1
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Nishimura EO, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. PLoS Pathog 2025; 21:e1012855. [PMID: 39869679 DOI: 10.1371/journal.ppat.1012855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells, suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Vasantha-Srinivasan P, Srinivasan K, Radhakrishnan N, Han YS, Karthi S, Senthil-Nathan S, Chellappandian M, Babu P, Ganesan R, Park KB. Larvicidal and enzyme inhibition effects of Phoenix pusilla derived Methyl oleate and malathion on Aedes aegypti strains. Sci Rep 2024; 14:29327. [PMID: 39592649 PMCID: PMC11599377 DOI: 10.1038/s41598-024-79988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the larvicidal potential of methanolic flower extracts from Phoenix pusilla (Pp-Fe), its major compound, and malathion (MLT), against laboratory strain (LS) and field strain (FS) of Aedes aegypti, the dengue mosquito vector. We identified thirty-one derivatives, with methyl oleate (MO) comprising 28.5% of Pp-Fe. Comparative efficacy evaluations were performed using peak dosages of Pp-Fe (500 ppm), MO (5 ppm), and MLT (5 ppm) on LS and FS larvae. Both LS and FS second instars showed higher susceptibility to Pp-Fe (95% and 93%, respectively) and MO (85% and 83%, respectively). MLT resulted in significant mortality rates among LS larvae (98%) and notable reductions among FS larvae (71%). The expression levels of key biomarker enzymes (carboxylesterase, GST, and CYP450) exhibited a consistent decrease and subsequent upregulation in LS and FS larvae following exposure to Pp-Fe and MO, contrasting with the significant expression variations observed in LS and FS larvae exposed to MLT. LS larvae demonstrated heightened susceptibility and evident midgut cell damage following all treatments, suggesting potential disparities in susceptibility and adaptive responses between LS and FS strains towards MLT. These observations underscore the promising larvicidal attributes of Pp-Fe and MO, emphasizing the need for further exploration of their mechanisms of action in the development of environmentally sustainable mosquito control strategies and resistance management.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kumaraswamy Srinivasan
- Department of Biochemistry, St. Peter's Institute of Higher Education and Research (SPIHER), Avadi, Chennai, 600054, Tamil Nadu, India
| | - Narayanaswamy Radhakrishnan
- Department of Bio-Chemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105, Thandalam, Chennai, India
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sengodan Karthi
- Department of Entomology, University of Kentucky, Lexington, 40503, USA
| | - Sengottayan Senthil-Nathan
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627412, Tamil Nadu, India.
| | - Muthiah Chellappandian
- PG and Research Department of Botany, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, India
| | - Prasanth Babu
- Department of Biochemistry, St. Peter's Institute of Higher Education and Research (SPIHER), Avadi, Chennai, 600054, Tamil Nadu, India
| | - Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ki Beom Park
- Research & Development Center, Invirustech Co., Inc, Gwangju, 61222, Korea
| |
Collapse
|
3
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick VM, Lawniczak MK, Osborne Nishimura E, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.603613. [PMID: 39091762 PMCID: PMC11291174 DOI: 10.1101/2024.07.23.603613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis - an extremely efficient vector of West Nile virus (WNV) - nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells, suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2 , R2D2 , etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
|
4
|
Fei S, Awais MM, Zou J, Xia J, Wang Y, Kong Y, Feng M, Sun J. Single-nucleus RNA sequencing reveals midgut cellular heterogeneity and transcriptional profiles in Bombyx mori cytoplasmic polyhedrosis virus infection. INSECT SCIENCE 2024. [PMID: 39523555 DOI: 10.1111/1744-7917.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
The gut is not only used by insects as an organ for the digestion of food and absorption of nutrients but also as an important barrier against the invasion and proliferation of pathogenic microorganisms. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an insect-specific virus, predominantly colonizes the midgut epithelial cells of the silkworm, thereby jeopardizing its normal growth. However, there is limited knowledge of the cellular immune responses to viral infection and whether the infection is promoted or inhibited by different types of cells in the silkworm midgut. In this study, we used single-nucleus RNA sequencing to identify representative enteroendocrine cells, enterocytes, and muscle cell types in the silkworm midgut. In addition, by analyzing the transcriptional profiles of various subpopulations in the infected and uninfected groups, we found that BmCPV infection suppresses the response of the antiviral pathways and induces the expression of BmHSP70, which plays a role in promoting BmCPV replication. However, certain immune genes in the midgut of the silkworm, such as BmLebocin3, were induced upon viral infection, and downregulation of BmLEB3 using RNA interference promoted BmCPV replication in the midgut of B. mori. These results suggest that viral immune evasion and active host resistance coexist in BmCPV-infected silkworms. We reveal the richness of cellular diversity in the midgut of B. mori larvae by single-nucleus RNA sequencing analysis and provide new insights into the complex interactions between the host and the virus at the single-cell level.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinglei Zou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yibing Kong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Cabral AP, Maia FPDS, Magliano DC, Graceli JB, Soares P, Morris EAR, Miranda-Alves L. Pyriproxyfen, villain or good guy? A brief review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240154. [PMID: 39876972 PMCID: PMC11771759 DOI: 10.20945/2359-4292-2024-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Pyriproxyfen (PPF) acts as a juvenile growth regulator, interfering with normal metamorphosis and blocking the development of insects into adulthood. Although the World Health Organization (WHO) considers the use of PPF at a concentration of 0.01 mg/L as unlikely to pose health risks, recent studies have unveiled potential risks associated with PPF exposure to non-target organisms. Exposure to PPF disrupts insect development primarily by mimicking juvenile hormones; therefore, concerns linger over its impact on unintended species. Studies have highlighted the adverse effects of PPF on aquatic invertebrates, fish, and amphibians and revealed mortality and developmental abnormalities in non-target mosquito species exposed to PPF-treated water. Moreover, PPF may act as an endocrine disruptor, interfering with hormonal pathways crucial for growth, reproduction, and behavior in exposed organisms. Amphibians, for instance, display altered reproductive physiology and developmental abnormalities due to disruptions in endocrine signaling pathways caused by PPF. The ecological ramifications of PPF extend beyond direct toxicity to non-target species. Indirect effects include shifts in food web dynamics and ecosystem functioning. Reductions in insect populations, induced by PPF, can disrupt food availability for higher trophic levels, potentially destabilizing community structure and ecosystem equilibrium. Given mounting evidence of unintended consequences, robust risk assessment and regulatory oversight are imperative. Accurate classification of PPF by regulatory bodies is essential to balancing its role in disease control and pest management benefits with the need to safeguard non-target species and maintain ecosystem health. Future research must prioritize comprehensive assessments of PPF's ecological impact across various habitats and taxa to inform evidence-based policymaking.
Collapse
Affiliation(s)
- Andressa Pereira Cabral
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabrício Pereira dos Santos Maia
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - D’Angelo Carlo Magliano
- Universidade Federal FluminenseCentro de Morfologia e MetabolismoNiteróiRJBrasilCentro de Morfologia e Metabolismo, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jones Bernardes Graceli
- Universidade Federal do Espírito SantoLaboratório de Endocrinologia e Toxicologia CelularDepartamento de MorfologiaEspírito SantoESBrasilLaboratório de Endocrinologia e Toxicologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Espírito Santo, ES, Brasil
| | - Paula Soares
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Eduardo Andrés Rios Morris
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Leandro Miranda-Alves
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasLaboratório de Endocrinologia ExperimentalRio de JaneiroRJBrasilLaboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilPrograma de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade do PortoInstituto de Investigação e Inovação em SaúdeGrupo de Sinalização e Metabolismo CelularPortoPortugalGrupo de Sinalização e Metabolismo Celular, i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
6
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
7
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
8
|
Chen TY, Raduwan H, Marín-López A, Cui Y, Fikrig E. Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut. iScience 2024; 27:110353. [PMID: 39055935 PMCID: PMC11269924 DOI: 10.1016/j.isci.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The Aedes aegypti midgut is crucial for blood digestion, nutrition, reproduction, and pathogen interaction. Using single-cell RNA sequencing, we explored virus infection and transcriptomic changes at the cellular level. We identified 12 distinct cell clusters in the Ae. aegypti midgut post-Zika virus infection, including intestinal stem cells, enteroblasts, enteroendocrine cells (EE), and enterocytes (ECs). The virus was found mainly in specific subsets of ECs and EE. Infection altered transcriptional profiles related to metabolism, signaling, and immune responses. Functional studies highlighted three significantly differentially expressed genes in infected cells. Notably, silencing apolipophorin III reduced virus RNA copy number in the midgut, emphasizing the role of specific genes in viral infection. These findings enhance our understanding of mosquito midgut cell processes during Zika virus infection and suggest potential targets for vector control.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
10
|
Wang S, Huang Y, Wang F, Han Q, Ren N, Wang X, Cui Y, Yuan Z, Xia H. A cell atlas of the adult female Aedes aegypti midgut revealed by single-cell RNA sequencing. Sci Data 2024; 11:587. [PMID: 38839790 PMCID: PMC11153528 DOI: 10.1038/s41597-024-03432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.
Collapse
Affiliation(s)
- Shunlong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Qian Han
- Hainan One Health Key Laboratory, Hainan University, Haikou, 570228, China
| | - Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, 06520, USA.
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
11
|
Farder-Gomes CF, Miranda FR, Fernandes KM, Bernardes RC, Sena Bastos DS, Licursi de Oliveira L, Martins GF, Serrão JE. Exposure to low-concentration fipronil impairs survival, behavior, midgut morphology and physiology of Aedes aegypti larvae. CHEMOSPHERE 2024; 358:142240. [PMID: 38705417 DOI: 10.1016/j.chemosphere.2024.142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.
Collapse
Affiliation(s)
| | - Franciane Rosa Miranda
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
12
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
13
|
Samantsidis GR, Kwon H, Wendland M, Fonder C, Smith RC. TNF signaling mediates cellular immune function and promotes malaria parasite killing in the mosquito Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592209. [PMID: 38746363 PMCID: PMC11092648 DOI: 10.1101/2024.05.02.592209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine and a master regulator of immune cell function in vertebrates. While previous studies have implicated TNF signaling in invertebrate immunity, the roles of TNF in mosquito innate immunity and vector competence have yet to be explored. Herein, we confirm the identification of a conserved TNF-α pathway in Anopheles gambiae consisting of the TNF-α ligand, Eiger, and its cognate receptors Wengen and Grindelwald. Through gene expression analysis, RNAi, and in vivo injection of recombinant TNF-α, we provide direct evidence for the requirement of TNF signaling in regulating mosquito immune cell function by promoting granulocyte midgut attachment, increased granulocyte abundance, and oenocytoid rupture. Moreover, our data demonstrate that TNF signaling is an integral component of anti-Plasmodium immunity that limits malaria parasite survival. Together, our data support the existence of a highly conserved TNF signaling pathway in mosquitoes that mediates cellular immunity and influences Plasmodium infection outcomes, offering potential new approaches to interfere with malaria transmission by targeting the mosquito host.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Megan Wendland
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Catherine Fonder
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Taracena-Agarwal ML, Hixson B, Nandakumar S, Girard-Mejia AP, Chen RY, Huot L, Padilla N, Buchon N. The midgut epithelium of mosquitoes adjusts cell proliferation and endoreplication to respond to physiological challenges. BMC Biol 2024; 22:22. [PMID: 38281940 PMCID: PMC10823748 DOI: 10.1186/s12915-023-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Hematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites. RESULTS We studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian. CONCLUSIONS We saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes' physiological responses to distinct challenges.
Collapse
Affiliation(s)
- M L Taracena-Agarwal
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA
| | - B Hixson
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA
| | - S Nandakumar
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA
| | - A P Girard-Mejia
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, 01015, Guatemala
| | - R Y Chen
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA
| | - L Huot
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA
| | - N Padilla
- Grupo de Biología y Control de Vectores, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, 01015, Guatemala
| | - N Buchon
- Department of Entomology, College of Agriculture and Life Sciences, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, 14852, USA.
| |
Collapse
|
15
|
Phengchat R, Pakparnich P, Pethrak C, Pengon J, Sartsanga C, Chotiwan N, Uppakara K, Suksirisawat K, Lambrechts L, Jupatanakul N. Differential intra-host infection kinetics in Aedes aegypti underlie superior transmissibility of African relative to Asian Zika virus. mSphere 2023; 8:e0054523. [PMID: 37943061 PMCID: PMC10732021 DOI: 10.1128/msphere.00545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The recent Zika virus (ZIKV) epidemic in the Americas highlights its potential public health threat. While the Asian ZIKV lineage has been identified as the main cause of the epidemic, the African lineage, which has been primarily confined to Africa, has shown evidence of higher transmissibility in Aedes mosquitoes. To gain a deeper understanding of this differential transmissibility, our study employed a combination of tissue-level infection kinetics and single-cell-level infection kinetics using in situ immunofluorescent staining. We discovered that the African ZIKV lineage propagates more rapidly and spreads more efficiently within mosquito cells and tissues than its Asian counterpart. This information lays the groundwork for future exploration of the viral and host determinants driving these variations in propagation efficiency.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Phonchanan Pakparnich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Chatpong Pethrak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Channarong Sartsanga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Nunya Chotiwan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kittitat Suksirisawat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Natapong Jupatanakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
16
|
Merkling SH, Crist AB, Henrion-Lacritick A, Frangeul L, Couderc E, Gausson V, Blanc H, Bergman A, Baidaliuk A, Romoli O, Saleh MC, Lambrechts L. Multifaceted contributions of Dicer2 to arbovirus transmission by Aedes aegypti. Cell Rep 2023; 42:112977. [PMID: 37573505 DOI: 10.1016/j.celrep.2023.112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.
Collapse
Affiliation(s)
- Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Anna Beth Crist
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Alexander Bergman
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Artem Baidaliuk
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France.
| |
Collapse
|
17
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
18
|
Bitencourt RDOB, dos Santos-Mallet JR, Lowenberger C, Ventura A, Gôlo PS, Bittencourt VREP, Angelo IDC. A Novel Model of Pathogenesis of Metarhizium anisopliae Propagules through the Midguts of Aedes aegypti Larvae. INSECTS 2023; 14:insects14040328. [PMID: 37103143 PMCID: PMC10146130 DOI: 10.3390/insects14040328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
We assessed the effect of the entomopathogenic fungus Metarhizium anisopliae against Aedes aegypti. Conidia of M. anisopliae strains CG 489, CG 153, and IBCB 481 were grown in Adamek medium under different conditions to improve blastospore production. Mosquito larvae were exposed to blastospores or conidia of the three fungal strains at 1 × 107 propagules mL-1. M. anisopliae IBCB 481 and CG 153 reduced larval survival by 100%, whereas CG 489 decreased survival by about 50%. Blastospores of M. anisopliae IBCB 481 had better results in lowering larval survival. M. anisopliae CG 489 and CG 153 reduced larval survival similarly. For histopathology (HP) and scanning electron microscopy (SEM), larvae were exposed to M. anisopliae CG 153 for 24 h or 48 h. SEM confirmed the presence of fungi in the digestive tract, while HP confirmed that propagules reached the hemocoel via the midgut, damaged the peritrophic matrix, caused rupture and atrophy of the intestinal mucosa, caused cytoplasmic disorganization of the enterocytes, and degraded the brush border. Furthermore, we report for the first time the potential of M. anisopliae IBCB 481 to kill Ae. aegypti larvae and methods to improve the production of blastospores.
Collapse
Affiliation(s)
| | - Jacenir Reis dos Santos-Mallet
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-RJ, Rio de Janeiro 21040-900, RJ, Brazil
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-PI, Teresina 64001-350, PI, Brazil
- Laboratory of Surveillance and Biodiversity in Health, Iguaçu University-UNIG, Nova Iguaçu 28300-000, RJ, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Adriana Ventura
- Department of Animal Biology, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Patrícia Silva Gôlo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| |
Collapse
|
19
|
Talyuli OAC, Oliveira JHM, Bottino-Rojas V, Silveira GO, Alvarenga PH, Barletta ABF, Kantor AM, Paiva-Silva GO, Barillas-Mury C, Oliveira PL. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase. PLoS Pathog 2023; 19:e1011149. [PMID: 36780872 PMCID: PMC9956595 DOI: 10.1371/journal.ppat.1011149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/24/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.
Collapse
Affiliation(s)
- Octavio A. C. Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departments of Microbiology and Molecular Genetics and of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Gilbert O. Silveira
- Laboratório de Expressão Genica em Eucariotos, Instituto Butantan and Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia H. Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana Beatriz F. Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Asher M. Kantor
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Prakash A, Monteith KM, Vale PF. Mechanisms of damage prevention, signalling and repair impact disease tolerance. Proc Biol Sci 2022; 289:20220837. [PMID: 35975433 PMCID: PMC9382215 DOI: 10.1098/rspb.2022.0837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The insect gut is frequently exposed to pathogenic threats and must not only clear these potential infections, but also tolerate relatively high microbe loads. In contrast to the mechanisms that eliminate pathogens, we currently know less about the mechanisms of disease tolerance. We investigated how well-described mechanisms that prevent, signal, control or repair damage during infection contribute to the phenotype of disease tolerance. We established enteric infections with the bacterial pathogen Pseudomonas entomophila in transgenic lines of Drosophila melanogaster fruit flies affecting dcy (a major component of the peritrophic matrix), upd3 (a cytokine-like molecule), irc (a negative regulator of reactive oxygen species) and egfr1 (epithelial growth factor receptor). Flies lacking dcy experienced the highest mortality, while loss of function of either irc or upd3 reduced tolerance in both sexes. The disruption of egfr1 resulted in a severe loss in tolerance in male flies but had no substantial effect on the ability of female flies to tolerate P. entomophila infection, despite carrying greater microbe loads than males. Together, our findings provide evidence for the role of damage limitation mechanisms in disease tolerance and highlight how sexual dimorphism in these mechanisms could generate sex differences in infection outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M. Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
22
|
Maya-Maldonado K, Cardoso-Jaime V, Hernández-Martínez S, Recio-Tótoro B, Bello-Garcia D, Hernández-Hernández FDLC, Lanz-Mendoza H. Plasmodium exposure alters midgut epithelial cell dynamics during the immune memory in Anopheles albimanus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104424. [PMID: 35447160 DOI: 10.1016/j.dci.2022.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Immunological priming in insects is defined as a previous contact with non-virulent pathogens, which induces protection after a second virulent infection. The mechanism of this process is not well understood. We have observed midgut DNA synthesis (endoreplication) in Plasmodium berghei exposure mosquitoes (primed) and after the immune challenge, which could be an essential component of the priming response in the mosquito. Endoreplication requires cell cycle components re-direction to make multiple DNA copies. Therefore, it is fundamental to understand the role of cell cycle components in priming. Here, we analyzed the expression of the cyclins A, B, E, and AurkA, and the endoreplication components NOTCH and HNT in the mosquito Anopheles albimanus; after priming with non-infective Plasmodium berghei and challenged with an infective P. berghei. The overexpression of cell cycle elements occurred seven days after priming with a quick reduction 24 h after the challenge. Hnt and NOTCH overexpression occurred 24 h after priming. Antimicrobial peptide cecropin is quickly overexpressed after 24 h in primed mosquitoes, then is downregulated at day seven and overexpressed again after parasite challenge. We also found that DNA synthesis occurs in cells with different nuclear sizes, suggesting a change in midgut epithelial dynamics after Plasmodium exposure. Inhibition of DNA synthesis via cisplatin revealed that DNA synthesis is required for priming to limit Plasmodium infection. Our results indicate the importance of cell cycle components on DNA synthesis and Notch pathway during priming response in An. albimanus mosquitoes.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México; Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México; Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Deane Bello-Garcia
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México
| | - Fidel de la Cruz Hernández-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Av. Instituto Politécnico Nacional 2508, CP. 07360, Ciudad de México, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
23
|
Balestrino F, Bouyer J, Vreysen MJB, Veronesi E. Impact of Irradiation on Vector Competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for Dengue and Chikungunya Viruses. Front Bioeng Biotechnol 2022; 10:876400. [PMID: 35721847 PMCID: PMC9204086 DOI: 10.3389/fbioe.2022.876400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective control strategies against arthropod disease vectors are amongst the most powerful tools to prevent the spread of vector-borne diseases. The sterile insect technique (SIT) is an effective and sustainable autocidal control method that has recently shown effective population suppression against different Aedes vector species worldwide. The SIT approach for mosquito vectors requires the release of radio-sterilized male mosquitoes only, but currently available sex separation techniques cannot ensure the complete elimination of females resulting in short-term risk of increased biting rate and arboviral disease transmission. In this study, we compared for the first time the transmission of dengue and chikungunya viruses in Aedes aegypti and Aedes albopictus females exposed as pupae to an irradiation dose of 40 Gy. Females of both species were fed on blood spiked with either dengue or chikungunya viruses, and body parts were tested for virus presence by real-time RT-PCR at different time points. No differences were observed in the dissemination efficiency of the dengue virus in irradiated and unirradiated Ae. albopictus and Ae. aegypti mosquitoes. The dissemination of the chikungunya virus was higher in Ae. albopictus than in Ae. Aegypti, and irradiation increased the virus load in both species. However, we did not observe differences in the transmission efficiency for chikungunya (100%) and dengue (8–27%) between mosquito species, and irradiation did not impact transmissibility. Further implications of these results on the epidemiology of vector-borne diseases in the field are discussed.
Collapse
Affiliation(s)
- Fabrizio Balestrino
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Centro Agricoltura Ambiente “G. Nicoli”, Sanitary Entomology and Zoology Department, Crevalcore, Italy
- *Correspondence: Fabrizio Balestrino,
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE CIRAD-INRA « Animals, Health, Territories, Risks and Ecosystems », Montpellier, France
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Marc J. B. Vreysen
- FAO/IAEA Insect Pest Control Laboratory (IPCL), FAO/IAEA Joint Division of Nuclear Techniques in Food and Agriculture (NAFA), FAO/IAEA Agriculture and Biotechnology Laboratories, Vienna, Austria
| | - Eva Veronesi
- National Centre for Vector Entomology, Vetsuisse Faculty, Institute of Parasitology, University of Zürich, Zürich, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| |
Collapse
|
24
|
Abduljalil JM, Abd Al Galil FM. Molecular pathogenesis of dengue virus infection in Aedes mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104367. [PMID: 35131236 DOI: 10.1016/j.jinsphys.2022.104367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Aedes mosquitoes are implicated in the transmission of several viruses, including Dengue virus (DENV) to millions of people worldwide. The global expansion of Aedes mosquitos'habitats creates a desperate need for control mechanisms with minimum negative effects. Deciphering the molecular interactions between DENV and its vector is a promising field to develop such efficient control strategies. As soon as the viremic blood is ingested by the mosquito, DENV is encountered by different innate immunity responses. During the past three decades, different pathways of innate immunity have been identified in Aedes spp. Recognition of viral molecular patterns, including viral RNA, and vector attempts to resist DENV infection are the most important defense mechanisms. Crosstalk between innate immune pathways and redundancy of anti-DENV responses become more evident as research progresses. The viral evasion and repression of vector immune response are increasingly being discovered. Such viral strategies are potential targets to be disrupted in order to limit DENV infection and spread. Vector-related non-immune factors such as gut microbiota can also be tapped for efficient control of DENV infection in Aedes mosquito's populations without affecting their fitness. Current trends in controlling DENV in its vector are exploring the potentials of using genetically engineered mosquitoes via RNA-based systems to degrade DENV genome once released into the midgut cells cytoplasm at the early phase of the infection.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen.
| | - Fahd M Abd Al Galil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen; Department of Biology, Faculty of Sciences, University of Bisha, B.O. Box: 551, Bisha, Saudi Arabia.
| |
Collapse
|
25
|
PEBP balances apoptosis and autophagy in whitefly upon arbovirus infection. Nat Commun 2022; 13:846. [PMID: 35149691 PMCID: PMC8837789 DOI: 10.1038/s41467-022-28500-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Apoptosis and autophagy are two common forms of programmed cell death (PCD) used by host organisms to fight against virus infection. PCD in arthropod vectors can be manipulated by arboviruses, leading to arbovirus-vector coexistence, although the underlying mechanism is largely unknown. In this study, we find that coat protein (CP) of an insect-borne plant virus TYLCV directly interacts with a phosphatidylethanolamine-binding protein (PEBP) in its vector whitefly to downregulate MAPK signaling cascade. As a result, apoptosis is activated in the whitefly increasing viral load. Simultaneously, the PEBP4-CP interaction releases ATG8, a hallmark of autophagy initiation, which reduces arbovirus levels. Furthermore, apoptosis-promoted virus amplification is prevented by agonist-induced autophagy, whereas the autophagy-suppressed virus load is unaffected by manipulating apoptosis, suggesting that the viral load is predominantly determined by autophagy rather than by apoptosis. Our results demonstrate that a mild intracellular immune response including balanced apoptosis and autophagy might facilitate arbovirus preservation within its whitefly insect vector. Arbovirus has co-evolved with its insect vector, enabling efficient and persistent transmission by vectors. Here, the authors reveal an immune homeostatic mechanism shaped by apoptosis and autophagy that facilitates arbovirus preservation within its whitefly vector.
Collapse
|
26
|
Kwon H, Smith R. Anopheles gambiae Actively Metabolizes Uric Acid Following Plasmodium Infection to Limit Malaria Parasite Survival. Front Physiol 2022; 12:821869. [PMID: 35140633 PMCID: PMC8818946 DOI: 10.3389/fphys.2021.821869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Characterizing the physiological changes that accompany malaria parasite infection of the mosquito host is crucial to our understanding of vectorial capacity in Anopheles mosquitoes, yet has not fully been explored. In this study, we examine the role of uric acid metabolism in the mosquito, Anopheles gambiae, following malaria parasite infection. We demonstrate that levels of uric acid are significantly decreased in the excreta and the mosquito at 24 and 48 h post-Plasmodium infection when compared to controls fed on naïve mouse blood. When we examine the expression of well-known enzymes responsible for uric acid metabolism, we see a significant increase in both urate oxidase (UO) and allatoicase (ALLC) expression following Plasmodium infection. Targeting the essential first step in uric acid metabolism by silencing UO resulted in elevated levels of uric acid, enhancing malaria parasite survival. With implications from other insect systems that bacteria can modulate UO expression, we examined the possibility that the mosquito microbiota and its expansion following blood-feeding may contribute to increased UO levels. However, there was no difference in uric acid metabolism between septic and aseptic mosquitoes, indicating that the mosquito microbiome is not associated with the manipulation of UO expression. Together, our study provides new evidence that Plasmodium infection causes the mosquito host to actively metabolize uric acid by increasing UO expression to limit Plasmodium oocyst survival, suggesting that nitrogen metabolism is an essential pathway in defining mosquito vector competence.
Collapse
|
27
|
Dengue Infection Susceptibility of Five Aedes aegypti Populations from Manaus (Brazil) after Challenge with Virus Serotypes 1–4. Viruses 2021; 14:v14010020. [PMID: 35062224 PMCID: PMC8781997 DOI: 10.3390/v14010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/20/2023] Open
Abstract
The successful spread and maintenance of the dengue virus (DENV) in mosquito vectors depends on their viral infection susceptibility, and parameters related to vector competence are the most valuable for measuring the risk of viral transmission by mosquitoes. These parameters may vary according to the viral serotype in circulation and in accordance with the geographic origin of the mosquito population that is being assessed. In this study, we investigated the effect of DENV serotypes (1–4) with regards to the infection susceptibility of five Brazilian Ae. aegypti populations from Manaus, the capital of the state of Amazonas, Brazil. Mosquitoes were challenged by oral infection with the DENV serotypes and then tested for the presence of the arbovirus using quantitative PCR at 14 days post-infection, which is the time point that corresponds to the extrinsic incubation period of Ae. aegypti when reared at 28 °C. Thus, we were able to determine the infection patterns for DENV-1, -2, -3 and -4 in the mosquito populations. The mosquitoes had both interpopulation and inter-serotype variation in their viral susceptibilities. All DENV serotypes showed a similar tendency to accumulate in the body in a greater amount than in the head/salivary gland (head/SG), which does not occur with other flaviviruses. For DENV-1, DENV-3, and DENV-4, the body viral load varied among populations, but the head/SG viral loads were similar. Differently for DENV-2, both body and head/SG viral loads varied among populations. As the lack of phenotypic homogeneity represents one of the most important reasons for the long-term fight against dengue incidence, we expect that this study will help us to understand the dynamics of the infection patterns that are triggered by the distinct serotypes of DENV in mosquitoes.
Collapse
|
28
|
Zhou H, Zhao W, Zheng Z, Aweya JJ, Zhang Y, Zhu J, Zhao Y, Chen X, Yao D. The Notch receptor-ligand Delta is involved in the immune response of Penaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104147. [PMID: 34111502 DOI: 10.1016/j.dci.2021.104147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
In the Notch signaling pathway in vertebrates and invertebrates, the ligand Delta plays crucial roles in cell proliferation, differentiation, and immunity. Although the Notch signaling pathway has recently been implicated in the immune defense of Penaeus vannamei, the association of Delta with this immune response remains unclear. Here, we cloned and characterized the Delta homolog in P. vannamei (designated as PvDelta). PvDelta has a 2493 bp open reading frame (ORF) encoding a putative protein of 830 amino acids. Bioinformatics analysis revealed that PvDelta contains an N-terminal signal peptide, a conserved Notch ligand (MNNL) domain, a Delta/Serrate/Lag-2 segment, 9 epidermal growth factors segments, a transmembrane domain, and shares high homology with other Delta family members. Transcripts of PvDelta were detected in all shrimp tissues tested and were induced by Vibrio parahaemolyticus, white spot syndrome virus (WSSV), and lipopolysaccharide (LPS), indicating its involvement in shrimp immune response. Moreover, after PvDelta knockdown followed by LPS stimulation, the expression of Notch signaling pathway genes (i.e., PvNotch, PvCSL, and PvHey) was downregulated. Finally, shrimp depleted of PvDelta showed a lower survival rate in response to V. parahaemolyticus challenge. In sum, our data reveal that PvDelta is involved in the innate immunity of shrimp by positively modulating the Notch signaling pathway.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Weiling Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jinghua Zhu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
29
|
Stephenson CJ, Coatsworth H, Waits CM, Nazario-Maldonado NM, Mathias DK, Dinglasan RR, Lednicky JA. Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses 2021; 13:v13112232. [PMID: 34835038 PMCID: PMC8622774 DOI: 10.3390/v13112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.
Collapse
Affiliation(s)
- Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Christy M. Waits
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL 32212, USA
| | - Nicole M. Nazario-Maldonado
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Derrick K. Mathias
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| |
Collapse
|
30
|
Calle-Tobón A, Holguin-Rocha AF, Moore C, Rippee-Brooks M, Rozo-Lopez P, Harrod J, Fatehi S, Rua-Uribe GL, Park Y, Londoño-Rentería B. Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front Microbiol 2021; 12:724345. [PMID: 34566927 PMCID: PMC8458951 DOI: 10.3389/fmicb.2021.724345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia
| | | | - Celois Moore
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jania Harrod
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
31
|
Santos D, Gomes HF, Ribeiro L, Farias AB, Romeiro NC, da Fonseca RN, Nepomuceno-Silva JL, Moraes J. Inhibition of Aedes aegypti DNA topoisomerase II by etoposide: Impact on survival and morphology of larvae and pupae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109066. [PMID: 33930525 DOI: 10.1016/j.cbpc.2021.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/01/2022]
Abstract
DNA topoisomerase II enzymes maintain DNA stability during vital processes, such as genome replication, transcription and chromosomal segregation during mitosis and meiosis. In the present work, we analyzed functional aspects of the DNA topoisomerase II (AeTopII) enzyme of the mosquito Aedes aegypti. Here, we show that AeTopII mRNA is expressed at all stages of mosquito development. By in situ hybridization, we found that the AeTopII mRNA is concentrated along the ovarian follicular cells as well as in the region of the follicles. The observed expression profiles likely reflect increased topoisomerase II cellular requirements due to the intense ovarian growth and egg production following blood feeding in Ae. aegypti females. The drug etoposide, a classic inhibitor of topoisomerase II, was used for in vivo testing with 2nd stage larvae, in order to investigate the functional importance of this enzyme in Ae. aegypti survival and development. Inhibition of topoisomerase II activity with etoposide concentrations ranging from 10 to 200 μM did not leads to the immediate death of larvae. However, after 10 days of observation, etoposide treatments resulted in 30-40% decrease in survival, in a dose dependent manner, with persisting larvae and pupae presenting incomplete development, as well as morphological abnormalities. Also, approximately 50% of the treated larvae did not reach the pupal stage. Thus, we conclude that AeTopII is a vital enzyme in the development of Ae. aegypti and its sensitivity to inhibitors should be explored for potential chemical agents to be used in vector control.
Collapse
Affiliation(s)
- Daniele Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Helga F Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado Ciências Morfofuncionais, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - André B Farias
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP: 21941-909, Brazil; Laboratório Integrado de Computação Científica, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida Aluízio da Silva Gomes, 50, CEP 27930-560, Granja dos Cavaleiros, Macaé, RJ, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Computação Científica, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida Aluízio da Silva Gomes, 50, CEP 27930-560, Granja dos Cavaleiros, Macaé, RJ, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado Ciências Morfofuncionais, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - José L Nepomuceno-Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro, São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil.
| |
Collapse
|
32
|
Reyes JIL, Suzuki Y, Carvajal T, Muñoz MNM, Watanabe K. Intracellular Interactions Between Arboviruses and Wolbachia in Aedes aegypti. Front Cell Infect Microbiol 2021; 11:690087. [PMID: 34249780 PMCID: PMC8261290 DOI: 10.3389/fcimb.2021.690087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika, and Chikungunya human infections. These viruses take advantage of the mosquito’s cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing host cytoskeletal proteins and lipids essential for arboviral infection. Also, Wolbachia strengthens host immunity, cellular regeneration and causes the expression of microRNAs which could potentially be involved in virus inhibition. However, variation in the magnitude of Wolbachia’s pathogen blocking effect that is not due to the endosymbiont’s density has been recently reported. Furthermore, the cellular mechanisms involved in this phenotype differs depending on Wolbachia strain and host species. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how different Wolbachia strains overall affect the mosquito’s cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.
Collapse
Affiliation(s)
- Jerica Isabel L Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Thaddeus Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| | - Maria Nilda M Muñoz
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines.,Research and Development Extension, Cagayan State University, Tuguegarao City, Philippines
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| |
Collapse
|
33
|
Novelo M, Audsley MD, McGraw EA. The effects of DENV serotype competition and co-infection on viral kinetics in Wolbachia-infected and uninfected Aedes aegypti mosquitoes. Parasit Vectors 2021; 14:314. [PMID: 34108021 PMCID: PMC8190863 DOI: 10.1186/s13071-021-04816-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Aedes aegypti mosquito is responsible for the transmission of several medically important arthropod-borne viruses, including multiple serotypes of dengue virus (DENV-1, -2, -3, and -4). Competition within the mosquito between DENV serotypes can affect viral infection dynamics, modulating the transmission potential of the pathogen. Vector control remains the main method for limiting dengue fever. The insect endosymbiont Wolbachia pipientis is currently being trialed in field releases globally as a means of biological control because it reduces virus replication inside the mosquito. It is not clear how co-infection between DENV serotypes in the same mosquito might alter the pathogen-blocking phenotype elicited by Wolbachia in Ae. aegypti. METHODS Five- to 7-day-old female Ae. aegypti from two lines, namely, with (wMel) and without Wolbachia infection (WT), were fed virus-laden blood through an artificial membrane with either a mix of DENV-2 and DENV-3 or the same DENV serotypes singly. Mosquitoes were subsequently incubated inside environmental chambers and collected on the following days post-infection: 3, 4, 5, 7, 8, 9, 11, 12, and 13. Midgut, carcass, and salivary glands were collected from each mosquito at each timepoint and individually analyzed to determine the percentage of DENV infection and viral RNA load via RT-qPCR. RESULTS We saw that for WT mosquitoes DENV-3 grew to higher viral RNA loads across multiple tissues when co-infected with DENV-2 than when it was in a mono-infection. Additionally, we saw a strong pathogen-blocking phenotype in wMel mosquitoes independent of co-infection status. CONCLUSION In this study, we demonstrated that the wMel mosquito line is capable of blocking DENV serotype co-infection in a systemic way across the mosquito body. Moreover, we showed that for WT mosquitoes, serotype co-infection can affect infection frequency in a tissue- and time-specific manner and that both viruses have the potential of being transmitted simultaneously. Our findings suggest that the long-term efficacy of Wolbachia pathogen blocking is not compromised by arthropod-borne virus co-infection.
Collapse
Affiliation(s)
- M Novelo
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - M D Audsley
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E A McGraw
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Brackney DE, LaReau JC, Smith RC. Frequency matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. PLoS Pathog 2021; 17:e1009590. [PMID: 34111228 PMCID: PMC8191993 DOI: 10.1371/journal.ppat.1009590] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Doug E. Brackney
- Center for Vector-Borne and Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America
| | - Jacquelyn C. LaReau
- Center for Vector-Borne and Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
35
|
Hixson B, Taracena ML, Buchon N. Midgut Epithelial Dynamics Are Central to Mosquitoes' Physiology and Fitness, and to the Transmission of Vector-Borne Disease. Front Cell Infect Microbiol 2021; 11:653156. [PMID: 33842397 PMCID: PMC8027260 DOI: 10.3389/fcimb.2021.653156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bretta Hixson
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Mabel Laline Taracena
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Nicolas Buchon
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
36
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Ackroyd S, Vidana B, Lean FZX, Hicks D, Nuñez A, Johnson N. Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Sci Rep 2021; 11:6133. [PMID: 33731761 PMCID: PMC7971067 DOI: 10.1038/s41598-021-85411-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the main cause of viral encephalitis in Asia. However, with changing climate JEV has the potential to emerge in novel temperate regions. Here, we have assessed the vector competence of the temperate mosquito Culex pipiens f. pipiens to vector JEV genotype III at temperatures representative of those experienced, or predicted in the future during the summer months, in the United Kingdom. Our results show that Cx. pipiens is susceptible to JEV infection at both temperatures. In addition, at 25 °C, JEV disseminated from the midgut and was recovered in saliva samples, indicating the potential for transmission. At a lower temperature, 20 °C, following an incubation period of fourteen days, there were reduced levels of JEV dissemination and virus was not detected in saliva samples. The virus present in the bodies of these mosquitoes was restricted to the posterior midgut as determined by microscopy and viable virus was successfully recovered. Apart from the influence on virus dissemination, mosquito mortality was significantly increased at the higher temperature. Overall, our results suggest that temperature is a critical factor for JEV vector competence and infected-mosquito survival. This may in turn influence the vectorial capacity of Cx. pipiens to vector JEV genotype III in temperate areas.
Collapse
Affiliation(s)
- Arran J Folly
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| | - Daniel Dorey-Robinson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Pirbright Institute, Ash Road, Woking, Surrey, GU24 ONF, UK
| | - Luis M Hernández-Triana
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Stuart Ackroyd
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Beatriz Vidana
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.,Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Fabian Z X Lean
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Nicholas Johnson
- Arbovirus Research Team, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
37
|
Lemasson M, Caignard G, Unterfinger Y, Attoui H, Bell-Sakyi L, Hirchaud E, Moutailler S, Johnson N, Vitour D, Richardson J, Lacour SA. Exploration of binary protein-protein interactions between tick-borne flaviviruses and Ixodes ricinus. Parasit Vectors 2021; 14:144. [PMID: 33676573 PMCID: PMC7937244 DOI: 10.1186/s13071-021-04651-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background Louping ill virus (LIV) and tick-borne encephalitis virus (TBEV) are tick-borne flaviviruses that are both transmitted by the major European tick, Ixodes ricinus. Despite the importance of I. ricinus as an arthropod vector, its capacity to acquire and subsequently transmit viruses, known as vector competence, is poorly understood. At the molecular scale, vector competence is governed in part by binary interactions established between viral and cellular proteins within infected tick cells. Methods To investigate virus-vector protein–protein interactions (PPIs), the entire set of open reading frames for LIV and TBEV was screened against an I. ricinus cDNA library established from three embryonic tick cell lines using yeast two-hybrid methodology (Y2H). PPIs revealed for each viral bait were retested in yeast by applying a gap repair (GR) strategy, and notably against the cognate protein of both viruses, to determine whether the PPIs were specific for a single virus or common to both. The interacting tick proteins were identified by automatic BLASTX, and in silico analyses were performed to expose the biological processes targeted by LIV and TBEV. Results For each virus, we identified 24 different PPIs involving six viral proteins and 22 unique tick proteins, with all PPIs being common to both viruses. According to our data, several viral proteins (pM, M, NS2A, NS4A, 2K and NS5) target multiple tick protein modules implicated in critical biological pathways. Of note, the NS5 and pM viral proteins establish PPI with several tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins, which are essential adaptor proteins at the nexus of multiple signal transduction pathways. Conclusion We provide the first description of the TBEV/LIV-I. ricinus PPI network, and indeed of any PPI network involving a tick-borne virus and its tick vector. While further investigation will be needed to elucidate the role of each tick protein in the replication cycle of tick-borne flaviviruses, our study provides a foundation for understanding the vector competence of I. ricinus at the molecular level. Indeed, certain PPIs may represent molecular determinants of vector competence of I. ricinus for TBEV and LIV, and potentially for other tick-borne flaviviruses.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04651-3.
Collapse
Affiliation(s)
- Manon Lemasson
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Grégory Caignard
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Yves Unterfinger
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Houssam Attoui
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Edouard Hirchaud
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | | | - Damien Vitour
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Jennifer Richardson
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Sandrine A Lacour
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France.
| |
Collapse
|
38
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, Ngo LT, Jayaprasad S, Paul K, Whadgar S, Srinivasan S, Subramani S, Bier E, James AA, Emerson JJ. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol 2021; 19:28. [PMID: 33568145 PMCID: PMC7876825 DOI: 10.1186/s12915-021-00963-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution. RESULTS To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role. CONCLUSION Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Paige Halas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Luna Thanh Ngo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Suvratha Jayaprasad
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Kiran Paul
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Saurabh Whadgar
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Subhashini Srinivasan
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Suresh Subramani
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0322, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
40
|
Maya-Maldonado K, Cardoso-Jaime V, Hernández-Martínez S, Vázquez-Calzada C, Hernández-Hernández FDLC, Lanz-Mendoza H. DNA synthesis increases during the first hours post-emergence in Anopheles albimanus mosquito midgut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103753. [PMID: 32526289 DOI: 10.1016/j.dci.2020.103753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In hematophagous insects, the midgut is a fundamental barrier against infections and limits the development and transmission of pathogens. However, in mosquitoes, cell differentiation, proliferation, and cell cycle process in the midgut have not been characterized. Here we provide evidence of how cell cycle progression occurs in the newly emerged Anopheles albimanus mosquito midgut and describing cyclins expression as mediators of the cell cycle. The cell cycle at different post-emergence times was evaluated in disaggregated cells from midgut tissue using flow cytometry. Also, cyclins A, B, and E were identified by bioinformatics tools. These cyclins were used to analyze cell cycle progression. Flow cytometry data and the expression-pattern of the cyclins by qRT-PCR supported a polyploidy process, besides mitosis marker was marginally detected and only in newly emerged mosquitoes. Our results suggest that DNA increment in midguts occurs by polyploidy during the first hours post-emergence.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico; Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Victor Cardoso-Jaime
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico; Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Carlos Vázquez-Calzada
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
41
|
Shin D, Kang S, Smartt CT. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses 2020; 12:v12080823. [PMID: 32751270 PMCID: PMC7472143 DOI: 10.3390/v12080823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023] Open
Abstract
A Chikungunya virus (CHIKV) outbreak in Italy in 2007 spread to include the islands of the Caribbean and most of the Americas and still circulates in Europe and Africa. Florida being close in distance to the Caribbean islands experienced a CHIKV outbreak in 2014 and continues to have a few travel-related cases each year. It is known that different environmental conditions in different regions can result in genetic variation that favor changes in competence to arbovirus. We evaluated the vector competence of Florida Aedes aegypti for CHIKV and determined if there is a geographic component that influences genes involved in CHIKV competence. We utilized a genomic approach to identify the candidate genes using RNA sequencing. The infection and dissemination results showed that field populations were more competent vectors for CHIKV than a lab population. The differentially expressed genes in the two field-collected CHIKV-infected populations, compared to the Rockefeller strain, were related to the Wnt/Notch signaling pathway, with similarity to genes scattered throughout the signaling pathway. This result suggested the possibility of identifying genes involved in the determination of vector competence in different gene pools of Ae. aegypti.
Collapse
Affiliation(s)
- Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Science, University of Florida, Vero Beach, FL 32962, USA
- Correspondence: (D.S.); (C.T.S.)
| | - Seokyoung Kang
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Science, University of Florida, Vero Beach, FL 32962, USA
- Correspondence: (D.S.); (C.T.S.)
| |
Collapse
|
42
|
Ford SA, Albert I, Allen SL, Chenoweth SF, Jones M, Koh C, Sebastian A, Sigle LT, McGraw EA. Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes. Front Microbiol 2020; 11:1456. [PMID: 32733407 PMCID: PMC7358395 DOI: 10.3389/fmicb.2020.01456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is an intracellular bacterium that blocks virus replication in insects and has been introduced into the mosquito, Aedes aegypti for the biocontrol of arboviruses including dengue, Zika, and chikungunya. Despite ongoing research, the mechanism of Wolbachia-mediated virus blocking remains unclear. We recently used experimental evolution to reveal that Wolbachia-mediated dengue blocking could be selected upon in the A. aegypti host and showed evidence that strong levels of blocking could be maintained by natural selection. In this study, we investigate the genetic variation associated with blocking and use these analyses to generate testable hypotheses surrounding the mechanism of Wolbachia-mediated dengue blocking. From our results, we hypothesize that Wolbachia may block virus replication by increasing the regeneration rate of mosquito cells via the Notch signaling pathway. We also propose that Wolbachia modulates the host’s transcriptional pausing pathway either to prime the host’s anti-viral response or to directly inhibit viral replication.
Collapse
Affiliation(s)
- Suzanne A Ford
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States.,School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Istvan Albert
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew Jones
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Virology, Institut Pasteur, Paris, France
| | - Aswathy Sebastian
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Leah T Sigle
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Elizabeth A McGraw
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States.,School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Dos Santos CR, de Melo Rodovalho C, Jablonka W, Martins AJ, Lima JBP, Dos Santos Dias L, da Silva Neto MAC, Atella GC. Insecticide resistance, fitness and susceptibility to Zika infection of an interbred Aedes aegypti population from Rio de Janeiro, Brazil. Parasit Vectors 2020; 13:293. [PMID: 32513248 PMCID: PMC7281914 DOI: 10.1186/s13071-020-04166-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aedes aegypti is a vector of high relevance, since it transmits several arboviruses, including dengue, chikungunya and Zika. Studies on vector biology are usually conducted with laboratory strains presenting a divergent genetic composition from field populations. This may impair vector control policies that were based on laboratory observations employing only long maintained laboratory strains. In the present study we characterized a laboratory strain interbreed with Ae. aegypti collected from five different localities in Rio de Janeiro (Aedes Rio), for insecticide resistance (IR), IR mechanisms, fitness and Zika virus infection. Methods We compared the recently established Aedes Rio with the laboratory reference strain Rockefeller. Insecticide resistance (deltamethrin, malathion and temephos), activity of metabolic resistance enzymes and kdr mutation frequency were determined. Some life table parameters (longevity, blood-feeding, number and egg viability) and Zika virus susceptibility was also determined. Results Aedes Rio showed resistance to deltamethrin (resistance ratio, RR50 = 32.6) and temephos (RR50 = 7.0) and elevated activity of glutathione S-transferase (GST) and esterases (α-EST and pNPA-EST), but not acetylcholinesterase (AChE). In total, 92.1% of males genotyped for kdr presented a “resistant” genotype. Weekly blood-fed females from both strains, presented reduced mortality compared to sucrose-fed mosquitoes; however, Aedes Rio blood-fed females did not live as long (mean lifespan: Rockefeller = 70 ± 3.07; Aedes Rio = 53.5 ± 2.16 days). There were no differences between strains in relation to blood-feeding and number of eggs, but Aedes Rio eggs presented reduced viability (mean hatch: Rockefeller = 77.79 ± 1.4%; Aedes Rio = 58.57 ± 1.77%). Zika virus infection (plaque-forming unit, PFU) was similar in both strains (mean PFU ± SE: Aedes Rio: 4.53 × 104 ± 1.14 × 104 PFU; Rockefeller: 2.02 × 104 ± 0.71 × 104 PFU). Conclusion Selected conditions in the field, such as IR mechanisms, may result in pleiotropic effects that interfere in general physiology of the insect. Therefore, it is important to well characterize field populations to be tested in parallel with laboratory reference strains. This practice would improve the significance of laboratory tests for vector control methods.![]()
Collapse
Affiliation(s)
- Carlucio Rocha Dos Santos
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil. .,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil.
| | - Cynara de Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Willy Jablonka
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Luciana Dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ, Brazil
| | - Mário Alberto Cardoso da Silva Neto
- Laboratório de Sinalização Celular Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Ren D, Song J, Ni M, Kang L, Guo W. Regulatory Mechanisms of Cell Polyploidy in Insects. Front Cell Dev Biol 2020; 8:361. [PMID: 32548115 PMCID: PMC7272692 DOI: 10.3389/fcell.2020.00361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Polyploidy cells undergo the endocycle to generate DNA amplification without cell division and have important biological functions in growth, development, reproduction, immune response, nutrient support, and conferring resistance to DNA damage in animals. In this paper, we have specially summarized current research progresses in the regulatory mechanisms of cell polyploidy in insects. First, insect hormones including juvenile hormone and 20-hydroxyecdysone regulate the endocycle of variant cells in diverse insect species. Second, cells skip mitotic division in response to developmental programming and conditional stimuli such as wound healing, regeneration, and aging. Third, the reported regulatory pathways of mitotic to endocycle switch (MES), including Notch, Hippo, and JNK signaling pathways, are summarized and constructed into genetic network. Thus, we think that the studies in crosstalk of hormones and their effects on canonical pathways will shed light on the mechanism of cell polyploidy and elucidate the evolutionary adaptions of MES through diverse insect species.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103514. [PMID: 31585195 DOI: 10.1016/j.dci.2019.103514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
One of the defining features of mosquito vectors of arboviruses such as Dengue and Zika is their ability to tolerate high levels of virus proliferation without suffering significant pathology. This adaptation is central to vector competence and disease spread. The molecular mechanisms, pathways, cellular and metabolic adaptations responsible for mosquito disease tolerance are still largely unknown and may represent effective ways to control mosquito populations and prevent arboviral diseases. In this review article, we describe the key link between disease tolerance and pathogen transmission, and how vector control methods may benefit by focusing efforts on dissecting the mechanisms underlying mosquito tolerance of arboviral infections. We briefly review recent work investigating tolerance mechanisms in other insects, describe the state of the art regarding the mechanisms of disease tolerance in mosquitos, and highlight the emerging role of gut microbiota in mosquito immunity and disease tolerance.
Collapse
Affiliation(s)
- José Henrique Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
46
|
Guégan M, Tran Van V, Martin E, Minard G, Tran FH, Fel B, Hay AE, Simon L, Barakat M, Potier P, Haichar FEZ, Valiente Moro C. Who is eating fructose within the Aedes albopictus gut microbiota? Environ Microbiol 2020; 22:1193-1206. [PMID: 31943686 DOI: 10.1111/1462-2920.14915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
The Asian tiger mosquito Aedes albopictus is a major public health concern because of its invasive success and its ability to transmit pathogens. Given the low availability of treatments against mosquito-borne diseases, vector control remains the most suitable strategy. The methods used thus far are becoming less effective, but recent strategies have emerged from the study of mosquito-associated microorganisms. Although the role of the microbiota in insect biology does not require further proof, much remains to be deciphered in mosquitoes, especially the contribution of the microbiota to host nutrient metabolism. Mosquitoes feed on plant nectar, composed of mostly fructose. We used stable isotope probing to identify bacteria and fungi assimilating fructose within the gut of Ae. albopictus. Mosquitoes were fed a 13 C-labelled fructose solution for 24 h. Differences in the active microbial community according to the sex of mosquitoes were highlighted. The bacterium Lelliottia and the fungi Cladosporium and Aspergillus dominated the active microbiota in males, whereas the bacterium Ampullimonas and the yeast Cyberlindnera were the most active in females. This study is the first to investigate trophic interactions between Ae. albopictus and its microbiota, thus underscoring the importance of the microbial component in nectar feeding in mosquitoes.
Collapse
Affiliation(s)
- Morgane Guégan
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Van Tran Van
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Edwige Martin
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Guillaume Minard
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Florence-Hélène Tran
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Benjamin Fel
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France.,Université de Lyon, Université Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, CESN Centre d'Etude des Substances Naturelles, 43 Bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Anne-Emmanuelle Hay
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France.,Université de Lyon, Université Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, CESN Centre d'Etude des Substances Naturelles, 43 Bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Laurent Simon
- UMR 5023 LEHNA, CNRS, Univ Lyon, Université Claude Bernard Lyon 1, Université Lyon 1, ENTPE, Villeurbanne, France
| | - Mohamed Barakat
- Laboratory for Microbial Ecology of the Rhizosphere and Extreme Environment, CNRS, UMR 7265 BIAM, CEA, Aix Marseille University, Saint-Paul-lès-Durance, France
| | - Patrick Potier
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Feth El Zahar Haichar
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Claire Valiente Moro
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| |
Collapse
|
47
|
Trammell CE, Goodman AG. Emerging Mechanisms of Insulin-Mediated Antiviral Immunity in Drosophila melanogaster. Front Immunol 2019; 10:2973. [PMID: 31921210 PMCID: PMC6934001 DOI: 10.3389/fimmu.2019.02973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Arboviruses (arthropod-borne viruses), such as Zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, include some of the most significant global health risks to human populations. The steady increase in the number of cases is of great concern due to the debilitating diseases associated with each viral infection. Because these viruses all depend on the mosquito as a vector for disease transmission, current research has focused on identifying immune mechanisms used by insects to effectively harbor these viruses and cause disease in humans and other animals. Drosophila melanogaster are a vital model to study arboviral infections and host responses as they are a genetically malleable model organism for experimentation that can complement analysis in the virus' natural vectors. D. melanogaster encode a number of distinct mechanisms of antiviral defense that are found in both mosquito and vertebrate animal systems, providing a viable model for study. These pathways include canonical antiviral modules such as RNA interference (RNAi), JAK/STAT signaling, and the induction of STING-mediated immune responses like autophagy. Insulin signaling plays a significant role in host-pathogen interactions. The exact mechanisms of insulin-mediated immune responses vary with each virus type, but nevertheless ultimately demonstrates that metabolic and immune signaling are coupled for antiviral immunity in an arthropod model. This mini review provides our current understanding of antiviral mechanisms in D. melanogaster, with a focus on insulin-mediated antiviral signaling, and how such immune responses pertain to disease models in vertebrate and mosquito species.
Collapse
Affiliation(s)
- Chasity E Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.,NIH Biotechnology Graduate Training Program, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
48
|
Novelo M, Hall MD, Pak D, Young PR, Holmes EC, McGraw EA. Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathog 2019; 15:e1008218. [PMID: 31790509 PMCID: PMC6907869 DOI: 10.1371/journal.ppat.1008218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DENV) transmission by mosquitoes is a time-dependent process that begins with the consumption of an infectious blood-meal. DENV infection then proceeds stepwise through the mosquito from the midgut to the carcass, and ultimately to the salivary glands, where it is secreted into saliva and then transmitted anew on a subsequent bite. We examined viral kinetics in tissues of the Aedes aegypti mosquito over a finely graded time course, and as per previous studies, found that initial viral dose and serotype strain diversity control infectivity. We also found that a threshold level of virus is required to establish body-wide infections and that replication kinetics in the early and intermediate tissues do not predict those of the salivary glands. Our findings have implications for mosquito GMO design, modeling the contribution of transmission to vector competence and the role of mosquito kinetics in the overall DENV epidemiological landscape. DENV infection in the mosquito is a complex and dynamic process. Following ingestion of an infected blood meal, DENV enters the mosquito midgut epithelial cells, where it replicates. Subsequently, the virus disseminates and infects other tissues, including hemocytes, fat body and reproductive organs, ultimately reaching the salivary glands. The kinetics of infection are influenced by genetic variation in the virus. Comparisons between strains within single serotypes, have revealed variation in infection rates in mosquitoes. To explore the role of infectious dose, serotype and tissue in viral infection kinetics we sampled DENV loads in populations of infected mosquitoes over numerous, sequential time-points. We reveal that the kinetics of DENV infection in the midgut, carcass and salivary glands of the mosquito Aedes aegypti are strikingly different among the strains selected for this study, and that these differences are also driven by the initial infectious dose.
Collapse
Affiliation(s)
- Mario Novelo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damie Pak
- Center for Infectious Disease Dynamics, Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Janeh M, Osman D, Kambris Z. Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes. Sci Rep 2019; 9:14556. [PMID: 31601867 PMCID: PMC6787257 DOI: 10.1038/s41598-019-50994-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects' gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.
Collapse
Affiliation(s)
- Maria Janeh
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
50
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|