1
|
Cheng M, Liu S, Zhu M, Li M, Yu Q. Adhesin Antibody-Grafted Mesoporous Silica Nanoparticles Suppress Immune Escape for Treatment of Fungal Systemic Infection. Molecules 2024; 29:4547. [PMID: 39407477 PMCID: PMC11478059 DOI: 10.3390/molecules29194547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Life-threatening systemic fungal infections caused by Candida albicans are significant contributors to clinical mortality, particularly among cancer patients and immunosuppressed individuals. The evasion of the immune response facilitated by fungal surface components enables fungal pathogens to evade macrophage attacks and to establish successful infections. This study developed a mesoporous silica nanoplatform, i.e., MSNP-EAP1Ab, which is composed of mesoporous silica nanoparticles grafted with the antibody of C. albicans surface adhesin Eap1. The activity of MSNP-EAP1Ab against C. albicans immune escape and infection was then evaluated by using the cell interaction model and the mouse systemic infection model. During interaction between C. albicans cells and macrophages, MSNP-EAP1Ab significantly inhibited fungal immune escape, leading to the enhanced phagocytosis of fungal cells by macrophages, with phagocytosis rates increasing from less than 8% to 14%. Furthermore, after treatment of the C. albicans-infected mice, MSNP-EAP1Ab drastically prolonged the mouse survival time and decreased the kidney fungal burden from >30,0000 CFU/g kidney to <100 CFU/g kidney, indicating the rapid recognition and killing of the pathogens by immune cells. Moreover, MSNP-EAP1Ab attenuated kidney tissue inflammation, with remarkable attenuation of renal immune cell accumulation. This study presents an innovative nanoplatform that targets the C. albicans adhesin, offering a promising approach for combatting systemic fungal infections.
Collapse
Affiliation(s)
- Mengjuan Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Suke Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Mengsen Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Bose S, Sahu SR, Dutta A, Acharya N. A chemically induced attenuated strain of Candida albicans generates robust protective immune responses and prevents systemic candidiasis development. eLife 2024; 13:RP93760. [PMID: 38787374 PMCID: PMC11126311 DOI: 10.7554/elife.93760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
3
|
Zhao G, Li Y, Chen T, Liu F, Zheng Y, Liu B, Zhao W, Qi X, Sun W, Gao C. TRIM26 alleviates fatal immunopathology by regulating inflammatory neutrophil infiltration during Candida infection. PLoS Pathog 2024; 20:e1011902. [PMID: 38166150 PMCID: PMC10786383 DOI: 10.1371/journal.ppat.1011902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/12/2024] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.
Collapse
Affiliation(s)
- Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Yanqi Li
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaopeng Qi
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
4
|
Awasthi D, Chopra S, Cho BA, Emmanuelli A, Sandoval TA, Hwang SM, Chae CS, Salvagno C, Tan C, Vasquez-Urbina L, Fernandez Rodriguez JJ, Santagostino SF, Iwawaki T, Romero-Sandoval EA, Crespo MS, Morales DK, Iliev ID, Hohl TM, Cubillos-Ruiz JR. Inflammatory ER stress responses dictate the immunopathogenic progression of systemic candidiasis. J Clin Invest 2023; 133:e167359. [PMID: 37432737 PMCID: PMC10471176 DOI: 10.1172/jci167359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1β, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.
Collapse
Affiliation(s)
| | - Sahil Chopra
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Byuri A. Cho
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Chen Tan
- Department of Obstetrics and Gynecology, and
| | | | - Jose J. Fernandez Rodriguez
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | - Sara F. Santagostino
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medicine, New York, New York, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariano Sanchez Crespo
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | | | - Iliyan D. Iliev
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine and
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York, USA
| | - Tobias M. Hohl
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Miryala SK, Anbarasu A, Ramaiah S. Organ-specific host differential gene expression analysis in systemic candidiasis: A systems biology approach. Microb Pathog 2022; 169:105677. [PMID: 35839997 PMCID: PMC9283004 DOI: 10.1016/j.micpath.2022.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Yang M, Solis NV, Marshall M, Garleb R, Zhou T, Wang D, Swidergall M, Pearlman E, Filler SG, Liu H. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathog 2022; 18:e1010192. [PMID: 34995333 PMCID: PMC8775328 DOI: 10.1371/journal.ppat.1010192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/20/2022] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.
Collapse
Affiliation(s)
- Mengli Yang
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Rachel Garleb
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Daidong Wang
- Amgen Inc. Thousand Oaks, California, United States of America
| | - Marc Swidergall
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Quevedo-Martínez JU, Garfias Y, Jimenez J, Garcia O, Venegas D, Bautista de Lucio VM. Pro-inflammatory cytokine profile is present in the serum of Mexican patients with different stages of diabetic retinopathy secondary to type 2 diabetes. BMJ Open Ophthalmol 2021; 6:e000717. [PMID: 34263060 PMCID: PMC8246380 DOI: 10.1136/bmjophth-2021-000717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022] Open
Abstract
Aim It’s been reported that pro-inflammatory cytokines are elevated in patients with diabetic retinopathy (DR); this may contribute to the pathophysiology of the disease. The aim of this study is to measure the concentration of various inflammatory cytokines from the main CD4+ T helper inflammatory responses in blood serum from Mexican patients with DR in different stages using cytometric bead array (CBA) technology and correlate them with the presence and severity of DR in order to find possible DR biomarkers that serve as diagnostic or therapeutic predictors. Methods 64 subjects were included in the study, 16 in the control group, 16 in the type 2 diabetes mellitus no DR (NDR) group, 16 in the non-proliferative DR (NPDR) group and 16 in the proliferative DR (PDR) group. Cytokine concentrations of interleukin (IL) 1ß, IL‐2, IL‐4, IL‐6, IL‐8, IL‐10, IL‐12, IL‐17A, tumour necrosis factor alpha (TNFα) and interferon-gamma in serum samples were measured using Human Inflammatory and TH1/TH2/TH17 CBA Kit. Results IL-6, IL-12, IL-17a and TNFα were significantly higher in the patients with DR compared with the control group. The PDR group showed a slightly lower concentration of serum cytokines IL-6, IL-12 and IL-17a. TNFα showed a higher concentration compared with healthy controls, NDR and NPDR subjects. We also found a positive statistical correlation between the presence and severity of DR with the clinical parameters haemoglobin A1c, body mass index and serum creatinine and the concentration of serum cytokines IL-6 and TNFα. Conclusion Our findings suggest that patients with diabetes and DR have a stronger chronic inflammatory profile compared with non-diabetic subjects.
Collapse
Affiliation(s)
| | - Yonathan Garfias
- Unidad de Investigación, Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM. Av. Universidad 3000, 04510. Ciudad Universitaria, Mexico City, Mexico
| | - Joanna Jimenez
- Affective Disorders, Instituto Nacional de Psiquiatria Ramon de la Fuente Muniz Centro de Documentacion e Informacion en Psiquiatria y Salud Mental, Ciudad de Mexico, Mexico
| | - Osvaldo Garcia
- Econometrics and Operation Research, Universidad Autonoma de Tamaulipas, Victoria, Mexico
| | - Diana Venegas
- Research Unit, Microbiology and Ocular Proteomics Department, Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico
| | - Victor Manuel Bautista de Lucio
- Research Unit, Microbiology and Ocular Proteomics Department, Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico
| |
Collapse
|
9
|
Teo YJ, Ng SL, Mak KW, Setiagani YA, Chen Q, Nair SK, Sheng J, Ruedl C. Renal CD169 ++ resident macrophages are crucial for protection against acute systemic candidiasis. Life Sci Alliance 2021; 4:e202000890. [PMID: 33608410 PMCID: PMC7918719 DOI: 10.26508/lsa.202000890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Disseminated candidiasis remains as the most common hospital-acquired bloodstream fungal infection with up to 40% mortality rate despite the advancement of medical and hygienic practices. While it is well established that this infection heavily relies on the innate immune response for host survival, much less is known for the protective role elicited by the tissue-resident macrophage (TRM) subsets in the kidney, the prime organ for Candida persistence. Here, we describe a unique CD169++ TRM subset that controls Candida growth and inflammation during acute systemic candidiasis. Their absence causes severe fungal-mediated renal pathology. CD169++ TRMs, without being actively involved in direct fungal clearance, increase host resistance by promoting IFN-γ release and neutrophil ROS activity.
Collapse
Affiliation(s)
- Yi Juan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng Wai Mak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Qi Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sajith Kumar Nair
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
García-Carnero LC, Clavijo-Giraldo DM, Gómez-Gaviria M, Lozoya-Pérez NE, Tamez-Castrellón AK, López-Ramírez LA, Mora-Montes HM. Early Virulence Predictors during the Candida Species- Galleria mellonella Interaction. J Fungi (Basel) 2020; 6:jof6030152. [PMID: 32867152 PMCID: PMC7559698 DOI: 10.3390/jof6030152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections are a serious and increasing threat for human health, and one of the most frequent etiological agents for systemic mycoses is Candida spp. The gold standard to assess Candida virulence is the mouse model of systemic candidiasis, a restrictive, expensive, and time-consuming approach; therefore, invertebrate models have been proposed as alternatives. Galleria mellonella larvae have several traits that make them good candidates to study the fungal virulence. Here, we showed that a reduction in circulating hemocytes, increased melanin production, phenoloxidase, and lactate dehydrogenase activities were observed at 12 and 24 h postinoculation of highly virulent Candidatropicalis strains, while minimal changes in these parameters were observed in low-virulent strains. Similarly, the most virulent species Candida albicans, Candida tropicalis, Candida auris, Candida parapsilosis, and Candida orthopsilosis have led to significant changes in those parameters; while the low virulent species Candida guilliermondii, Candida krusei, and Candida metapsilosis induced modest variations in these immunological and cytotoxicity parameters. Since changes in circulating hemocytes, melanin production, phenoloxidase and lactate dehydrogenase activities showed a correlation with the larval median survival rates at 12 and 24 h postinoculation, we proposed them as candidates for early virulence predictors in G. mellonella.
Collapse
|
11
|
Candida albicans-induced acute lung injury through activating several inflammatory signaling pathways in mice. Int Immunopharmacol 2019; 72:275-283. [PMID: 31005037 DOI: 10.1016/j.intimp.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Candida albicans infection-induced acute lung injury is one of the most prevalent diseases in immunosuppressive individual. Nevertheless, the mechanism by which Candida albicans induced acute lung injury remains unclear. The present study investigated the mechanism by which Candida albicans induced acute lung injury in mice. Mice were randomly divided into four groups and intratracheally injected with 60 μl Candida albicans (106 CFU) or normal saline. Half of the mice were sacrificed at 6 h after Candida albicans. The rest of the mice for survival test were observed until 7 d after Candida albicans. As expected, immunosuppression aggravated Candida albicans-induced acute lung injury and death in mice. Additionally, Candida albicans infection elevated mRNA levels of pro-inflammatory and chemokines in lungs and the levels of IL-6, IL-1β and IL-17 in serum. Further study showed that Candida albicans promoted nuclear translocation of NF-κB p50 and p65 subunits in pulmonary epithelial cells and interstitial cells. Candida albicans induced pulmonary p38, ERK1/2 and Akt phosphorylation in normal and immunosuppressive mice. Moreover, Candida albicans infection activated pulmonary STAT3 signaling in normal and immunosuppressive mice. Overall, these results suggest that Candida albicans induced acute lung injury and death may be through activating several inflammatory signaling pathways.
Collapse
|
12
|
Verma P, Laforce-Nesbitt SS, Tucker R, Mao Q, De Paepe ME, Bliss JM. Galectin-3 expression and effect of supplementation in neonatal mice with disseminated Candida albicans infection. Pediatr Res 2019; 85:527-532. [PMID: 30679793 PMCID: PMC6397689 DOI: 10.1038/s41390-019-0279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Invasive candidiasis is an important cause of fungal infections in immunocompromised patients, including premature infants. The S-type lectin, galectin-3 (gal3), is increasingly recognized for its role in antifungal host defense. This study tested the hypothesis that tissue gal3 expression is affected by disseminated infection with Candida albicans and that supplementation with gal3 will provide a benefit in this setting. METHODS To determine the expression of gal3 at the tissue level in response to disseminated infection with C. albicans, adult and neonatal mice were infected using previously established models. End points were chosen that reflected substantive tissue fungal burden but before mortality. RESULTS No differences in gal3 were detected in tissues of adult animals relative to uninfected controls. In neonatal animals, gal3 concentration was lower in the spleen of infected animals compared to uninfected. Pretreatment of neonatal mice with recombinant gal3 was associated with reduced mortality and reduced fungal burden in the kidney, spleen, and lung at 24 h following infection. CONCLUSION These findings suggest that gal3 has an active role in host defense against candidiasis and that neonatal animals can benefit from supplementation with this lectin in the setting of disseminated candidiasis.
Collapse
Affiliation(s)
- Prasoon Verma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI
| | - Sonia S. Laforce-Nesbitt
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI
| | - Quanfu Mao
- Department of Pathology and Laboratory Medicine, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI
| | - Monique E. De Paepe
- Department of Pathology and Laboratory Medicine, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI
| | - Joseph M. Bliss
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI,Corresponding Author: Dept. of Pediatrics, Women & Infants Hospital of Rhode Island, 101 Dudley St., Providence, RI 02905, Phone: (401)274-1100, Fax: (401) 453-7571,
| |
Collapse
|
13
|
The role of neutrophils in host defense against invasive fungal infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:181-189. [PMID: 31552161 DOI: 10.1007/s40588-018-0098-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of Review Invasive fungal infections caused by the commensal yeast Candida and the ubiquitous, inhaled mold Aspergillus have emerged as major causes of morbidity and mortality in critically ill and immunosuppressed patient populations. Here, we review how neutrophils contribute to effective immunity against these infections. Recent Findings Studies in mouse models of invasive candidiasis and aspergillosis, and observations in hematological patients with chemotherapy-induced neutropenia and in patients with primary immunodeficiency disorders that manifest with these infections have highlighted the critical role of neutrophils and have identified key immune factors that promote neutrophil-mediated effective host defense against invasive fungal disease. Summary Neutrophils are crucial in host protection against invasive candidiasis and aspergillosis. Recent advances in our understanding of the molecular cues that mediate protective neutrophil recruitment and effector function against these infections hold promise for developing immune-based strategies to improve the outcomes of affected patients.
Collapse
|
14
|
Ramani K, Jawale CV, Verma AH, Coleman BM, Kolls JK, Biswas PS. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight 2018; 3:98241. [PMID: 29720566 DOI: 10.1172/jci.insight.98241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17-responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra-/- animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17-mediated renal defense against fatal systemic C. albicans infection.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chetan V Jawale
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jay K Kolls
- Richard King Mellon Foundation for Pediatric Research, Children's Hospital of UPMC, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Stawowczyk M, Naseem S, Montoya V, Baker DP, Konopka J, Reich NC. Pathogenic Effects of IFIT2 and Interferon-β during Fatal Systemic Candida albicans Infection. mBio 2018; 9:e00365-18. [PMID: 29666281 PMCID: PMC5904408 DOI: 10.1128/mbio.00365-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
A balanced immune response to infection is essential to prevent the pathology and tissue damage that can occur from an unregulated or hyperactive host defense. Interferons (IFNs) are critical mediators of the innate defense to infection, and in this study we evaluated the contribution of a specific gene coding for IFIT2 induced by type I IFNs in a murine model of disseminated Candida albicans Invasive candidiasis is a frequent challenge during immunosuppression or surgical medical interventions, and C. albicans is a common culprit that leads to high rates of mortality. When IFIT2 knockout mice were infected systemically with C. albicans, they were found to have improved survival and reduced fungal burden compared to wild-type mice. One of the mechanisms by which IFIT2 increases the pathological effects of invasive C. albicans appears to be suppression of NADPH oxidase activation. Loss of IFIT2 increases production of reactive oxygen species by leukocytes, and we demonstrate that IFIT2 is a binding partner of a critical regulatory subunit of NADPH oxidase, p67phox Since the administration of IFN has been used therapeutically to combat viral infections, cancer, and multiple sclerosis, we evaluated administration of IFN-β to mice prior to C. albicans infection. IFN-β treatment promoted pathology and death from C. albicans infection. We provide evidence that IFIT2 increases the pathological effects of invasive C. albicans and that administration of IFN-β has deleterious effects during infection.IMPORTANCE The attributable mortality associated with systemic C. albicans infections in health care settings is significant, with estimates greater than 40%. This life-threatening disease is common in patients with weakened immune systems, either due to disease or as a result of therapies. Type I interferons (IFN) are cytokines of the innate defense response that are used as immune modulators in the treatment of specific cancers, viral infections, and multiple sclerosis. In this study, we show using a murine model that the loss of a specific IFN-stimulated gene coding for IFIT2 improves survival following systemic C. albicans infection. This result infers a harmful effect of IFN during C. albicans infection and is supported by our finding that administration of IFN-β prior to invasive infection promotes fatal pathology. The findings contribute to our understanding of the innate immune response to C. albicans, and they suggest that IFN therapies present a risk factor for disseminated candidiasis.
Collapse
Affiliation(s)
- Marcin Stawowczyk
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Valeria Montoya
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | | | - James Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
16
|
Mohamed HA, Radwan RR, Raafat AI, Ali AEH. Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: in vitro and in vivo study. Drug Deliv Transl Res 2017; 8:191-203. [DOI: 10.1007/s13346-017-0452-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Li C, Cao J, Wang L, Jia X, He J, Zhang L. Up-regulation of chemokine CXCL13 in systemic candidiasis. Clin Immunol 2017; 191:1-9. [PMID: 29198822 DOI: 10.1016/j.clim.2017.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/12/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Candida albicans is the leading cause of healthcare associated bloodstream infections. Chemokine CXCL13 is well-known involved in inflammation, but its role in candidemia has not been assessed. Our study firstly demonstrated that serum CXCL13 levels were significantly elevated in candidemic patients compared with bacteremic patients and control subjects by ELISA, and CXCL13 concentrations were positively and significantly correlated with clinical Sequential Organ Failure Assessment (SOFA) scores and several laboratory parameters in patients. Moreover, ROC curve analysis showed the diagnostic efficiency of CXCL13 was superior to CRP and PCT. To further study the role of CXCL13, a mouse model was established. Importantly, the data showed the dramatically elevated levels of CXCL13 in mice serum and infected kidney, were significantly correlated with renal fungal burden and pathology scores. In conclusion, our results indicated that CXCL13 had strong potential as a novel biomarker of diagnosis and prognosis for candidemia.
Collapse
Affiliation(s)
- Congya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lifang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianchun He
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liping Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 2016; 6:36055. [PMID: 27808111 PMCID: PMC5093689 DOI: 10.1038/srep36055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Collapse
Affiliation(s)
- Betty Hebecker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Vlaic
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany.,Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, Germany
| | - Theresia Conrad
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Bernhard Hube
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
19
|
Ikeh MAC, Kastora SL, Day AM, Herrero-de-Dios CM, Tarrant E, Waldron KJ, Banks AP, Bain JM, Lydall D, Veal EA, MacCallum DM, Erwig LP, Brown AJP, Quinn J. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol Biol Cell 2016; 27:2784-801. [PMID: 27385340 PMCID: PMC5007097 DOI: 10.1091/mbc.e16-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
This study provides the first evidence that the phosphate-responsive transcription factor Pho4 is vital for survival of Candida albicans to diverse and physiologically relevant stresses. Pho4 is important for C. albicans pathogenesis, and thus these findings illustrate how metabolic adaptation promotes C. albicans survival in the host. During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.
Collapse
Affiliation(s)
- Mélanie A C Ikeh
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stavroula L Kastora
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - A Peter Banks
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Judith M Bain
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Donna M MacCallum
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Lars P Erwig
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
20
|
Inhibiting the immunoproteasome exacerbates the pathogenesis of systemic Candida albicans infection in mice. Sci Rep 2016; 6:19434. [PMID: 26776888 PMCID: PMC4726078 DOI: 10.1038/srep19434] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/14/2015] [Indexed: 12/01/2022] Open
Abstract
Apart from its role in MHC class I antigen processing, the immunoproteasome has recently been implicated in the modulation of T helper cell differentiation under polarizing conditions in vitro and in the pathogenesis of autoimmune diseases in vivo. In this study, we investigated the influence of LMP7 on T helper cell differentiation in response to the fungus Candida albicans. We observed a strong effect of ONX 0914, an LMP7-selective inhibitor of the immunoproteasome, on IFN-γ and IL-17A production by murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated with C. albicans in vitro. Using a murine model of systemic candidiasis, we could confirm reduced generation of IFN-γ- and IL-17A-producing cells in ONX 0914 treated mice in vivo. Interestingly, ONX 0914 treatment resulted in increased susceptibility to systemic candidiasis, which manifested at very early stages of infection. Mice treated with ONX 0914 showed markedly increased kidney and brain fungal burden which resulted in enhanced neutrophil recruitment and immunopathology. Together, these results strongly suggest a role of the immunoproteasome in promoting proinflammatory T helper cells in response to C. albicans but also in affecting the innate antifungal immunity in a T helper cell-independent manner.
Collapse
|
21
|
Azevedo MDCS, Rosa PS, Soares CT, Fachin LRV, Baptista IMFD, Woods WJ, Garlet GP, Trombone APF, Belone ADFF. Analysis of Immune Response Markers in Jorge Lobo's Disease Lesions Suggests the Occurrence of Mixed T Helper Responses with the Dominance of Regulatory T Cell Activity. PLoS One 2015; 10:e0145814. [PMID: 26700881 PMCID: PMC4689386 DOI: 10.1371/journal.pone.0145814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023] Open
Abstract
Jorge Lobo's disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-β and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-β1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-β1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-β1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.
Collapse
Affiliation(s)
- Michelle de C. S. Azevedo
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Patricia S. Rosa
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Cleverson T. Soares
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Luciana R. V. Fachin
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | - William J. Woods
- Serviço Especializado em Dermatologia, Hospital das Clínicas do Acre, Rio Branco, São Paulo, Brazil
| | - Gustavo P. Garlet
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Ana Paula F. Trombone
- Departamento de Ciências da Saúde, Universidade do Sagrado Coração, Bauru, São Paulo, Brazil
| | | |
Collapse
|
22
|
Tscherner M, Zwolanek F, Jenull S, Sedlazeck FJ, Petryshyn A, Frohner IE, Mavrianos J, Chauhan N, von Haeseler A, Kuchler K. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog 2015; 11:e1005218. [PMID: 26473952 PMCID: PMC4608838 DOI: 10.1371/journal.ppat.1005218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host. Candida albicans is the most prevalent fungal pathogen infecting humans, causing life-threatening infections in immunocompromised individuals. Host immune surveillance imposes stress conditions upon C. albicans, to which it has to adapt quickly to escape host killing. This can involve regulation of specific genes requiring disassembly and reassembly of histone proteins, around which DNA is wrapped to form the basic repeat unit of eukaryotic chromatin—the nucleosome. Here, we discover a novel function for the chromatin assembly-associated histone acetyltransferase complex NuB4 in oxidative stress response, antifungal drug tolerance as well as in fungal virulence. The NuB4 complex modulates the induction kinetics of hydrogen peroxide-induced genes. Furthermore, NuB4 negatively regulates susceptibility to killing by immune cells and thereby slowing the clearing from infected mice in vivo. Remarkably, the oxidative stress resistance seems restricted to C. albicans and closely related species, which might have acquired this function during coevolution with the host.
Collapse
Affiliation(s)
- Michael Tscherner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Florian Zwolanek
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Sabrina Jenull
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Fritz J. Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Ingrid E. Frohner
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - John Mavrianos
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res 2015; 15:fov042. [PMID: 26066553 DOI: 10.1093/femsyr/fov042] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
24
|
Treviño-Rangel RDJ, González GM, Martínez-Castilla AM, García-Juárez J, Robledo-Leal ER, González JG, Rosas-Taraco AG. Candida parapsilosis complex induces local inflammatory cytokines in immunocompetent mice. Med Mycol 2015; 53:612-21. [PMID: 25908650 DOI: 10.1093/mmy/myv021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/22/2015] [Indexed: 12/23/2022] Open
Abstract
Despite the increasing incidence of the Candida parapsilosis complex in the clinical setting and high mortality rates associated with disseminated infection, the host-fungus interactions regarding Candida parapsilosis sensu stricto and the closely related species C. orthopsilosis and C. metapsilosis remains blurred. In this study, we analyzed inflammatory cytokines levels and histopathology as well as fungal burden in spleen, kidney and lung of mice infected with six strains of the "psilosis" group with different enzymatic profiles. Strong interleukin 22 (IL-22) and tumor necrosis factor α (TNF-α) responses were observed in analyzed organs from infected mice (P < .0001) regardless of the species and enzymatic profile. TNF-α and IL-22 levels were related with spleen inflammation and fungal load. Fungal cells were detected only in spleen and kidney of infected mice, especially by day 2 post-challenge. The kidney showed glomerular retraction and partial destruction of renal tubules. Our data suggest that a strong inflammatory response, mainly of IL-22 and TNF-α, could be involved in Candida parapsilosis complex infection control.
Collapse
Affiliation(s)
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Azalia M Martínez-Castilla
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Jaime García-Juárez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Efrén R Robledo-Leal
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Nuevo León, México
| | - José G González
- Hospital Universitario, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Adrian G Rosas-Taraco
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| |
Collapse
|
25
|
|
26
|
Protection from systemic Candida albicans infection by inactivation of the Sts phosphatases. Infect Immun 2014; 83:637-45. [PMID: 25422266 DOI: 10.1128/iai.02789-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human fungal pathogen Candida albicans causes invasive candidiasis, characterized by fatal organ failure due to disseminated fungal growth and inflammatory damage. The suppressor of TCR signaling 1 (Sts-1) and Sts-2 are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic cell lineages, including T lymphocytes, mast cells, and platelets. Functional inactivation of both Sts enzymes leads to profound resistance to systemic infection by C. albicans, such that greater than 80% of mice lacking Sts-1 and -2 survive a dose of C. albicans (2.5 × 10(5) CFU/mouse) that is uniformly lethal to wild-type mice within 10 days. Restriction of fungal growth within the kidney occurs by 24 h postinfection in the mutant mice. This occurs without induction of a hyperinflammatory response, as evidenced by the decreased presence of leukocytes and inflammatory cytokines that normally accompany the antifungal immune response. Instead, the absence of the Sts phosphatases leads to the rapid induction of a unique immunological environment within the kidney, as indicated by the early induction of a proinflammatory cytokine (CXL10). Mice lacking either Sts enzyme individually display an intermediate lethality phenotype. These observations identify an opportunity to optimize host immune responses toward a deadly fungal pathogen.
Collapse
|
27
|
Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP. Early expression of local cytokines during systemic Candida albicans infection in a murine intravenous challenge model. Biomed Rep 2014; 2:869-874. [PMID: 25279161 DOI: 10.3892/br.2014.365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022] Open
Abstract
Local cytokine production is a significant indicator for disease pathogenesis or progression. Previous studies on cytokine production during systemic Candida albicans (C. albicans) infection were solely on kidney or single cell type interaction with C. albicans. Therefore, the present study aimed to assess the early cytokine expression of various target organs (kidney, spleen and brain) over a 72-h time course during systemic C. albicans infection. The local cytokine profiles of the target organs during systemic C. albicans infection were measured by cytometric bead array and ELISA analysis. The results demonstrated that interleukin-6 (IL-6) and IL-2 were statistically significant (P<0.05) in the spleen at 24 and 72 h post-infection, whereas in the kidney, IL-6 and tumor necrosis factor-α (TNF-α) were statistically significant (P<0.05) at 24 and 72 h post-infection and CXCL-1 and transforming growth factor-β (TGF-β) were statistically significant (P<0.05) at 72 h post-infection. In the brain, IL-6 and TNF-α were statistically significant (P<0.05) at 24 and 72 h post-infection, whereas TGF-β was statistically significant (P<0.05) at 72 h post-infection. These findings demonstrate that host immune responses were varied among target organs during systemic C. albicans infection. This could be important for designing targeted immunotherapy against this pathogen through immunomodulatory approaches in future exploratory research.
Collapse
Affiliation(s)
- Voon Kin Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Kuan Jeang Foong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abdullah Maha
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Basir Rusliza
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohtarrudin Norhafizah
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Pei Pei Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia ; Translational Infectious Diseases Program, Centre for Translational Medicine, Department of Microbiology, National University of Singapore, Singapore 117597, Republic of Singapore
| |
Collapse
|
28
|
Whibley N, Maccallum DM, Vickers MA, Zafreen S, Waldmann H, Hori S, Gaffen SL, Gow NAR, Barker RN, Hall AM. Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol 2014; 44:1069-83. [PMID: 24435677 PMCID: PMC3992851 DOI: 10.1002/eji.201343604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Abstract
Candida albicans remains the fungus most frequently associated with nosocomial bloodstream infection. In disseminated candidiasis, the role of Foxp3(+) regulatory T (Treg) cells remains largely unexplored. Our aims were to characterize Foxp3(+) Treg-cell activation in a murine intravenous challenge model of disseminated C. albicans infection, and determine the contribution to disease. Flow cytometric analyses demonstrated that C. albicans infection drove in vivo expansion of a splenic CD4(+) Foxp3(+) population that correlated positively with fungal burden. Depletion from Foxp3(hCD2) reporter mice in vivo confirmed that Foxp3(+) cells exacerbated fungal burden and inflammatory renal disease. The CD4(+) Foxp3(+) population expanded further after in vitro stimulation with C. albicans antigens (Ags), and included at least three cell types. These arose from proliferation of the natural Treg-cell subset, together with conversion of Foxp3(-) cells to the induced Treg-cell form, and to a cell type sharing effector Th17-cell characteristics, expressing ROR-γt, and secreting IL-17A. The expanded Foxp3(+) T cells inhibited Th1 and Th2 responses, but enhanced Th17-cell responses to C. albicans Ags in vitro, and in vivo depletion confirmed their ability to enhance the Th17-cell response. These data lead to a model for disseminated candidiasis whereby expansion of Foxp3(+) T cells promotes Th17-cell responses that drive pathology.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Applied Medicine, University of Aberdeen, Aberdeen, UK; Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The mouse intravenous (IV) challenge model of Candida albicans invasive fungal infection has been widely used to study the importance of the innate immune system in these infections. This chapter describes this well-characterized model, where fungal cells are administered directly into the mouse bloodstream to initiate a systemic infection. The preparation of tissue samples from infected mice to allow evaluation of disease progression and host responses is also described.
Collapse
|
30
|
Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 2014; 40:117-27. [PMID: 24412614 DOI: 10.1016/j.immuni.2013.12.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Interleukin 17 (IL-17)-mediated immunity plays a key role in protection from fungal infections in mice and man. Here, we confirmed that mice deficient in the IL-17 receptor or lacking the ability to secrete IL-17 are highly susceptible to systemic candidiasis, but we found that temporary blockade of the IL-17 pathway during infection in wild-type mice did not impact fungal control. Rather, mice lacking IL-17 receptor signaling had a cell-intrinsic impairment in the development of functional NK cells, which accounted for the susceptibility of these mice to systemic fungal infection. NK cells promoted antifungal immunity by secreting GM-CSF, necessary for the fungicidal activity of neutrophils. These data reveal that NK cells are crucial for antifungal defense and indicate a role for IL-17 family cytokines in NK cell development. The IL-17-NK cell axis may impact immunity against not only fungi but also bacteria, viruses, and tumors.
Collapse
Affiliation(s)
- Eva Bär
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Paul G Whitney
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Kathrin Moor
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
31
|
Szabo EK, Maccallum DM. A novel renal epithelial cell in vitro assay to assess Candida albicans virulence. Virulence 2013; 5:286-96. [PMID: 24225657 DOI: 10.4161/viru.27046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, can cause severe systemic infections in susceptible patient groups. Systemic candidiasis is mainly studied in the mouse intravenous challenge model, where progressive infection correlates with increased early renal chemokine levels. To develop a new in vitro assay to assess C. albicans virulence, which reflects the events occurring in the murine infection model, renal M-1 cortical collecting duct epithelial cells were evaluated as the early producers of cytokines in response to C. albicans. We show that renal epithelial cells respond only to live C. albicans cells capable of forming hyphae, producing chemokines KC and MIP-2, with levels correlating with epithelial cell damage. By assaying epithelial cell responses to strains of known virulence in the murine intravenous challenge model we demonstrate that renal epithelial cells can discriminate between virulent and attenuated strains. This simple, novel assay is a useful initial screen for altered virulence of C. albicans mutants or clinical isolates in vitro and provides an alternative to the mouse systemic infection model.
Collapse
Affiliation(s)
- Edina K Szabo
- Aberdeen Fungal Group; University of Aberdeen; School of Medical Sciences; Institute of Medical Sciences; Foresterhill, Aberdeen UK
| | - Donna M Maccallum
- Aberdeen Fungal Group; University of Aberdeen; School of Medical Sciences; Institute of Medical Sciences; Foresterhill, Aberdeen UK
| |
Collapse
|
32
|
Strijbis K, Tafesse FG, Fairn GD, Witte MD, Dougan SK, Watson N, Spooner E, Esteban A, Vyas VK, Fink GR, Grinstein S, Ploegh HL. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog 2013; 9:e1003446. [PMID: 23825946 PMCID: PMC3694848 DOI: 10.1371/journal.ppat.1003446] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/07/2013] [Indexed: 12/28/2022] Open
Abstract
Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
Collapse
Affiliation(s)
- Karin Strijbis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Fikadu G. Tafesse
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gregory D. Fairn
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Martin D. Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nicki Watson
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Alexandre Esteban
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sergio Grinstein
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov 2013; 8:1117-26. [PMID: 23738751 DOI: 10.1517/17460441.2013.807245] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeting pathogenetic mechanisms, rather than essential processes, represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity and the emergence of resistance. Moreover, the antifungal pipeline is mostly dry. AREAS COVERED This review covers some of the most recent progress toward understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms. EXPERT OPINION Filamentation and biofilm formation represent high value targets, yet are clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, there are some opportunities and prospects for antifungal drug development targeting these two important biological processes.
Collapse
Affiliation(s)
- Christopher G Pierce
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
34
|
Serial passaging of Candida albicans in systemic murine infection suggests that the wild type strain SC5314 is well adapted to the murine kidney. PLoS One 2013; 8:e64482. [PMID: 23737985 PMCID: PMC3667833 DOI: 10.1371/journal.pone.0064482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/15/2013] [Indexed: 11/29/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans has a remarkable ability to adapt to unfavorable environments by different mechanisms, including microevolution. For example, a previous study has shown that passaging through the murine spleen can cause new phenotypic characteristics. Since the murine kidney is the main target organ in murine Candida sepsis and infection of the spleen differs from the kidney in several aspects, we tested whether C. albicans SC5314 could evolve to further adapt to infection and persistence within the kidney. Therefore, we performed a long-term serial passage experiment through the murine kidney of using a low infectious dose. We found that the overall virulence of the commonly used wild type strain SC5314 did not change after eight passages and that the isolated pools showed only very moderate changes of phenotypic traits on the population level. Nevertheless, the last passage showed a higher phenotypic variability and a few individual strains exhibited phenotypic alterations suggesting that microevolution has occurred. However, the majority of the tested single strains were phenotypically indistinguishable from SC5314. Thus, our findings indicate that characteristics of SC5314 which are important to establish and maintain kidney infection over a prolonged time are already well developed.
Collapse
|
35
|
Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun 2013; 81:2178-89. [PMID: 23545303 DOI: 10.1128/iai.00265-13] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite advances in medical device fabrication and antimicrobial treatment therapies, fungal-bacterial polymicrobial peritonitis remains a serious complication for surgery patients, those on peritoneal dialysis, and the critically ill. Using a murine model of peritonitis, we have demonstrated that monomicrobial infection with Candida albicans or Staphylococcus aureus is nonlethal. However, coinfection with these same doses leads to a 40% mortality rate and increased microbial burden in the spleen and kidney by day 1 postinfection. Using a multiplex enzyme-linked immunosorbent assay, we have also identified a unique subset of innate proinflammatory cytokines (interleukin-6, granulocyte colony-stimulating factor, keratinocyte chemoattractant, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α) that are significantly increased during polymicrobial versus monomicrobial peritonitis, leading to increased inflammatory infiltrate into the peritoneum and target organs. Treatment of coinfected mice with the cyclooxygenase (COX) inhibitor indomethacin reduces the infectious burden, proinflammatory cytokine production, and inflammatory infiltrate while simultaneously preventing any mortality. Further experiments demonstrated that the immunomodulatory eicosanoid prostaglandin E2 (PGE2) is synergistically increased during coinfection compared to monomicrobial infection; indomethacin treatment also decreased elevated PGE2 levels. Furthermore, addition of exogenous PGE2 into the peritoneal cavity during infection overrode the protection provided by indomethacin and restored the increased mortality and microbial burden. Importantly, these studies highlight the ability of fungal-bacterial coinfection to modulate innate inflammatory events with devastating consequences to the host.
Collapse
|
36
|
Martin-Manso G, Navarathna DHMLP, Galli S, Soto-Pantoja DR, Kuznetsova SA, Tsokos M, Roberts DD. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One 2012; 7:e48775. [PMID: 23144964 PMCID: PMC3492437 DOI: 10.1371/journal.pone.0048775] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase+, IL-6high, TNF-αhigh, IL-10low), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.
Collapse
Affiliation(s)
- Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
37
|
Navarathna DHMLP, Lionakis MS, Lizak MJ, Munasinghe J, Nickerson KW, Roberts DD. Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans. PLoS One 2012; 7:e48475. [PMID: 23144764 PMCID: PMC3483220 DOI: 10.1371/journal.pone.0048475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/26/2012] [Indexed: 12/24/2022] Open
Abstract
The intracellular enzyme urea amidolyase (Dur1,2p) enables C. albicans to utilize urea as a sole nitrogen source. Because deletion of the DUR1,2 gene reduces survival of C. albicans co-cultured with a murine macrophage cell line, we investigated the role of Dur1,2p in pathogenesis using a mouse model of disseminated candidiasis. A dur1,2Δ/dur1,2Δ strain was significantly less virulent than the wild-type strain, showing significantly higher survival rate, better renal function, and decreased and less sustained fungal colonization in kidney and brain. Complementation of the mutant restored virulence. DUR1,2 deletion resulted in a milder host inflammatory reaction. Immunohistochemistry, flow cytometry, and magnetic resonance imaging showed decreased phagocytic infiltration into infected kidneys. Systemic cytokine levels of wild-type mice infected with the dur1,2 mutant showed a more balanced systemic pro-inflammatory cytokine response. Host gene expression and protein analysis in infected kidneys revealed parallel changes in the local immune response. Significant differences were observed in the kidney IL-1 inflammatory pathway, IL-15 signaling, MAP kinase signaling, and the alternative complement pathway. We conclude that Dur1,2p is important for kidney colonization during disseminated candidiasis and contributes to an unbalanced host inflammatory response and subsequent renal failure. Therefore, this Candida-specific enzyme may represent a useful drug target to protect the host from kidney damage associated with disseminated candidiasis.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin J. Lizak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeeva Munasinghe
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Cole GT, Hurtgen BJ, Hung CY. Progress Toward a Human Vaccine Against Coccidioidomycosis. CURRENT FUNGAL INFECTION REPORTS 2012; 6:235-244. [PMID: 23585916 DOI: 10.1007/s12281-012-0105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Coccidioidomycosis (San Joaquin Valley fever) is a human respiratory disease caused by a soil-borne mold, and is recognized as an intransigent microbial infection by physicians who treat patients with the potentially life-threatening, disseminated form of this mycosis. Epidemiological studies based on surveys of skin-test reactivity of people who reside in the endemic regions of the Southwestern US have shown that at least 150,000 new infections occur annually. The clinical spectrum of coccidioidomycosis ranges from an asymptomatic insult to a severe pulmonary disease in which the pathogen may spread from the lungs to the skin, bones, brain and other body organs. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to develop a vaccine against coccidioidomycosis. This review examines recently reported strategies used to generate such a vaccine and summarizes current understanding of the nature of protective immunity to this formidable disease.
Collapse
Affiliation(s)
- Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
39
|
Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012; 10:85-93. [PMID: 22149617 DOI: 10.1586/eri.11.152] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to switch between yeast and hyphal growth forms (dimorphism) is one of the most discussed and best investigated virulence attributes of the human pathogenic fungus Candida albicans. Both morphological forms seem to be important for virulence and have distinct functions during the different stages of disease development, including adhesion, invasion, damage, dissemination, immune evasion and host response. In this review, we will provide an overview of the known and potential roles of C. albicans dimorphism and will discuss the potential benefit of drugs that can inhibit the morphological transition.
Collapse
Affiliation(s)
- Ilse D Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena, Beutenbergstraße 11a, D-07745, Jena, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Majer O, Bourgeois C, Zwolanek F, Lassnig C, Kerjaschki D, Mack M, Müller M, Kuchler K. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog 2012; 8:e1002811. [PMID: 22911155 PMCID: PMC3406095 DOI: 10.1371/journal.ppat.1002811] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/05/2012] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage. Inflammation constitutes a major host response in many microbial infections. Innate immune cells orchestrate the inflammatory response to kill pathogens and clear infections. However, invasive infections by pathogenic microbes including the fungus Candida albicans, can result in an uncontrolled hyper-inflammatory response, leading to severe host damage and sepsis. Type I interferons constitute a hallmark of protective innate immunity in viral and bacterial infections, but at the same time have been notoriously known for their sepsis-promoting effects in numerous experimental inflammation models. Here, we show that type I interferon-signaling mediates the lethal hyper-inflammatory response during systemic mouse infections with C. albicans. Following fungal infections, type I interferons promote the recruitment and activation of inflammatory monocytes and neutrophils to infected organs. The high abundance and activity of inflammatory phagocytes lead to fatal tissue damage. Remarkably, we show that the pharmacological suppression of these inflammatory cells with the drug pioglitazone reduces immunopathology and sepsis-related lethality, suggesting a novel therapeutic option to combat fungal sepsis. In conclusion, our data couple the sepsis-promoting role of type I interferons to the host-destructive activity of inflammatory monocytes and neutrophils. We propose that therapeutic approaches dampening hyper-inflammation might be of general importance in microbial diseases where deleterious immunopathology occurs.
Collapse
Affiliation(s)
- Olivia Majer
- Medical University Vienna-Max F. Perutz Laboratories, Christian Doppler Laboratory for Infection Biology, Campus Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cytokines can be measured by enzyme-linked immunosorbent assay (ELISA) or multiplex assay. Both techniques are commonly used in immunology to detect the presence of antibody or antigen in a sample. However, multiplex bead array technology provides the means to simultaneously measure multiple analytes in a single reaction, thereby saving time and resources. This method can detect up to 30 proteins at once, using a relatively small sample volume, without losing sensitivity, accuracy, or reproducibility. In this chapter, we describe the cytometric bead array (CBA) approach to simultaneously measure multiple cytokines in biological samples such as spleen, kidney, or serum from mice infected with the human fungal pathogen Candida albicans.
Collapse
Affiliation(s)
- Luis Castillo
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Elqui, Chile
| | | |
Collapse
|
42
|
MacCallum DM. Hosting infection: experimental models to assay Candida virulence. Int J Microbiol 2011; 2012:363764. [PMID: 22235206 PMCID: PMC3253448 DOI: 10.1155/2012/363764] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 02/01/2023] Open
Abstract
Although normally commensals in humans, Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, and Candida krusei are capable of causing opportunistic infections in individuals with altered physiological and/or immunological responses. These fungal species are linked with a variety of infections, including oral, vaginal, gastrointestinal, and systemic infections, with C. albicans the major cause of infection. To assess the ability of different Candida species and strains to cause infection and disease requires the use of experimental infection models. This paper discusses the mucosal and systemic models of infection available to assay Candida virulence and gives examples of some of the knowledge that has been gained to date from these models.
Collapse
Affiliation(s)
- Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
43
|
Ramirez-Aquino R, Radovanovic I, Fortin A, Sciutto-Conde E, Fragoso-González G, Gros P, Aguilar-Delfin I. Identification of loci controlling restriction of parasite growth in experimental Taenia crassiceps cysticercosis. PLoS Negl Trop Dis 2011; 5:e1435. [PMID: 22206032 PMCID: PMC3243719 DOI: 10.1371/journal.pntd.0001435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022] Open
Abstract
Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a critical role in early protective inflammatory response to infection with T. crassiceps. Infection with the cestode Taenia solium causes cysticercosis in humans and pigs. Neurocysticercosis is a severe manifestation of T. solium infection that constitutes an important health concern in developing countries. Studies in humans living in areas of endemic disease and in pigs experimentally infected have suggested a large spectrum of permissiveness to T. solium multiplication, with the possible contribution of genetic factors. In the present report, we have used an experimental mouse model of intraperitoneal infection with Taenia crassiceps to study the potential role of genetic factors in regulating replication of this parasite. Our study focused on two inbred mouse strains A/J and C57BL/6J that are respectively permissive and non-permissive to intraperitoneal multiplication of T. crassiceps. We have used a set of AcB/BcA recombinant congenic strains of mice along with standard F2 crosses to decipher the complexity and nature of the genetic component of the A/J vs. C57BL/6J interstrain difference in permissiveness. Our results point to a major role of the complement component 5 (C5) in early response and protection against T. crassiceps infection.
Collapse
Affiliation(s)
- Ruben Ramirez-Aquino
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Anny Fortin
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Edda Sciutto-Conde
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso-González
- Departament of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Canada
- * E-mail:
| | - Irma Aguilar-Delfin
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
44
|
Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 2011; 56:208-17. [PMID: 21986821 DOI: 10.1128/aac.00683-11] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations.
Collapse
|
45
|
Increased susceptibility to Candida infection following cecal ligation and puncture. Biochem Biophys Res Commun 2011; 414:37-43. [PMID: 21939638 DOI: 10.1016/j.bbrc.2011.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022]
Abstract
Secondary infection following septic insult represents a significant cause of morbidity and mortality in hospitalized patients. Sepsis induced immunosuppression is a major factor in the host's susceptibility to nosocomial infections and Candida albicans accounts for a growing number of these. Given the importance of improving our understanding of the immune response to sepsis and the increasing rates of C. albicans infections, we sought to develop a murine model of double injury consisting of primary peritonitis, i.e., cecal ligation and puncture (CLP), followed by a secondary challenge of C. albicans. As observed in previous work, after primary injury the immune profile of the host changes over time. Therefore, while keeping the mortality rates from the respective individual injuries low, we altered the timing of the secondary injury between two post-CLP time points, day two and day four. Mice subjected to C. albicans infection following CLP have significantly different survival rates dependent upon timing of secondary injury. Animals challenged with C. albicans at two days post CLP had 91% mortality whereas animals challenged at four days had 47% mortality. This improvement in survival at four days was associated with restoration of innate cell populations and as evidenced by stimulated splenocytes, increases in certain inflammatory cytokines. In addition, we show that susceptibility to C. albicans infection following CLP is dependent upon the depth of immunosuppression. Although at four days post-CLP there is a partial reconstitution of the immune system, these animals remain more susceptible to infection compared to their single injury (C. albicans alone) counterparts. Collectively, these studies demonstrate that immunosuppression following initial septic insult changes over time. This novel, two hit model of CLP followed by Candida provides additional insight into the immune compromised state created by primary peritonitis, and thereby opens up another avenue of investigation into the causes and possible cures of an emerging clinical problem.
Collapse
|
46
|
Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun 2011; 79:4511-22. [PMID: 21859851 DOI: 10.1128/iai.05726-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that C57BL/6 mice vaccinated with a live, attenuated mutant of Coccidioides posadasii, referred to as the ΔT vaccine, are fully protected against pulmonary coccidioidomycosis. This model was used here to explore the nature of vaccine immunity during the initial 2-week period after intranasal challenge. Elevated neutrophil and eosinophil infiltration into the lungs of nonvaccinated mice contrasted with markedly reduced recruitment of these cells in vaccinated animals. The numbers of lung-infiltrated macrophages and dendritic cells showed a progressive increase in vaccinated mice and corresponded with reduction of the lung infection. Concentrations of selected inflammatory cytokines and chemokines were initially higher in lung homogenates of vaccinated mice but then generally decreased at 14 days postchallenge in correlation with containment of the organism and apparent dampening of the inflammation of host tissue. Profiles of cytokines detected in lung homogenates of ΔT-vaccinated mice were indicative of a mixed T helper 1 (Th1)-, Th2-, and Th17-type immune response, a conclusion which was supported by detection of lung infiltration of activated T cells with the respective CD4(+) gamma interferon (IFN-γ)(+), CD4(+) interleukin-5 (IL-5)(+), and CD4(+) IL-17A(+) phenotypes. While Th1 and Th2 immunity was separately dispensed of by genetic manipulation without loss of ΔT vaccine-mediated protection, loss of functional Th17 cells resulted in increased susceptibility to infection in immunized mice. Characterization of the early events of protective immunity to Coccidioides infection in vaccinated mice contributes to the identification of surrogates of immune defense and provides potential insights into the design of immunotherapeutic protocols for treatment of coccidioidomycosis.
Collapse
|
47
|
Jacobsen ID, Grosse K, Berndt A, Hube B. Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS One 2011; 6:e19741. [PMID: 21603634 PMCID: PMC3094387 DOI: 10.1371/journal.pone.0019741] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/13/2011] [Indexed: 11/19/2022] Open
Abstract
Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM) and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite its limitations, it presents a useful alternative tool to pre-screen C. albicans strains to select strains for subsequent testing in murine models.
Collapse
Affiliation(s)
- Ilse D Jacobsen
- Department for Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.
| | | | | | | |
Collapse
|
48
|
Radovanovic I, Mullick A, Gros P. Genetic control of susceptibility to infection with Candida albicans in mice. PLoS One 2011; 6:e18957. [PMID: 21533108 PMCID: PMC3080400 DOI: 10.1371/journal.pone.0018957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/15/2011] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts, representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant) and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5 (P value = 2.43×10(-11)) and a novel effect on distal chromosome 11 (P value = 7.63×10(-9)). Compared to other C5-deficient strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival, concomitant with uniquely high levels of serum IFNγ. C5-independent genetic effects were further investigated by linkage analysis in an [A/JxAKR/J]F2 cross (n = 158) where the mutant Hc allele is fixed. These studies identified a chromosome 11 locus (Carg4, Candida albicans resistance gene 4; LOD = 4.59), and a chromosome 8 locus (Carg3; LOD = 3.95), both initially detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which regulate resistance to C. albicans infection in a C5-independent manner.
Collapse
Affiliation(s)
- Irena Radovanovic
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Alaka Mullick
- Biotechnology Research Institute, Montréal, Québec, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| |
Collapse
|
49
|
Fisher JF, Kavanagh K, Sobel JD, Kauffman CA, Newman CA. Candida Urinary Tract Infection: Pathogenesis. Clin Infect Dis 2011; 52 Suppl 6:S437-51. [DOI: 10.1093/cid/cir110] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Mitra S, Haidaris CG, Snell SB, Giesselman BR, Hupcher SM, Foster TH. Effective photosensitization and selectivity in vivo of Candida Albicans by meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate. Lasers Surg Med 2011; 43:324-32. [PMID: 21500227 PMCID: PMC3080247 DOI: 10.1002/lsm.21049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE The fungus Candida albicans commonly causes mucosal and cutaneous infections in patients with impaired immunity. We investigated the effectiveness of the photosensitizer meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP-1363) in the photodynamic treatment (PDT) of C. albicans infection in vitro and its selectivity in an animal model. MATERIALS AND METHODS The efficacy of TMP-1363 in PDT of C. albicans in vitro was compared to that of methylene blue (MB) using a colony forming unit (CFU) assay. In vivo infection in the mouse was established by inoculation of C. albicans yeast in the intradermal space of the ear pinna. Two days post-infection, 0.3 mg ml(-1) TMP-1363 was administered topically. Thirty minutes after TMP-1363 application, the ears were irradiated at 514 nm using a fluence of 90 J cm(-2) delivered at an irradiance of 50 mW cm(-2) . The ears were excised 2 hours post-irradiation, homogenized, and the organism burden was determined by a CFU assay. In vivo wide field and confocal fluorescence imaging assessed the localization of the photosensitizer in relationship to C. albicans. RESULTS Photosensitization with TMP-1363 resulted in a greater than three-log increase in killing of C. albicans in vitro compared to MB. In vivo fluorescence imaging demonstrated a high degree of selective labeling of C. albicans by TMP-1363. PDT of infection using TMP-1363 resulted in a significant reduction in CFU/ear relative to untreated controls. Infected ears subjected to PDT displayed complete healing over time with no observable damage to the pinna. CONCLUSION Our in vitro and in vivo findings support TMP-1363-mediated PDT as a viable therapeutic approach for the PDT of candidiasis.
Collapse
Affiliation(s)
- Soumya Mitra
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY USA 14642
| | - Constantine G. Haidaris
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY USA 14642
| | - Sara B. Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY USA 14642
| | - Benjamin R. Giesselman
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY USA 14642
| | - Steven M. Hupcher
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY USA 14642
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY USA 14642
| |
Collapse
|