1
|
Tai Y, Goodrich R, Maldonado M, Ortiz J, Martinez J, Ico G, Ko A, Shih HP, Nam J. Nanofiber-microwell cell culture system for spatially patterned differentiation of pluripotent stem cells in 3D. Mater Today Bio 2024; 26:101109. [PMID: 38883422 PMCID: PMC11180340 DOI: 10.1016/j.mtbio.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/04/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
The intricate interplay between biochemical and physical cues dictates pluripotent stem cell (PSC) differentiation to form various tissues. While biochemical modulation has been extensively studied, the role of biophysical microenvironments in early lineage commitment remains elusive. Here, we introduce a novel 3D cell culture system combining electrospun nanofibers with microfabricated polydimethylsiloxane (PDMS) patterns. This system enables the controlled formation of semispherical human induced pluripotent stem cell (hiPSC) colonies, facilitating the investigation of local mechanical stem cell niches on mechano-responsive signaling and lineage specification. Our system unveiled spatially organized RhoA activity coupled with actin-myosin cable formation, suggesting mechano-dependent hiPSC behaviors. Nodal network analysis of RNA-seq data revealed RhoA downstream regulation of YAP signaling, DNA histone modifications, and patterned germ layer specification. Notably, altering colony morphology through controlled PDMS microwell shaping effectively modulated the spatial distribution of mechano-sensitive mediators and subsequent differentiation. This study provides a cell culture platform to decipher the role of biophysical cues in early embryogenesis, offering valuable insights for material design in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Youyi Tai
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Robyn Goodrich
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Maricela Maldonado
- Department of Biomedical Engineering, California State University Long Beach, CA, 90840, USA
| | - Jessica Ortiz
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jeniree Martinez
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Gerardo Ico
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Angel Ko
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Hung Ping Shih
- Department of Translational Research and Cellular Therapeutics, City of Hope, CA, 91010, USA
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Nakamura K, Watanabe Y, Boitet C, Satake S, Iida H, Yoshihi K, Ishii Y, Kato K, Kondoh H. Wnt signal-dependent antero-posterior specification of early-stage CNS primordia modeled in EpiSC-derived neural stem cells. Front Cell Dev Biol 2024; 11:1260528. [PMID: 38405136 PMCID: PMC10884098 DOI: 10.3389/fcell.2023.1260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.
Collapse
Affiliation(s)
- Kae Nakamura
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Claire Boitet
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Université Joseph Fourier, Domaine Universitaire, Saint-Martin-d’Hères, France
| | - Sayaka Satake
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Department of Biology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kagayaki Kato
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
3
|
Kondoh H. The Epiblast and Pluripotent Stem Cell Lines. Results Probl Cell Differ 2024; 72:3-9. [PMID: 38509249 DOI: 10.1007/978-3-031-39027-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
4
|
Anvar Z, Chakchouk I, Sharif M, Mahadevan S, Su L, Anikar S, Naini FA, Utama AB, Van den Veyver IB. Comparison of Four Protocols for In Vitro Differentiation of Human Embryonic Stem Cells into Trophoblast Lineages by BMP4 and Dual Inhibition of Activin/Nodal and FGF2 Signaling. Reprod Sci 2024; 31:173-189. [PMID: 37658178 PMCID: PMC10784360 DOI: 10.1007/s43032-023-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Human embryonic stem cells (hESCs) cultured in media containing bone morphogenic protein 4 (BMP4; B) differentiate into trophoblast-like cells. Supplementing media with inhibitors of activin/nodal signaling (A83-01) and of fibroblast growth factor 2 (PD173074) suppresses mesoderm and endoderm formation and improves specification of trophoblast-like lineages, but with variable effectiveness. We compared differentiation in four BMP4-containing media: mTeSR1-BMP4 only, mTeSR1-BAP, basal medium with BAP (basal-BAP), and a newly defined medium, E7-BAP. These media variably drive early differentiation towards trophoblast-like lineages with upregulation of early trophoblast markers CDX2 and KRT7 and downregulation of pluripotency markers (OCT4 and NANOG). As expected, based on differences between media in FGF2 and its inhibitors, downregulation of mesendoderm marker EOMES was variable between media. By day 7, only hESCs grown in E7-BAP or basal-BAP expressed HLA-G protein, indicating the presence of cells with extravillous trophoblast characteristics. Expression of HLA-G and other differentiation markers (hCG, KRT7, and GCM1) was highest in basal-BAP, suggesting a faster differentiation in this medium, but those cultures were more inhomogeneous and still expressed some endodermal and pluripotency markers. In E7-BAP, HLA-G expression increased later and was lower. There was also a low but maintained expression of some C19MC miRNAs, with more CpG hypomethylation of the ELF5 promoter, suggesting that E7-BAP cultures differentiate slower along the trophoblast lineage. We conclude that while all protocols drive differentiation into trophoblast lineages with varying efficiency, they have advantages and disadvantages that must be considered when selecting a protocol for specific experiments.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Li Su
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Swathi Anikar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Fatemeh Alavi Naini
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
7
|
Gattiglio M, Protzek M, Schröter C. Population-level antagonism between FGF and BMP signaling steers mesoderm differentiation in embryonic stem cells. Biol Open 2023; 12:bio059941. [PMID: 37530863 PMCID: PMC10445724 DOI: 10.1242/bio.059941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The mesodermal precursor populations for different internal organ systems are specified during gastrulation by the combined activity of extracellular signaling systems such as BMP, Wnt, Nodal and FGF. The BMP, Wnt and Nodal signaling requirements for the differentiation of specific mesoderm subtypes in mammals have been mapped in detail, but how FGF shapes mesodermal cell type diversity is not precisely known. It is also not clear how FGF signaling integrates with the activity of other signaling systems involved in mesoderm differentiation. Here, we address these questions by analyzing the effects of targeted signaling manipulations in differentiating stem cell populations at single-cell resolution. We identify opposing functions of BMP and FGF, and map FGF-dependent and -independent mesodermal lineages. Stimulation with exogenous FGF boosts the expression of endogenous Fgf genes while repressing Bmp ligand genes. This positive autoregulation of FGF signaling, coupled with the repression of BMP signaling, may contribute to the specification of reproducible and coherent cohorts of cells with the same identity via a community effect, both in the embryo and in synthetic embryo-like systems.
Collapse
Affiliation(s)
- Marina Gattiglio
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Michelle Protzek
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| | - Christian Schröter
- Max Planck Institute of Molecular Physiology, Department of Systemic Cell Biology, 44227Dortmund, Germany
| |
Collapse
|
8
|
Grove JI, Lo PC, Shrine N, Barwell J, Wain LV, Tobin MD, Salter AM, Borkar AN, Cuevas-Ocaña S, Bennett N, John C, Ntalla I, Jones GE, Neal CP, Thomas MG, Kuht H, Gupta P, Vemala VM, Grant A, Adewoye AB, Shenoy KT, Balakumaran LK, Hollox EJ, Hannan NR, Aithal GP. Identification and characterisation of a rare MTTP variant underlying hereditary non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100764. [PMID: 37484212 PMCID: PMC10362796 DOI: 10.1016/j.jhepr.2023.100764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 07/25/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) is a complex trait with an estimated prevalence of 25% globally. We aimed to identify the genetic variant underlying a four-generation family with progressive NAFLD leading to cirrhosis, decompensation, and development of hepatocellular carcinoma in the absence of common risk factors such as obesity and type 2 diabetes. Methods Exome sequencing and genome comparisons were used to identify the likely causal variant. We extensively characterised the clinical phenotype and post-prandial metabolic responses of family members with the identified novel variant in comparison with healthy non-carriers and wild-type patients with NAFLD. Variant-expressing hepatocyte-like cells (HLCs) were derived from human-induced pluripotent stem cells generated from homozygous donor skin fibroblasts and restored to wild-type using CRISPR-Cas9. The phenotype was assessed using imaging, targeted RNA analysis, and molecular expression arrays. Results We identified a rare causal variant c.1691T>C p.I564T (rs745447480) in MTTP, encoding microsomal triglyceride transfer protein (MTP), associated with progressive NAFLD, unrelated to metabolic syndrome and without characteristic features of abetalipoproteinaemia. HLCs derived from a homozygote donor had significantly lower MTP activity and lower lipoprotein ApoB secretion than wild-type cells, while having similar levels of MTP mRNA and protein. Cytoplasmic triglyceride accumulation in HLCs triggered endoplasmic reticulum stress, secretion of pro-inflammatory mediators, and production of reactive oxygen species. Conclusions We have identified and characterised a rare causal variant in MTTP, and homozygosity for MTTP p.I564T is associated with progressive NAFLD without any other manifestations of abetalipoproteinaemia. Our findings provide insights into mechanisms driving progressive NAFLD. Impact and Implications A rare genetic variant in the gene MTTP has been identified as responsible for the development of severe non-alcoholic fatty liver disease in a four-generation family with no typical disease risk factors. A cell line culture created harbouring this variant gene was characterised to understand how this genetic variation leads to a defect in liver cells, which results in accumulation of fat and processes that promote disease. This is now a useful model for studying the disease pathways and to discover new ways to treat common types of fatty liver disease.
Collapse
Affiliation(s)
- Jane I. Grove
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Peggy C.K. Lo
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Julian Barwell
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Aditi N. Borkar
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Sara Cuevas-Ocaña
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Neil Bennett
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Ioanna Ntalla
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Gabriela E. Jones
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | | | - Mervyn G. Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Helen Kuht
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Pankaj Gupta
- Department of Chemical Pathology and Metabolic Diseases, University Hospitals of Leicester NHS Trust, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vishwaraj M. Vemala
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Allister Grant
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Adeolu B. Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nicholas R.F. Hannan
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Guruprasad P. Aithal
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Chun YY, Tan KS, Yu L, Pang M, Wong MHM, Nakamoto R, Chua WZ, Huee-Ping Wong A, Lew ZZR, Ong HH, Chow VT, Tran T, Yun Wang D, Sham LT. Influence of glycan structure on the colonization of Streptococcus pneumoniae on human respiratory epithelial cells. Proc Natl Acad Sci U S A 2023; 120:e2213584120. [PMID: 36943879 PMCID: PMC10068763 DOI: 10.1073/pnas.2213584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.
Collapse
Affiliation(s)
- Ye-Yu Chun
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597
| | - Lisa Yu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- College of Art and Sciences, Cornell University, Ithaca, NY14853
| | - Michelle Pang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Ming Hui Millie Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Amanda Huee-Ping Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - Zhe Zhang Ryan Lew
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Hsiao Hui Ong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Vincent T. Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - De Yun Wang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| |
Collapse
|
10
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
11
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
In Vitro Differentiation of Human Amniotic Epithelial Cells into Hepatocyte-like Cells. Cells 2022; 11:cells11142138. [PMID: 35883581 PMCID: PMC9317663 DOI: 10.3390/cells11142138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human amniotic epithelial cells (hAECs) represent an interesting clinical alternative to human embryonic (hESCs) and induced pluripotent (hiPSCs) stem cells in regenerative medicine. The potential of hAECs can be enhanced ex vivo by their partial pre-differentiation. The aim of this study was to evaluate the effectiveness of 18-day differentiation of hAECs into endodermal cells, hepatic precursor cells, and cells showing functional features of hepatocytes using culture media supplemented with high (100 ng/mL) concentrations of EGF or HGF. The cells obtained after differentiation showed changes in morphology and increased expression of AFP, ALB, CYP3A4, CYP3A7, and GSTP1 genes. HGF was more effective than EGF in increasing the expression of liver-specific genes in hAECs. However, EGF stimulated the differentiation process more efficiently and yielded more hepatocyte-like cells capable of synthesizing α-fetoprotein during differentiation. Additionally, after 18 days, GST transferases, albumin, and CYP P450s, which proved their partial functionality, were expressed. In summary, HGF and EGF at a dose of 100 ng/mL can be successfully used to obtain hepatocyte-like cells between days 7 and 18 of hAEC differentiation. However, the effectiveness of this process is lower compared with hiPSC differentiation; therefore, optimization of the composition of the medium requires further research.
Collapse
|
13
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
14
|
Knowles H, Santucci N, Studdert J, Goh HN, Kaufman-Francis K, Salehin N, Tam PPL, Osteil P. Differential impact of TGFβ/SMAD signaling activity elicited by Activin A and Nodal on endoderm differentiation of epiblast stem cells. Genesis 2022; 60:e23466. [PMID: 35104045 DOI: 10.1002/dvg.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
Allocation of cells to an endodermal fate in the gastrulating embryo is driven by Nodal signaling and consequent activation of TGFβ pathway. In vitro methodologies striving to recapitulate the process of endoderm differentiation, however, use TGFβ family member Activin in place of Nodal. This is despite Activin not known to have an in vivo role in endoderm differentiation. In this study, five epiblast stem cell lines were subjected to directed differentiation using both Activin A and Nodal to induce endodermal fate. A reporter line harboring endoderm markers FoxA2 and Sox17 was further analyzed for TGFβ pathway activation and WNT response. We demonstrated that Activin A-treated cells remain more primitive streak-like when compared to Nodal-treated cells that have a molecular profile suggestive of more advanced differentiation. Activin A elicited a robust TGFβ/SMAD activity, enhanced WNT signaling activity and promoted the generation of DE precursors. Nodal treatment resulted in lower TGFβ/SMAD activity, and a weaker, sustained WNT response, and ultimately failed to upregulate endoderm markers. This is despite signaling response resembling more closely the activity seen in vivo. These findings emphasize the importance of understanding the downstream activities of Activin A and Nodal signaling in directing in vitro endoderm differentiation of primed-state epiblast stem cells.
Collapse
Affiliation(s)
- Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Joshua Studdert
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Hwee Ngee Goh
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Keren Kaufman-Francis
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.,Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Sarkar M, Martufi M, Roman-Trufero M, Wang YF, Whilding C, Dormann D, Sabbattini P, Dillon N. CNOT3 interacts with the Aurora B and MAPK/ERK kinases to promote survival of differentiating mesendodermal progenitor cells. Mol Biol Cell 2021; 32:ar40. [PMID: 34613789 PMCID: PMC8694085 DOI: 10.1091/mbc.e21-02-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Mesendoderm cells are key intermediate progenitors that form at the early primitive streak (PrS) and give rise to mesoderm and endoderm in the gastrulating embryo. We have identified an interaction between CNOT3 and the cell cycle kinase Aurora B that requires sequences in the NOT box domain of CNOT3 and regulates MAPK/ERK signaling during mesendoderm differentiation. Aurora B phosphorylates CNOT3 at two sites located close to a nuclear localization signal and promotes localization of CNOT3 to the nuclei of mouse embryonic stem cells (ESCs) and metastatic lung cancer cells. ESCs that have both sites mutated give rise to embryoid bodies that are largely devoid of mesoderm and endoderm and are composed mainly of cells with ectodermal characteristics. The mutant ESCs are also compromised in their ability to differentiate into mesendoderm in response to FGF2, BMP4, and Wnt3 due to reduced survival and proliferation of differentiating mesendoderm cells. We also show that the double mutation alters the balance of interaction of CNOT3 with Aurora B and with ERK and reduces phosphorylation of ERK in response to FGF2. Our results identify a potential adaptor function for CNOT3 that regulates the Ras/MEK/ERK pathway during embryogenesis.
Collapse
Affiliation(s)
- Moumita Sarkar
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Matteo Martufi
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Monica Roman-Trufero
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
| | - Yi-Fang Wang
- Bioinformatics and Computing, Imperial College London, London W12 0NN, UK
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Dirk Dormann
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | | | - Niall Dillon
- Gene Regulation and Chromatin Group, Imperial College London, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
16
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
17
|
Lim J, Sakai E, Sakurai F, Mizuguchi H. miR-27b antagonizes BMP signaling in early differentiation of human induced pluripotent stem cells. Sci Rep 2021; 11:19820. [PMID: 34615950 PMCID: PMC8494899 DOI: 10.1038/s41598-021-99403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cells are feasible materials for studying the biological mechanisms underlying human embryogenesis. In early embryogenesis, definitive endoderm and mesoderm are differentiated from their common precursor, mesendoderm. Bone morphogenetic protein (BMP) signaling is responsible for regulating mesendoderm and mesoderm formation. Micro RNAs (miRNAs), short non-coding RNAs, broadly regulate biological processes via post-transcriptional repression. The expression of miR-27b, which is enriched in somatic cells, has been reported to increase through definitive endoderm and hepatic differentiation, but little is known about how miR-27b acts during early differentiation. Here, we used miR-27b-inducible hiPS cells to investigate the roles of miR-27b in the undifferentiated and early-differentiated stages. In undifferentiated hiPS cells, miR-27b suppressed the expression of pluripotency markers [alkaline phosphatase (AP) and nanog homeobox (NANOG)] and cell proliferation. Once differentiation began, miR-27b expression repressed phosphorylated SMAD1/5, the mediators of the BMP signaling, throughout definitive endoderm differentiation. Consistent with the above findings, miR-27b overexpression downregulated BMP-induced mesendodermal marker genes [Brachyury, mix paired-like homeobox 1 (MIXL1) and eomesodermin (EOMES)], suggesting that miR-27b had an inhibitory effect on early differentiation. Collectively, our findings revealed a novel antagonistic role of miR-27b in the BMP signaling pathway in the early differentiation of hiPS cells.
Collapse
Affiliation(s)
- Jaeeun Lim
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan. .,The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Kostopoulou N, Bellou S, Bagli E, Markou M, Kostaras E, Hyvönen M, Kalaidzidis Y, Papadopoulos A, Chalmantzi V, Kyrkou A, Panopoulou E, Fotsis T, Murphy C. Embryonic stem cells are devoid of macropinocytosis, a trafficking pathway for activin A in differentiated cells. J Cell Sci 2021; 134:jcs246892. [PMID: 34313314 DOI: 10.1242/jcs.246892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Ligand-receptor complexes formed at the plasma membrane are internalised via various endocytic pathways that influence the ultimate signalling output by regulating the selection of interaction partners by the complex along the trafficking route. We report that, in differentiated cells, activin A-receptor complexes are internalised via clathrin-mediated endocytosis (CME) and macropinocytosis (MP), whereas in human embryonic stem cells (hESCs) internalisation occurs via CME. We further show that hESCs are devoid of MP, which becomes functional upon differentiation towards endothelial cells through mesoderm mediators. Our results reveal, for the first time, that MP is an internalisation route for activin A in differentiated cells, and that MP is not active in hESCs and is induced as cells differentiate.
Collapse
Affiliation(s)
- Nikoleta Kostopoulou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Sofia Bellou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Confocal Laser Scanning Microscopy Unit, Network of Research Supporting Laboratories, University of Ioannina, Ioannina, 45110, Greece
| | - Eleni Bagli
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Maria Markou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Eleftherios Kostaras
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Yiannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Angelos Papadopoulos
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Varvara Chalmantzi
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Athena Kyrkou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Ekaterini Panopoulou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Theodore Fotsis
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Carol Murphy
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, A118 Aston Webb, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Pollini D, Loffredo R, Maniscalco F, Cardano M, Micaelli M, Bonomo I, Licata NV, Peroni D, Tomaszewska W, Rossi A, Crippa V, Dassi E, Viero G, Quattrone A, Poletti A, Conti L, Provenzani A. Multilayer and MATR3-dependent regulation of mRNAs maintains pluripotency in human induced pluripotent stem cells. iScience 2021; 24:102197. [PMID: 33733063 PMCID: PMC7940987 DOI: 10.1016/j.isci.2021.102197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/22/2020] [Accepted: 02/11/2021] [Indexed: 10/28/2022] Open
Abstract
Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the OCT4 and YTHDF1 promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.
Collapse
Affiliation(s)
- Daniele Pollini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Rosa Loffredo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Maniscalco
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Institute of Biophysics, CNR, Trento, Italy
| | - Marina Cardano
- Cell Technology Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniele Peroni
- Mass Spectrometry Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
21
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
22
|
Ghimire S, Mantziou V, Moris N, Martinez Arias A. Human gastrulation: The embryo and its models. Dev Biol 2021; 474:100-108. [PMID: 33484705 DOI: 10.1016/j.ydbio.2021.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Technical and ethical limitations create a challenge to study early human development, especially following the first 3 weeks of development after fertilization, when the fundamental aspects of the body plan are established through the process called gastrulation. As a consequence, our current understanding of human development is mostly based on the anatomical and histological studies on Carnegie Collection of human embryos, which were carried out more than half a century ago. Due to the 14-day rule on human embryo research, there have been no experimental studies beyond the fourteenth day of human development. Mutagenesis studies on animal models, mostly in mouse, are often extrapolated to human embryos to understand the transcriptional regulation of human development. However, due to the existence of significant differences in their morphological and molecular features as well as the time scale of their development, it is obvious that complete knowledge of human development can be achieved only by studying the human embryo. These studies require a cellular framework. Here we summarize the cellular, molecular, and temporal aspects associated with human gastrulation and discuss how they relate to existing human PSCs based models of early development.
Collapse
Affiliation(s)
- Sabitri Ghimire
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Veronika Mantziou
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Naomi Moris
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | | |
Collapse
|
23
|
Daneshvar K, Ardehali MB, Klein IA, Hsieh FK, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W, Pondick JV, Gupta SK, Moran SP, Young RA, Kingston RE, Mullen AC. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 2020; 22:1211-1222. [PMID: 32895492 PMCID: PMC8008247 DOI: 10.1038/s41556-020-0572-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2020] [Indexed: 01/19/2023]
Abstract
Cooperation between DNA, RNA and protein regulates gene expression and controls differentiation through interactions that connect regions of nucleic acids and protein domains and through the assembly of biomolecular condensates. Here, we report that endoderm differentiation is regulated by the interaction between the long non-coding RNA (lncRNA) DIGIT and the bromodomain and extraterminal domain protein BRD3. BRD3 forms phase-separated condensates of which the formation is promoted by DIGIT, occupies enhancers of endoderm transcription factors and is required for endoderm differentiation. BRD3 binds to histone H3 acetylated at lysine 18 (H3K18ac) in vitro and co-occupies the genome with H3K18ac. DIGIT is also enriched in regions of H3K18ac, and the depletion of DIGIT results in decreased recruitment of BRD3 to these regions. Our findings show that cooperation between DIGIT and BRD3 at regions of H3K18ac regulates the transcription factors that drive endoderm differentiation and suggest that protein-lncRNA phase-separated condensates have a broader role as regulators of transcription.
Collapse
Affiliation(s)
- Kaveh Daneshvar
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Behfar Ardehali
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fu-Kai Hsieh
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Arcadia J Kratkiewicz
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Amin Mahpour
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Wenyang Li
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sweta K Gupta
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sean P Moran
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
24
|
Ngo J, Hashimoto M, Hamada H, Wynshaw-Boris A. Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev Biol 2020; 464:161-175. [PMID: 32579954 PMCID: PMC8301231 DOI: 10.1016/j.ydbio.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
The Dishevelled proteins transduce both canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1+/-; Dvl2-/-; Dvl3-/- embryos. Homozygous deletions in all three Dvl genes (Dvl TKO) resulted in defects in distal visceral endoderm migration and a complete failure to induce mesoderm formation. To identify potential mechanisms that lead to the defects in the developmental processes preceding gastrulation, we generated Dvl TKO mouse embryonic stem cells (mESCs) and compared the transcriptional profile of these cells with wild-type (WT) mESCs during germ lineage differentiation into 3D embryoid bodies (EBs). While the Dvl TKO mESCs displayed similar morphology, self-renewal properties, and minor transcriptional variation from WT mESCs, we identified major transcriptional dysregulation in the Dvl TKO EBs during differentiation in a number of genes involved in anterior-posterior pattern specification, gastrulation induction, mesenchyme morphogenesis, and mesoderm-derived tissue development. The absence of the Dvls leads to specific down-regulation of BMP signaling genes. Furthermore, exogenous activation of canonical Wnt, BMP, and Nodal signaling all fail to rescue the mesodermal defects in the Dvl TKO EBs. Moreover, endoderm differentiation was promoted in the absence of mesoderm in the Dvl TKO EBs, while the suppression of ectoderm differentiation was delayed. Overall, we demonstrate that the Dvls are dispensable for maintaining self-renewal in mESCs but are critical during differentiation to regulate key developmental signaling pathways to promote proper axis specification and mesoderm formation.
Collapse
Affiliation(s)
- Justine Ngo
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
25
|
Rao C, Malaguti M, Mason JO, Lowell S. The transcription factor E2A drives neural differentiation in pluripotent cells. Development 2020; 147:dev184093. [PMID: 32487737 PMCID: PMC7328008 DOI: 10.1242/dev.184093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
The intrinsic mechanisms that link extracellular signalling to the onset of neural differentiation are not well understood. In pluripotent mouse cells, BMP blocks entry into the neural lineage via transcriptional upregulation of inhibitor of differentiation (Id) factors. We have previously identified the major binding partner of Id proteins in pluripotent cells as the basic helix-loop-helix (bHLH) transcription factor (TF) E2A. Id1 can prevent E2A from forming heterodimers with bHLH TFs or from forming homodimers. Here, we show that overexpression of a forced E2A homodimer is sufficient to drive robust neural commitment in pluripotent cells, even under non-permissive conditions. Conversely, we find that E2A null cells display a defect in their neural differentiation capacity. E2A acts as an upstream activator of neural lineage genes, including Sox1 and Foxd4, and as a repressor of Nodal signalling. Our results suggest a crucial role for E2A in establishing neural lineage commitment in pluripotent cells.
Collapse
Affiliation(s)
- Chandrika Rao
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - John O Mason
- Centre for Discovery Brain Sciences, University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
26
|
Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Res 2020; 46:101867. [PMID: 32535494 PMCID: PMC7347010 DOI: 10.1016/j.scr.2020.101867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells.
Collapse
|
27
|
Shi J, Farzaneh M, Khoshnam SE. Yes-Associated Protein and PDZ Binding Motif: A Critical Signaling Pathway in the Control of Human Pluripotent Stem Cells Self-Renewal and Differentiation. Cell Reprogram 2020; 22:55-61. [PMID: 32125897 DOI: 10.1089/cell.2019.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) can self-renew indefinitely to generate cells like themselves with a normal karyotype and differentiate into other types of cells when stimulated with a proper set of internal and external signals. hPSCs including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are an alternative approach toward stem cell biology, drug discovery, disease modeling, and regenerative medicine. hESCs are commonly derived from the inner cell mass of preimplantation embryos and can maintain their pluripotency in appropriate culture media. The Hippo pathway is a major integrator of cell surface-mediated signals and plays an essential role in regulating hESCs function. Yes-associated protein (YAP) and TAZ (PDZ binding motif) are critical downstream transcriptional coactivators in the Hippo pathway. The culture conditions have effects on the cytoplasmic or nuclear YAP/TAZ localization. Also, the activity of Hippo pathway is influenced by cell density, mechanical tension, and biochemical signals. In this review article, we summarize the function of YAP/TAZ and focus on the regulation of YAP/TAZ in self-renewal and differentiation of hESCs.
Collapse
Affiliation(s)
- Jia Shi
- Medical College, Weinan Vocational and Technical College, Weinan, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Chia CY, Madrigal P, Denil SLIJ, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L. GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Stem Cell Reports 2020; 12:57-70. [PMID: 30629940 PMCID: PMC6335596 DOI: 10.1016/j.stemcr.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.
Collapse
Affiliation(s)
- Crystal Y Chia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK
| | - Simon L I J Denil
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Iker Martinez
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - N Ray Dunn
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
NOTO Transcription Factor Directs Human Induced Pluripotent Stem Cell-Derived Mesendoderm Progenitors to a Notochordal Fate. Cells 2020; 9:cells9020509. [PMID: 32102328 PMCID: PMC7072849 DOI: 10.3390/cells9020509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The founder cells of the Nucleus pulposus, the centre of the intervertebral disc, originate in the embryonic notochord. After birth, mature notochordal cells (NC) are identified as key regulators of disc homeostasis. Better understanding of their biology has great potential in delaying the onset of disc degeneration or as a regenerative-cell source for disc repair. Using human pluripotent stem cells, we developed a two-step method to generate a stable NC-like population with a distinct molecular signature. Time-course analysis of lineage-specific markers shows that WNT pathway activation and transfection of the notochord-related transcription factor NOTO are sufficient to induce high levels of mesendoderm progenitors and favour their commitment toward the notochordal lineage instead of paraxial and lateral mesodermal or endodermal lineages. This study results in the identification of NOTO-regulated genes including some that are found expressed in human healthy disc tissue and highlights NOTO function in coordinating the gene network to human notochord differentiation.
Collapse
|
30
|
Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, Garcia-Bernardo J, Amatya S, Madrigal P, Isaacson A, Buettner F, Knights A, Natarajan KN, Vallier L, Marioni JC, Chhatriwala M, Stegle O. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat Commun 2020; 11:810. [PMID: 32041960 PMCID: PMC7010688 DOI: 10.1038/s41467-020-14457-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023] Open
Abstract
Recent developments in stem cell biology have enabled the study of cell fate decisions in early human development that are impossible to study in vivo. However, understanding how development varies across individuals and, in particular, the influence of common genetic variants during this process has not been characterised. Here, we exploit human iPS cell lines from 125 donors, a pooled experimental design, and single-cell RNA-sequencing to study population variation of endoderm differentiation. We identify molecular markers that are predictive of differentiation efficiency of individual lines, and utilise heterogeneity in the genetic background across individuals to map hundreds of expression quantitative trait loci that influence expression dynamically during differentiation and across cellular contexts.
Collapse
Affiliation(s)
- Anna S E Cuomo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| | - Daniel D Seaton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| | - Davis J McCarthy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Iker Martinez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Shradha Amatya
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Pedro Madrigal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- GeneLab, AWG Multi-Omics/System Biology, NASA Ames Research Center, Moffett Field, California, USA
| | - Abigail Isaacson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| | - Andrew Knights
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kedar Nath Natarajan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Danish Institute of Advanced Study (D-IAS), Functional Genomics and Metabolism Unit, University of Southern Denmark, Odense, Denmark
| | - Ludovic Vallier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK.
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Mariya Chhatriwala
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany.
| |
Collapse
|
31
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
32
|
Yiangou L, Grandy RA, Osnato A, Ortmann D, Sinha S, Vallier L. Cell cycle regulators control mesoderm specification in human pluripotent stem cells. J Biol Chem 2019; 294:17903-17914. [PMID: 31515269 PMCID: PMC6879335 DOI: 10.1074/jbc.ra119.008251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
The mesoderm is one of the three germ layers produced during gastrulation from which muscle, bones, kidneys, and the cardiovascular system originate. Understanding the mechanisms that control mesoderm specification could inform many applications, including the development of regenerative medicine therapies to manage diseases affecting these tissues. Here, we used human pluripotent stem cells to investigate the role of cell cycle in mesoderm formation. To this end, using small molecules or conditional gene knockdown, we inhibited proteins controlling G1 and G2/M cell cycle phases during the differentiation of human pluripotent stem cells into lateral plate, cardiac, and presomitic mesoderm. These loss-of-function experiments revealed that regulators of the G1 phase, such as cyclin-dependent kinases and pRb (retinoblastoma protein), are necessary for efficient mesoderm formation in a context-dependent manner. Further investigations disclosed that inhibition of the G2/M regulator cyclin-dependent kinase 1 decreases BMP (bone morphogenetic protein) signaling activity specifically during lateral plate mesoderm formation while reducing fibroblast growth factor/extracellular signaling-regulated kinase 1/2 activity in all mesoderm subtypes. Taken together, our findings reveal that cell cycle regulators direct mesoderm formation by controlling the activity of key developmental pathways.
Collapse
Affiliation(s)
- Loukia Yiangou
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Rodrigo A Grandy
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Anna Osnato
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Daniel Ortmann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Sanjay Sinha
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
33
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
34
|
Wang S, Du L, Peng GH. Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells. Cell Biosci 2019; 9:73. [PMID: 31497278 PMCID: PMC6719367 DOI: 10.1186/s13578-019-0335-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Modulation of the embryonic stem cell state is beneficial for elucidating the innate mechanisms of development and regenerative medicine. Ion flux plays important roles in modulating the transition between stemness and differentiation in mouse embryonic stem cells (mESCs). Optogenetics is a novel tool for manipulating ion flux. To investigate the impact of optical stimulation on embryonic stem cells, optogenetically engineered V6.5 mESCs were used to measure the depolarization mediated by ChR2 on the proliferation, self-renewal, and differentiation of mESCs. Blue light stimulation significantly inhibited ChR2-GFP-V6.5 ESC proliferation and disrupted the cell cycle progression, reducing the proportion of cells in the S phase. Interestingly, optical stimulation could inhibit ChR2-GFP-V6.5 ESC self-renewal and trigger differentiation by activating the extracellular regulated protein kinase (ERK) signaling pathway. Our data suggest that membrane potential changes play pivotal roles in regulating the proliferation, self-renewal and initiation of differentiation of mESCs.
Collapse
Affiliation(s)
- Shaojun Wang
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China.,2Department of Ophthalmology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071 China.,3Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lu Du
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China
| | - Guang-Hua Peng
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China.,3Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
35
|
Shen J, Lyu C, Zhu Y, Feng Z, Zhang S, Hoyle DL, Ji G, Brodsky RA, Cheng T, Wang ZZ. Defining early hematopoietic-fated primitive streak specification of human pluripotent stem cells by the orchestrated balance of Wnt, activin, and BMP signaling. J Cell Physiol 2019; 234:16136-16147. [PMID: 30740687 PMCID: PMC6689260 DOI: 10.1002/jcp.28272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/25/2023]
Abstract
Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China,Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuicui Lyu
- Department of Hematology, the First Central Hospital of Tianjin, Tianjin, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zicen Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China,Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guangzhen Ji
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Robert A. Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China,Collaborative Innovation Center for Cancer Medicine, Tianjin, China,Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, China,Correspondence Zack Z. Wang, Division of Hematology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 1029, Baltimore, MD 21205, USA. ., Tao Cheng, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science, 288 Nanjing Rd, Tianjin 300020, China.
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Correspondence Zack Z. Wang, Division of Hematology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 1029, Baltimore, MD 21205, USA. ., Tao Cheng, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science, 288 Nanjing Rd, Tianjin 300020, China.
| |
Collapse
|
36
|
Roberts RM, Ezashi T, Sheridan MA, Yang Y. Specification of trophoblast from embryonic stem cells exposed to BMP4. Biol Reprod 2019; 99:212-224. [PMID: 29579154 DOI: 10.1093/biolre/ioy070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 01/16/2023] Open
Abstract
Trophoblast (TB) comprises the outer cell layers of the mammalian placenta that make direct contact with the maternal uterus and, in species with a highly invasive placenta, maternal blood. It has its origin as trophectoderm, a single epithelial layer of extra-embryonic ectoderm that surrounds the embryo proper at the blastocyst stage of development. Here, we briefly compare the features of TB specification and determination in the mouse and the human. We then review research on a model system that has been increasingly employed to study TB emergence, namely the BMP4 (bone morphogenetic protein-4)-directed differentiation of human embryonic stem cells (ESCd), and discuss why outcomes using it have proved so uneven. We also examine the controversial aspects of this model, particularly the issue of whether or not the ESCd represents TB at all. Our focus here has been to explore similarities and potential differences between the phenotypes of ESCd, trophectoderm, placental villous TB, and human TB stem cells. We then explore the role of BMP4 in the differentiation of human pluripotent cells to TB and suggest that it converts the ESC into a totipotent state that is primed for TB differentiation when self-renewal is blocked. Finally we speculate that the TB formed from ESC is homologous to the trophectoderm-derived, invasive TB that envelopes the implanting conceptus during the second week of pregnancy.
Collapse
Affiliation(s)
- R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Toshihiko Ezashi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Megan A Sheridan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
37
|
Agarwal N, Popovic B, Martucci NJ, Fraunhoffer NA, Soto-Gutierrez A. Biofabrication of Autologous Human Hepatocytes for Transplantation: How Do We Get There? Gene Expr 2019; 19:89-95. [PMID: 30143060 PMCID: PMC6466180 DOI: 10.3727/105221618x15350366478989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed differentiation of hepatocytes from induced pluripotent stem cells (iPSCs) holds promise as source material for treating some liver disorders. The unlimited availability of perfectly differentiated iPSC-derived hepatocytes will dramatically facilitate cell therapies. While systems to manufacture large quantities of iPSC-derived cells have been developed, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. This short review highlights important challenges and possible solutions to the current state of hepatocyte biofabrication for cellular therapies to treat liver diseases. Successful cell transplantation will require optimizing the best cell function, overcoming limitations to cell numbers and safety, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new autologous stem cell-based therapies to treat liver diseases.
Collapse
Affiliation(s)
- Nandini Agarwal
- *School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Branimir Popovic
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole J. Martucci
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas A. Fraunhoffer
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- §Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Al Madhoun A, Alkandari S, Ali H, Carrio N, Atari M, Bitar MS, Al-Mulla F. Chemically Defined Conditions Mediate an Efficient Induction of Mesodermal Lineage from Human Umbilical Cord- and Bone Marrow- Mesenchymal Stem Cells and Dental Pulp Pluripotent-Like Stem Cells. Cell Reprogram 2019; 20:9-16. [PMID: 29412734 DOI: 10.1089/cell.2017.0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human umbilical cord Wharton's Jelly- and the bone marrow- mesenchymal stem cells (WJ-MSCs and BM-MSCs, respectively) and the newly identified dental pulp pluripotent-like stem cells (DPPSCs) are new sources for stem cells with prospective use in cell regeneration and therapy. These cells are self-renewable, can be differentiated into several lineages, and can potentiate the immune responses. We hypothesized that three-dimensional (3D) culture conditions and directed differentiation using specific signaling regulators will enhance an efficient generation of mesoderm (MD) lineage independent from the origin or source of the stem cells. For a period of 3-days, cell aggregates were generated in a serum-free media containing ascorbic acid, retinoic acid, and keratinocyte growth factor; sonic hedgehog and bone morphogenic protein-4 signaling were inhibited using small molecules. In all cell types used, the biochemical and molecular analysis revealed a time course-dependent induction of the mesodermal, but not endodermal or ectodermal makers. In this study, we utilized a novel and efficient serum-free protocol to differentiate WJ-MSCs, BM-MSCs, and DPPSCs into MD-cells. Successful development of an efficient differentiation protocol can further be utilized and expanded on to obtain MD- derivative cell lineages.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Sarah Alkandari
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Hamad Ali
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait .,2 Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University , Kuwait
| | - Neus Carrio
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Maher Atari
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Milad S Bitar
- 4 Department of Pharmacology and Toxicology, Health Sciences Center, Kuwait University , Kuwait
| | - Fahd Al-Mulla
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| |
Collapse
|
39
|
Torpe N, Gopal S, Baltaci O, Rella L, Handley A, Korswagen HC, Pocock R. A Protein Disulfide Isomerase Controls Neuronal Migration through Regulation of Wnt Secretion. Cell Rep 2019; 26:3183-3190.e5. [DOI: 10.1016/j.celrep.2019.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
|
40
|
Ostblom J, Nazareth EJP, Tewary M, Zandstra PW. Context-explorer: Analysis of spatially organized protein expression in high-throughput screens. PLoS Comput Biol 2019; 15:e1006384. [PMID: 30601802 PMCID: PMC6331134 DOI: 10.1371/journal.pcbi.1006384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/14/2019] [Accepted: 11/08/2018] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence highlights the importance of the cellular microenvironment as a regulator of phenotypic and functional cellular responses to perturbations. We have previously developed cell patterning techniques to control population context parameters, and here we demonstrate context-explorer (CE), a software tool to improve investigation cell fate acquisitions through community level analyses. We demonstrate the capabilities of CE in the analysis of human and mouse pluripotent stem cells (hPSCs, mPSCs) patterned in colonies of defined geometries in multi-well plates. CE employs a density-based clustering algorithm to identify cell colonies. Using this automatic colony classification methodology, we reach accuracies comparable to manual colony counts in a fraction of the time, both in micropatterned and unpatterned wells. Classifying cells according to their relative position within a colony enables statistical analysis of spatial organization in protein expression within colonies. When applied to colonies of hPSCs, our analysis reveals a radial gradient in the expression of the transcription factors SOX2 and OCT4. We extend these analyses to colonies of different sizes and shapes and demonstrate how the metrics derived by CE can be used to asses the patterning fidelity of micropatterned plates. We have incorporated a number of features to enhance the usability and utility of CE. To appeal to a broad scientific community, all of the software’s functionality is accessible from a graphical user interface, and convenience functions for several common data operations are included. CE is compatible with existing image analysis programs such as CellProfiler and extends the analytical capabilities already provided by these tools. Taken together, CE facilitates investigation of spatially heterogeneous cell populations for fundamental research and drug development validation programs. Cell behavior is influenced by cues that cells receive from their surrounding environment such as signals secreted from other cells and cell-to-cell contact. These factors are spatially heterogeneous and cells at different positions within a colony will experience varying degrees of influence from such environmental cues. In vitro assays often do not allow control over environmental variables and there is a lack of easy to use software to investigate the effect of spatial variation in these factors. We have developed a software package to address this gap and facilitate the quantification of spatially heterogeneous cell responses. Our software accurately identifies colonies of cells within a well and individual cells can be grouped according to their position within these colonies, which enables quantification of cell response as a function of cellular location. To support broad scientific accessibility, the full functionality of the software is available through a graphical user interface. Using this software to analyze data from a screening-optimized micropatterning platform, we show that human pluripotent stem cell-derived colonies grown either under pluripotency maintenance or differentiation-inducing conditions exhibit cell responses that are dependent on spatial organization. This technology should enable more accurate and predictive context-dependent drug screening and cell-fate investigation.
Collapse
Affiliation(s)
- Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Emanuel J. P. Nazareth
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Medicine by Design, A Canada First Research Excellence Program at the University of Toronto, Toronto, ON, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
41
|
Grandy R, Tomaz RA, Vallier L. Modeling Disease with Human Inducible Pluripotent Stem Cells. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:449-468. [PMID: 30355153 DOI: 10.1146/annurev-pathol-020117-043634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the physiopathology of disease remains an essential step in developing novel therapeutics. Although animal models have certainly contributed to advancing this enterprise, their limitation in modeling all the aspects of complex human disorders is one of the major challenges faced by the biomedical research field. Human induced pluripotent stem cells (hiPSCs) derived from patients represent a great opportunity to overcome this deficiency because these cells cover the genetic diversity needed to fully model human diseases. Here, we provide an overview of the history of hiPSC technology and discuss common challenges and approaches that we and others have faced when using hiPSCs to model disease. Our emphasis is on liver disease, and consequently, we review the progress made using this technology to produce functional liver cells in vitro and how these systems are being used to recapitulate a diversity of developmental, metabolic, genetic, and infectious liver disorders.
Collapse
Affiliation(s)
- Rodrigo Grandy
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Rute A Tomaz
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| |
Collapse
|
42
|
Matsuzaki T, Matsumoto S, Kasai T, Yoshizawa E, Okamoto S, Yoshikawa HY, Taniguchi H, Takebe T. Defining Lineage-Specific Membrane Fluidity Signatures that Regulate Adhesion Kinetics. Stem Cell Reports 2018; 11:852-860. [PMID: 30197117 PMCID: PMC6178887 DOI: 10.1016/j.stemcr.2018.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cellular membrane fluidity is a critical modulator of cell adhesion and migration, prompting us to define the systematic landscape of lineage-specific cellular fluidity throughout differentiation. Here, we have unveiled membrane fluidity landscapes in various lineages ranging from human pluripotency to differentiated progeny: (1) membrane rigidification precedes the exit from pluripotency, (2) membrane composition modulates activin signaling transmission, and (3) signatures are relatively germ layer specific presumably due to unique lipid compositions. By modulating variable lineage-specific fluidity, we developed a label-free “adhesion sorting (AdSort)” method with simple cultural manipulation, effectively eliminating pluripotent stem cells and purifying target population as a result of the over 1,150 of screened conditions combining compounds and matrices. These results underscore the important role of tunable membrane fluidity in influencing stem cell maintenance and differentiation that can be translated into lineage-specific cell purification strategy. Membrane rigidification precedes the exit from pluripotency Germ layer-specific membrane fluidity signature exists Identification of polyphenols as a membrane fluidity modulator Fluidity-based adhesion sorting purify differentiated progeny from pluripotency
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Shinya Matsumoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Toshiharu Kasai
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
43
|
Zhang B, He L, Liu Y, Zhang J, Zeng Q, Wang S, Fan Z, Fang F, Chen L, Lv Y, Xi J, Yue W, Li Y, Pei X. Prostaglandin E 2 Is Required for BMP4-Induced Mesoderm Differentiation of Human Embryonic Stem Cells. Stem Cell Reports 2018; 10:905-919. [PMID: 29478896 PMCID: PMC5919771 DOI: 10.1016/j.stemcr.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023] Open
Abstract
The accurate control of early cell fate specification during differentiation of human embryonic stem cells (hESCs) is critical for acquiring pure therapeutic cell populations of interest. Bone morphogenetic protein 4 (BMP4) is a key mesoderm inducer from ESCs. However, the molecular mechanism of the mesodermal cell fate decision induced by BMP4 remains unclear. Here, we demonstrate the requirement of a bioactive lipid, prostaglandin E2 (PGE2), for the mesoderm specification from hESCs by BMP4 induction. We show that BMP4 directly regulates the expression of the key enzyme for PGE2 synthesis, COX-1, and promotes PGE2 production. More importantly, in the absence of BMP4, forced COX-1 expression or PGE2 treatment is sufficient to initiate mesoderm specification of hESCs by activation of EP2-PKA signaling and modulation of nuclear translocation of β-catenin. Together, our findings provide insights into the critical role of BMP regulation of PGE2 synthesis and its downstream signaling in initiating mesoderm commitment of hESCs. COX-1 and PGE2 played pivotal roles in the mesoderm specification of hESCs Specific inhibition of COX-1 suppressed mesoderm differentiation of hESCs BMP4 directly upregulated the transcription of the COX-1 PGE2 stimulated differentiation mainly via the EP2-PKA-GSK3β/β-catenin signaling pathway
Collapse
Affiliation(s)
- Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jing Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Fang Fang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yang Lv
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| |
Collapse
|
44
|
Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadée C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L. The SMAD2/3 interactome reveals that TGFβ controls m 6A mRNA methylation in pluripotency. Nature 2018; 555:256-259. [PMID: 29489750 PMCID: PMC5951268 DOI: 10.1038/nature25784] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Pedro Madrigal
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Juned Kadiwala
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Nina C Hubner
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Igor Ruiz de Los Mozos
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Christoph Sadée
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - An-Sofie Lenaerts
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Shota Nakanoh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rodrigo Grandy
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Edward Farnell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jernej Ule
- Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Sasha Mendjan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
45
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou XF, Liao H. Small Molecules for Neural Stem Cell Induction. Stem Cells Dev 2018; 27:297-312. [PMID: 29343174 DOI: 10.1089/scd.2017.0282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) from other somatic cells has provided great hopes for transplantation therapies. However, these cells still cannot be used for clinical application due to the low reprogramming and differentiation efficiency beside the risk of mutagenesis and tumor formation. Compared to iPSCs, induced neural stem cells (iNSCs) are easier to terminally differentiate into neural cells and safe; thus, iNSCs hold more opportunities than iPSCs to treat neural diseases. On the other hand, recent studies have showed that small molecules (SMs) can dramatically improve the efficiency of reprogramming and SMs alone can even convert one kind of somatic cells into another, which is much safer and more effective than transcription factor-based methods. In this study, we provide a review of SMs that are generally used in recent neural stem cell induction studies, and discuss the main mechanisms and pathways of each SM.
Collapse
Affiliation(s)
- Donghui Liu
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China .,2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Nimshitha Pavathuparambil Abdul Manaph
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia .,3 Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital , Adelaide, South Australia
| | - Mohammed Al-Hawwas
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Xin-Fu Zhou
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Hong Liao
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
46
|
Yachie-Kinoshita A, Onishi K, Ostblom J, Langley MA, Posfai E, Rossant J, Zandstra PW. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions. Mol Syst Biol 2018; 14:e7952. [PMID: 29378814 PMCID: PMC5787708 DOI: 10.15252/msb.20177952] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cells (PSCs) exist in multiple stable states, each with specific cellular properties and molecular signatures. The mechanisms that maintain pluripotency, or that cause its destabilization to initiate development, are complex and incompletely understood. We have developed a model to predict stabilized PSC gene regulatory network (GRN) states in response to input signals. Our strategy used random asynchronous Boolean simulations (R-ABS) to simulate single-cell fate transitions and strongly connected components (SCCs) strategy to represent population heterogeneity. This framework was applied to a reverse-engineered and curated core GRN for mouse embryonic stem cells (mESCs) and used to simulate cellular responses to combinations of five signaling pathways. Our simulations predicted experimentally verified cell population compositions and input signal combinations controlling specific cell fate transitions. Extending the model to PSC differentiation, we predicted a combination of signaling activators and inhibitors that efficiently and robustly generated a Cdx2+Oct4- cells from naïve mESCs. Overall, this platform provides new strategies to simulate cell fate transitions and the heterogeneity that typically occurs during development and differentiation.
Collapse
Affiliation(s)
- Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,The Systems Biology Institute, Minato, Tokyo, Japan
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Matthew A Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada .,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Medicine by Design, A Canada First Research Excellence Program at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Ong E, Sarntivijai S, Jupp S, Parkinson H, He Y. Comparison, alignment, and synchronization of cell line information between CLO and EFO. BMC Bioinformatics 2017; 18:557. [PMID: 29322915 PMCID: PMC5763470 DOI: 10.1186/s12859-017-1979-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Experimental Factor Ontology (EFO) is an application ontology driven by experimental variables including cell lines to organize and describe the diverse experimental variables and data resided in the EMBL-EBI resources. The Cell Line Ontology (CLO) is an OBO community-based ontology that contains information of immortalized cell lines and relevant experimental components. EFO integrates and extends ontologies from the bio-ontology community to drive a number of practical applications. It is desirable that the community shares design patterns and therefore that EFO reuses the cell line representation from the Cell Line Ontology (CLO). There are, however, challenges to be addressed when developing a common ontology design pattern for representing cell lines in both EFO and CLO. RESULTS In this study, we developed a strategy to compare and map cell line terms between EFO and CLO. We examined Cellosaurus resources for EFO-CLO cross-references. Text labels of cell lines from both ontologies were verified by biological information axiomatized in each source. The study resulted in the identification 873 EFO-CLO aligned and 344 EFO unique immortalized permanent cell lines. All of these cell lines were updated to CLO and the cell line related information was merged. A design pattern that integrates EFO and CLO was also developed. CONCLUSION Our study compared, aligned, and synchronized the cell line information between CLO and EFO. The final updated CLO will be examined as the candidate ontology to import and replace eligible EFO cell line classes thereby supporting the interoperability in the bio-ontology domain. Our mapping pipeline illustrates the use of ontology in aiding biological data standardization and integration through the biological and semantics content of cell lines.
Collapse
Affiliation(s)
- Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA
- Samples, Phenotypes, and Ontologies Team, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Sirarat Sarntivijai
- Samples, Phenotypes, and Ontologies Team, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Simon Jupp
- Samples, Phenotypes, and Ontologies Team, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Helen Parkinson
- Samples, Phenotypes, and Ontologies Team, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Yongqun He
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA
- Unit of Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
48
|
Leukemia Inhibitory Factor Increases Survival of Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Transl Res 2017; 11:1-13. [PMID: 29019149 DOI: 10.1007/s12265-017-9769-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023]
Abstract
Leukemia inhibitory factor (LIF) is a growth factor with pleiotropic biological functions. It has been reported that LIF acts at different stages during mesoderm development. Also, it has been shown that LIF has a cytoprotective effect on neonatal murine cardiomyocytes (CMs) in culture, but little is known about the role of LIF during human cardiogenesis. Thus, we analyzed the effects of LIF on human pluripotent stem cells (PSC) undergoing cardiac differentiation. We first showed that LIF is expressed in the human heart during early development. We found that the addition of LIF within a precise time window during the in vitro differentiation process significantly increased CMs viability. This finding was associated to a decrease in the expression of pro-apoptotic protein Bax, which coincides with a reduction of the apoptotic rate. Therefore, the addition of LIF may represent a promising strategy for increasing CMs survival derived from PSCs.
Collapse
|
49
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Junqueira Reis LC, Picanço-Castro V, Paes BCMF, Pereira OA, Gerdes Gyuricza I, de Araújo FT, Morato-Marques M, Moreira LF, Costa EDBO, dos Santos TPM, Covas DT, Pereira Carramaschi LDV, Russo EMDS. Induced Pluripotent Stem Cell for the Study and Treatment of Sickle Cell Anemia. Stem Cells Int 2017; 2017:7492914. [PMID: 28814957 PMCID: PMC5549510 DOI: 10.1155/2017/7492914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Sickle cell anemia (SCA) is a monogenic disease of high mortality, affecting millions of people worldwide. There is no broad, effective, and safe definitive treatment for SCA, so the palliative treatments are the most used. The establishment of an in vitro model allows better understanding of how the disease occurs, besides allowing the development of more effective tests and treatments. In this context, iPSC technology is a powerful tool for basic research and disease modeling, and a promise for finding and screening more effective and safe drugs, besides the possibility of use in regenerative medicine. This work obtained a model for study and treatment of SCA using iPSC. Then, episomal vectors were used for reprogramming peripheral blood mononuclear cells to obtain integration-free iPSC. Cells were collected from patients treated with hydroxyurea and without treatment. The iPSCP Bscd lines were characterized for pluripotent and differentiation potential. The iPSC lines were differentiated into HSC, so that we obtained a dynamic and efficient protocol of CD34+CD45+ cells production. We offer a valuable tool for a better understanding of how SCA occurs, in addition to making possible the development of more effective drugs and treatments and providing better understanding of widely used treatments, such as hydroxyurea.
Collapse
Affiliation(s)
- Luiza Cunha Junqueira Reis
- Pharmaceutical Sciences School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Blood Center Foundation of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Virgínia Picanço-Castro
- Blood Center Foundation of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bárbara Cristina Martins Fernandes Paes
- Blood Center Foundation of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Olívia Ambrozini Pereira
- Philosophy, Sciences and Languages School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | - Dimas Tadeu Covas
- Blood Center Foundation of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elisa Maria de Sousa Russo
- Pharmaceutical Sciences School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Blood Center Foundation of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|