in most cities in 2018. Local low levels of transmission are probable, but the estimated rate of infection suggests that most cities have a population with high levels of herd immunity.
Collapse
Affiliation(s)
- Kathleen M O'Reilly
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK. .,Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.,Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Philippe Mayaud
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Rosalind M Eggo
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sebastian Funk
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Deepit Bhatia
- Division of Infectious Diseases, University of Toronto, Toronto, ON, Canada.,Centre for Research on Inner City Health, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Toronto, ON, Canada
| | - Kamran Khan
- Division of Infectious Diseases, University of Toronto, Toronto, ON, Canada.,Centre for Research on Inner City Health, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Toronto, ON, Canada
| | - Moritz U G Kraemer
- Harvard Medical School, Harvard University, Boston, MA, USA.,Boston Children's Hospital, Boston, MA, USA.,Department of Zoology, University of Oxford, Oxford, UK
| | - Annelies Wilder-Smith
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.,Department of Medicine and Public Health, Umea University, Umea, Sweden.,Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Laura C Rodrigues
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro, Brazil
| | - Eduardo Massad
- School of Applied Mathematics, Fundacao Getulio Vargas, Rio de Janeiro, Brazil
| | - Thomas Jaenisch
- Department for Infectious Diseases and Parasitology, Department for Infectious Diseases, University of Heidelberg, Heidelberg, Germany
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, URA3012, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Oliver J Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.,Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
36
|
Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, Sun Q, Zhu Z, Cui Y, Yang L, Wang P. Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling. Front Microbiol 2018; 9:1350. [PMID: 29988497 PMCID: PMC6026624 DOI: 10.3389/fmicb.2018.01350] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS-/- cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Harshada Ketkar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Tingting Geng
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Emily Lo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Leilei Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States.,Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhanbo Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long Yang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Penghua Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
37
|
Oliveira GMMD, Ferreira RM. Yellow Fever and Cardiovascular Disease: An Intersection of Epidemics. Arq Bras Cardiol 2018; 110:207-210. [PMID: 29694557 PMCID: PMC5898767 DOI: 10.5935/abc.20180041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | - Roberto Muniz Ferreira
- Instituto do Coração Édson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Abstract
The spread of Zika virus to the Americas was accompanied by surge in the number of infants with CNS abnormalities leading to a declaration of a health emergency by the WHO. This was accompanied by significant responses from governmental health agencies in the United States and Europe that resulted in significant new information described in the natural history of this perinatal infection in a very short period of time. Although much has been learned about Zika virus infection during pregnancy, limitations of current diagnostics and the challenges for accurate serologic diagnosis of acute Zika virus infection has restricted our understanding of the natural history of this perinatal infection to infants born to women with clinical disease during pregnancy and to Zika exposed infants with obvious clinical stigmata of disease. Thus, the spectrum of disease in infants exposed to Zika virus during pregnancy remains to be defined. In contrast, observations in informative animal models of Zika virus infections have provided rational pathways for vaccine development and existing antiviral drug development programs for other flaviviruses have resulted in accelerated development for potential antiviral therapies. This brief review will highlight some of the current concepts of the natural history of Zika virus during pregnancy.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital Harbor Bldg 160, Birmingham, AL 35233.
| |
Collapse
|
39
|
Carlson CJ, Dougherty E, Boots M, Getz W, Ryan SJ. Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Sci Rep 2018; 8:4921. [PMID: 29563545 PMCID: PMC5862882 DOI: 10.1038/s41598-018-22989-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Ecologists are increasingly involved in the pandemic prediction process. In the course of the Zika outbreak in the Americas, several ecological models were developed to forecast the potential global distribution of the disease. Conflicting results produced by alternative methods are unresolved, hindering the development of appropriate public health forecasts. We compare ecological niche models and experimentally-driven mechanistic forecasts for Zika transmission in the continental United States. We use generic and uninformed stochastic county-level simulations to demonstrate the downstream epidemiological consequences of conflict among ecological models, and show how assumptions and parameterization in the ecological and epidemiological models propagate uncertainty and produce downstream model conflict. We conclude by proposing a basic consensus method that could resolve conflicting models of potential outbreak geography and seasonality. Our results illustrate the usually-undocumented margin of uncertainty that could emerge from using any one of these predictions without reservation or qualification. In the short term, ecologists face the task of developing better post hoc consensus that accurately forecasts spatial patterns of Zika virus outbreaks. Ultimately, methods are needed that bridge the gap between ecological and epidemiological approaches to predicting transmission and realistically capture both outbreak size and geography.
Collapse
Affiliation(s)
- Colin J Carlson
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, 21401, USA.
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.
| | - Eric Dougherty
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720-3112, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720-3112, USA
| | - Wayne Getz
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720-3112, USA
- Schools of Mathematical Sciences, University of KwaZulu, Natal, South Africa
| | - Sadie J Ryan
- Schools of Life Sciences, University of KwaZulu, Natal, South Africa
- Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
40
|
Frenk J, Gómez-Dantés O. Health Systems in Latin America: The Search for Universal Health Coverage. Arch Med Res 2018; 49:79-83. [DOI: 10.1016/j.arcmed.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
41
|
Lowe R, Barcellos C, Brasil P, Cruz OG, Honório NA, Kuper H, Carvalho MS. The Zika Virus Epidemic in Brazil: From Discovery to Future Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E96. [PMID: 29315224 PMCID: PMC5800195 DOI: 10.3390/ijerph15010096] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedesaegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain-Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide.
Collapse
Affiliation(s)
- Rachel Lowe
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
- Barcelona Institute for Global Health (ISGLOBAL), Doctor Aiguader, 88, 08003 Barcelona, Spain.
| | - Christovam Barcellos
- Institute of Health Communication and Information, Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | - Patrícia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | - Oswaldo G Cruz
- Scientific Computation Program, Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | - Nildimar Alves Honório
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | - Hannah Kuper
- International Centre for Evidence in Disability, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Marilia Sá Carvalho
- Scientific Computation Program, Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| |
Collapse
|