1
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Souza LRQ, Pedrosa CGDS, Puig-Pijuan T, da Silva Dos Santos C, Vitória G, Delou JMA, Setti-Perdigão P, Higa LM, Tanuri A, Rehen SK, Guimarães MZP. Saxitoxin potentiates human neuronal cell death induced by Zika virus while sparing neural progenitors and astrocytes. Sci Rep 2024; 14:22809. [PMID: 39354036 PMCID: PMC11445263 DOI: 10.1038/s41598-024-73873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.
Collapse
Affiliation(s)
- Leticia R Q Souza
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Carolina G da S Pedrosa
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Teresa Puig-Pijuan
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | | | - Gabriela Vitória
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - João M A Delou
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Pedro Setti-Perdigão
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
| | - Luiza M Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marília Zaluar P Guimarães
- Instituto D'Or de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Rio de Janeiro, CEP 22281-100, Brazil.
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Christoff RR, da Silva DS, Lima RF, Franco ALMM, Higa LM, Rossi ÁD, Batista C, de Andrade CBV, Ortiga-Carvalho TM, Ascari L, de Azevedo Abrahim-Vieira B, Bellio M, Tanuri A, de Carvalho FM, Garcez PP, Lara FA. Prenatal Exposure to Herbicide 2,4-Dichlorophenoxyacetic Acid (2,4D) Exacerbates Zika Virus Neurotoxicity In Vitro and In Vivo. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39329436 DOI: 10.1002/tox.24424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Zika virus (ZIKV) infection during pregnancy can lead to a set of congenital malformations known as Congenital ZIKV syndrome (CZS), whose main feature is microcephaly. The geographic distribution of CZS in Brazil during the 2015-2017 outbreak was asymmetrical, with a higher prevalence in the Northeast and Central-West regions of the country, despite the ubiquitous distribution of the vector Aedes aegypti, indicating that environmental factors could influence ZIKV vertical transmission and/or severity. Here we investigate the involvement of the most used agrochemicals in Brazil with CZS. First, we exposed human neuroblastoma SK-N-AS cells to the 15 frequently used agrochemical molecules or derivative metabolites able to cross the blood-brain barrier. We found that a derived metabolite from a widely used herbicide in the Central-West region, 2,4-dichlorophenoxyacetic acid (2,4D), exacerbates ZIKV neurotoxic effects in vitro. We validate this observation by demonstrating vertical transmission leading to microcephaly in the offspring of immunocompetent C57BL/6J mice exposed to water contaminated with 0.025 mg/L of 2,4D. Newborn mice whose dams were exposed to 2,4D and infected with ZIKV presented a smaller brain area and cortical plate size compared to the control. Also, embryos from animals facing the co-insult of ZIKV and 2,4D exposition presented higher Caspase 3 positive cells in the cortex, fewer CTIP2+ neurons and proliferative cells at the ventricular zone, and a higher viral load. This phenotype is followed by placental alterations, such as vessel congestion, and apoptosis in the labyrinth and decidua. We also observed a mild spatial correlation between CZS prevalence and 2,4D use in Brazil's North and Central-West regions, with R2 = 0.4 and 0.46, respectively. Our results suggest that 2,4D exposition facilitates maternal vertical transmission of ZIKV, exacerbating CZS, possibly contributing to the high prevalence of this syndrome in Brazil's Central-West region compared to other regions.
Collapse
Affiliation(s)
- Raissa Rilo Christoff
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos da Silva
- Laboratorio de Microbiologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Ferreira Lima
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luiza Meneguci Moreira Franco
- Laboratorio de Epidemiologia das Malformações Congênitas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Laboratorio de Epidemiologia das Malformações Congênitas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Átila Duque Rossi
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Lucas Ascari
- Laboratório de Biologia Molecular e Estrutural (LaBiME), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara de Azevedo Abrahim-Vieira
- Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Martinez de Carvalho
- Laboratorio de Epidemiologia das Malformações Congênitas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Pestana Garcez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Alves Lara
- Laboratorio de Microbiologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Campos TGV, Gama WA, Geraldes V, Yoon J, Crnkovic CM, Pinto E, Jacinavicius FR. New records on toxic cyanobacteria from Brazil: Exploring their occurrence and geography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172689. [PMID: 38692315 DOI: 10.1016/j.scitotenv.2024.172689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.
Collapse
Affiliation(s)
- Thaíssa Giovanna Valverde Campos
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Watson A Gama
- Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil
| | - Jaewon Yoon
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil
| | - Fernanda Rios Jacinavicius
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, CEP 05508-900 São Paulo, SP, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260, Piracicaba, SP, Brazil.
| |
Collapse
|
5
|
Santos-Silva RDD, Severiano JDS, Chia MA, Queiroz TM, Cordeiro-Araújo MK, Barbosa JEDL. Unveiling the link between Raphidiopsis raciborskii blooms and saxitoxin levels: Evaluating water quality in tropical reservoirs, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123401. [PMID: 38244903 DOI: 10.1016/j.envpol.2024.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The proliferation of Raphidiopsis raciborskii blooms has sparked concerns regarding potential human exposure to heightened saxitoxins (STXs) levels. Thus, comprehending how environmental elements drive the proliferation of this STXs-producing species can aid in predicting human exposure risks. This study aimed to explore the link between cyanobacteria R. raciborskii, STXs cyanotoxins, and environmental factors in 37 public supply reservoirs in the tropical region and assess potential health hazards these toxins pose in the reservoir waters. A Structural Equation Model was used to assess the impact of environmental factors (water volume and physical and chemical variables) on R. raciborskii biomass and STXs levels. Furthermore, the potential risk of STXs exposure from consuming untreated reservoir water was evaluated. Lastly, the cumulative distribution function (CDF) of STXs across the reservoirs was computed. Our findings revealed a correlation between R. raciborskii biomass and STXs concentrations. Total phosphorus emerged as a critical environmental factor positively influencing species biomass and indirectly affecting STXs levels. pH significantly influenced STXs concentrations, indicating different factors influencing R. raciborskii biomass and STXs. Significantly, for the first time, the risk of STXs exposure was gauged using the risk quotient (HQ) for untreated water consumption from public supply reservoirs in Brazil's semi-arid region. Although the exposure risks were generally low to moderate, the CDF underscored the risk of chronic exposure due to low toxin concentrations in over 90% of samples. These outcomes emphasize the potential expansion of R. raciborskii in tropical settings due to increased phosphorus, amplifying waterborne STXs levels and associated intoxication risks. Thus, this study reinforces the importance of nutrient control, particularly phosphorus regulation, as a mitigation strategy against R. raciborskii blooms and reducing STXs intoxication hazards.
Collapse
Affiliation(s)
- Ranielle Daiana Dos Santos-Silva
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Juliana Dos Santos Severiano
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu University Bello, 81 0001, Zaria, Nigeria; Department of Ecology, University of Brasília - UnB, Graduate Program in Ecology. Institute of Biological Sciences - IB, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - Tatiane Medeiros Queiroz
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Cellular Biology, University of Brasília - UnB, Graduate Program in Microbial Biology. Institute of Biological Sciences - IB, Bloco E, s/n, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - José Etham de Lucena Barbosa
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| |
Collapse
|
6
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Baran LCP, Lima DDS, Silva LA, Tabares HS, Dias SL, Zin AA, Moreira MEL, da Costa MF, Ventura DF. Visual Acuity alterations in heavily impaired Congenital Zika Syndrome (CZS) children. FRONTIERS IN OPHTHALMOLOGY 2022; 2:948409. [PMID: 38983546 PMCID: PMC11182184 DOI: 10.3389/fopht.2022.948409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/07/2022] [Indexed: 07/11/2024]
Abstract
Introduction This study aimed to assess visual acuity (VA) in Congenital Zika Syndrome (CZS)-children to evaluate visual loss. To that end we evaluated 41 CZS - children, from Rio de Janeiro using Teller Acuity Cards. Methods To asses VA, we evaluated 41 CZS - children, from Rio de Janeiro using Teller Acuity Cards. The children had Zika virus-infection confirmed by reverse transcription-polymerase chain reaction (RT-PCR) or clinical evaluation. Results In 39 out of 41 (95%) children, the VA scores were below normative values, while in 10 cases, VA was only marginally below normal; in the remaining 29 cases, VA was more than 0.15 logMAR below the lower limit. There was no correlation between VA and the cognitive domain tasks, although there was a correlation between VA and motor domain tasks. Thirty-seven children performed at least one task in the cognitive set, while fourteen children did not perform any task in the motor set. Children with VA above the lower limit performed better in the cognitive and motor tasks. Discussion We concluded that ZIKV- infected children with CZS were highly VA impaired which correlated with motor performance, but not with cognitive performance. Part of the children had VA within the normal limits and displayed better performance in the cognitive and motor sets. Therefore, even if heavily impaired, most children had some degree of VA and visual function.
Collapse
Affiliation(s)
- Luiz C. P. Baran
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| | - Diego da S. Lima
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo A. Silva
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| | - Heydi S. Tabares
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| | - Sarah L. Dias
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Araújo Zin
- Clinical Research Unit, National Institute of Women, Children and Teenagers Fernandes Figueira, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria E. L. Moreira
- Clinical Research Unit, National Institute of Women, Children and Teenagers Fernandes Figueira, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcelo F. da Costa
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| | - Dora F. Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
- Nucleus of Neurosciences and Behavior, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Vanderley RF, Becker V, Panosso R, Ger KA, Padisák J. The influence of trophic status and seasonal environmental variability on morpho-functional traits in tropical man-made shallow lakes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:507. [PMID: 35708791 PMCID: PMC9203412 DOI: 10.1007/s10661-022-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the tropics, seasons are delimitated by the extent of rainfall resulting in seasonal differences in water parameters shaping phytoplankton community dynamics. Dry periods can intensify eutrophication and often result in seasonal or even perennial cyanobacterial dominance. This study was developed to evaluate phytoplankton response to trophic state and seasonal differences of environmental filters (dry and rainy periods) using the morphology-based functional groups (MBFG) approach. We also aimed at identifying environmental thresholds of each MBFG dominance in six man-made lakes located in the tropical semiarid region of Brazil. Our results showed clear MBFG association with lakes' trophic states. The dominant groups in mesotrophic conditions were members of MBFGs V (unicellular flagellates) and VI (non-flagellated with a siliceous exoskeleton), and in meso-eutrophic MBFG IV (medium size without specialized traits) dominated. Conversely, MBFG VII (with mucilage and aerotopes) and VIII (nitrogen-fixing cyanobacteria) dominated mostly under eutrophic conditions, though linked to shallower euphotic zones. Light and phosphorous were the most important environmental thresholds associated with MBFG's dominance. Overall, most of the lakes displayed seasonal differences in environmental filters. In contrast to what was expected, the rainy season was associated with higher nutrients, suspended solids, and reduced euphotic depth compared to the dry season. Our results, overall, show that the effects of seasonality varied across lakes and highlight eutrophication as the main environmental factor for MBFG selection suggesting reduced seasonality effects during dry years in the tropics.
Collapse
Affiliation(s)
- Rayane F Vanderley
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary.
| | - Vanessa Becker
- Laboratory of Water Resources and Sanitation, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, 59072-970, Brazil
| | - Renata Panosso
- Department of Microbiology and Parasitology, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, 59072-970, Brazil
| | - Kemal A Ger
- Department of Ecology, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, 59072-970, Brazil
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| |
Collapse
|
10
|
Cao Y. The uses of 3D human brain organoids for neurotoxicity evaluations: A review. Neurotoxicology 2022; 91:84-93. [PMID: 35561940 DOI: 10.1016/j.neuro.2022.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
Neurotoxicity studies aim at understanding the toxic effects and mechanisms of toxicants to human central nervous systems (CNS). However, human brains are the most complex organs, whereas the most commonly used models, such as 2D cell cultures and animal brains, are probably too simple to predict the responses of human brains. Embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs)-based 3D human brain organoids hold unprecedented promise for the understanding of neurodevelopment and brain disease development. This review summarizes recent advances of using 3D human brain organoids for neurotoxicity studies. Comparative studies showed that 3D human brain organoids could support the findings obtained by animal or cohort studies, indicating that 3D human brain organoids are reliable models to evaluate the developmental neurotoxicity. 3D human brain organoids have been used to understand the toxicological mechanisms by using both conventional toxicological methods to investigate the signaling pathway changes as well as single cell RNA-sequencing to understand the neuron diversity. Some studies also used brain organoids carrying gene mutations or with virus infections to understand the toxicological responses of brains under diseased conditions. Although there are still limitations associated, 3D human brain organoids are promising tools for future neurotoxicity studies.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Schuler-Faccini L, Del Campo M, García-Alix A, Ventura LO, Boquett JA, van der Linden V, Pessoa A, van der Linden Júnior H, Ventura CV, Leal MC, Kowalski TW, Rodrigues Gerzson L, Skilhan de Almeida C, Santi L, Beys-da-Silva WO, Quincozes-Santos A, Guimarães JA, Garcez PP, Gomes JDA, Vianna FSL, Anjos da Silva A, Fraga LR, Vieira Sanseverino MT, Muotri AR, Lopes da Rosa R, Abeche AM, Marcolongo-Pereira C, Souza DO. Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Front Genet 2022; 13:758715. [PMID: 35350244 PMCID: PMC8957982 DOI: 10.3389/fgene.2022.758715] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Five years after the identification of Zika virus as a human teratogen, we reviewed the early clinical manifestations, collectively called congenital Zika syndrome (CZS). Children with CZS have a very poor prognosis with extremely low performance in motor, cognitive, and language development domains, and practically all feature severe forms of cerebral palsy. However, these manifestations are the tip of the iceberg, with some children presenting milder forms of deficits. Additionally, neurodevelopment can be in the normal range in the majority of the non-microcephalic children born without brain or eye abnormalities. Vertical transmission and the resulting disruption in development of the brain are much less frequent when maternal infection occurs in the second half of the pregnancy. Experimental studies have alerted to the possibility of other behavioral outcomes both in prenatally infected children and in postnatal and adult infections. Cofactors play a vital role in the development of CZS and involve genetic, environmental, nutritional, and social determinants leading to the asymmetric distribution of cases. Some of these social variables also limit access to multidisciplinary professional treatment.
Collapse
Affiliation(s)
- Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Miguel Del Campo
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Liana O Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | | | - André Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil.,Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | - Camila V Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,CESUCA-Centro Universitário, Cachoeirinha, Brazil
| | | | | | - Lucélia Santi
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Jorge A Guimarães
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - André Anjos da Silva
- School of Medicine, Graduate Program in Medical Sciences-Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil.,School of Medicine, Universidade do Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Lucas Rosa Fraga
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Alberto Mantovani Abeche
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Diogo O Souza
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
12
|
Dos Santos Machado L, Dörr F, Dörr FA, Frascareli D, Melo DS, Gontijo ESJ, Friese K, Pinto E, Rosa AH, Pompêo MM, Moschini-Carlos V. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18653-18664. [PMID: 34697712 DOI: 10.1007/s11356-021-16994-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.
Collapse
Affiliation(s)
| | - Fabiane Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Felipe Augusto Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Daniele Frascareli
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Darllene S Melo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Erik S J Gontijo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Kurt Friese
- Lake Research Department, UFZ-Helmholtz Centre for Environmental Research, Brueckstr 3a, 39114, Magdeburg, Germany
| | - Ernani Pinto
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - André Henrique Rosa
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Marcelo M Pompêo
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Azamor T, Cunha DP, da Silva AMV, Bezerra OCDL, Ribeiro-Alves M, Calvo TL, Kehdy FDSG, Manta FDN, Pinto TGDT, Ferreira LP, Portari EA, Guida LDC, Gomes L, Moreira MEL, de Carvalho EF, Cardoso CC, Muller M, Ano Bom APD, Neves PCDC, Vasconcelos Z, Moraes MO. Congenital Zika Syndrome Is Associated With Interferon Alfa Receptor 1. Front Immunol 2021; 12:764746. [PMID: 34899713 PMCID: PMC8657619 DOI: 10.3389/fimmu.2021.764746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Host factors that influence Congenital Zika Syndrome (CZS) outcome remain elusive. Interferons have been reported as the main antiviral factor in Zika and other flavivirus infections. Here, we accessed samples from 153 pregnant women (77 without and 76 with CZS) and 143 newborns (77 without and 66 with CZS) exposed to ZIKV conducted a case-control study to verify whether interferon alfa receptor 1 (IFNAR1) and interferon lambda 2 and 4 (IFNL2/4) single nucleotide polymorphisms (SNPs) contribute to CZS outcome, and characterized placenta gene expression profile at term. Newborns carrying CG/CC genotypes of rs2257167 in IFNAR1 presented higher risk of developing CZS (OR=3.41; IC=1.35-8.60; Pcorrected=0.032). No association between IFNL SNPs and CZS was observed. Placenta from CZS cases displayed lower levels of IFNL2 and ISG15 along with higher IFIT5. The rs2257167 CG/CC placentas also demonstrated high levels of IFIT5 and inflammation-related genes. We found CZS to be related with exacerbated type I IFN and insufficient type III IFN in placenta at term, forming an unbalanced response modulated by the IFNAR1 rs2257167 genotype. Despite of the low sample size se findings shed light on the host-pathogen interaction focusing on the genetically regulated type I/type III IFN axis that could lead to better management of Zika and other TORCH (Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes) congenital infections.
Collapse
Affiliation(s)
- Tamiris Azamor
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Daniela Prado Cunha
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Andréa Marques Vieira da Silva
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia, Fiocruz, Rio de Janeiro, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | - Elyzabeth Avvad Portari
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Letícia da Cunha Guida
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Gomes
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Maria Elisabeth Lopes Moreira
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Muller
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Zilton Vasconcelos
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Hopkins HK, Traverse EM, Barr KL. Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens 2021; 10:1510. [PMID: 34832665 PMCID: PMC8625030 DOI: 10.3390/pathogens10111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: The human brain is of interest in viral research because it is often the target of viruses. Neurological infections can result in consequences in the CNS, which can result in death or lifelong sequelae. Organoids modeling the CNS are notable because they are derived from stem cells that differentiate into specific brain cells such as neural progenitors, neurons, astrocytes, and glial cells. Numerous protocols have been developed for the generation of CNS organoids, and our goal was to describe the various CNS organoid models available for viral pathogenesis research to serve as a guide to determine which protocol might be appropriate based on research goal, timeframe, and budget. (2) Methods: Articles for this review were found in Pubmed, Scopus and EMBASE. The search terms used were "brain + organoid" and "CNS + organoid" (3) Results: There are two main methods for organoid generation, and the length of time for organoid generation varied from 28 days to over 2 months. The costs for generating a population of organoids ranged from USD 1000 to 5000. (4) Conclusions: There are numerous methods for generating organoids representing multiple regions of the brain, with several types of modifications for fine-tuning the model to a researcher's specifications. Organoid models of the CNS can serve as a platform for characterization and mechanistic studies that can reduce or eliminate the use of animals, especially for viruses that only cause disease in the human CNS.
Collapse
Affiliation(s)
| | | | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (H.K.H.); (E.M.T.)
| |
Collapse
|
15
|
Tunali M, Radin AA, Başıbüyük S, Musah A, Borges IVG, Yenigun O, Aldosery A, Kostkova P, dos Santos WP, Massoni T, Dutra LMM, Moreno GMM, de Lima CL, da Silva ACG, Ambrizzi T, da Rocha RP, Jones KE, Campos LC. A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55952-55966. [PMID: 34495471 PMCID: PMC8500866 DOI: 10.1007/s11356-021-15984-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 05/13/2023]
Abstract
This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil.
Collapse
Affiliation(s)
- Merve Tunali
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | | | - Selma Başıbüyük
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Anwar Musah
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Iuri Valerio Graciano Borges
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Orhan Yenigun
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
- School of Engineering, European University of Lefke, Lefke, North Cyprus, Turkey
| | - Aisha Aldosery
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Patty Kostkova
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Wellington P. dos Santos
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, PE 50740-550 Brazil
| | - Tiago Massoni
- Department Systems and Computing, Federal University of Campina Grande, Campina Grande, PB 58429-900 Brazil
| | - Livia Marcia Mosso Dutra
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Giselle Machado Magalhaes Moreno
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Clarisse Lins de Lima
- Polytechnic School of Pernambuco, University of Pernambuco (Poli-UPE), Recife, PE 50720-001 Brazil
| | - Ana Clara Gomes da Silva
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, PE 50740-550 Brazil
| | - Tércio Ambrizzi
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Rosmeri Porfirio da Rocha
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Kate E. Jones
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, WC1E 6BT, London, UK
| | - Luiza C. Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT, London, UK
| |
Collapse
|
16
|
Akbaba TH, Bekircan-Kurt CE, Balci-Peynircioglu B, Balci-Hayta B. Biologia Futura: the importance of 3D organoids-a new approach for research on neurological and rare diseases. Biol Futur 2021; 72:281-290. [PMID: 34554549 DOI: 10.1007/s42977-021-00070-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
3D cell cultures and organoid approach are increasingly being used for basic research and drug discovery of several diseases. Recent advances in these technologies, enabling research on tissue-like structures created in vitro is very important for the value of the data produced. Application of 3D cultures will not only contribute to advancing basic research, but also help to reduce animal usage in biomedical science. The 3D organoid approach is important for research on diseases where patient tissue is difficult to obtain. Therefore, this review aims to show recent advances in the 3D organoid technology in disease modeling and potential usage in translational and personalized medicine of diseases with limited patient material such as neurological diseases and rare diseases.
Collapse
Affiliation(s)
- Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Can Ebru Bekircan-Kurt
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Banu Balci-Peynircioglu
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey.
| |
Collapse
|
17
|
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021. [DOI: 10.3389/fnins.2021.674563
expr 918028134 + 817050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases.
Collapse
|
18
|
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021; 15:674563. [PMID: 34483818 PMCID: PMC8414411 DOI: 10.3389/fnins.2021.674563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lisiane O. Porciúncula
- Department of Biochemistry, Program of Biological Sciences - Biochemistry, Institute of Health and Basic Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Pitia F. Ledur
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Jalink P, Caiazzo M. Brain Organoids: Filling the Need for a Human Model of Neurological Disorder. BIOLOGY 2021; 10:740. [PMID: 34439972 PMCID: PMC8389592 DOI: 10.3390/biology10080740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Neurological disorders are among the leading causes of death worldwide, accounting for almost all onsets of dementia in the elderly, and are known to negatively affect motor ability, mental and cognitive performance, as well as overall wellbeing and happiness. Currently, most neurological disorders go untreated due to a lack of viable treatment options. The reason for this lack of options is s poor understanding of the disorders, primarily due to research models that do not translate well into the human in vivo system. Current models for researching neurological disorders, neurodevelopment, and drug interactions in the central nervous system include in vitro monolayer cell cultures, and in vivo animal models. These models have shortcomings when it comes to translating research about disorder pathology, development, and treatment to humans. Brain organoids are three-dimensional (3D) cultures of stem cell-derived neural cells that mimic the development of the in vivo human brain with high degrees of accuracy. Researchers have started developing these miniature brains to model neurodevelopment, and neuropathology. Brain organoids have been used to model a wide range of neurological disorders, including the complex and poorly understood neurodevelopmental and neurodegenerative disorders. In this review, we discuss the brain organoid technology, placing special focus on the different brain organoid models that have been developed, discussing their strengths, weaknesses, and uses in neurological disease modeling.
Collapse
Affiliation(s)
- Philip Jalink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, CG 3584 Utrecht, The Netherlands;
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Universiteitsweg 99, CG 3584 Utrecht, The Netherlands;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
21
|
Oliver SL, Ribeiro H. Zika virus syndrome, lack of environmental policies and risks of worsening by cyanobacteria proliferation in a climate change scenario. Rev Saude Publica 2020; 54:83. [PMID: 33111925 PMCID: PMC7575220 DOI: 10.11606/s1518-8787.2020054002159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022] Open
Abstract
Almost half of the Brazilian population has no access to sewage collection and treatment. Untreated effluents discharged in waters of reservoirs for human supply favor the flowering of cyanobacteria – and these microorganisms produce toxins, such as saxitoxin, which is a very potent neurotoxin present in reservoirs in the Northeast region. A recent study confirmed that chronic ingestion of neurotoxin-infected water associated with Zika virus infection could lead to a microcephaly-like outcome in pregnant mice. Cyanobacteria benefit from hot weather and organic matter in water, a condition that has been intensified by climate change, according to our previous studies. Considering the new findings, we emphasize that zika arbovirus is widespread and worsened when associated with climate change, especially in middle- or low-income countries with low levels of sanitation coverage.
Collapse
Affiliation(s)
- Sofia Lizarralde Oliver
- Universidade de São Paulo. Faculdade de Saúde Pública. Departamento de Saúde Ambiental. São Paulo, SP, Brasil
| | - Helena Ribeiro
- Universidade de São Paulo. Faculdade de Saúde Pública. Departamento de Saúde Ambiental. São Paulo, SP, Brasil
| |
Collapse
|