1
|
Silva-Hurtado TJ, Giua G, Lassalle O, Makrini-Maleville L, Strauss B, Wager-Miller J, Freyermuth JM, Mackie K, Valjent E, Manzoni OJ, Chavis P. Reelin Deficiency and Synaptic Impairment in the Adolescent Prefrontal Cortex Following Initial Synthetic Cannabinoid Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100426. [PMID: 39926699 PMCID: PMC11804564 DOI: 10.1016/j.bpsgos.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 02/11/2025] Open
Abstract
Background Adolescent cannabinoid exposure can have long-lasting effects on the brain, particularly in the prefrontal cortex, where the reelin protein plays a crucial role in neural organization. Chronic cannabinoid exposure leads to reelin deficiency and behavioral abnormalities, but the underlying mechanisms remain unclear. With the increasing use of synthetic cannabinoids (SCs) among young people, understanding these effects is crucial. Methods We examined the cellular and synaptic consequences of initial SC exposure in adolescent male mice 1 day after a single in vivo exposure to WIN 55,212-2. Our approach combined immunohistochemistry, Western blots, conditional CB1 receptor (CB1R) knockout mouse lines, quantitative polymerase chain reaction, and ex vivo electrophysiology to investigate the effects of SC on reelin expression and synaptic plasticity. Additionally, single-molecule fluorescent in situ hybridization profiling was used to identify cellular coexpression patterns of reelin and CB1Rs. Results Our findings indicate that a single exposure to SC decreased reelin expression in specific prefrontal cortex layers accompanied by disrupted proteolytic fragmentation but not changes in messenger RNA expression. Single-molecule fluorescent in situ hybridization profiling revealed a strong coexpression of CB1R and reelin. Furthermore, our pharmacological and genetic approaches demonstrated that CB1Rs in GABAergic (gamma-aminobutyric acidergic) neurons mediate the SC-induced decrease in reelin. This decrease in reelin results in a reduction in long-term potentiation, phenocopying reelin haploinsufficient mice. Notably, we restored long-term potentiation by infusing reelin bilaterally, establishing a functional link between reelin depletion and synaptic deficits. Conclusions These findings provide new insights into the neural consequences of adolescent cannabinoid consumption and highlight the critical role of reelin in the cellular mechanisms associated with SC initiation during adolescence.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Gabriele Giua
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Olivier Lassalle
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Leila Makrini-Maleville
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Benjamin Strauss
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | | | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
- The Gill Institute for Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Emmanuel Valjent
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Olivier J.J. Manzoni
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| | - Pascale Chavis
- Aix-Marseille University, INSERM, INMED, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM, Aix-Marseille University, Marseille, France and Indiana University, Bloomington, Indiana
| |
Collapse
|
2
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
3
|
Tavitian A, Lax E, Song W, Szyf M, Schipper HM. Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119899. [PMID: 39798610 DOI: 10.1016/j.bbamcr.2025.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX10-12m mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation. We used RT-PCR, targeted bisulfite next-generation sequencing, immunohistochemistry and in situ hybridization on hippocampal tissue of GFAP.HMOX10-12m mice to delineate a possible molecular mechanism for the downregulation of reelin and to identify the neuronal and non-neuronal (glial) cell types expressing reelin in our model. We found reduced reelin and increased DNMT1 and TET1 mRNA expression in the hippocampus of male GFAP.HMOX10-12m mice and reduced GAD67 mRNA expression in females. These mRNA changes were accompanied by sexually dimorphic alterations in DNA methylation levels of Reln and Gad1 genes. Reelin protein was expressed by oligodendrocytes and GABAergic interneurons, but not by astrocytes or microglia in GFAP.HMOX10-12m and wild-type brains of both sexes. Reelin mRNA was also observed in oligodendrocytes. Moreover, a significant downregulation of reelin-expressing oligodendrocytes was detected in the hippocampal dentate gyrus of male GFAP.HMOX10-12m mice. These results suggest a novel mechanism for brain reelin depletion in schizophrenia. Containment of the astrocytic HO-1 cascade by pharmacological or other means may protect against stress-induced brain reelin depletion in schizophrenia and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Hyman M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Mota B, Brás AR, Araújo-Andrade L, Silva A, Pereira PA, Madeira MD, Cardoso A. High-Caloric Diets in Adolescence Impair Specific GABAergic Subpopulations, Neurogenesis, and Alter Astrocyte Morphology. Int J Mol Sci 2024; 25:5524. [PMID: 38791562 PMCID: PMC11122083 DOI: 10.3390/ijms25105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.
Collapse
Affiliation(s)
- Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Rita Brás
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
| | - Leonardo Araújo-Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro A. Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - M. Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Chaves Filho AJM, Mottin M, Lós DB, Andrade CH, Macedo DS. The tetrapartite synapse in neuropsychiatric disorders: Matrix metalloproteinases (MMPs) as promising targets for treatment and rational drug design. Biochimie 2022; 201:79-99. [PMID: 35931337 DOI: 10.1016/j.biochi.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/26/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Deniele Bezerra Lós
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Demir EA, Gulbol-Duran G, Urhan-Kucuk M, Dogan H, Tutuk O, Cimen F, Bayirli M, Tumer C, Duran N. Behavioral and Cognitive Consequences of Obesity in Parents and Offspring in Female and Male Rats: Implications of Neuroinflammation and Neuromodulation. Mol Neurobiol 2022; 59:3947-3968. [PMID: 35438432 DOI: 10.1007/s12035-022-02831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Obesity is a rapidly growing public health concern that can create a family-wise burden. This study was aimed to investigate behavioral, cognitive, neuroinflammatory, and neuromodulatory consequences of the diet and parental obesity. Female and male Wistar albino rats were fed on either an obesogenic or standard diet for 12 weeks, beginning with weaning. Thereafter, the animals were matched and allowed to mate. Pups born to obese or normal parents received either the diet or standard chow to the same age. The obesogenic diet and/or parental obesity increased the locomotor activity in both females and males. The diet exhibited anxiolytic-like and antidepressant-like properties, and impaired short-term object memory as well as spatial memory. Interestingly, the obesogenic diet resulted in neuroinflammation only in naïve animals, but not in the ones with parental obesity. BDNF, SIRT1, and p53 expressions were decreased, whereas RelN expression was increased in the brain with the diet, regardless of parental obesity. Multi-factor analyses demonstrated that the obesogenic diet is the prominent influencer of cognitive, neuroinflammatory, and neuromodulatory results while parental obesity has an effect on spatial memory, neuroinflammation, and hippocampal RelN and p53 expressions. Here, we provided supporting evidence for detrimental cognitive and neuroinflammatory consequences of early life consumption of the obesogenic diet which accompanies alterations in neuromodulatory factors. Surprisingly, the diet was found beneficial against anxiety-like and depression-like behaviors, and additionally, parental obesity was demonstrated to impair some aspects of cognitive performance which appears unrelated to neuroinflammation.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040.
| | - Gulay Gulbol-Duran
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Meral Urhan-Kucuk
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hatice Dogan
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Okan Tutuk
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Funda Cimen
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mucella Bayirli
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cemil Tumer
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Nizami Duran
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
8
|
Deshpande K, Martirosian V, Nakamura BN, Iyer M, Julian A, Eisenbarth R, Shao L, Attenello F, Neman J. Neuronal exposure induces neurotransmitter signaling and synaptic mediators in tumors early in brain metastasis. Neuro Oncol 2021; 24:914-924. [PMID: 34932815 DOI: 10.1093/neuonc/noab290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Brain metastases (BM) are responsible for neurological decline and poor overall survival. Although the pro-metastatic roles of glial cells, and the acquisition of neuronal attributes in established BM tumors have been described, there are no studies that investigate the initial interplay between neurons and brain-seeking tumor cells. The aim of this study was to characterize early tumor-neuron interactions and the induced CNS-adaptive changes in tumor cells prior to macro-colonization. METHODS Utilizing pure neuronal cultures and brain-naïve and patient-derived BM tumor cells, we surveyed the early induction of mediators of neurotransmitter (NT) and synaptic signaling in breast and lung tumor cells. Reliance on microenvironmental GABA in breast-to-brain metastatic cells (BBMs) was assessed in vitro and in vivo. RESULTS Co-culture with neurons induces early expression of classical NT receptor genes (HTR4, GRIA2, GRIN2B, GRM4, GRM8, DRD1) and neuronal synaptic mediators (CNR1, EGR2, ARC, NGFR, NRXN1) in breast and lung cancer cells. NT-dependent classification of tumor cells within the neuronal niche shows breast cancer cells become GABAergic responsive brain metastases (GRBMs) and transition from relying on autocrine GABA, to paracrine GABA from adjacent neurons; while autocrine Dopaminergic breast and lung tumor cells persist. In vivo studies confirm reliance on paracrine GABA is an early CNS-acclimation strategy in breast cancer. Moreover, neuronal contact induces early resurgence in Reelin expression in tumor cells through epigenetic activation, facilitating CNS adaptation. CONCLUSION Tumor-neuron interactions allow for CNS-adaptation early in the course of brain metastasis.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vahan Martirosian
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brooke Naomi Nakamura
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA
| | - Mukund Iyer
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex Julian
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachel Eisenbarth
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ling Shao
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Attenello
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josh Neman
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Sawahata M, Asano H, Nagai T, Ito N, Kohno T, Nabeshima T, Hattori M, Yamada K. Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacol Res 2021; 173:105832. [PMID: 34450306 DOI: 10.1016/j.phrs.2021.105832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Asano
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
10
|
Zhang J, Lin L, Dai X, Xiao N, Ye Q, Chen X. ApoE4 increases susceptibility to stress-induced age-dependent depression-like behavior and cognitive impairment. J Psychiatr Res 2021; 143:292-301. [PMID: 34530340 DOI: 10.1016/j.jpsychires.2021.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/01/2023]
Abstract
Though apolipoprotein E ε4 (APOE ε4) is a major genetic risk factor for late-onset Alzheimer's disease, its association with depression remains controversial. In present study, 3-month-old and 8-month-old apoE-targeted replacement (TR) mice were both subjected to chronic unpredictable mild stress (CUMS) for six weeks. The results showed that 8-month apoE4-TR mice were more susceptible to the CUMS-induced depression-like behaviors and cognitive impairment than age-matched apoE3-TR mice. Stress induced a loss of GABAergic neurons and decline of Reelin level in the prefrontal cortex (PFC) and in the dentate gyrus (DG) of the hippocampus in both 3-month-old and 8-month-old apoE-TR mice, which were more pronounced in the 8-month-old apoE4-TR mice. Of note, stress decreased the level of PSD95 in the hippocampal synaptosome and increased the phosphorylation of N-methyl-D-aspartate receptor subunit GluN2B in the hippocampus of 8-month-old apoE4-TR mice. However, the expressions of apoE and apoE receptor 2 (apoER2) were not affected by stress. The study provides rodent evidence that APOE ε4 may increase the risk of depression and dementia in the elderly population by impairing the GABAergic signaling pathway and enhancing the GluN2B phosphorylation, which signifies that GluN2B inhibitors in clinical settings may be effective for elderly depression patients with APOE4 carriers.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Lanyan Lin
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China; Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou, Fujian, 350001, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Nai'an Xiao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
11
|
Pahle J, Muhia M, Wagener RJ, Tippmann A, Bock HH, Graw J, Herz J, Staiger JF, Drakew A, Kneussel M, Rune GM, Frotscher M, Brunne B. Selective Inactivation of Reelin in Inhibitory Interneurons Leads to Subtle Changes in the Dentate Gyrus But Leaves Cortical Layering and Behavior Unaffected. Cereb Cortex 2021; 30:1688-1707. [PMID: 31667489 PMCID: PMC7132935 DOI: 10.1093/cercor/bhz196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.
Collapse
Affiliation(s)
- Jasmine Pahle
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mary Muhia
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin J Wagener
- Neurology Clinic, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Anja Tippmann
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, 37075 Göttingen, Germany
| | - Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Janice Graw
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Alexander Drakew
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Clinical Neuroanatomy, Faculty of Medicine, 60590 Frankfurt, Germany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bianka Brunne
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
12
|
Yu J, Cho E, Choi YG, Jeong YK, Na Y, Kim JS, Cho SR, Woo JS, Bae S. Purification of an Intact Human Protein Overexpressed from Its Endogenous Locus via Direct Genome Engineering. ACS Synth Biol 2020; 9:1591-1598. [PMID: 32584551 DOI: 10.1021/acssynbio.0c00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The overproduction and purification of human proteins is a requisite of both basic and medical research. Although many recombinant human proteins have been purified, current protein production methods have several limitations; recombinant proteins are frequently truncated, fail to fold properly, and/or lack appropriate post-translational modifications. In addition, such methods require subcloning of the target gene into relevant plasmids, which can be difficult for long proteins with repeated domains. Here we devised a novel method for target protein production by introduction of a strong promoter for overexpression and an epitope tag for purification in front of the endogenous human gene, in a sense performing molecular cloning directly in the human genome, which does not require cloning of the target gene. As a proof of concept, we successfully purified intact human Reelin protein, which is lengthy (3460 amino acids) and contains repeating domains, and confirmed that it was biologically functional.
Collapse
Affiliation(s)
- Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Eunju Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Yeon-Gil Choi
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - You Kyeong Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
- Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
13
|
Wang L, Zhao D, Wang M, Wang Y, Vreugdenhil M, Lin J, Lu C. Modulation of Hippocampal Gamma Oscillations by Dopamine in Heterozygous Reeler Mice in vitro. Front Cell Neurosci 2020; 13:586. [PMID: 32116553 PMCID: PMC7026475 DOI: 10.3389/fncel.2019.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 11/14/2022] Open
Abstract
The reelin haploinsufficient heterozygous reeler mice (HRM), an animal model of schizophrenia, have altered mesolimbic dopaminergic pathways and share similar neurochemical and behavioral properties with patients with schizophrenia. Dysfunctional neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated in abnormal cognition in patients with schizophrenia. However, the function of neural circuitry in terms of γ oscillation and its modulation by dopamine (DA) has not been reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wild-type mice (WTM) and HRM hippocampal slices, and we studied the effects of DA on γ oscillations. We found that there was no difference in γ power between WTM and HRM and that DA increased γ power of WTM but not HRM, suggesting that DA modulations of network oscillations in HRM are impaired. Second, we found that N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 itself increased γ power and occluded DA-mediated enhancement of γ power in WTM but partially restored DA modulation of γ oscillations in HRM. Third, inhibition of phosphatidylinositol 3-kinase (PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects of DA on γ oscillation in WTM and had no significant effect on γ power but largely restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA function in HRM is associated with dysregulated NMDAR–PI3K signaling, a mechanism that may be relevant in the pathology of schizophrenia.
Collapse
Affiliation(s)
- Lu Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Dandan Zhao
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yuan Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Juntang Lin
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Vázquez-Borsetti P, Peña E, Rojo Y, Acuña A, Loidl FC. Deep hypothermia reverses behavioral and histological alterations in a rat model of perinatal asphyxia. J Comp Neurol 2018; 527:362-371. [PMID: 30255933 DOI: 10.1002/cne.24539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
The consequences of perinatal asphyxia (PA) include alterations which may manifest as schizophrenia. Characteristic features of this disease include a decrease in specific subpopulations of GABAergic cells and deterioration of social interaction. The purpose of this study is to assess if a deep and short-hypothermic treatment can ameliorate this damage in a model of PA. Rats offsprings were exposed to 19 min of asphyxia by immersing the uterus horns in water at 37 °C followed by 30 min in air at 10 °C that resulted in 15 °C body temperature. At postnatal day 36-38, the rats were tested in the open field and social interaction paradigms and processed for immunostaining of calbindin and reelin. A brief exposure to deep hypothermia reversed the deterioration produced by PA in play soliciting. PA decreased the density of calbindin neurons in layer II of the Anterior Insular Cortex, while deep hypothermia reversed this effect. Paradoxically, in AIC, there was a significant increase in the number of reelin-secreting neurons in layers II and III generated by PA and this increase was reversed by hypothermia. This suggests a compensatory mechanism, where reelin neurons trend to compensate for the loss of calbindin neurons, at least within Anterior Insular Cortex. Finally, the deep hypothermic shock might represent a valuable therapeutic alternative to treat PA.
Collapse
Affiliation(s)
- Pablo Vázquez-Borsetti
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Elena Peña
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Yanina Rojo
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Andrés Acuña
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Fabián C Loidl
- Facultad de Medicina, Universidad Católica de Cuyo, San Juan, Argentina
| |
Collapse
|
16
|
Schroeder A, van den Buuse M, Hill RA. Reelin Haploinsufficiency and Late-Adolescent Corticosterone Treatment Induce Long-Lasting and Female-Specific Molecular Changes in the Dorsal Hippocampus. Brain Sci 2018; 8:brainsci8070118. [PMID: 29941797 PMCID: PMC6070826 DOI: 10.3390/brainsci8070118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Reelin depletion and stress seem to affect similar pathways including GABAergic and glutamatergic signaling and both are implicated in psychiatric disorders in late adolescence/early adulthood. The interaction between reelin depletion and stress, however, remains unclear. To investigate this, male and female heterozygous reelin mice (HRM) and wildtype (WT) controls were treated with the stress hormone, corticosterone (CORT), during late adolescence to simulate chronic stress. Glucocorticoid receptors (GR), N-methyl-d-aspartate receptor (NMDAr) subunits, glutamic acid decarboxylase (GAD67) and parvalbumin (PV) were measured in the hippocampus and the prefrontal cortex (PFC) in adulthood. While no changes were seen in male mice, female HRM showed a significant reduction in GR expression in the dorsal hippocampus. In addition, CORT reduced GR levels as well as GluN2B and GluN2C subunits of NMDAr in the dorsal hippocampus in female mice only. CORT furthermore reduced GluN1 levels in the PFC of female mice. The combined effect of HRM and CORT treatment appeared to be additive in terms of GR expression in the dorsal hippocampus. Female-specific CORT-induced changes were associated with overall higher circulating CORT levels in female compared to male mice. This study shows differential effects of reelin depletion and CORT treatment on GR and NMDAr protein expression in male and female mice, suggesting that females are more susceptible to reelin haploinsufficiency as well as late-adolescent stress. These findings shed more light on female-specific vulnerability to stress and have implications for stress-associated mental illnesses with a female bias including anxiety and major depression.
Collapse
Affiliation(s)
- Anna Schroeder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora 3086 Australia.
- Department of Pharmacology, University of Melbourne, Parkville 3052, Australia.
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4810, Australia.
| | - Rachel A Hill
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| |
Collapse
|
17
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
18
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
19
|
Luoni A, Gass P, Brambilla P, Ruggeri M, Riva MA, Inta D. Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors. Eur Arch Psychiatry Clin Neurosci 2018; 268:77-87. [PMID: 27581816 DOI: 10.1007/s00406-016-0728-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
Abstract
The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany. .,Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
| |
Collapse
|
20
|
Jin H, Komita M, Aoe T. The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration. Front Mol Neurosci 2017; 10:222. [PMID: 28769758 PMCID: PMC5511815 DOI: 10.3389/fnmol.2017.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai HospitalIchihara, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo UniversityIchihara, Japan
| |
Collapse
|
21
|
Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 2017; 22:961-971. [PMID: 27843148 DOI: 10.1038/mp.2016.193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Overconsumption of high-fat diets (HFDs) can critically affect synaptic and cognitive functions within telencephalic structures such as the medial prefrontal cortex (mPFC). The underlying mechanisms, however, remain largely unknown. Here we show that adolescence is a sensitive period for the emergence of prefrontal cognitive deficits in response to HFD. We establish that the synaptic modulator reelin (RELN) is a critical mediator of this vulnerability because (1) periadolescent HFD (pHFD) selectively downregulates prefrontal RELN+ cells and (2) augmenting mPFC RELN levels using transgenesis or prefrontal pharmacology prevents the pHFD-induced prefrontal cognitive deficits. We further identify N-methyl-d-aspartate-dependent long-term depression (NMDA-LTD) at prefrontal excitatory synapses as a synaptic signature of this association because pHFD abolishes NMDA-LTD, a function that is restored by RELN overexpression. We believe this study provides the first mechanistic insight into the vulnerability of the adolescent mPFC towards nutritional stress, such as HFDs. Our findings have primary relevance to obese individuals who are at an increased risk of developing neurological cognitive comorbidities, and may extend to multiple neuropsychiatric and neurological disorders in which RELN deficiency is a common feature.
Collapse
|
22
|
Lammert DB, Middleton FA, Pan J, Olson EC, Howell BW. The de novo autism spectrum disorder RELN R2290C mutation reduces Reelin secretion and increases protein disulfide isomerase expression. J Neurochem 2017; 142:89-102. [PMID: 28419454 DOI: 10.1111/jnc.14045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Despite the recent identification of over 40 missense heterozygous Reelin gene (RELN) mutations in autism spectrum disorder (ASD), none of these has been functionally characterized. Reelin is an integral signaling ligand for proper brain development and post-natal synapse function - properties likely disrupted in ASD patients. We find that the R2290C mutation, which arose de novo in an affected ASD proband, and other analogous mutations in arginine-amino acid-arginine domains reduce protein secretion. Closer analysis of RELN R2290C heterozygous neurospheres reveals up-regulation of Protein Disulfide Isomerase A1, best known as an endoplasmic reticulum-chaperone protein, which has been linked to neuronal pathology. This effect is recapitulated in a heterozygous RELN mouse mutant that is characterized by defective Reelin secretion. These findings suggest that both a deficiency in Reelin signaling and pathologic impairment of Reelin secretion may contribute to ASD risk.
Collapse
Affiliation(s)
- Dawn B Lammert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jen Pan
- The Broad Institute, Stanley Center Neurobiology, Cambridge, Massachusetts, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
23
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
24
|
Bouamrane L, Scheyer AF, Lassalle O, Iafrati J, Thomazeau A, Chavis P. Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex. Front Cell Neurosci 2017; 10:308. [PMID: 28127276 PMCID: PMC5226963 DOI: 10.3389/fncel.2016.00308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
The reelin gene is a strong candidate in the etiology of several psychiatric disorders such as schizophrenia, major depression, bipolar disorders, and autism spectrum disorders. Most of these diseases are accompanied by cognitive and executive-function deficits associated with prefrontal dysfunctions. Mammalian prefrontal cortex (PFC) development is characterized by a protracted postnatal maturation constituting a period of enhanced vulnerability to psychiatric insults. The identification of the molecular components underlying this prolonged postnatal development is necessary to understand the synaptic properties of defective circuits participating in these psychiatric disorders. We have recently shown that reelin plays a key role in the maturation of glutamatergic functions in the postnatal PFC, but no data are available regarding the GABAergic circuits. Here, we undertook a cross-sectional analysis of GABAergic function in deep layer pyramidal neurons of the medial PFC of wild-type and haploinsufficient heterozygous reeler mice. Using electrophysiological approaches, we showed that decreased reelin levels impair the maturation of GABAergic synaptic transmission without affecting the inhibitory nature of GABA. This phenotype consequently impacted the developmental sequence of the synaptic excitation/inhibition (E/I) balance. These data indicate that reelin is necessary for the correct maturation and refinement of GABAergic synaptic circuits in the postnatal PFC and therefore provide a mechanism for altered E/I balance of prefrontal circuits associated with psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavis
- INMED, Aix-Marseille University, INSERM Marseille, France
| |
Collapse
|
25
|
Wasser CR, Herz J. Reelin: Neurodevelopmental Architect and Homeostatic Regulator of Excitatory Synapses. J Biol Chem 2016; 292:1330-1338. [PMID: 27994051 DOI: 10.1074/jbc.r116.766782] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over half a century ago, D. S. Falconer first reported a mouse with a reeling gate. Four decades later, the Reln gene was isolated and identified as the cause of the reeler phenotype. Initial studies found that loss of Reelin, a large, secreted glycoprotein encoded by the Reln gene, results in abnormal neuronal layering throughout several regions of the brain. In the years since, the known functions of Reelin signaling in the brain have expanded to include multiple postdevelopmental neuromodulatory roles, revealing an ever increasing body of evidence to suggest that Reelin signaling is a critical player in the modulation of synaptic function. In writing this review, we intend to highlight the most fundamental aspects of Reelin signaling and integrate how these various neuromodulatory effects shape and protect synapses.
Collapse
Affiliation(s)
- Catherine R Wasser
- From the Department of Molecular Genetics.,Center for Translational Neurodegeneration Research, and
| | - Joachim Herz
- From the Department of Molecular Genetics, .,Center for Translational Neurodegeneration Research, and.,Department of Neuroscience.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
26
|
Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation. Neurobiol Learn Mem 2016; 136:127-138. [DOI: 10.1016/j.nlm.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
|
27
|
Ampuero E, Jury N, Härtel S, Marzolo MP, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol 2016; 232:1187-1199. [PMID: 27653801 DOI: 10.1002/jcp.25605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022]
Abstract
Reelin, an extracellular glycoprotein secreted in embryonic and adult brain, participates in neuronal migration and neuronal plasticity. Extensive evidence shows that reelin via activation of the ApoER2 and VLDLR receptors promotes dendrite and spine formation during early development. Further evidence suggests that reelin signaling is needed to maintain a stable architecture in mature neurons, but, direct evidence is lacking. During activity-dependent maturation of the neuronal circuitry, the synaptic protein PSD95 is inserted into the postsynaptic membrane to induce structural refinement and stability of spines and dendrites. Given that ApoER2 interacts with PSD95, we tested if reelin signaling interference in adult neurons reactivates the dendritic architecture. Unlike findings in developing cultures, the presently obtained in vitro and in vivo data show, for the first time, that reelin signaling interference robustly increase dendritogenesis and reduce spine density in mature hippocampal neurons. In particular, the expression of a mutant ApoER2 form (ApoER2-tailless), which is unable to interact with PSD95 and hence cannot transduce reelin signaling, resulted in robust dendritogenesis in mature hippocampal neurons in vitro. These results indicate that reelin/ApoER2/PSD95 signaling is important for neuronal structure maintenance in mature neurons. Mechanistically, obtained immunofluorescent data indicate that reelin signaling impairment reduced synaptic PSD95 levels, consequently leading to synaptic re-insertion of NR2B-NMDARs. Our findings underscore the importance of reelin in maintaining adult network stability and reveal a new mode for reactivating dendritogenesis in neurological disorders where dendritic arbor complexity is limited, such as in depression, Alzheimer's disease, and stroke. J. Cell. Physiol. 232: 1187-1199, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, CIMT, Bomedical Neuroscience Institute (BNI), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
28
|
Iafrati J, Malvache A, Gonzalez Campo C, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Multivariate synaptic and behavioral profiling reveals new developmental endophenotypes in the prefrontal cortex. Sci Rep 2016; 6:35504. [PMID: 27765946 PMCID: PMC5073243 DOI: 10.1038/srep35504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
The postnatal maturation of the prefrontal cortex (PFC) represents a period of increased vulnerability to risk factors and emergence of neuropsychiatric disorders. To disambiguate the pathophysiological mechanisms contributing to these disorders, we revisited the endophenotype approach from a developmental viewpoint. The extracellular matrix protein reelin which contributes to cellular and network plasticity, is a risk factor for several psychiatric diseases. We mapped the aggregate effect of the RELN risk allele on postnatal development of PFC functions by cross-sectional synaptic and behavioral analysis of reelin-haploinsufficient mice. Multivariate analysis of bootstrapped datasets revealed subgroups of phenotypic traits specific to each maturational epoch. The preeminence of synaptic AMPA/NMDA receptor content to pre-weaning and juvenile endophenotypes shifts to long-term potentiation and memory renewal during adolescence followed by NMDA-GluN2B synaptic content in adulthood. Strikingly, multivariate analysis shows that pharmacological rehabilitation of reelin haploinsufficient dysfunctions is mediated through induction of new endophenotypes rather than reversion to wild-type traits. By delineating previously unknown developmental endophenotypic sequences, we conceived a promising general strategy to disambiguate the molecular underpinnings of complex psychiatric disorders and for the rational design of pharmacotherapies in these disorders.
Collapse
Affiliation(s)
- Jillian Iafrati
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Arnaud Malvache
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Cecilia Gonzalez Campo
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - M Juliana Orejarena
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Lassalle
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Lamine Bouamrane
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| | - Pascale Chavis
- INSERM, 13009 Marseille, France; INMED UMR S 901, 13009 Marseille, France; Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
29
|
McMurtrey RJ. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. J Tissue Eng 2016; 7:2041731416671926. [PMID: 27766141 PMCID: PMC5056621 DOI: 10.1177/2041731416671926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023] Open
Abstract
Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.
Collapse
|
30
|
Vázquez-Borsetti P, Peña E, Rico C, Noto M, Miller N, Cohon D, Acosta JM, Ibarra M, Loidl FC. Perinatal Asphyxia Reduces the Number of Reelin Neurons in the Prelimbic Cortex and Deteriorates Social Interaction in Rats. Dev Neurosci 2016; 38:241-250. [DOI: 10.1159/000448244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Obstetrical complications of perinatal asphyxia (PA) can often induce lesions that, in the long-term, manifest as schizophrenia. A deterioration of the medial prefrontal cortex (mPFC) and a reduction in the number of GABAergic neurons are commonly observed in the pathophysiology of schizophrenia. In this study, we investigated the link between PA, reelin and calbindin diminution and psychiatric diseases that involve social interaction deficits. This was achieved by observing the effect of 19 min of asphyxia on both subpopulations of GABAergic neurons. PA was produced by water immersion of fetus-containing uterus horns removed by cesarean section from ready-to-deliver rats. PA generated a significant and specific decrease in the number of reelin-secreting neurons in mPFC layer VI [F(2, 6) = 8.716, p = 0.016; PA vs. vaginal controls (VC), p = 0.03, and PA vs. cesarean controls (CC), p = 0.022]. This reduction reached approximately 60% on average. Changes in the percentage of reelin neurons including all the cortex layers did not achieve a significant outcome but a trend: CC % 10.61 ± 1.34; PA % 8.64 ± 1.71 [F(2, 6) = 1.299, p = 0.33]. In the case of calbindin, there was a significant decrease in cell density in the PA group [2-way repeated-measures ANOVA, F(1, 4) = 13.03, p = 0.0226]. The multiple-comparisons test showed significant differences in the superficial aspect of layer II (Sidak test for multiple comparisons CC vs. PA at 200 µm: p = 0.003). A small, but significant difference could be seen when the distance from the pia mater to the start of layer VI was analyzed (CC mean ± SEM = 768.9 ± 8.382; PA mean ± SEM = 669.3 ± 17.75; p = 0.036). Rats exposed to PA showed deterioration in social interactions, which manifested as a decrease in play soliciting. In this model, which involved severe/moderate asphyxia, we did not find significant changes in locomotive activity or anxiety indicators in the open field task. The loss of reelin neurons could be conducive to the shrinkage of the prelimbic cortex through the reduction in neuropil and the deterioration of the function of this structure.
Collapse
|
31
|
Lin LY, Zhang J, Dai XM, Xiao NA, Wu XL, Wei Z, Fang WT, Zhu YG, Chen XC. Early-life stress leads to impaired spatial learning and memory in middle-aged ApoE4-TR mice. Mol Neurodegener 2016; 11:51. [PMID: 27406263 PMCID: PMC4941053 DOI: 10.1186/s13024-016-0107-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a major lipid carrier that supports lipid transport and injury repair in the brain. The APOE ε4 allele is associated with depression, mild cognitive impairment (MCI) and dementia; however, the precise molecular mechanism through which ApoE4 influences the risk of disease development remains unknown. To address this gap in knowledge, we investigated the potential effects of chronic unpredictable mild stress (CUMS) on ApoE3 and ApoE4 target replacement (ApoE3-TR and ApoE4-TR) mice. Results All ApoE-TR mice exposed to CUMS at 3 months old recovered from a depression-like state by the age of 12 months. Of note, ApoE4-TR mice, unlike age-matched ApoE3-TR mice, displayed impaired spatial cognitive abilities, loss of GABAergic neurons, decreased expression of Reelin, PSD95, SYN and Fyn, and reduced phosphorylation of NMDAR2B and CREB. Conclusion These results suggest that early-life stress may mediate cognitive impairment in middle-age ApoE4-TR mice through sustained reduction of GABAergic neurons and Reelin expression, which might further diminish the activation of the Fyn/NMDAR2B signaling pathway.
Collapse
Affiliation(s)
- Lan-Yan Lin
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Man Dai
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Nai-An Xiao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xi-Lin Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhen Wei
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Wen-Ting Fang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuan-Gui Zhu
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Chun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China. .,Department of Neurology, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
32
|
Bosch C, Muhaisen A, Pujadas L, Soriano E, Martínez A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci 2016; 10:138. [PMID: 27303269 PMCID: PMC4884741 DOI: 10.3389/fncel.2016.00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Reelin regulates neuronal positioning and synaptogenesis in the developing brain, and adult brain plasticity. Here we used transgenic mice overexpressing Reelin (Reelin-OE mice) to perform a comprehensive dissection of the effects of this protein on the structural and biochemical features of dendritic spines and axon terminals in the adult hippocampus. Electron microscopy (EM) revealed both higher density of synapses and structural complexity of both pre- and postsynaptic elements in transgenic mice than in WT mice. Dendritic spines had larger spine apparatuses, which correlated with a redistribution of Synaptopodin. Most of the changes observed in Reelin-OE mice were reversible after blockade of transgene expression, thus supporting the specificity of the observed phenotypes. Western blot and transcriptional analyses did not show major changes in the expression of pre- or postsynaptic proteins, including SNARE proteins, glutamate receptors, and scaffolding and signaling proteins. However, EM immunogold assays revealed that the NMDA receptor subunits NR2a and NR2b, and p-Cofilin showed a redistribution from synaptic to extrasynaptic pools. Taken together with previous studies, the present results suggest that Reelin regulates the structural and biochemical properties of adult hippocampal synapses by increasing their density and morphological complexity and by modifying the distribution and trafficking of major glutamatergic components.
Collapse
Affiliation(s)
- Carles Bosch
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain; Institute of Neurosciences, University of BarcelonaBarcelona, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), MadridSpain; Vall d'Hebron Institut de RecercaBarcelona, Spain; Institute of Neurosciences, University of BarcelonaBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats AcademiaBarcelona, Spain
| | - Albert Martínez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona Barcelona, Spain
| |
Collapse
|
33
|
Lammert DB, Howell BW. RELN Mutations in Autism Spectrum Disorder. Front Cell Neurosci 2016; 10:84. [PMID: 27064498 PMCID: PMC4814460 DOI: 10.3389/fncel.2016.00084] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis.
Collapse
Affiliation(s)
- Dawn B Lammert
- Department of Neuroscience and Physiology, SUNY Upstate Medical School Syracuse, NY, USA
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical School Syracuse, NY, USA
| |
Collapse
|
34
|
Caruncho HJ, Brymer K, Romay-Tallón R, Mitchell MA, Rivera-Baltanás T, Botterill J, Olivares JM, Kalynchuk LE. Reelin-Related Disturbances in Depression: Implications for Translational Studies. Front Cell Neurosci 2016; 10:48. [PMID: 26941609 PMCID: PMC4766281 DOI: 10.3389/fncel.2016.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023] Open
Abstract
The finding that reelin expression is significantly decreased in mood and psychotic disorders, together with evidence that reelin can regulate key aspects of hippocampal plasticity in the adult brain, brought our research group and others to study the possible role of reelin in the pathogenesis of depression. This review describes recent progress on this topic using an animal model of depression that makes use of repeated corticosterone (CORT) injections. This methodology produces depression-like symptoms in both rats and mice that are reversed by antidepressant treatment. We have reported that CORT causes a decrease in the number of reelin-immunopositive cells in the dentate gyrus subgranular zone (SGZ), where adult hippocampal neurogenesis takes place; that down-regulation of the number of reelin-positive cells closely parallels the development of a depression-like phenotype during repeated CORT treatment; that reelin downregulation alters the co-expression of reelin with neuronal nitric oxide synthase (nNOS); that deficits in reelin might also create imbalances in glutamatergic and GABAergic circuits within the hippocampus and other limbic structures; and that co-treatment with antidepressant drugs prevents both reelin deficits and the development of a depression-like phenotype. We also observed alterations in the pattern of membrane protein clustering in peripheral lymphocytes in animals with low levels of reelin. Importantly, we found parallel changes in membrane protein clustering in depression patients, which differentiated two subpopulations of naïve depression patients that showed a different therapeutic response to antidepressant treatment. Here, we review these findings and develop the hypothesis that restoring reelin-related function could represent a novel approach for antidepressant therapies.
Collapse
Affiliation(s)
- Hector J Caruncho
- Neuroscience Cluster, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | - Kyle Brymer
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | | | - Milann A Mitchell
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Tania Rivera-Baltanás
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Justin Botterill
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Jose M Olivares
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
35
|
In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast 2015; 2016:9847696. [PMID: 26839720 PMCID: PMC4709762 DOI: 10.1155/2016/9847696] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/27/2015] [Indexed: 12/25/2022] Open
Abstract
Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.
Collapse
|
36
|
Dieni S, Nestel S, Sibbe M, Frotscher M, Hellwig S. Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice. Front Synaptic Neurosci 2015; 7:18. [PMID: 26557085 PMCID: PMC4615824 DOI: 10.3389/fnsyn.2015.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network; and (ii) a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF) protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: (i) modified neuropeptide distribution; (ii) perturbed expression of selected markers of synaptic activation or plasticity; (iii) subtle changes to microglial structure; and (iv) morphological alterations to the mossy fiber (MF) synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn-mutant as a useful model for studying the effects of chronic changes to network activity.
Collapse
Affiliation(s)
- Sandra Dieni
- Neurochemistry Laboratory, Department of Molecular Psychiatry, University Hospital Freiburg Freiburg, Germany
| | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg Freiburg, Germany
| | - Mirjam Sibbe
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg Hamburg, Germany
| | - Sabine Hellwig
- Neurochemistry Laboratory, Department of Molecular Psychiatry, University Hospital Freiburg Freiburg, Germany
| |
Collapse
|
37
|
The Role of Reelin Signaling in Alzheimer’s Disease. Mol Neurobiol 2015; 53:5692-700. [DOI: 10.1007/s12035-015-9459-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/23/2022]
|
38
|
AKT-independent Reelin signaling requires interactions of heterotrimeric Go and Src. Biochem Biophys Res Commun 2015; 467:1063-9. [PMID: 26441085 DOI: 10.1016/j.bbrc.2015.09.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
Reelin, a large secreted extracellular matrix glycoprotein, plays a key role in neuronal migration during cortical development and promotes neuronal maturation. The signaling pathway regulating neuronal maturation in the postnatal period are relatively less well understood. In this study, we demonstrated that a heterotrimeric G protein, Go, is a novel target of Reelin-induced signaling to promote neurite outgrowth. In primary hippocampal neurons of Reelin-deficient reeler mice, neurite outgrowth was significantly reduced and rescued upon addition of Reelin. Pertussis toxin (PTX) treatment or transfection with Gαo-siRNA suppressed Reelin-mediated neurite outgrowth in wild-type neurons. Additionally, Reelin treatment led to increased phosphorylation of AKT, GSK3β, and JNK, which were all effectively blocked by the PI3K inhibitor, LY294002. By comparison, PTX specifically blocked JNK activation, but not AKT and GSK3β. Immunoprecipitation assays disclosed that Reelin increases the active forms of both Src and Gαo and promotes their direct association. Notably, Dab1, a cytoplasmic adaptor molecule that mediates Reelin signaling, did not interact with Gαo. Neurite outgrowth by Reelin was induced via activating Src kinase, which directly stimulated Gαo, activity, leading to JNK activation. Based on the collective findings, we suggest that Reelin-dependent signaling mechanisms may be split into Src-AKT-dependent and Src-Go-dependent pathways. Our results additionally provide evidence that Reelin receptors cross-communicate with heterologous G protein-coupled receptors (GPCR) independently of the cognate ligands of GPCR.
Collapse
|
39
|
Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 2015; 167:18-27. [PMID: 25601362 PMCID: PMC4504843 DOI: 10.1016/j.schres.2014.12.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons.
Collapse
Affiliation(s)
- Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Christopher Brown
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Eleni T Batzianouli
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill St., Belmont, MA 02478, USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
40
|
Dazzo E, Fanciulli M, Serioli E, Minervini G, Pulitano P, Binelli S, Di Bonaventura C, Luisi C, Pasini E, Striano S, Striano P, Coppola G, Chiavegato A, Radovic S, Spadotto A, Uzzau S, La Neve A, Giallonardo AT, Mecarelli O, Tosatto SCE, Ottman R, Michelucci R, Nobile C. Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy. Am J Hum Genet 2015; 96:992-1000. [PMID: 26046367 PMCID: PMC4457960 DOI: 10.1016/j.ajhg.2015.04.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/29/2015] [Indexed: 01/28/2023] Open
Abstract
Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Adhesion Molecules, Neuronal/blood
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Chromosome Mapping
- Epilepsy, Frontal Lobe/genetics
- Epilepsy, Frontal Lobe/pathology
- Exome
- Extracellular Matrix Proteins/blood
- Extracellular Matrix Proteins/chemistry
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Fluorescent Antibody Technique
- Gene Components
- Humans
- Immunoblotting
- Intercellular Signaling Peptides and Proteins
- Models, Molecular
- Molecular Sequence Data
- Mutation, Missense/genetics
- Nerve Tissue Proteins/blood
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Pedigree
- Polymorphism, Single Nucleotide/genetics
- Protein Conformation
- Protein Folding
- Proteins/metabolism
- Rats
- Reelin Protein
- Sequence Analysis, DNA
- Serine Endopeptidases/blood
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Sleep Wake Disorders/genetics
- Sleep Wake Disorders/pathology
Collapse
Affiliation(s)
- Emanuela Dazzo
- Section of Padua, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy
| | | | - Elena Serioli
- Section of Padua, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy
| | - Patrizia Pulitano
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Roma, Italy
| | - Simona Binelli
- Carlo Besta Foundation Neurological Institute, 20133 Milano, Italy
| | - Carlo Di Bonaventura
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Elena Pasini
- IRCCS-Institute of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy
| | - Salvatore Striano
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, 80131 Napoli, Italy
| | - Pasquale Striano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa and Giannina Gaslini Institute, 16148 Genova, Italy
| | - Giangennaro Coppola
- Child and Adolescent Psychiatry, Faculty of Medicine and Surgery, University of Salerno, 84100 Salerno, Italy
| | - Angela Chiavegato
- Section of Padua, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy
| | | | | | - Sergio Uzzau
- Porto Conte Ricerche, 07041 Alghero, Sassari, Italy
| | | | | | - Oriano Mecarelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Roma, Italy
| | - Silvio C E Tosatto
- Section of Padua, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy
| | - Ruth Ottman
- Departments of Epidemiology and Neurology and the Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA; Division of Epidemiology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Roberto Michelucci
- IRCCS-Institute of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy
| | - Carlo Nobile
- Section of Padua, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy.
| |
Collapse
|
41
|
Reelin expression in brain endothelial cells: an electron microscopy study. BMC Neurosci 2015; 16:16. [PMID: 25887698 PMCID: PMC4374371 DOI: 10.1186/s12868-015-0156-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background Reelin expression and function have been extensively studied in the brain, although its expression has been also reported in other tissues including blood. This raises the possibility that reelin might be able to cross the blood-brain barrier, which could be functionally relevant. Up-to-date no studies have been conducted to assess if reelin is present in the blood-brain barrier, which is mainly constituted by tightly packed endothelial cells. In this report we assessed the expression of reelin in brain capillaries using immunocytochemistry and electron microscopy. Results At the light microscope, reelin immunolabeling appeared in specific endothelial cells in brain areas that presented abundant diffuse labeling for this protein (e.g., layer I of the cortex, or the stratum lacunosum moleculare of the hippocampus), while it was mostly absent from capillaries in other brain areas (e.g., deeper cortical layers, or the CA1 layer of the hippocampus). As expected, at the electron microscope reelin labeling was observed in neurons of the cortex, where most of the labeling was associated with the rough endoplasmic reticulum. Importantly, reelin was also observed in some endothelial cells located in small capillaries, which confirmed the findings obtained at the light microscope. In these cells, reelin labeling was located primarily in caveolae (i.e., vesicles of transcytosis), and associated with the plasma membrane of the luminal side of endothelial cells. In addition, some scarce labeling was observed in the nuclear membrane. Conclusions The presence of reelin immunolabeling in brain endothelial cells, and particularly in caveolar vesicles within these cells, suggests that reelin and/or reelin peptides may be able to cross the blood-brain barrier, which could have important physiological, pathological, and therapeutic implications.
Collapse
|
42
|
Ishii K, Nagai T, Hirota Y, Noda M, Nabeshima T, Yamada K, Kubo KI, Nakajima K. Reelin has a preventive effect on phencyclidine-induced cognitive and sensory-motor gating deficits. Neurosci Res 2015; 96:30-6. [PMID: 25573715 DOI: 10.1016/j.neures.2014.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
Reelin has recently attracted attention because of its connection to several neuropsychiatric diseases. We previously reported the finding that prior transplantation of GABAergic neuron precursor cells into the medial prefrontal cortex (mPFC) of mice significantly prevented the induction of cognitive and sensory-motor gating deficits induced by phencyclidine (PCP). The majority of the precursor cells transplanted into the mPFC of the recipient mice differentiated into members of a somatostatin/Reelin-expressing class of GABAergic interneurons. These findings raised the possibility that Reelin secreted by the transplanted cells plays an important role in preventing the deficits induced by PCP. In this study, we investigated whether Reelin itself has a preventive effect on PCP-induced behavioral phenotypes by injecting conditioned medium containing Reelin into the lateral ventricle of the brains of 6- to 7-week-old male mice before administrating PCP. Behavioral analyses showed that the prior Reelin injection had a preventive effect against induction of the cognitive and sensory-motor gating deficits associated with PCP. Moreover, one of the types of Reelin receptor was found to be expressed by neurons in the mPFC. The results of this study point to the Reelin signaling pathway as a candidate target for the pharmacologic treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuki Hirota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Noda
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care & Sciences, Meijo University, Nagoya, Japan; NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Nagoya, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
43
|
Romay-Tallon R, Rivera-Baltanas T, Kalynchuk LE, Caruncho HJ. Differential effects of corticosterone on the colocalization of reelin and neuronal nitric oxide synthase in the adult hippocampus in wild type and heterozygous reeler mice. Brain Res 2015; 1594:274-83. [DOI: 10.1016/j.brainres.2014.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/25/2014] [Indexed: 11/27/2022]
|
44
|
Boillot M, Huneau C, Marsan E, Lehongre K, Navarro V, Ishida S, Dufresnois B, Ozkaynak E, Garrigue J, Miles R, Martin B, Leguern E, Anderson MP, Baulac S. Glutamatergic neuron-targeted loss of LGI1 epilepsy gene results in seizures. ACTA ACUST UNITED AC 2014; 137:2984-96. [PMID: 25234641 DOI: 10.1093/brain/awu259] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leucin-rich, glioma inactivated 1 (LGI1) is a secreted protein linked to human seizures of both genetic and autoimmune aetiology. Mutations in the LGI1 gene are responsible for autosomal dominant temporal lobe epilepsy with auditory features, whereas LGI1 autoantibodies are involved in limbic encephalitis, an acquired epileptic disorder associated with cognitive impairment. We and others previously reported that Lgi1-deficient mice have early-onset spontaneous seizures leading to premature death at 2-3 weeks of age. Yet, where and when Lgi1 deficiency causes epilepsy remains unknown. To address these questions, we generated Lgi1 conditional knockout (cKO) mice using a set of universal Cre-driver mouse lines. Selective deletion of Lgi1 was achieved in glutamatergic pyramidal neurons during embryonic (Emx1-Lgi1cKO) or late postnatal (CaMKIIα-Lgi1cKO) developmental stages, or in gamma amino butyric acidergic (GABAergic) parvalbumin interneurons (PV-Lgi1cKO). Emx1-Lgi1cKO mice displayed early-onset and lethal seizures, whereas CaMKIIα-Lgi1cKO mice presented late-onset occasional seizures associated with variable reduced lifespan. In contrast, neither spontaneous seizures nor increased seizure susceptibility to convulsant were observed when Lgi1 was deleted in parvalbumin interneurons. Together, these data showed that LGI1 depletion restricted to pyramidal cells is sufficient to generate seizures, whereas seizure thresholds were unchanged after depletion in gamma amino butyric acidergic parvalbumin interneurons. We suggest that LGI1 secreted from excitatory neurons, but not parvalbumin inhibitory neurons, makes a major contribution to the pathogenesis of LGI1-related epilepsies. Our data further indicate that LGI1 is required from embryogenesis to adulthood to achieve proper circuit functioning.
Collapse
Affiliation(s)
- Morgane Boillot
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Clément Huneau
- 5 Université de Rennes 1, LTSI, F-35000, Rennes, France 6 INSERM, U1099, F-35000, Rennes, France
| | - Elise Marsan
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Katia Lehongre
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Vincent Navarro
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France 7 AP-HP, Hôpital de la Pitié-Salpêtrière, Epilepsy Unit, F-75013, Paris, France
| | - Saeko Ishida
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Béatrice Dufresnois
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Ekim Ozkaynak
- 8 Departments of Neurology and Pathology, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jérôme Garrigue
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Richard Miles
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| | - Benoit Martin
- 5 Université de Rennes 1, LTSI, F-35000, Rennes, France 6 INSERM, U1099, F-35000, Rennes, France
| | - Eric Leguern
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France 9 AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, F-75013, Paris, France
| | - Matthew P Anderson
- 8 Departments of Neurology and Pathology, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stéphanie Baulac
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, F-75013 Paris, France 4 Institut du Cerveau et de la Moelle épinière (ICM), F-75013, Paris, France
| |
Collapse
|
45
|
Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry 2014; 19:417-26. [PMID: 23752244 PMCID: PMC3965840 DOI: 10.1038/mp.2013.66] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 02/07/2023]
Abstract
Defective brain extracellular matrix (ECM) is a factor of vulnerability in various psychiatric diseases such as schizophrenia, depression and autism. The glycoprotein reelin is an essential building block of the brain ECM that modulates neuronal development and participates to the functions of adult central synapses. The reelin gene (RELN) is a strong candidate in psychiatric diseases of early onset, but its synaptic and behavioral functions in juvenile brain circuits remain unresolved. Here, we found that in juvenile reelin-haploinsufficient heterozygous reeler mice (HRM), abnormal fear memory erasure is concomitant to reduced dendritic spine density and anomalous long-term potentiation in the prefrontal cortex. In juvenile HRM, a single in vivo injection with ketamine or Ro25-6981 to inhibit GluN2B-N-methyl-D-aspartate receptors (NMDARs) restored normal spine density, synaptic plasticity and converted fear memory to an erasure-resilient state typical of adult rodents. The functional and behavioral rescue by ketamine was prevented by rapamycin, an inhibitor of the mammalian target of rapamycin pathway. Finally, we show that fear memory erasure persists until adolescence in HRM and that a single exposure to ketamine during the juvenile period reinstates normal fear memory in adolescent mice. Our results show that reelin is essential for successful structural, functional and behavioral development of juvenile prefrontal circuits and that this developmental period provides a critical window for therapeutic rehabilitation with GluN2B-NMDAR antagonists.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Dendritic Spines/drug effects
- Dendritic Spines/genetics
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agents/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Fear/drug effects
- Fear/physiology
- Female
- In Vitro Techniques
- Ketamine/pharmacology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Patch-Clamp Techniques
- Phenols
- Piperidines/pharmacology
- Prefrontal Cortex/cytology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/growth & development
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reelin Protein
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- J Iafrati
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - M J Orejarena
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - O Lassalle
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - L Bouamrane
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - P Chavis
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| |
Collapse
|
46
|
Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/597395] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular protein Reelin was initially identified as an essential factor in the control of neuronal migration and layer formation in the developing mammalian brain. In the years following its discovery, however, it became clear that Reelin is a multifunctional protein that controls not only the positioning of neurons in the developing brain, but also their growth, maturation, and synaptic activity in the adult brain. In this review, we will highlight the major discoveries of the biological activities of Reelin and the underlying molecular mechanisms that affect the development and function of the mammalian brain, from embryonic ages to adulthood.
Collapse
|
47
|
Abstract
The extracellular matrix (ECM) has a prominent role in brain development, maturation of neural circuits, and adult neuroplasticity. This multifactorial role of the ECM suggests that processes that affect composition or turnover of ECM in the brain could lead to altered brain function, possibly underlying conditions of impaired mental health, such as neuropsychiatric or neurodegenerative disease. In support of this, in the last two decades, clinical and preclinical research provided evidence of correlations and to some degree causal links, between aberrant ECM function and neuropsychiatric disorders, the most prominent being addiction and schizophrenia. Based on these initial observations of involvement of different classes of ECM molecules (laminin, reelin, and their integrin receptors, as well as tenascins and chondroitin sulfate proteoglycans), ECM targets have been suggested as a novel entry point in the treatment of neuropsychiatric disorders. Hence, understanding how ECM molecules contribute to proper neuronal functioning and how this is dysregulated in conditions of mental illness is of pivotal importance. In this chapter, we will review available literature that implicates the different classes of brain ECM molecules in psychiatric disorders, with a primary focus on addiction (opiates, psychostimulants, and alcohol), and we will compare these ECM adaptations with those implicated in schizophrenia and mood disorders.
Collapse
|
48
|
Abstract
Disabled-1 (Dab1) is an adaptor protein that is an obligate effector of the Reelin signaling pathway, and is critical for neuronal migration and dendrite outgrowth during development. Components of the Reelin pathway are highly expressed during development, but also continue to be expressed in the adult brain. Here we investigated in detail the expression pattern of Dab1 in the postnatal and adult forebrain, and determined that it is expressed in excitatory as well as inhibitory neurons. Dab1 was found to be localized in different cellular compartments, including the soma, dendrites, presynaptic and postsynaptic structures. Mice that are deficient in Dab1, Reelin, or the Reelin receptors ApoER2 and VLDLR exhibit severely perturbed brain cytoarchitecture, limiting the utility of these mice for investigating the role of this signaling pathway in the adult brain. In this study, we developed an adult forebrain-specific and excitatory neuron-specific conditional knock-out mouse line, and demonstrated that Dab1 is a critical regulator of synaptic function and hippocampal-dependent associative and spatial learning. These dramatic abnormalities were accompanied by a reduction in dendritic spine size, and defects in basal and plasticity-induced Akt and ERK1/2 signaling. Deletion of Dab1 led to no obvious changes in neuronal positioning, dendrite morphology, spine density, or synaptic composition. Collectively, these data conclusively demonstrate an important role for Reelin-Dab1 signaling in the adult forebrain, and underscore the importance of this pathway in learning and memory.
Collapse
|
49
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
50
|
Kumar K, Patro N, Patro I. Impaired structural and functional development of cerebellum following gestational exposure of deltamethrin in rats: role of reelin. Cell Mol Neurobiol 2013; 33:731-46. [PMID: 23681596 DOI: 10.1007/s10571-013-9942-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/27/2013] [Indexed: 12/31/2022]
Abstract
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7-10 and 11-14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.
Collapse
Affiliation(s)
- Kamendra Kumar
- School of Studies in Neuroscience, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | | |
Collapse
|