1
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Flowers E, Stroebel B, Lewis KA, Aouizerat BE, Gadgil M, Kanaya AM, Zhang L, Gong X. Longitudinal associations between microRNAs and weight in the diabetes prevention program. Front Endocrinol (Lausanne) 2024; 15:1419812. [PMID: 39359416 PMCID: PMC11445047 DOI: 10.3389/fendo.2024.1419812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Circulating microRNAs show cross-sectional associations with overweight and obesity. Few studies provided data to differentiate between a snapshot perspective on these associations versus how microRNAs characterize prodromal risk from disease pathology and complications. This study assessed longitudinal relationships between circulating microRNAs and weight at multiple time-points in the Diabetes Prevention Program trial. Research design and methods A subset of participants (n=150) from the Diabetes Prevention Program were included. MicroRNAs were measured from banked plasma using a Fireplex Assay. We used generalized linear mixed models to evaluate relationships between microRNAs and changes in weight at baseline, year-1, and year-2. Logistic regression was used to evaluate whether microRNAs at baseline were associated with weight change after 2 years. Results In fully adjusted models that included relevant covariates, seven miRs (i.e., miR-126, miR-15a, miR-192, miR-23a, and miR-27a) were statistically associated with weight over 2 years. MiR-197 and miR-320a remained significant after adjustment for multiple comparisons. Baseline levels of let-7f, miR-17, and miR-320c were significantly associated with 3% weight loss after 2 years in fully adjusted models. Discussion This study provided evidence for longitudinal relationships between circulating microRNAs and weight. Because microRNAs characterize the combined effects of genetic determinants and responses to behavioral determinants, they may provide insights about the etiology of overweight and obesity in the context or risk for common, complex diseases. Additional studies are needed to validate the potential genes and biological pathways that might be targeted by these microRNA biomarkers and have mechanistic implications for weight loss and disease prevention.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Benjamin Stroebel
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Kimberly A. Lewis
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY, United States
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, United States
| | - Meghana Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Alka M. Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Xingyue Gong
- Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Mondal S, Rathor R, Singh SN, Suryakumar G. miRNA and leptin signaling in metabolic diseases and at extreme environments. Pharmacol Res Perspect 2024; 12:e1248. [PMID: 39017237 PMCID: PMC11253706 DOI: 10.1002/prp2.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.
Collapse
Affiliation(s)
- Samrita Mondal
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Richa Rathor
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | - Som Nath Singh
- Defence Institute of Physiology and Allied SciencesDelhiIndia
| | | |
Collapse
|
5
|
Rahman MA, Islam MM, Ripon MAR, Islam MM, Hossain MS. Regulatory Roles of MicroRNAs in the Pathogenesis of Metabolic Syndrome. Mol Biotechnol 2024; 66:1599-1620. [PMID: 37393414 DOI: 10.1007/s12033-023-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Metabolic syndrome refers to a group of several disease conditions together with high glucose triglyceride levels, high blood pressure, lower high-density lipoprotein level, and large waist circumference. About 400 million people worldwide, one-third of the Euro-American population and 27% Chinese population over age 50 have it. microRNAs, an abundant novel class of endogenous small, non-coding RNAs in eukaryotic cells, act as negative controllers of gene expression by promoting either degradation/translational repression of target messenger RNA. More than 2000 microRNAs in the human genome have been identified and they are implicated in various biological & pathophysiological processes, including glucose homeostasis, inflammatory response, and angiogenesis. Destruction of microRNAs has a crucial role in the pathogenesis of obesity, cardiovascular disease, and diabetes. Recently the discovery of circulating microRNAs in human serum may help to promote metabolic crosstalk between organs and serves as a novel approach for the identification of various diseases, like Type 2 diabetes & atherosclerosis. In this review, we will discuss the most recent and up-to-date research on the pathophysiology and histopathology of metabolic syndrome besides their historical background and epidemiological highlight. As well as search the methodologies employed in this field of research and the potential role of microRNAs as novel biomarkers and therapeutic targets for metabolic syndrome in the human body. Furthermore, the significance of microRNAs in promising strategies, like stem cell therapy, which holds enormous promise for regenerative medicine in the treatment of metabolic disorders will also be discussed.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Bangladesh Obesity Research Network (BORN), Noakhali, 3814, Bangladesh.
| |
Collapse
|
6
|
Chen T, Lin Q, Gong C, Zhao H, Peng R. Research Progress on Micro (Nano)Plastics Exposure-Induced miRNA-Mediated Biotoxicity. TOXICS 2024; 12:475. [PMID: 39058127 PMCID: PMC11280978 DOI: 10.3390/toxics12070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.
Collapse
Affiliation(s)
| | | | | | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| |
Collapse
|
7
|
Wystrychowski G, Simka-Lampa K, Witkowska A, Sobecko E, Skubis-Sikora A, Sikora B, Wojtyna E, Golda A, Gwizdek K, Wróbel M, Sędek Ł, Górczyńska-Kosiorz S, Szweda-Gandor N, Trautsolt W, Francuz T, Kruszniewska-Rajs C, Gola J. Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. Int J Mol Sci 2024; 25:6644. [PMID: 38928349 PMCID: PMC11204268 DOI: 10.3390/ijms25126644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The role of adipose mesenchymal stem cells (Ad-MSCs) in metabolic syndrome remains unclear. We aimed to assess the expression of selected microRNAs in Ad-MSCs of non-diabetic adults in relation to Ad-MSC secretion of protein regulators and basic metabolic parameters. Ten obese, eight overweight, and five normal weight subjects were enrolled: 19 females and 4 males; aged 43.0 ± 8.9 years. Ad-MSCs were harvested from abdominal subcutaneous fat. Ad-MSC cellular expressions of four microRNAs (2-ΔCt values) and concentrations of IL-6, IL-10, VEGF, and IGF-1 in the Ad-MSC-conditioned medium were assessed. The expressions of miR-21, miR-122, or miR-192 did not correlate with clinical parameters (age, sex, BMI, visceral fat, HOMA-IR, fasting glycemia, HbA1c, serum lipids, CRP, and eGFR). Conversely, the expression of miR-155 was lowest in obese subjects (3.69 ± 2.67 × 10-3 vs. 7.07 ± 4.42 × 10-3 in overweight and 10.25 ± 7.05 × 10-3 in normal weight ones, p = 0.04). The expression of miR-155 correlated inversely with BMI (sex-adjusted r = -0.64; p < 0.01), visceral adiposity (r = -0.49; p = 0.03), and serum CRP (r = -0.63; p < 0.01), whereas it correlated positively with serum HDL cholesterol (r = 0.51; p = 0.02). Moreover, miR-155 synthesis was associated marginally negatively with Ad-MSC secretion of IGF-1 (r = -0.42; p = 0.05), and positively with that of IL-10 (r = 0.40; p = 0.06). Ad-MSC expression of miR-155 appears blunted in visceral obesity, which correlates with Ad-MSC IGF-1 hypersecretion and IL-10 hyposecretion, systemic microinflammation, and HDL dyslipidemia. Ad-MSC studies in metabolic syndrome should focus on miR-155.
Collapse
Affiliation(s)
| | - Klaudia Simka-Lampa
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | | | - Ewelina Sobecko
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Aleksandra Skubis-Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Bartosz Sikora
- Department of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.S.-S.); (B.S.)
| | - Ewa Wojtyna
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Agnieszka Golda
- Alfamed General Practice, 41-100 Siemianowice Slaskie, Poland;
| | - Katarzyna Gwizdek
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Marta Wróbel
- Department of Internal Medicine, Diabetology and Cardiometabolic Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Nikola Szweda-Gandor
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (S.G.-K.); (N.S.-G.); (W.T.)
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.S.-L.); (E.S.); (T.F.)
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.G.)
| |
Collapse
|
8
|
Flowers E, Stroebel B, Gong X, Lewis K, Aouizerat BE, Gadgil M, Kanaya AM, Zhang L. Longitudinal Associations Between MicroRNAs and Weight in the Diabetes Prevention Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597590. [PMID: 38895330 PMCID: PMC11185725 DOI: 10.1101/2024.06.05.597590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Circulating microRNAs show cross-sectional associations with overweight and obesity. Few studies provided data to differentiate between a snapshot perspective on these associations versus how microRNAs characterize prodromal risk from disease pathology and complications. This study assessed longitudinal relationships between circulating microRNAs and weight at multiple time-points in the Diabetes Prevention Program trial. RESEARCH DESIGN AND METHODS A subset of participants (n=150) from the Diabetes Prevention Program were included. MicroRNAs were measured from banked plasma using a Fireplex Assay. We used generalized linear mixed models to evaluate relationships between microRNAs and changes in weight at baseline, year-1, and year-2. Logistic regression was used to evaluate whether microRNAs at baseline were associated with weight change after 2 years. RESULTS In fully adjusted models that included relevant covariates, seven miRs (i.e., miR-126, miR-15a, miR-192, miR-23a, and miR-27a) were statistically associated with weight over 2 years. MiR-197 and miR-320a remained significant after adjustment for multiple comparisons. Baseline levels of let-7f, miR-17, and miR-320c were significantly associated with 3% weight loss after 2 years in fully adjusted models. DISCUSSION This study provided evidence for longitudinal relationships between circulating microRNAs and weight. Because microRNAs characterize the combined effects of genetic determinants and responses to behavioral determinants, they may provide insights about the etiology of overweight and obesity in the context or risk for common, complex diseases. Additional studies are needed to validate the potential genes and biological pathways that might be targeted by these microRNA biomarkers and have mechanistic implications for weight loss and disease prevention.
Collapse
|
9
|
Pashaei Z, Malandish A, Alipour S, Jafari A, Laher I, Hackney AC, Suzuki K, Granacher U, Saeidi A, Zouhal H. Effects of HIIT training and HIIT combined with circuit resistance training on measures of physical fitness, miRNA expression, and metabolic risk factors in overweight/obese middle-aged women. BMC Sports Sci Med Rehabil 2024; 16:123. [PMID: 38812051 PMCID: PMC11137892 DOI: 10.1186/s13102-024-00904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE The purpose of this study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) and HIIT combined with circuit resistance training (HCRT) on selected measures of physical fitness, the expression of miR-9, -15a, -34a, -145, and - 155 as well as metabolic risk factors including lipid profiles and insulin resistance in middle-aged overweight/obese women. METHODS Twenty-seven overweight/obese women aged 35-50 yrs. were randomized to HIIT (n = 14) or HCRT (n = 13) groups. The HIIT group performed running exercises (5 reps x 4 min per session) with active recovery between repetitions for 10 weeks with 5 weekly sessions. The HCRT group performed 10 weeks of HIIT and resistance training with 3 weekly HIIT sessions and 2 weekly HCRT sessions. Anthropometric measures (e.g., body mass), selected components of physical fitness (cardiovascular fitness, muscle strength), levels of miRNAs (miR-9, -15a, -34a, -145, and - 155), lipid profiles (total cholesterol; TC, Triglycerides; TG, low-density lipoprotein cholesterol; LDL-C and high-density lipoprotein cholesterol; HDL-C), and insulin resistance; HOMA-IR index, were measured at baseline and week 10. RESULTS An ANOVA analysis indicated no significant group by time interactions (p > 0.05) for all anthropometric measures, and maximum oxygen consumption (VO2max). A significant group by time interaction, however, was found for the one-repetition maximum (IRM; p < 0.001, ES= 0.751 , moderate). A post-hoc test indicated an increase in the pre-to-post mean 1RM for HCRT (p = 0.001, ES = 1.83, large). There was a significant group by time interaction for miR-155 (p = 0.05, ES = 0.014, trivial). Levels for miR-155 underwent pre-to-post HIIT increases (p = 0.045, ES = 1.232, large). Moreover, there were also significant group by time interactions for TC (p = 0.035, ES = 0.187, trivial), TG (p < 0.001, ES = 0.586, small), LDL-C (p = 0.029, ES = 0.200, small) and HDL-C (p = 0.009, ES = 0.273, small). Post-hoc tests indicated pre-post HCRT decreases for TC (p = 0.001, ES = 1.44, large) and HDL-C (p = 0.001, ES = 1.407, large). HIIT caused pre-to-post decreases in TG (p = 0.001, ES = 0.599, small), and LDL-C (p = 0.001, ES = 0.926, moderate). CONCLUSIONS Both training regimes did not improve cardiovascular fitness. But, HCRT improved lower/upper limb muscle strength, and HIIT resulted in an increase in miR-155 expression in peripheral blood mononuclear cells. Furthermore, HIIT and HCRT each improved selected metabolic risk factors including lipid profiles and glucose and insulin metabolism in overweight/obese middle-aged women. TRIAL REGISTRATION OSF, October, 4th 2023. Registration DOI: https://doi.org/10.17605/OSF.IO/UZ92E . osf.io/tc5ky . "Retrospectively registered".
Collapse
Affiliation(s)
- Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Tabriz, Tabriz, Iran.
| | - Abbas Malandish
- Department of Exercise Physiology, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshar Jafari
- Department of Biological Sciences in sports, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences laboratory (M2S). UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, Rennes Cedex, 35044, France.
- Institut International des Sciences du Sport (2IS), Irodouer, 35850, France.
| |
Collapse
|
10
|
Lewis KA, Stroebel BM, Zhang L, Aouizerat B, Mattis AN, Flowers E. MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. Int J Mol Sci 2024; 25:5684. [PMID: 38891870 PMCID: PMC11172132 DOI: 10.3390/ijms25115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The Diabetes Prevention Program (DPP) randomized controlled trial demonstrated that metformin treatment reduced progression to type 2 diabetes (T2D) by 31% compared to placebo in adults with prediabetes. Circulating micro-ribonucleic acids (miRs) are promising biomarkers of T2D risk, but little is known about their associations with metformin regimens for T2D risk reduction. We compared the change in 24 circulating miRs from baseline to 2 years in a subset from DPP metformin intervention (n = 50) and placebo (n = 50) groups using Wilcoxon signed rank tests. Spearman correlations were used to evaluate associations between miR change and baseline clinical characteristics. Multiple linear regression was used to adjust for covariates. The sample was 73% female, 17% Black, 13% Hispanic, and 50 ± 11 years. Participants were obese, normotensive, prediabetic, and dyslipidemic. Change in 12 miR levels from baseline to 2 years was significantly different in the metformin group compared with placebo after adjusting for multiple comparisons: six (let-7c-5p, miR-151a-3p, miR-17-5p, miR-20b-5p, miR-29b-3p, and miR-93-5p) were significantly upregulated and six (miR-130b-3p, miR-22-3p, miR-222-3p, miR-320a-3p, miR-320c, miR-92a-3p) were significantly downregulated in the metformin group. These miRs help to explain how metformin is linked to T2D risk reduction, which may lead to novel biomarkers, therapeutics, and precision health strategies.
Collapse
Affiliation(s)
- Kimberly A. Lewis
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way, San Francisco, CA 94143, USA; (B.M.S.); (E.F.)
| | - Benjamin M. Stroebel
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way, San Francisco, CA 94143, USA; (B.M.S.); (E.F.)
| | - Li Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA;
| | | | - Aras N. Mattis
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way, San Francisco, CA 94143, USA; (B.M.S.); (E.F.)
- Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Allan NP, Yamamoto BY, Kunihiro BP, Nunokawa CKL, Rubas NC, Wells RK, Umeda L, Phankitnirundorn K, Torres A, Peres R, Takahashi E, Maunakea AK. Ketogenic Diet Induced Shifts in the Gut Microbiome Associate with Changes to Inflammatory Cytokines and Brain-Related miRNAs in Children with Autism Spectrum Disorder. Nutrients 2024; 16:1401. [PMID: 38794639 PMCID: PMC11124410 DOI: 10.3390/nu16101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
In this interventional pilot study, we investigated the effects of a modified ketogenic diet (KD) on children with autism spectrum disorder (ASD). We previously observed improved behavioral symptoms in this cohort following the KD; this trial was registered with Clinicaltrials.gov (NCT02477904). This report details the alterations observed in the microbiota, inflammation markers, and microRNAs of seven children following a KD for a duration of 4 months. Our analysis included blood and stool samples, collected before and after the KD. After 4 months follow up, we found that the KD led to decreased plasma levels of proinflammatory cytokines (IL-12p70 and IL-1b) and brain-derived neurotrophic factor (BDNF). Additionally, we observed changes in the gut microbiome, increased expression of butyrate kinase in the gut, and altered levels of BDNF-associated miRNAs in the plasma. These cohort findings suggest that the KD may positively influence ASD sociability, as previously observed, by reducing inflammation, reversing gut microbial dysbiosis, and impacting the BDNF pathway related to brain activity.
Collapse
Affiliation(s)
- Nina P. Allan
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Brennan Y. Yamamoto
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Braden P. Kunihiro
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Chandler K. L. Nunokawa
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Noelle C. Rubas
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
- Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Riley K. Wells
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
- Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Lesley Umeda
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
- Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Krit Phankitnirundorn
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Amada Torres
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Rafael Peres
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alika K. Maunakea
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA; (N.P.A.); (B.Y.Y.); (B.P.K.); (C.K.L.N.); (N.C.R.); (R.K.W.); (L.U.); (K.P.); (A.T.); (R.P.)
| |
Collapse
|
12
|
Arderiu G, Civit-Urgell A, Díez-Caballero A, Moscatiello F, Ballesta C, Badimon L. Differentiation of Adipose Tissue Mesenchymal Stem Cells into Endothelial Cells Depends on Fat Depot Conditions: Regulation by miRNA. Cells 2024; 13:513. [PMID: 38534357 DOI: 10.3390/cells13060513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The development of obesity is associated with substantial modulation of adipose tissue (AT) structure. The plasticity of the AT is reflected by its remarkable ability to expand or reduce in size throughout the adult lifespan, which is linked to the development of its vasculature. This increase in AT vasculature could be mediated by the differentiation of adipose tissue-derived stem cells (ASCs) into endothelial cells (ECs) and form new microvasculature. We have already shown that microRNA (miRNA)-145 regulates the differentiation of ASCs into EC-like (ECL) cells. Here, we investigated whether ASCs-differentiation into ECs is governed by a miRNAs signature that depends on fat depot location and /or the metabolic condition produced by obesity. Human ASCs, which were obtained from white AT by surgical procedures from lean and obese patients, were induced to differentiate into ECL cells. We have identified that miRNA-29b-3p in both subcutaneous (s)ASCs and visceral ASCs and miRNA-424-5p and miRNA-378a-3p in subcutaneous (s)ASCs are involved in differentiation into EC-like cells. These miRNAs modulate their pro-angiogenic effects on ASCs by targeting FGFR1, NRP2, MAPK1, and TGF-β2, and the MAPK signaling pathway. We show for the first time that miRNA-29b-3p upregulation contributes to ASCs' differentiation into ECL cells by directly targeting TGFB2 in both sASCs and visceral ASCs. Moreover, our results reveal that, independent of sASCs' origin (obese/lean), the upregulation of miRNA-378a-3p and the downregulation of miRNA-424-5p inhibit MAPK1 and overexpress FGFR1 and NRP2, respectively. In summary, both the adipose depot location and obesity affect the differentiation of resident ASCs through the expression of specific miRNAs.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
| | | | | | - Carlos Ballesta
- Centro Médico Teknon, Grupo Quiron Salut, 08022 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut de Recerca Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Lewis KA, Stroebel B, Zhang L, Aouizerat B, Mattis A, Flowers E. MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. RESEARCH SQUARE 2024:rs.3.rs-3846347. [PMID: 38313262 PMCID: PMC10836103 DOI: 10.21203/rs.3.rs-3846347/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The Diabetes Prevention Program (DPP) randomized controlled trial demonstrated that metformin treatment reduced progression to type 2 diabetes (T2D) by 31% compared to placebo in adults with prediabetes. Circulating micro-ribonucleic acids (miRs) are promising biomarkers of T2D risk, but little is known about their associations with metformin regimens for T2D risk reduction. We compared the change in 24 circulating miRs from baseline to 2 years in a subset from DPP metformin intervention (n = 50) and placebo (n = 50) groups using Wilcoxon signed rank tests. Spearman's correlations were used to evaluate associations between miR change and baseline clinical characteristics. Multiple linear regression was used to adjust for covariates. The sample was 73% female, 17% Black, 13% Hispanic, and 50 ± 11 years. Participants were obese, normotensive, prediabetic, and dyslipidemic. Change in 12 miR levels from baseline to 2 years was significantly different in the metformin group compared with placebo after adjusting for multiple comparisons: six (let-7c-5p, miR-151a-3p, miR-17-5p, miR-20b-5p, miR-29b-3p, and miR-93-5p) were significantly upregulated and six (miR-130b-3p, miR-22-3p, miR-222-3p, miR-320a-3p, miR-320c, miR-92a-3p) were significantly downregulated in the metformin group. These miRs help to explain how metformin is linked to T2D risk reduction, which may lead to novel biomarkers, therapeutics, and precision-health strategies.
Collapse
Affiliation(s)
| | | | - Li Zhang
- University of California San Francisco
| | | | | | | |
Collapse
|
14
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
15
|
Adam M, Ozcan S, Dalkilic S, Tektemur NK, Tekin S, Bilgin B, Hekim MG, Bulut F, Kelestemur MM, Canpolat S, Ozcan M. Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG. Neurotox Res 2023; 42:5. [PMID: 38133838 DOI: 10.1007/s12640-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.
Collapse
Affiliation(s)
- Muhammed Adam
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, University of Firat, Elazig, Turkey
| | - Semih Dalkilic
- Department of Biology, University of Firat, Elazig, Turkey
| | | | - Suat Tekin
- Department of Physiology, University of Inonu, Malatya, Turkey
| | - Batuhan Bilgin
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Ferah Bulut
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Sinan Canpolat
- Department of Physiology, University of Firat, Elazig, Turkey
| | - Mete Ozcan
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey.
| |
Collapse
|
16
|
Tonyan ZN, Barbitoff YA, Nasykhova YA, Danilova MM, Kozyulina PY, Mikhailova AA, Bulgakova OL, Vlasova ME, Golovkin NV, Glotov AS. Plasma microRNA Profiling in Type 2 Diabetes Mellitus: A Pilot Study. Int J Mol Sci 2023; 24:17406. [PMID: 38139235 PMCID: PMC10744218 DOI: 10.3390/ijms242417406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and β-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.
Collapse
Affiliation(s)
- Ziravard N. Tonyan
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Maria M. Danilova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Polina Y. Kozyulina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Anastasiia A. Mikhailova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Olga L. Bulgakova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Margarita E. Vlasova
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Nikita V. Golovkin
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| |
Collapse
|
17
|
Guo YC, Cao HD, Lian XF, Wu PX, Zhang F, Zhang H, Lu DH. Molecular mechanisms of noncoding RNA and epigenetic regulation in obesity with consequent diabetes mellitus development. World J Diabetes 2023; 14:1621-1631. [DOI: 10.4239/wjd.v14.i11.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) and obesity have become two of the most prevalent and challenging diseases worldwide, with increasing incidence and serious complications. Recent studies have shown that noncoding RNA (ncRNA) and epigenetic regulation play crucial roles in the pathogenesis of DM complicated by obesity. Identification of the involvement of ncRNA and epigenetic regulation in the pathogenesis of diabetes with obesity has opened new avenues of investigation. Targeting these mechanisms with small molecules or RNA-based therapies may provide a more precise and effective approach to diabetes treatment than traditional therapies. In this review, we discuss the molecular mechanisms of ncRNA and epigenetic regulation and their potential therapeutic targets, and the research prospects for DM complicated with obesity.
Collapse
Affiliation(s)
- Yi-Chen Guo
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hao-Di Cao
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Fen Lian
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Pei-Xian Wu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Fan Zhang
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dong-Hui Lu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
18
|
Ma F, Cao D, Liu Z, Li Y, Ouyang S, Wu J. Identification of novel circulating miRNAs biomarkers for healthy obese and lean children. BMC Endocr Disord 2023; 23:238. [PMID: 37904219 PMCID: PMC10614305 DOI: 10.1186/s12902-023-01498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The prevalence of childhood obesity and overweight has risen globally, leading to increased rates of metabolic disorders. Various factors, including genetic, epigenetic, and environmental influences such as diet and physical activity, contribute to pediatric obesity. This study aimed to identify specific circulating miRNAs as potential biomarkers for assessing obesity in children. METHODS Thirty children, including 15 obese and 15 extremely thin individuals, were selected for this study. MiRNA expression in circulating plasma was assessed using miRNA microarrays. The reliability of differential miRNA expression was confirmed using TaqMan qPCR. The correlation between miRNAs and obesity was analyzed through multiple linear regression, receiver operator characteristic (ROC) curve analysis, and odds ratio (OR) calculations. Bioinformatics tools were utilized to identify target genes for the selected miRNAs, and a functional network map was constructed. RESULTS A total of 36 differentially expressed miRNAs were identified through gene chip analysis, and TaqMan qPCR validation confirmed the upregulation of seven miRNAs: hsa-miR-126-3p, hsa-miR-15b-5p, hsa-miR-199a-3p, hsa-miR-20a-5p, hsa-miR-223-3p, hsa-miR-23a-3p, and hsa-miR-24-3p. Among these, hsa-miR-15b-5p and hsa-miR-223-3p exhibited a statistically significant difference except for hsa-miR-23a-3p. These two miRNAs showed more predicted target genes related to obesity than others. Multiple linear regression analysis revealed an association between obesity and hsa-miR-15b-5p and hsa-miR-223-3p [10.529 (4.974-16.084), -10.225 (-17.852~ -2.657)]. Even after adjusting for age and sex, these two miRNAs remained associated with obesity [8.936 (3.572-14.301), -8.449(-15.634~ -1.303)]. The area under the ROC curve (AUC) reached values of 0.816, 0.711, and 0.929, respectively. Odds ratio analysis demonstrated a significant correlation between obesity and hsa-miR-15b-5p (OR = 143, 95% CI 5.80 to 56,313, p = 0.024) and between obesity and hsa-miR-223-3p (OR = 0.01, 95% CI 0.00 to 0.23, p = 0.037). Importantly, hsa-miR-15b-5p was found to have numerous target genes associated with the FoxO, insulin, Ras, and AMPK signaling pathways. CONCLUSIONS Differential miRNA expression profiles in the circulation of obese children compared to controls suggest underlying metabolic abnormalities. Hsa-miR-15b-5p and hsa-miR-223-3p may be considered as molecular markers for the screening of obese children and populations at risk of developing metabolic syndrome.
Collapse
Affiliation(s)
- Feifei Ma
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dongdansantiao, Beijing, 100005, People's Republic of China
| | - Dingding Cao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China.
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, 2 Yabao street, Beijing, 100020, People's Republic of China.
- Beijing TongRen Hospital, Capital Medical University, 17 Hougou Street, Chong Wen Men, Beijing, 100730, People's Republic of China.
| |
Collapse
|
19
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17–25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
20
|
Tesolato SE, González-Gamo D, Barabash A, Claver P, de la Serna SC, Domínguez-Serrano I, Dziakova J, de Juan C, Torres AJ, Iniesta P. Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer-Relationship to the Body Mass Index. Cancers (Basel) 2023; 15:3324. [PMID: 37444431 DOI: 10.3390/cancers15133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This work aims to investigate the expression levels of four preselected miRNAs previously linked to cancer and/or obesity, with the purpose of finding potential biomarkers in the clinical management of CRC developed by patients showing different BMI values. We analyzed samples from a total of 65 subjects: 43 affected by CRC and 22 without cancer. Serum and both subcutaneous and omental adipose tissues (SAT and OAT) were investigated, as well as tumor and non-tumor colorectal tissues in the case of the CRC patients. The relative expression (2-∆∆Ct) levels of 4 miRNAs (hsa-miR-181a-5p, hsa-miR-143-3p, has-miR-132-3p and hsa-miR-23a-3p) were measured by RT-qPCR. Serum, SAT and OAT expression levels of these miRNAs showed significant differences between subjects with and without CRC, especially in the group of overweight/obese subjects. In CRC, serum levels of hsa-miR-143-3p clearly correlated with their levels in both SAT and OAT, independently of the BMI group. Moreover, hsa-miR-181a-5p could be considered as a biomarker in CRC patients with BMI ≥ 25 Kg/m2 and emerges as a tumor location marker. We conclude that both adiposity and CRC induce changes in the expression of the miRNAs investigated, and hsa-miR-143-3p and hsa-miR-181a-5p expression analysis could be useful in the clinical management of CRC.
Collapse
Affiliation(s)
- Sofía Elena Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Gamo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Barabash
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- CIBERDEM (Network Biomedical Research Center for Diabetes and Associated Metabolic Diseases), Carlos III Institute of Health, 28029 Madrid, Spain
- Endocrinology & Nutrition Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Paula Claver
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Sofía Cristina de la Serna
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Jana Dziakova
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Carmen de Juan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Antonio José Torres
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
21
|
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Front Oncol 2023; 13:1169168. [PMID: 37404756 PMCID: PMC10315663 DOI: 10.3389/fonc.2023.1169168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Rocío Moreno Palomares
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- FORCHRONIC S.L, Avda. Industria, Madrid, Spain
| | | |
Collapse
|
22
|
Mishra S, Kumar A, Kim S, Su Y, Singh S, Sharma M, Almousa S, Rather HA, Jain H, Lee J, Furdui CM, Ahmad S, Ferrario CM, Punzi HA, Chuang CC, Wabitsch M, Kritchevsky SB, Register TC, Deep G. A Liquid Biopsy-Based Approach to Isolate and Characterize Adipose Tissue-Derived Extracellular Vesicles from Blood. ACS NANO 2023; 17:10252-10268. [PMID: 37224410 PMCID: PMC10713009 DOI: 10.1021/acsnano.3c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Obesity is a major risk factor for multiple chronic diseases. Anthropometric and imaging approaches are primarily used to assess adiposity, and there is a dearth of techniques to determine the changes in adipose tissue (AT) at the molecular level. Extracellular vesicles (EVs) have emerged as a novel and less invasive source of biomarkers for various pathologies. Furthermore, the possibility of enriching cell or tissue-specific EVs from the biofluids based on their unique surface markers has led to classifying these vesicles as "liquid biopsies", offering valuable molecular information on hard-to-access tissues. Here, we isolated small EVs from AT (sEVAT) of lean and diet-induced obese (DIO) mice, identified unique surface proteins on sEVAT by surface shaving followed by mass spectrometry, and developed a signature of five unique proteins. Using this signature, we pulled out sEVAT from the blood of mice and validated the specificity of isolated sEVAT by measuring the expression of adiponectin, 38 adipokines on an array, and several adipose tissue-related miRNAs. Furthermore, we provided evidence of sEV applicability in disease prediction by characterizing sEVAT from the blood of lean and DIO mice. Interestingly, sEVAT-DIO cargo showed a stronger pro-inflammatory effect on THP1 monocytes compared to sEVAT-Lean and a significant increase in obesity-associated miRNA expression. Equally important, sEVAT cargo revealed an obesity-associated aberrant amino acid metabolism that was subsequently validated in the corresponding AT. Lastly, we show a significant increase in inflammation-related molecules in sEVAT isolated from the blood of nondiabetic obese (>30 kg/m2) individuals. Overall, the present study offers a less-invasive approach to characterize AT.
Collapse
Affiliation(s)
- Shalini Mishra
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Susy Kim
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Yixin Su
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Hilal A Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Heetanshi Jain
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jingyun Lee
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27157, United States
| | - Cristina M Furdui
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27157, United States
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension, Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carlos M Ferrario
- Laboratory of Translational Hypertension, Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Henry A Punzi
- Punzi Medical Center, Punzi Institute of Medicine, Carrollton, Texas 75006, United States
- UT Southwestern Medical Center, Dallas, Texas, 75390, United States
| | - Chia-Chi Chuang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Center for Rare Endocrine Diseases, Ulm University Medical Centre, Ulm 89069, Germany
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas C Register
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27157, United States
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
23
|
Liu Y, Wei Y, Dou Y, Li C, Song C, Zhang Z, Qi K, Li X, Qiao R, Wang K, Li X, Yang F, Han X. Effect of miR-149-5p on intramuscular fat deposition in pigs based on metabolomics and transcriptomics. BMC Genomics 2023; 24:293. [PMID: 37259030 DOI: 10.1186/s12864-023-09382-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
As one of the important traits in pig production, meat quality has important research significance and value. Intramuscular fat (IMF) content is one of the most important factors affecting pork quality. Many experimental studies have shown that IMF content is closely related to the flavor, tenderness, and juiciness of pork. Therefore, it is of great significance to study the mechanism of porcine IMF deposition. Previous research indicated that miR-149-5p promoted the proliferation of porcine intramuscular (IM) preadipocytes and decreased their ability to differentiate, albeit the exact mechanism of action is unknown. In vitro, foreign pigs showed increased miR-149-5p expression and reduced fat deposition when compared to Queshan Black pigs. This study conducted metabolomics and transcriptomics analyses of porcine IM preadipocytes overexpressing miR-149-5p to verify their effects on lipid formation. According to metabolomics analysis, the overexpression of miR-149-5p has significantly altered the lipid, organic acid, and organic oxygen metabolites of porcine IM preadipocytes. Specially speaking, it has changed 115 metabolites, including 105 up-regulated and 10 down-regulated ones, as well as the composition of lipid, organic acid, and organic oxygen metabolism-related metabolites. RNA-seq analysis showed that overexpression of miR-149-5p significantly altered 857 genes, of which 442 were up-regulated, and 415 were down-regulated, with enrichment to MAPK, IL-17, PI3K-Akt, and ErbB signaling pathways. We found that overexpression of miR-149-5p inhibited adipogenic differentiation by changing cAMP signaling pathway in porcine IM preadipocytes. In addition, the overexpression of miR-149-5p may affect the transport of Cu2+ by targeting ATP7A and inhibiting adipogenic differentiation. These findings elucidate the regulatory function of miR-149-5p in porcine IM preadipocytes, which may be a key target for controlling pork quality.
Collapse
Affiliation(s)
- Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
24
|
Tagorti G, Yalçın B, Güneş M, Burgazlı AY, Kaya B. Computational assessment of the biological response of curcumin to type 2 diabetes mellitus induced by metal exposure. Toxicology 2023; 491:153531. [PMID: 37121082 DOI: 10.1016/j.tox.2023.153531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The current study aimed to identify the molecular mechanisms of a metal mixture (cadmium, nickel, and lead) involved in type 2 diabetes mellitus (T2DM) development and the therapeutic effect of curcumin in this metal mixture-induced T2DM. To accomplish this, SwissADME assessed the physicochemical and pharmacokinetic properties of curcumin and the Prediction of Activity Spectra for Substances evaluates its biological activities. The Comparative Toxicogenomics Database, Cytoscape, AutoDock Vina, and MicroRNA ENrichment TURned NETwork were used as tools to perform data-mining approaches and molecular docking. Curcumin properties were fitted within the acceptable range to be a promising drug candidate. The mixed metal altered 23 genes linked to T2DM development and targeted by curcumin. Curcumin had a dual-natured effect or antagonistic effect for most of the involved genes in T2DM and metal mixture. The most prominent biological processes were identified as ''response to external stimulus'', ''regulation of programmed cell death'', ''programmed cell death'', ''cell death'', and ''response to stress''. Three highly interacted miRNAs related to metal mixture-induced T2DM and targeted by curcumin (hsa-miR-98-5p, hsa-miR-34a-5p, and hsa-miR-155-5p) were identified. These findings could pave the way for further studies to evaluate the link between these genes and T2DM.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, Campus, Antalya 07058, Turkey
| | - Burçin Yalçın
- Akdeniz University, Faculty of Sciences, Department of Biology, Campus, Antalya 07058, Turkey
| | - Merve Güneş
- Akdeniz University, Faculty of Sciences, Department of Biology, Campus, Antalya 07058, Turkey
| | - Ayşen Yağmur Burgazlı
- Akdeniz University, Faculty of Sciences, Department of Biology, Campus, Antalya 07058, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, Campus, Antalya 07058, Turkey.
| |
Collapse
|
25
|
Kim IK, Song BW, Lim S, Kim SW, Lee S. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. BIOLOGY 2023; 12:498. [PMID: 37106699 PMCID: PMC10135702 DOI: 10.3390/biology12040498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Cardiovascular diseases have been leading cause of death worldwide for many decades, and obesity has been acknowledged as a risk factor for cardiovascular diseases. In the present review, human epicardial adipose tissue-derived miRNAs reported to be differentially expressed under pathologic conditions are discussed and summarized. The results of the literature review indicate that some of the epicardial adipose tissue-derived miRNAs are believed to be cardioprotective, while some others show quite the opposite effects depending on the underlying pathologic conditions. Furthermore, they suggest that that the epicardial adipose tissue-derived miRNAs have great potential as both a diagnostic and therapeutic modality. Nevertheless, mainly due to highly limited availability of human samples, it is very difficult to make any generalized claims on a given miRNA in terms of its overall impact on the cardiovascular system. Therefore, further functional investigation of a given miRNA including, but not limited to, the study of its dose effect, off-target effects, and potential toxicity is required. We hope that this review can provide novel insights to transform our current knowledge on epicardial adipose tissue-derived miRNAs into clinically viable therapeutic strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sang-Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| |
Collapse
|
26
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
27
|
Elevated miR-143 and miR-34a gene expression in human visceral adipose tissue are associated with insulin resistance in non-diabetic adults: a cross-sectional study. Eat Weight Disord 2022; 27:3419-3428. [PMID: 36181617 DOI: 10.1007/s40519-022-01476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the association of miR-143 and miR-34a expression in human visceral (VAT) and subcutaneous (SAT) adipose tissues with insulin resistance (IR). METHODS VAT and SAT were obtained from 176 participants without diabetes. miR-143 and miR-34a expressions in VAT and SAT were measured using qRT-PCR. Fasting serum insulin and glucose concentration, homeostatic model assessment of IR index (HOMA-IR) and β-cell function (HOMA-B), and quantitative insulin-sensitivity check index (QUICKI) were calculated. RESULTS After adjustment for age, sex and body mass index (BMI), VAT miR-143 expression was positively associated with fasting plasma glucose (FPG), insulin, and HOMA-IR, and negatively associated with HOMA-B and QUICKI. miR-34a expression in VAT was directly associated with FPG, insulin, and HOMA-IR and negatively associated with QUICKI. In SAT, miR-34a expression was positively associated with insulin and negatively associated with QUICKI. The interaction terms of HOMA-IR and BMI categories were significant for both miR gene expressions in VAT. After stratifying participants based on BMI, the association of miR-143 and miR-34a expressions in VAT with IR indices remained significant only in obese patients. CONCLUSION miR-143 and miR-34a expressions in VAT were independent predictors of IR in people without diabetes, and that this association was conditional on the degree of obesity. LEVEL OF EVIDENCE Level of evidence III, cross-sectional analytic study.
Collapse
|
28
|
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity. BIOLOGY 2022; 11:1657. [PMID: 36421371 PMCID: PMC9687157 DOI: 10.3390/biology11111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 07/30/2023]
Abstract
Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat "browning" has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646099, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Krieg L, Didt K, Karkossa I, Bernhart SH, Kehr S, Subramanian N, Lindhorst A, Schaudinn A, Tabei S, Keller M, Stumvoll M, Dietrich A, von Bergen M, Stadler PF, Laurencikiene J, Krüger M, Blüher M, Gericke M, Schubert K, Kovacs P, Chakaroun R, Massier L. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 2022; 71:2179-2193. [PMID: 34598978 PMCID: PMC9554031 DOI: 10.1136/gutjnl-2021-324603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.
Collapse
Affiliation(s)
- Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Konrad Didt
- Department for Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Stephan H Bernhart
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephanie Kehr
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | - Andreas Lindhorst
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Schaudinn
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Maria Keller
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany,Faculty of Life Science, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Faculty of Mathematics and Computer Science, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - Martin Krüger
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany,Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gericke
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Leipzig, Germany,Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden .,Medical Department III - Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
30
|
da Silva Nunes PC, Mazzarella R, da Silveira JC, Dellova DCAL. Evaluation of circulating extracellular vesicles and miRNA in neutered and obese female dogs. Sci Rep 2022; 12:16439. [PMID: 36180561 PMCID: PMC9525304 DOI: 10.1038/s41598-022-20523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue is a metabolic and endocrine organ, and its adipocytes can synthesize and secrete extracellular vesicles (EVs), thus allowing intercellular communication. EVs are nanoparticles that transport lipids, proteins, metabolites, and nucleic acids (mRNA and microRNAs). MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression. miR-132, miR-26b, and miR-155 are associated with obesity, lipid metabolism and adipogenesis. The aim of this study was to evaluate the enriched EVs fraction containing miRNAs (miR-132, miR-26b, and miR-155) in serum from obese female dogs. Thirty-two neutered females in good general condition were recruited, including 21 obese and 11 healthy controls. The initial evaluation of the females included a general physical examination and laboratory tests. Small EVs (sEVs) were isolated from whole blood by serial centrifugation and ultracentrifugation, and nanoparticle analysis was used to determine the size and concentration of serum sEVs. miRNAs were extracted from sEVs enriched fraction and analyzed by real-time polymerase chain reaction. Obese female dogs with hypertriglyceridemia showed an increase in the sEVs concentration and in the expression of miR-132 and miR-26b in sEVs enriched fraction. No changes were observed in the group of obese female dogs with normal serum biochemical profile and in relation to miR-155 expression. These results suggest that obese female dogs with hypertriglyceridemia may present alterations in sEVs and in the expression of miRNAs related to lipid metabolism and adipogenesis.
Collapse
Affiliation(s)
- Paola Caroline da Silva Nunes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Rosane Mazzarella
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Deise Carla Almeida Leite Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
31
|
Polat SHB, Dariyerli ND. A Physiological Approach to Inflammatory Markers in Obesity. Biomark Med 2022. [DOI: 10.2174/9789815040463122010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is one of the most critical health problems all over the world; it is
associated with metabolic dysfunction and overnutrition. Changes in the physiological
function of adipose tissue, leading to altered secretion of adipocytokines, inflammatory
mediators release, and chronic low-grade inflammation, are seen in obesity.
Macrophages, neutrophils, CD4+ and CD8+ T cells, B cells, natural killer T (NKT)
cells, eosinophils, mast cells, and adipocytes are involved in the inflammatory response
that occurs during obesity. Various inflammatory markers are released from these cells.
In this chapter, we will mention inflammatory mechanisms and markers of obesity.
Collapse
|
32
|
Di YL, Yu Y, Zhao SJ, Huang N, Fei XC, Yao DD, Ai L, Lyu JH, He RQ, Li JJ, Tong ZQ. Formic acid induces hypertension-related hemorrhage in hSSAO TG in mice and human. Exp Neurol 2022; 358:114208. [PMID: 35988700 DOI: 10.1016/j.expneurol.2022.114208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
Hypertension is a confirmed risk factor for cerebral hemorrhage in humans. Which endogenous factor directly induces hypertension-related hemorrhage is unclear. In this study, 42 hemorrhagic patients with hypertension and hyperlipidemia and 42 age-matched healthy controls were enrolled. The contents of serum semicarbazide-sensitive amine oxidase (SSAO) and formic acid (FC, FC is a final product of SSAO through the oxidation of endogenous formaldehyde, which results from the enzymatic oxidative deamination of the SSAO substrate, methylamine) were examined in the patients after stroke. Hemorrhagic areas were quantified by computer tomography. In the animal study, hemorrhagic degree was assessed by hemotoxylin & eosin or tissue hemoglobin kits. The relationship between FC and blood pressure/hemorrhagic degree was examined in wild-type mice and hSSAOTG mice fed with high-fat diets or high-fat and -salt diets. The results showed that the levels of serum FC were positively correlated with blood pressure and hemorrhagic areas in hemorrhagic patients. Transfection of microRNA-134 could enhance SSAO expression in human vascular smooth muscle cells. Consistently, after treatment with high-fat and -salt diets, hSSAOTG mice exhibited higher levels of miR134 and FC, higher blood pressure, and more severe hemorrhage than wild-type mice. Interestingly, folic acid reduced hypertension and hemorrhage in hSSAOTG mice fed with high-fat diets. These findings suggest that FC is a crucial endogenous factor for hypertension and hemorrhage.
Collapse
Affiliation(s)
- Ya-Lan Di
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Oujiang Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Sheng-Jie Zhao
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Nayan Huang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Xue-Chao Fei
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-Dan Yao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Li Ai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ji-Hui Lyu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Rong-Qiao He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Li
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Zhi-Qian Tong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Oujiang Laboratory, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
33
|
Concistrè A, Petramala L, Circosta F, Romagnoli P, Soldini M, Bucci M, De Cesare D, Cavallaro G, De Toma G, Cipollone F, Letizia C. Analysis of the miRNA expression from the adipose tissue surrounding the adrenal neoplasia. Front Cardiovasc Med 2022; 9:930959. [PMID: 35966515 PMCID: PMC9366211 DOI: 10.3389/fcvm.2022.930959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Primary aldosteronism (PA) is characterized by several metabolic changes such as insulin resistance, metabolic syndrome, and adipose tissue (AT) inflammation. Mi(cro)RNAs (miRNAs) are a class of non-coding small RNA molecules known to be critical regulators in several cellular processes associated with AT dysfunction. The aim of this study was to evaluate the expression of some miRNAs in visceral and subcutaneous AT in patients undergoing adrenalectomy for aldosterone-secreting adrenal adenoma (APA) compared to the samples of AT obtained in patients undergoing adrenalectomy for non-functioning adrenal mass (NFA). Methods The quantitative expression of selected miRNA using real-time PCR was analyzed in surrounding adrenal neoplasia, peri-renal, and subcutaneous AT samples of 16 patients with adrenalectomy (11 patients with APA and 5 patients with NFA). Results Real-time PCR cycles for miRNA-132, miRNA-143, and miRNA-221 in fat surrounding adrenal neoplasia and in peri-adrenal AT were significantly higher in APA than in patients with NFA. Unlike patients with NFA, miRNA-132, miRNA-143, miRNA-221, and miRNA-26b were less expressed in surrounding adrenal neoplasia AT compared to subcutaneous AT in patients with APA. Conclusion This study, conducted on tissue expression of miRNAs, highlights the possible pathophysiological role of some miRNAs in determining the metabolic alterations in patients with PA.
Collapse
Affiliation(s)
- Antonio Concistrè
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Circosta
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Priscilla Romagnoli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Soldini
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Marco Bucci
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Domenico De Cesare
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cavallaro
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Giorgio De Toma
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Claudio Letizia
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Claudio Letizia
| |
Collapse
|
34
|
Heo Y, Kim H, Lim J, Choi SS. Adipocyte differentiation between obese and lean conditions depends on changes in miRNA expression. Sci Rep 2022; 12:11543. [PMID: 35798800 PMCID: PMC9262987 DOI: 10.1038/s41598-022-15331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Adipogenesis is the process by which precursor cells, preadipocytes (preACs), differentiate into adipocytes (ACs). Here, we investigated differentially expressed miRNAs (DEMs) between the two conditions to understand the regulatory role of miRNAs in altering adipogenesis-related mRNAs. A total of 812 and 748 DEMs were obtained in lean and obese conditions, respectively. The up- and downregulated DEMs were highly concordant with each other in both lean and obese conditions; however, DEMs related to adipogenesis in obese conditions were more strongly downregulated than DEMs related to adipogenesis in lean conditions. There were more obese-specific downregulated DEMs than lean-specific downregulated DEMs; in contrast, there were more lean-specific upregulated DEMs than obese-specific upregulated DEMs. Approximately 45% of DEMs were mapped to the list of miRNA-target mRNA pairs when DEMs were matched to the experimentally validated list of miRNA-target mRNA information of miRTarBase. Many of the target mRNAs were differentially expressed genes (DEGs) with functions in processes such as inflammatory responses and fat metabolism. In particular, a total of 25 miRNAs that target three upregulated adipogenesis-associated inflammatory genes (IL-6, TNF-α, and IL-1β) were commonly altered during adipogenesis. Taken together, our study reveals the types of adipogenesis-related miRNAs that are altered and the degree to which they influence healthy or pathogenic adipogenesis.
Collapse
Affiliation(s)
- Yerim Heo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Jiwon Lim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
35
|
Heianza Y, Krohn K, Xue Q, Yaskolka Meir A, Ziesche S, Ceglarek U, Blüher M, Keller M, Kovacs P, Shai I, Qi L. Changes in circulating microRNAs-99/100 and reductions of visceral and ectopic fat depots in response to lifestyle interventions: the CENTRAL trial. Am J Clin Nutr 2022; 116:165-172. [PMID: 35348584 PMCID: PMC9257465 DOI: 10.1093/ajcn/nqac070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short noncoding RNAs and important posttranscriptional regulators of gene expression. Adipose tissue is a major source of circulating miRNAs; adipose-related circulating miRNAs may regulate body fat distribution and glucose metabolism. OBJECTIVES We investigated how changes in adipose-related circulating microRNAs-99/100 (miR-99/100) in response to lifestyle interventions were associated with improved body fat distribution and reductions of diabetogenic ectopic fat depots among adults with abdominal obesity. METHODS This study included adults with abdominal obesity from an 18-mo diet and physical activity intervention trial. Circulating miR-99a-5p, miR-99b-5p, and miR-100-5p were measured at baseline and 18 mo; changes in these miRNAs in response to the interventions were evaluated. The primary outcomes were changes in abdominal adipose tissue [visceral (VAT), deep subcutaneous (DSAT), and superficial subcutaneous (SSAT) adipose tissue; cm2] (n = 144). The secondary outcomes were changes in ectopic fat accumulation in the liver (n = 141) and pancreas (n = 143). RESULTS Greater decreases in miR-100-5p were associated with more reductions of VAT (β ± SE per 1-SD decrease: -9.63 ± 3.13 cm2; P = 0.0025), DSAT (β ± SE: -5.48 ± 2.36 cm2; P = 0.0218), SSAT (β ± SE: -4.64 ± 1.68 cm2; P = 0.0067), and intrahepatic fat percentage (β ± SE: -1.54% ± 0.49%; P = 0.0023) after the interventions. Similarly, participants with greater decrease in miR-99a-5p had larger 18-mo reductions of VAT (β ± SE: -10.12 ± 3.31 cm2 per 1-SD decrease; P = 0.0027) and intrahepatic fat percentage (β ± SE: -1.28% ± 0.52%; P = 0.015). Further, decreases in circulating miR-99b-5p (β ± SE: per 1-SD decrease: -0.44% ± 0.21%; P = 0.038) and miR-100-5p (β ± SE: -0.50% ± 0.23%; P = 0.033) were associated with a decrease in pancreatic fat percentage, as well as improved glucose metabolism and insulin secretion at 18 mo. CONCLUSIONS Decreases in circulating miR-99-5p/100-5p expression induced by lifestyle interventions were related to improved body fat distribution and ectopic fat accumulation. Our study suggests that changes in circulating adipose-related miR-99-5p/100-5p may be linked to reducing diabetogenic fat depots in patients with abdominal obesity.This trial was registered at clinicaltrials.gov as NCT01530724.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Knut Krohn
- Core Unit DNA Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefanie Ziesche
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Keller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Lacedonia D, Tartaglia N, Scioscia G, Soccio P, Pavone G, Moriondo G, Gallo C, Foschino Barbaro MP, Ambrosi A. Different expression of miRNA in the subcutaneous and visceral adipose tissue of obese subjects. Rejuvenation Res 2022; 25:89-94. [PMID: 35293246 DOI: 10.1089/rej.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Obesity is a pathology characterized by an excessive accumulation of adipose tissue and it is a condition associated with complex alterations affecting different organs and systems. Obesity has great influences on cardiovascular and respiratory morbidity and mortality and impairs the multiple aspects of metabolism. Since micro-RNAs (miRNAs) are thought to play a role in the regulation of various pathological processes, in this complex framework, the investigation of these classes of noncoding regulatory RNA seems to be promising. Selected group of obese subjects was recruited. We analysed the expression of seven miRNAs from obese adipose tissue supposed to have a role in the pathogenesis of cardiovascular and respiratory disease related to obesity and we compared it with the expression of the same miRNAs in a group of non-obese controls. In the current study what emerged is miR-27b and miR-483 significant down-regulation in subcutaneous adipose tissue from obese group compared with non-obese ones. For visceral adipose tissue, a significant decrease in miR-27b and miR-223 expression was observed in obese group. Moreover, a different expression of miR-26a and miR-338 in the obese group was found. Those findings could help the individuation of previously unknown key players in the development of different diseases usually associated with obesity, such as cardiovascular and pulmonary diseases.
Collapse
Affiliation(s)
- Donato Lacedonia
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Nicola Tartaglia
- General Surgery, Department of Medical and Surgical Sciences, "Policlinico Riuniti" University Hospital, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Giulia Scioscia
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy, Viale Luigi Pinto, 1, Foggia, Italy, 71122;
| | - Piera Soccio
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, Foggia, Italy, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy, Viale degli Aviatori, 1, Foggia, Italy, 71122;
| | - Giovanna Pavone
- 2General Surgery, Department of Medical and Surgical Sciences, "Policlinico Riuniti" University Hospital, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Giorgia Moriondo
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, "Policlinico Riuniti" University Hospital, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Crescenzio Gallo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Maria Pia Foschino Barbaro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, "Policlinico Riuniti" University Hospital, University of Foggia, Foggia, Italy, Foggia, Italy;
| | - Antonio Ambrosi
- General Surgery, Department of Medical and Surgical Sciences, "Policlinico Riuniti" University Hospital, University of Foggia, Foggia, Italy, Foggia, Italy;
| |
Collapse
|
37
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts 2022; 15:105-117. [PMID: 35051942 PMCID: PMC9021631 DOI: 10.1159/000517849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Obesity is a worldwide epidemic affecting over 13% of the adult population and is defined by an excess of body fat that predisposes comorbidities. It is considered a multifactorial disease in which environmental and genetic factors interact, and it is a risk marker for cardiovascular disease. Lifestyle modifications remain the mainstay of treatment for obesity based on adequate diet and physical exercise. In addition, obesity is related to cardiovascular and skeletal muscle disorders, such as cardiac hypertrophy, microvascular rarefaction, and skeletal muscle atrophy. The discovery of obesity-involved molecular pathways is an important step to improve both the prevention and management of this disease. MicroRNAs (miRNAs) are a class of gene regulators which bind most commonly, but not exclusively, to the 3'-untranslated regions of messenger RNAs of protein-coding genes and negatively regulate their expression. Considerable effort has been made to identify miRNAs and target genes that predispose to obesity. Besides their intracellular function, recent studies have demonstrated that miRNAs can be exported or released by cells and circulate within the blood in a remarkably stable form. The discovery of circulating miRNAs opens up intriguing possibilities for the use of circulating miRNA patterns as biomarkers for obesity and cardiovascular diseases. The aim of this review is to provide an overview of the recent discoveries of the role played by miRNAs in the obese phenotype and associated comorbidities. Furthermore, we will discuss the role of exercise training on regulating miRNAs, indicating the mechanisms related to these alterations.
Collapse
Affiliation(s)
- Andre Silveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - João Gomes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Roque
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- *Tiago Fernandes,
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- **Edilamar Menezes de Oliveira,
| |
Collapse
|
39
|
Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front Genet 2021; 12:793523. [PMID: 34925466 PMCID: PMC8673831 DOI: 10.3389/fgene.2021.793523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Aman Kumar Suryan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
40
|
Liu S, Tang G, Duan F, Zeng C, Gong J, Chen Y, Tan H. MiR-17-5p Inhibits TXNIP/NLRP3 Inflammasome Pathway and Suppresses Pancreatic β-Cell Pyroptosis in Diabetic Mice. Front Cardiovasc Med 2021; 8:768029. [PMID: 34881312 PMCID: PMC8645844 DOI: 10.3389/fcvm.2021.768029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023] Open
Abstract
Objective: Diabetes mellitus is a chronic progressive inflammatory metabolic disease with pancreatic β-cells dysfunction. The present study aimed to investigate whether miR-17-5p plays a protective effect on pancreatic β-cells function in diabetes mellitus (DM) mice and dissect the underlying mechanism. Methods: C57BL/6J mice were randomly divided into control, DM, DM + Lentivirus negative control (LV-NC), and DM + Lenti-OE™ miR-17-5p (LV-miR-17-5) groups. DM was established by feeding a high-fat diet and intraperitoneal injection with streptozotocin (STZ) in mice. Blood glucose and glucose tolerance in circulation were measured. Meanwhile, the activation of nod-like receptor protein 3 (NLRP3) inflammasome, pancreas pyroptosis, and the expression of miR-17-5p and thioredoxin-interacting protein (TXNIP) were detected in the pancreas of DM mice. Pancreatic β-cell line INS-1 subjected to different concentrations of glucose was used in in vitro experiments. Results: Compared with control mice, glucose tolerance deficit, elevated blood glucose level, and decreased pancreatic islet size, were presented in DM mice, which was associated with a downregulation of miR-17-5p. Importantly, exogenous miR-17-5p alleviated pancreas injury, and consequently improved glucose tolerance and decreased blood glucose in DM mice. In vitro experiments showed that high glucose decreased miR-17-5p expression and impaired insulin secretion in INS-1 cells. Mechanistically, miR-17-5p inhibited the expression of TXNIP and NLRP3 inflammasome activation, and thus decreased pancreatic β-cell pyroptosis. Conclusion: Our results demonstrated that miR-17-5p improves glucose tolerance, and pancreatic β-cell function and inhibits TXNIP/NLRP3 inflammasome pathway-related pyroptosis in DM mice.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ge Tang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Gong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
microRNAs in Human Adipose Tissue Physiology and Dysfunction. Cells 2021; 10:cells10123342. [PMID: 34943849 PMCID: PMC8699244 DOI: 10.3390/cells10123342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.
Collapse
|
42
|
Nunes ADC, Weigl M, Schneider A, Noureddine S, Yu L, Lahde C, Saccon TD, Mitra K, Beltran E, Grillari J, Kirkland JL, Tchkonia T, Robbins PD, Masternak MM. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience 2021; 44:503-518. [PMID: 34825304 PMCID: PMC8811002 DOI: 10.1007/s11357-021-00490-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes. To test the effects of miR-146a-5p overexpression on visceral adipose tissue, wild-type, and df/df mice, were treated with miRNA-negative control-base and df/df were transfected with 4 or 8 µg/g of a miR-146a-5p mimetic, respectively. Effects of miR-146a-5p overexpression were also evaluated in 3T3-L1 cells cultured under high and normal glucose conditions. Treatment with miR-146a-5p mimetic increased cellular senescence and inflammation and decreased pro-apoptotic factors in visceral adipose tissue of df/df mice. The miR-146a-5p mimetic induced similar effects in 3T3-L1 cells cultivated at normal but not high glucose levels. Importantly, 3T3-L1 HG cells in high glucose conditions showed significantly higher expression of miR-146a-5p than 3T3-L1 grown in normal glucose conditions. These results indicate that miR-146a-5p can be a marker for cellular senescence. This miRNA represents one of the significant SASP factors that if not precisely regulated, can accentuate inflammatory responses and stimulate senescence in surrounding non-senescent cells. The role of miR-146a-5p is different in healthy versus stressed cells, suggesting potential effects of this miRNA depend on overall organismal health, aging, and metabolic state.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Moritz Weigl
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Collin Lahde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL, 32901, USA
| | - Esther Beltran
- Florida Space Institute, University of Central Florida, Orlando, FL, 32826, USA
| | - Johannes Grillari
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - James L Kirkland
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
43
|
McLaughlin T, Schnittger I, Nagy A, Zanley E, Xu Y, Song Y, Nieman K, Tremmel JA, Dey D, Boyd J, Sacks H. Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge. J Am Heart Assoc 2021; 10:e021003. [PMID: 34726081 PMCID: PMC8751937 DOI: 10.1161/jaha.121.021003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Inflammation in epicardial adipose tissue (EAT) may contribute to coronary atherosclerosis. Myocardial bridge is a congenital anomaly in which the left anterior descending coronary artery takes a "tunneled" course under a bridge of myocardium: while atherosclerosis develops in the proximal left anterior descending coronary artery, the bridged portion is spared, highlighting the possibility that geographic separation from inflamed EAT is protective. We tested the hypothesis that inflammation in EAT was related to atherosclerosis by comparing EAT from proximal and bridge depots in individuals with myocardial bridge and varying degrees of atherosclerotic plaque. Methods and Results Maximal plaque burden was quantified by intravascular ultrasound, and inflammation was quantified by pericoronary EAT signal attenuation (pericoronary adipose tissue attenuation) from cardiac computed tomography scans. EAT overlying the proximal left anterior descending coronary artery and myocardial bridge was harvested for measurement of mRNA and microRNA (miRNA) using custom chips by Nanostring; inflammatory cytokines were measured in tissue culture supernatants. Pericoronary adipose tissue attenuation was increased, indicating inflammation, in proximal versus bridge EAT, in proportion to atherosclerotic plaque. Individuals with moderate-high versus low plaque burden exhibited greater expression of inflammation and hypoxia genes, and lower expression of adipogenesis genes. Comparison of gene expression in proximal versus bridge depots revealed differences only in participants with moderate-high plaque: inflammation was higher in proximal and adipogenesis lower in bridge EAT. Secreted inflammatory cytokines tended to be higher in proximal EAT. Hypoxia-inducible factor 1a was highly associated with inflammatory gene expression. Seven miRNAs were differentially expressed by depot: 3192-5P, 518D-3P, and 532-5P were upregulated in proximal EAT, whereas miR 630, 575, 16-5P, and 320E were upregulated in bridge EAT. miR 630 correlated directly with plaque burden and inversely with adipogenesis genes. miR 3192-5P, 518D-3P, and 532-5P correlated inversely with hypoxia/oxidative stress, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG1a), adipogenesis, and angiogenesis genes. Conclusions Inflammation is specifically elevated in EAT overlying atherosclerotic plaque, suggesting that EAT inflammation is caused by atherogenic molecular signals, including hypoxia-inducible factor 1a and/or miRNAs in an "inside-to-out" relationship. Adipogenesis was suppressed in the bridge EAT, but only in the presence of atherosclerotic plaque, supporting cross talk between the vasculature and EAT. miR 630 in EAT, expressed differentially according to burden of atherosclerotic plaque, and 3 other miRNAs appear to inhibit key genes related to adipogenesis, angiogenesis, hypoxia/oxidative stress, and thermogenesis in EAT, highlighting a role for miRNA in mediating cross talk between the coronary vasculature and EAT.
Collapse
Affiliation(s)
- Tracey McLaughlin
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Ingela Schnittger
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Anna Nagy
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Elizabeth Zanley
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Yue Xu
- Division of Endocrinology Stanford University School of Medicine Stanford CA
| | - Yanqiu Song
- Cardiovascular Institute Tianjin Chest Hospital Tianjin China
| | - Koen Nieman
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Jennifer A Tremmel
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Damini Dey
- Department of Biomedical Sciences and Medicine Cedars-Sinai Medical Center Biomedical Imaging Research Institute Los Angeles CA
| | - Jack Boyd
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA
| | - Harold Sacks
- Division of Endocrinology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
44
|
Sparks LM, Goodpaster BH, Bergman BC. The Metabolic Significance of Intermuscular Adipose Tissue: Is IMAT a Friend or a Foe to Metabolic Health? Diabetes 2021; 70:2457-2467. [PMID: 34711670 DOI: 10.2337/dbi19-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissues are not homogeneous and show site-specific properties. An elusive and understudied adipose tissue depot, most likely due to its limited accessibility, is the intermuscular adipose tissue (IMAT) depot. Adipose tissue is a pliable organ with the ability to adapt to its physiological context, yet whether that adaptation is harmful or beneficial in the IMAT depot remains to be explored in humans. Potential reasons for IMAT accumulation in humans being deleterious or beneficial include 1) sex and related circulating hormone levels, 2) race and ethnicity, and 3) lifestyle factors (e.g., diet and physical activity level). IMAT quantity per se may not be the driving factor in the etiology of insulin resistance and type 2 diabetes, but rather the quality of the IMAT itself is the true puppeteer. Adipose tissue quality likely influences its secreted factors, which are also likely to influence metabolism of surrounding tissues. The advent of molecular assessments such as transcriptome sequencing (RNAseq), assay for transposase-accessible chromatin using sequencing (ATACseq), and DNA methylation at the single-cell and single-nucleus levels, as well as the potential for ultrasound-guided biopsies specifically for IMAT, will permit more sophisticated investigations of human IMAT and dramatically advance our understanding of this enigmatic adipose tissue.
Collapse
|
45
|
Nayor M, Shah SH, Murthy V, Shah RV. Molecular Aspects of Lifestyle and Environmental Effects in Patients With Diabetes: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:481-495. [PMID: 34325838 DOI: 10.1016/j.jacc.2021.02.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023]
Abstract
Diabetes is characterized as an integrated condition of dysregulated metabolism across multiple tissues, with well-established consequences on the cardiovascular system. Recent advances in precision phenotyping in biofluids and tissues in large human observational and interventional studies have afforded a unique opportunity to translate seminal findings in models and cellular systems to patients at risk for diabetes and its complications. Specifically, techniques to assay metabolites, proteins, and transcripts, alongside more recent assessment of the gut microbiome, underscore the complexity of diabetes in patients, suggesting avenues for precision phenotyping of risk, response to intervention, and potentially novel therapies. In addition, the influence of external factors and inputs (eg, activity, diet, medical therapies) on each domain of molecular characterization has gained prominence toward better understanding their role in prevention. Here, the authors provide a broad overview of the role of several of these molecular domains in human translational investigation in diabetes.
Collapse
Affiliation(s)
- Matthew Nayor
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/MattNayor
| | - Svati H Shah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA; Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/SvatiShah
| | - Venkatesh Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA. https://twitter.com/venkmurthy
| | - Ravi V Shah
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
46
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
47
|
Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA 2021; 7:ncrna7030039. [PMID: 34287359 PMCID: PMC8293470 DOI: 10.3390/ncrna7030039] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
48
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
50
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|