1
|
Wu H, Liu Y, Liu C. The interregulatory circuit between non-coding RNA and apoptotic signaling in diabetic cardiomyopathy. Noncoding RNA Res 2024; 9:1080-1097. [PMID: 39022683 PMCID: PMC11254508 DOI: 10.1016/j.ncrna.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Yan Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Chunli Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| |
Collapse
|
2
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
3
|
Zhou T, Qiu S, Zhang L, Li Y, Zhang J, Shen D, Zhao P, Yuan L, Zhao L, Duan Y, Xing C. Supplementation of Clostridium butyricum Alleviates Vascular Inflammation in Diabetic Mice. Diabetes Metab J 2024; 48:390-404. [PMID: 38310882 PMCID: PMC11140397 DOI: 10.4093/dmj.2023.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Gut microbiota is closely related to the occurrence and development of diabetes and affects the prognosis of diabetic complications, and the underlying mechanisms are only partially understood. We aimed to explore the possible link between the gut microbiota and vascular inflammation of diabetic mice. METHODS The db/db diabetic and wild-type (WT) mice were used in this study. We profiled gut microbiota and examined the and vascular function in both db/db group and WT group. Gut microbiota was analyzed by 16s rRNA sequencing. Vascular function was examined by ultrasonographic hemodynamics and histological staining. Clostridium butyricum (CB) was orally administered to diabetic mice by intragastric gavage every 2 days for 2 consecutive months. Reactive oxygen species (ROS) and expression of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were detected by fluorescence microscopy. The mRNA expression of inflammatory cytokines was tested by quantitative polymerase chain reaction. RESULTS Compared with WT mice, CB abundance was significantly decreased in the gut of db/db mice, together with compromised vascular function and activated inflammation in the arterial tissue. Meanwhile, ROS in the vascular tissue of db/db mice was also significantly increased. Oral administration of CB restored the protective microbiota, and protected the vascular function in the db/db mice via activating the Nrf2/HO-1 pathway. CONCLUSION This study identified the potential link between decreased CB abundance in gut microbiota and vascular inflammation in diabetes. Therapeutic delivery of CB by gut transplantation alleviates the vascular lesions of diabetes mellitus by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Shuo Qiu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Liang Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yangni Li
- Department of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Jing Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi’an, China
| | - Donghua Shen
- Department of Ultrasound Diagnostics, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ping Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Aerospace Medicine, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Wang N, Liu X, Liu K, Wang K, Zhang H. Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway. iScience 2023; 26:107443. [PMID: 37575200 PMCID: PMC10415933 DOI: 10.1016/j.isci.2023.107443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Several heat shock proteins are implicated in the endogenous cardioprotective mechanisms, but little is known about the role of heat shock protein beta-1 (HSPB1). This study aims to investigate the oxidation state and role of HSPB1 in cardiomyocytes undergoing oxidative stress and underlying mechanisms. Here, we demonstrate that hydrogen peroxide (H2O2) promotes the homo-oxidation of HSPB1. Cys137 residue of HSPB1 is not only required for it to protect cardiomyocytes against oxidative injury but also modulates its oxidation, phosphorylation at Ser15, and distribution to insoluble cell components after H2O2 treatment. Moreover, Cys137 residue is indispensable for HSPB1 to interact with KEAP1, thus regulating its oxidation and intracellular distribution, subsequently promoting the nuclear translocation of NRF2, and increasing the transcription of GLCM, HMOX1, and TXNRD1. Altogether, these findings provide evidence that Cys137 residue is indispensable for HSPB1 to maintain its redox state and antioxidant activity via activating KEAP1/NRF2 signaling cascade in cardiomyocytes.
Collapse
Affiliation(s)
- Nian Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiehong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
5
|
Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Free Radic Biol Med 2023; 204:215-225. [PMID: 37156295 PMCID: PMC10564622 DOI: 10.1016/j.freeradbiomed.2023.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
KEAP1 promotes the ubiquitin-dependent degradation of NRF2 by assembling into a CUL3-dependent ubiquitin ligase complex. Oxidative and electrophilic stress inhibit KEAP1 allowing NRF2 to accumulate for the transactivation of stress response genes. To date there are no structures of the KEAP1-CUL3 interaction nor binding data to show the contributions of different domains to their binding affinity. We determined a crystal structure of the BTB and 3-box domains of human KEAP1 in complex with the CUL3 N-terminal domain that showed a heterotetrameric assembly with 2:2 stoichiometry. To support the structural data, we developed a versatile TR-FRET-based assay system to profile the binding of BTB-domain-containing proteins to CUL3 and determine the contribution of distinct protein features, revealing the importance of the CUL3 N-terminal extension for high affinity binding. We further provide direct evidence that the investigational drug CDDO does not disrupt the KEAP1-CUL3 interaction, even at high concentrations, but reduces the affinity of KEAP1-CUL3 binding. The TR-FRET-based assay system offers a generalizable platform for profiling this protein class and may form a suitable screening platform for ligands that disrupt these interactions by targeting the BTB or 3-box domains to block E3 ligase function.
Collapse
Affiliation(s)
- Roslin J Adamson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sergio G Bartual
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
6
|
Cytoprotective Effect of Pteryxin on Insulinoma MIN6 Cells Due to Antioxidant Enzymes Expression via Nrf2/ARE Activation. Antioxidants (Basel) 2023; 12:antiox12030693. [PMID: 36978941 PMCID: PMC10045797 DOI: 10.3390/antiox12030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The low-level antioxidant activity of pancreatic islets causes type 1 diabetes due to oxidative stress, which is also the cause of failure in the pancreatic islets’ isolation and cell transplantation. In our previous study, pteryxin was found to be a natural product as a nuclear factor-erythroid-2-related factor (Nrf2) activator. This study focused on elucidation that the potentiality of pteryxin can activate the antioxidant enzymes, even under oxidative stress, by hydrogen peroxide (H2O2). Pteryxin treated with mouse insulinoma MIN6 cells was enhanced the antioxidant gene expressions in the ARE (antioxidant response element) region for HO-1 (Heme Oxygenase-1), GCLC (Glutamate-cysteine ligase catalytic subunit), SOD1 (Super Oxide dismutase1), and Trxr1 (Thioredoxin reductase1), and those enzymes were also expressed during the nuclei transference of cytoplasmic Nrf2. In fact, the cells exposed to H2O2 concentrations of a half-cell lethal in the presence of pteryxin were then induced main antioxidant enzymes, HO-1, GCLC, and Trxr1 in the ARE region. The increased glutathione (GSH) levels associated with the GCLC expression also suggested to be cytoprotective against oxidative stress by activating the redox-metabolizing enzymes involving their increased antioxidant activity in the cells. In addition, Akt is a modulator for Nrf2, which may be responsible for the Nrf2 activation. These results allowed us to consider whether pteryxin or its synthesized congeners, an Nrf2 activator, is a potential preservative agent against islet isolation during cell transplantation.
Collapse
|
7
|
RTA dh404 Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24044006. [PMID: 36835414 PMCID: PMC9962315 DOI: 10.3390/ijms24044006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
RTA dh404 is a novel synthetic oleanolic acid derivative that has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory properties, and exerts therapeutic effects on various cancers. Although CDDO and its derivatives have anticancer effects, the actual anticancer mechanism has not been fully explored. Therefore, in this study, glioblastoma cell lines were exposed to different concentrations of RTA dh404 (0, 2, 4, and 8 µM). Cell viability was evaluated using the PrestoBlue™ reagent assay. The role of RTA dh404 in cell cycle progression, apoptosis, and autophagy was analyzed using flow cytometry and Western blotting. The expression of cell cycle-, apoptosis-, and autophagy-related genes was detected by next-generation sequencing. RTA dh404 reduces GBM8401 and U87MG glioma cell viability. RTA dh404 treated cells had a significant increase in the percentage of apoptotic cells and caspase-3 activity. In addition, the results of the cell cycle analysis showed that RTA dh404 arrested GBM8401 and U87MG glioma cells at the G2/M phase. Autophagy was observed in RTA dh404-treated cells. Subsequently, we found that RTA dh404-induced cell cycle arrest, apoptosis, and autophagy were related to the regulation of associated genes using next-generation sequencing. Our data indicated that RTA dh404 causes G2/M cell cycle arrest and induces apoptosis and autophagy by regulating the expression of cell cycle-, apoptosis-, and autophagy-related genes in human glioblastoma cells, suggesting that RTA dh404 is a potential drug candidate for the treatment of glioblastoma.
Collapse
|
8
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
9
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
10
|
Ishizaki Y, Sasaki KI, Yoshikawa T, Nakayoshi T, Sasaki M, Ohtsuka M, Hatada-Katakabe S, Takata Y, Fukumoto Y. RTA-dh404 decreased oxidative stress in mice ischemic limbs and augmented efficacy of therapeutic angiogenesis by intramuscular injection of adipose-derived regenerative cells in the limbs. Eur J Pharmacol 2022; 938:175422. [PMID: 36442622 DOI: 10.1016/j.ejphar.2022.175422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Although an intramuscular injection of angiogenic cells to ischemic limbs with peripheral artery disease is a therapeutic option to rescue patients by augmenting neovascularization in the limbs, oxidative stress in the limbs may accelerate apoptosis of the injected cells and thereby reduce the therapeutic effect. In this study involving mice with ischemic lower limbs, whether daily oral administration of RTA-dh404, which is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2) with antioxidant activity, could reduce oxidative stress in the limbs and suppress apoptosis of adipose-derived regenerative cells (ADRCs) injected in the limbs, eventually augmenting neovascularization in the limbs, was evaluated. The tissue expression of Nrf2 and concentrations of total antioxidant capacity and superoxide dismutase in the mice ischemic limbs were higher in the RTA-dh404-treated mice than in the control treated mice, and oxidative stress in the limbs of the RTA-dh404 treated mice was decreased. The day after an intramuscular injection of human ADRCs into ischemic lower limbs of immunodeficient mice, the number of apoptotic ADRCs in the ischemic limbs was decreased by approximately 25% in the RTA-dh404-treated mice compared to the control mice. Fourteen days after cell injection, neovascularization and the salvage ratio were increased by approximately 10% and 63%, respectively, in the ischemic limbs in the RTA-dh404-treated mice compared to the control mice. Pretreatment of ischemic limbs by daily oral administration of RTA-dh404 may augment the effect of therapeutic angiogenesis using an intramuscular injection of ADRCs into the ischemic limbs.
Collapse
Affiliation(s)
- Yuta Ishizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Takahiro Yoshikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takaharu Nakayoshi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Motoki Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Ohtsuka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiko Hatada-Katakabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuki Takata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Grün B, Tirre M, Pyschny S, Singh V, Kehl HG, Jux C, Drenckhahn JD. Inhibition of mitochondrial respiration has fundamentally different effects on proliferation, cell survival and stress response in immature versus differentiated cardiomyocyte cell lines. Front Cell Dev Biol 2022; 10:1011639. [PMID: 36211452 PMCID: PMC9538794 DOI: 10.3389/fcell.2022.1011639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Myocardial tissue homeostasis is critically important for heart development, growth and function throughout the life course. The loss of cardiomyocytes under pathological conditions ultimately leads to cardiovascular disease due to the limited regenerative capacity of the postnatal mammalian heart. Inhibition of electron transport along the mitochondrial respiratory chain causes cellular stress characterized by ATP depletion as well as excessive generation of reactive oxygen species. Adult cardiomyocytes are highly susceptible to mitochondrial dysfunction whereas embryonic cardiomyocytes in the mouse heart have been shown to be resistant towards mitochondrial complex III inhibition. To functionally characterize the molecular mechanisms mediating this stress tolerance, we used H9c2 cells as an in vitro model for immature cardiomyoblasts and treated them with various inhibitors of mitochondrial respiration. The complex I inhibitor rotenone rapidly induced cell cycle arrest and apoptosis whereas the complex III inhibitor antimycin A (AMA) had no effect on proliferation and only mildly increased cell death. HL-1 cells, a differentiated and contractile cardiomyocyte cell line from mouse atrium, were highly susceptible to AMA treatment evident by cell cycle arrest and death. AMA induced various stress response mechanisms in H9c2 cells, such as the mitochondrial unfolded protein response (UPRmt), integrated stress response (ISR), heat shock response (HSR) and antioxidative defense. Inhibition of the UPR, ISR and HSR by siRNA mediated knock down of key components does not impair growth of H9c2 cells upon AMA treatment. In contrast, knock down of NRF2, an important transcriptional regulator of genes involved in detoxification of reactive oxygen species, reduces growth of H9c2 cells upon AMA treatment. Various approaches to activate cell protective mechanisms and alleviate oxidative stress in HL-1 cells failed to rescue them from AMA induced growth arrest and death. In summary, these data show that the site of electron transport interruption along the mitochondrial respiratory chain determines cell fate in immature cardiomyoblasts. The study furthermore points to fundamental differences in stress tolerance and cell survival between immature and differentiated cardiomyocytes which may underlie the growth plasticity of embryonic cardiomyocytes during heart development but also highlight the obstacles of cardioprotective therapies in the adult heart.
Collapse
Affiliation(s)
- Bent Grün
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Michaela Tirre
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Simon Pyschny
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Vijay Singh
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Gießen, Germany
| | - Hans-Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
| | - Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
- *Correspondence: Jörg-Detlef Drenckhahn,
| |
Collapse
|
12
|
Xu Z, Li S, Li K, Wang X, Li X, An M, Yu X, Long X, Zhong R, Liu Q, Wang X, Yang Y, Tian N. Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022; 69:971-982. [PMID: 35321989 DOI: 10.1507/endocrj.ej21-0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Kunmeng Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaoyu Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaojie Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangdong Province, 510630, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xinguang Long
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
| | - Ruiying Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Qiuhong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaochuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| |
Collapse
|
13
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
17
|
Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020; 133:jcs241356. [PMID: 32546533 PMCID: PMC7375482 DOI: 10.1242/jcs.241356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Megan J Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Institute for Informatics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trent Stohrer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew E Hale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Priscila F Siesser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth J Weir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J Moorman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Abstract
Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) is a critical transcription factor that regulates the expression of over 1000 genes in the cell under normal and stressed conditions. These transcripts can be categorized into different groups with distinct functions, including antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic degradation, and metabolism. Nevertheless, Nrf2 has been historically considered as a crucial regulator of antioxidant defense to protect against various insult-induced organ damage and has evolved as a promising drug target for the treatment of human diseases, such as heart failure. However, burgeoning evidence has revealed a detrimental role of Nrf2 in cardiac pathological remodeling and dysfunction toward heart failure. In this mini-review, we outline recent advances in structural features of Nrf2 and regulation of Nrf2 activity and discuss the emerging dark side of Nrf2 in the heart as well as the potential mechanisms of Nrf2-mediated myocardial damage and dysfunction.
Collapse
Affiliation(s)
- Huimei Zang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Roy Oomen Mathew
- Division of Nephrology, Department of Medicine, Columbia VA Healthcare System, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
19
|
Abstract
The KEAP1-NRF2 pathway is the principal protective response to oxidative and electrophilic stresses. Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase, which tightly regulates the activity of the transcription factor NRF2 by targeting it for ubiquitination and proteasome-dependent degradation. In response to stress, an intricate molecular mechanism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription program. Recent advances have revealed that KEAP1 contains multiple stress sensors and inactivation modalities, which together allow diverse cellular inputs, from oxidative stress and cellular metabolites to dysregulated autophagy, to regulate NRF2 activity. This integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF2's cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.
Collapse
|
20
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
21
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
22
|
CDDO-Me Inhibits Microglial Activation and Monocyte Infiltration by Abrogating NFκB- and p38 MAPK-Mediated Signaling Pathways Following Status Epilepticus. Cells 2020; 9:cells9051123. [PMID: 32370011 PMCID: PMC7290793 DOI: 10.3390/cells9051123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Following status epilepticus (SE, a prolonged seizure activity), microglial activation, and monocyte infiltration result in the inflammatory responses in the brain that is involved in the epileptogenesis. Therefore, the regulation of microglia/monocyte-mediated neuroinflammation is one of the therapeutic strategies for avoidance of secondary brain injury induced by SE. 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), which regulates intracellular redox homeostasis. In addition, CDDO-Me has anti-inflammatory properties that suppress microglial proliferation and its activation, although the underlying mechanisms have not been clarified. In the present study, CDDO-Me ameliorated monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC) following SE, accompanied by abrogating monocyte chemotactic protein-1 (MCP-1)/tumor necrosis factor-α (TNF-α) expressions and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Furthermore, CDDO-Me inhibited nuclear factor-κB (NFκB)-S276 phosphorylation and microglial transformation, independent of Nrf2 expression. Similar to CDDO-Me, SN50 (an NFκB inhibitor) mitigated monocyte infiltration by reducing MCP-1 and p38 MAPK phosphorylation in the FPC following SE. Therefore, these findings suggest, for the first time, that CDDO-Me may attenuate microglia/monocyte-mediated neuroinflammation via modulating NFκB- and p38 MAPK-MCP-1 signaling pathways following SE.
Collapse
|
23
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
24
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
CDDO-Me Attenuates Vasogenic Edema and Astroglial Death by Regulating NF-κB p65 Phosphorylations and Nrf2 Expression Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20194862. [PMID: 31574956 PMCID: PMC6801369 DOI: 10.3390/ijms20194862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid that has anti-inflammatory, antioxidant, and neuroprotective activities. In the present study, we evaluate the effects of CDDO-Me on serum extravasation and astroglial death in the rat piriform cortex (PC) induced by status epilepticus (a prolonged seizure activity, SE) in order to propose an underlying pharmacological mechanism of CDDO-Me and its availability for treatment of vasogenic edema. CDDO-Me effectively mitigated serum extravasation and a massive astroglial loss in the PC following SE. CDDO-Me abrogated tumor necrosis factor-α (TNF-α) synthesis in activated microglia by inhibiting nuclear factor-κB (NF-κB) p65 serine 276 phosphorylation. CDDO-Me also abolished NF-κB threonine 435 phosphorylation in endothelial cells and TNF-α-mediated-phosphatidylinositol-3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling cascades, which trigger vasogenic edema following SE. Furthermore, CDDO-Me increased astroglial viability via the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression. Therefore, our findings suggest that CDDO-Me may ameliorate SE-induced vasogenic edema formation by regulating NF-κB p65 phosphorylations in microglia as well as endothelial cells and enhancing Nrf2 expression in astrocytes, respectively.
Collapse
|
26
|
Hu T, Schreiter FC, Bagchi RA, Tatman PD, Hannink M, McKinsey TA. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J Biol Chem 2019; 294:8640-8652. [PMID: 30962285 PMCID: PMC6544848 DOI: 10.1074/jbc.ra118.007006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Indexed: 01/19/2023] Open
Abstract
Histone deacetylase 5 (HDAC5) and HDAC9 are class IIa HDACs that function as signal-responsive repressors of the epigenetic program for pathological cardiomyocyte hypertrophy. The conserved deacetylase domains of HDAC5 and HDAC9 are not required for inhibition of cardiac hypertrophy. Thus, the biological function of class IIa HDAC catalytic activity in the heart remains unknown. Here we demonstrate that catalytic activity of HDAC5, but not HDAC9, suppresses mitochondrial reactive oxygen species generation and subsequent induction of NF-E2-related factor 2 (NRF2)-dependent antioxidant gene expression in cardiomyocytes. Treatment of cardiomyocytes with TMP195 or TMP269, which are selective class IIa HDAC inhibitors, or shRNA-mediated knockdown of HDAC5 but not HDAC9 leads to stimulation of NRF2-mediated transcription in a reactive oxygen species-dependent manner. Conversely, ectopic expression of catalytically active HDAC5 decreases cardiomyocyte oxidative stress and represses NRF2 activation. These findings establish a role of the catalytic domain of HDAC5 in the control of cardiomyocyte redox homeostasis and define TMP195 and TMP269 as a novel class of NRF2 activators that function by suppressing the enzymatic activity of an epigenetic regulator.
Collapse
Affiliation(s)
- Tianjing Hu
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Friederike C Schreiter
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Philip D Tatman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark Hannink
- Bond Life Sciences Center and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
27
|
da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front Pharmacol 2019; 10:382. [PMID: 31031630 PMCID: PMC6473049 DOI: 10.3389/fphar.2019.00382] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Free radicals act as secondary messengers, modulating a number of important biological processes, including gene expression, ion mobilization in transport systems, protein interactions and enzymatic functions, cell growth, cell cycle, redox homeostasis, among others. In the cardiovascular system, the physiological generation of free radicals ensures the integrity and function of cardiomyocytes, endothelial cells, and adjacent smooth muscle cells. In physiological conditions, there is a balance between free radicals generation and the activity of enzymatic and non-enzymatic antioxidant systems. Redox imbalance, caused by increased free radical's production and/or reduced antioxidant defense, plays an important role in the development of cardiovascular diseases, contributing to cardiac hypertrophy and heart failure, endothelial dysfunction, hypertrophy and hypercontractility of vascular smooth muscle. Excessive production of oxidizing agents in detriment of antioxidant defenses in the cardiovascular system has been described in obesity, diabetes mellitus, hypertension, and atherosclerosis. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), a major regulator of antioxidant and cellular protective genes, is primarily activated in response to oxidative stress. Under physiological conditions, Nrf2 is constitutively expressed in the cytoplasm of cells and is usually associated with Keap-1, a repressor protein. This association maintains low levels of free Nrf2. Stressors, such as free radicals, favor the translocation of Nrf2 to the cell nucleus. The accumulation of nuclear Nrf2 allows the binding of this protein to the antioxidant response element of genes that code antioxidant proteins. Although little information on the role of Nrf2 in the cardiovascular system is available, growing evidence indicates that decreased Nrf2 activity contributes to oxidative stress, favoring the pathophysiology of cardiovascular disorders found in obesity, diabetes mellitus, and atherosclerosis. The present mini-review will provide a comprehensive overview of the role of Nrf2 as a contributing factor to cardiovascular risk in metabolic diseases.
Collapse
Affiliation(s)
- Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia S Lobato
- Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
A Novel Discovery: Holistic Efficacy at the Special Organ Level of Pungent Flavored Compounds from Pungent Traditional Chinese Medicine. Int J Mol Sci 2019; 20:ijms20030752. [PMID: 30754631 PMCID: PMC6387020 DOI: 10.3390/ijms20030752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Pungent traditional Chinese medicines (TCMs) play a vital role in the clinical treatment of hepatobiliary disease, gastrointestinal diseases, cardiovascular diseases, diabetes, skin diseases and so on. Pungent TCMs have a vastness of pungent flavored (with pungent taste or smell) compounds. To elucidate the molecular mechanism of pungent flavored compounds in treating cardiovascular diseases (CVDs) and liver diseases, five pungent TCMs with the action of blood-activating and stasis-resolving (BASR) were selected. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between pungent flavored compounds and their holistic efficacy at the special organ level. First, we identified target proteins that are associated with pungent flavored compounds and found that these targets were functionally related to CVDs and liver diseases. Then, based on the phenotype that directly links human genes to the body parts they affect, we clustered target modules associated with pungent flavored compounds into liver and heart organs. We applied systems-based analysis to introduce a pungent flavored compound-target-pathway-organ network that clarifies mechanisms of pungent substances treating cardiovascular diseases and liver diseases by acting on the heart/liver organ. The systems pharmacology also suggests a novel systematic strategy for rational drug development from pungent TCMs in treating cardiovascular disease and associated liver diseases.
Collapse
|
29
|
Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, Xu Y, Ji C, Hu X, Sanchis D, Zhang Y, Ye J. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1253-1264. [PMID: 30668979 DOI: 10.1016/j.bbadis.2019.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) is a transcription factor playing cytoprotective effects in various pathological processes including oxidative stress and cardiac hypertrophy. Despite being a potential therapeutic target to treat several cardiomyopathies, the signaling underlying Nrf2-dependent cardioprotective action remains largely uncharacterized. AIM This study aimed to explore the signaling mediating the role of Nrf2 in the development of hypertensive cardiac pathogenesis by analyzing the response to Angiotensin II (Ang II) in the presence or absence of Nrf2 expression, both in vivo and in vitro. RESULTS Our results indicated that Nrf2 deficiency exacerbated cardiac damage triggered by Ang II infusion. Mechanistically, our study shows that Ang II-triggered hypertrophy and inflammation is exacerbated in the absence of Nrf2 expression and points to the involvement of the IL-6/STAT3 signaling pathway in this event. Indeed, our results show that IL-6 abundance triggered by Ang II is increased in the absence of Nrf2 and demonstrate the requirement of IL-6 in STAT3 activation and cardiac inflammation induced by Ang II. CONCLUSION Our results show that Nrf2 is important for the protection of the heart against Ang II-induced cardiac hypertrophy and inflammation by mechanisms involving the regulation of IL-6/STAT3-dependent signaling.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China; Hubei key Laboratory of Cardiology, Wuhan 430060, China
| | - Peiqing Bao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Yitao Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W120NN, United Kingdom
| | - Caoyu Ji
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Xinyue Hu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Daniel Sanchis
- Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198 Lleida, Spain.
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| | - Junmei Ye
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
30
|
Sugiyama T, Imai T, Nakamura S, Yamauchi K, Sawada S, Shimazawa M, Hara H. A novel Nrf2 activator, RS9, attenuates secondary brain injury after intracerebral hemorrhage in sub-acute phase. Brain Res 2018; 1701:137-145. [PMID: 30142309 DOI: 10.1016/j.brainres.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
The poor prognosis of intracranial hemorrhage (ICH) is attributed to secondary brain injury (SBI), which is caused by oxidative stress. Blood components induce reactive oxygen species (ROS) over-production and cause cytotoxicity. We focused on the antioxidant system and investigated nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a transcription factor that controls several antioxidant enzymes. We examined the effects of a novel Nrf2 activator, RS9, on SBI after ICH. ICH was induced by injecting autologous blood collected from the jugular vein (25 µL) into the striatum of mice. RS9 (0.2 mg/kg, i.p.) was administrated 0, 24, and 48 h after the induction of ICH. Using the ICH model, we measured brain edema, neurological function, neuronal damage and antioxidant proteins expression. We then investigated the mechanisms responsible for the effects of RS9 in vitro using the SH-SY5Y cell line. We used zinc protoporphyrin (ZnPP), a heme oxygenase-1 (HO-1) inhibitor, to elucidate the relationship between HO-1 expression and cell death in vitro in a hemin injury model. RS9 decreased brain edema, improved neurological deficits, decreased neuronal damage area and up-regulated HO-1 and superoxide dismutase 1 (SOD) expressions in the ICH mouse model. RS9 also suppressed neuronal cell death and ROS over-production in vitro. These protective effects were cancelled by the ZnPP co-treatment. Our results suggest that the activation of Nrf2 by RS9 exerts neuroprotective effects that are mediated by the attenuation of oxidative stress, and also that RS9 is an effective therapeutic candidate for the treatment for SBI after ICH.
Collapse
Affiliation(s)
- Tomoki Sugiyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Keita Yamauchi
- Department of Neurosurgery, Toyohashi Medical Center, Aichi 440-8510, Japan
| | - Shigenobu Sawada
- Department of Neurosurgery, Matsunami General Hospital, 185-1 Dendai, Kasamatsu, Gifu 501-6062, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
31
|
Poore DD, Hofmann G, Wolfe LA, Qi H, Jiang M, Fischer M, Wu Z, Sweitzer TD, Chakravorty S, Donovan B, Li H. Development of a High-Throughput Cul3-Keap1 Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay for Identifying Nrf2 Activators. SLAS DISCOVERY 2018; 24:175-189. [PMID: 30383469 DOI: 10.1177/2472555218807698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nrf2, a master regulator of the phase II gene response to stress, is kept at low concentrations in the cell through binding to Keap1, an adaptor protein for the Cul3 ubiquitin ligase complex. To identify Nrf2 activators, two separate time-resolved fluorescence resonance energy transfer (TR-FRET) assays were developed to monitor the binding of Nrf2-Keap1 and Cul3-Keap1, respectively. The triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) and its analogs, exhibited approximately 100-fold better potency in the Cul3-Keap1 assay than in the Nrf2-Keap1 assay, and this difference was more profound at 37 °C than at room temperature in the Nrf2-Keap1 assay, but this phenomenon was not observed in the Cul3-Keap1 assay. A full diversity screen of approximately 2,200,000 GSK compounds was run with the Cul3-Keap1 TR-FRET assay and multiple chemical series were identified and characterized.
Collapse
Affiliation(s)
- Derek D Poore
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Glenn Hofmann
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Lawrence A Wolfe
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Hongwei Qi
- 2 Protein, Cellular and Structural Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Ming Jiang
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael Fischer
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Zining Wu
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Thomas D Sweitzer
- 2 Protein, Cellular and Structural Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Subhas Chakravorty
- 3 Computational Biology, Target Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Brian Donovan
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| | - Hu Li
- 1 Screening, Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
32
|
Cytoprotective Effects of Natural Compounds against Oxidative Stress. Antioxidants (Basel) 2018; 7:antiox7100147. [PMID: 30347819 PMCID: PMC6210295 DOI: 10.3390/antiox7100147] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been witnessed in pathophysiological states of many disorders. Compounds identified from natural sources have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. Here, we summarize the cytoprotective effects and mechanisms of natural or naturally derived synthetic compounds against oxidative stress. These compounds include: caffeic acid phenethyl ester (CAPE) found in honey bee propolis, curcumin from turmeric roots, resveratrol abundant in grape, and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a synthetic triterpenoid based on naturally occurring oleanolic acid. Cytoprotective effects of these compounds in diseases conditions like cardiovascular diseases and obesity to decrease oxidative stress are discussed.
Collapse
|
33
|
Wong DPW, Ng MY, Leung JY, Boh BK, Lim EC, Tan SH, Lim S, Seah WH, Hu CZ, Ho BC, Ng DHP, Hagen T. Regulation of the NRF2 transcription factor by andrographolide and organic extracts from plant endophytes. PLoS One 2018; 13:e0204853. [PMID: 30273379 PMCID: PMC6166955 DOI: 10.1371/journal.pone.0204853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
The transcription factor NF-E2 Related Factor-2 (NRF2) is an important drug target. Activation of NRF2 has chemopreventive effects in cancer and exerts beneficial effects in a number of diseases, including neurodegenerative diseases, inflammatory diseases, hepatosteatosis, obesity and insulin resistance. Hence, there have been great efforts to discover and characterize novel NRF2 activators. One reported NRF2 activator is the labdane diterpenoid andrographolide. In this study, we identified the mechanism through which andrographolide activates NRF2. We showed that andrographolide inhibits the function of KEAP1, a protein that together with CUL3 and RBX1 forms an E3 ubiquitin ligase that polyubiquitinates NRF2. Andrographolide partially inhibits the interaction of KEAP1 with CUL3 in a manner dependent on Cys151 in KEAP1. This suggests that andrographolide forms Michael acceptor dependent adducts with Cys151 in KEAP1 in vivo, leading to inhibition of NRF2 ubiquitination and consequently accumulation of the transcription factor. Interestingly, we also showed that at higher concentrations andrographolide increases NRF2 protein expression in a Cys151 independent, but likely KEAP1 dependent manner, possibly through modification of other Cys residues in KEAP1. In this study we also screened secondary metabolites produced by endophytes isolated from non-flowering plants for NRF2-inducing properties. One of the extracts, ORX 41, increased both NRF2 protein expression and transcriptional activity markedly. These results suggest that endophytes isolated from non-flowering or other plants may be a good source of novel NRF2 inducing compounds.
Collapse
Affiliation(s)
- Daphne Pei Wen Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Yu Leung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Kim Boh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Chien Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Hua Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Shuying Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wen Hui Seah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Zhiwen Hu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Ho
- The Herbarium, Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | - Daphne Hui Ping Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail: (DHPN); (TH)
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (DHPN); (TH)
| |
Collapse
|
34
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
35
|
Bubb KJ, Kok C, Tang O, Rasko NB, Birgisdottir AB, Hansen T, Ritchie R, Bhindi R, Reisman SA, Meyer C, Ward K, Karimi Galougahi K, Figtree GA. The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling. Free Radic Biol Med 2017; 108:585-594. [PMID: 28438659 DOI: 10.1016/j.freeradbiomed.2017.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats. METHODS/RESULTS DH404, administered from day 2 post myocardial infarction (MI: 30min transient ischemia followed by reperfusion) resulted in almost complete protection against adverse ventricular remodeling as assessed at day 28 (left ventricular end-systolic area: sham 0.14±0.01cm2, MI vehicle 0.29±0.04cm2 vs. MI DH404 0.18±0.02cm2, P<0.05); infarct size (21.3±3.4% MI vehicle vs. 10.9±2.3% MI DH404, P<0.05) with associated benefits on systolic function (fractional shortening: sham 71.9±2.6%, MI vehicle 36.2±1.9% vs. MI DH404 58.6±4.0%, P<0.05). These structural and functional benefits were associated with lower myocardial expression of atrial natriuretic peptide (ANP, P<0.01 vs. MI vehicle), and decreased fibronectin (P<0.01 vs. MI vehicle) in DH404-treated MI rats at 28 days. MI increased glutathionylation of endothelial nitric oxide synthase (eNOS) in vitro - a molecular switch that uncouples the enzyme, increasing superoxide production and decreasing nitric oxide (NO) bioavailability. MI-induced eNOS glutathionylation was substantially ameliorated by DH404. An associated increase in glutaredoxin 1 (Grx1) co-immunoprecipitation with eNOS without a change in expression was mechanistically intriguing. Indeed, in parallel in vitro experiments, silencing of Grx1 abolished the protective effect of DH404 against Angiotensin II-induced eNOS uncoupling. CONCLUSION The bardoxolone derivative DH404 significantly attenuated cardiac remodeling post MI, at least in part, by re-coupling of eNOS and increasing the functional interaction of Grx1 with eNOS. This agent may have clinical benefits protecting against post MI cardiomyopathy.
Collapse
Affiliation(s)
- Kristen J Bubb
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Cindy Kok
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Owen Tang
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Nathalie B Rasko
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Asa B Birgisdottir
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Hansen
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Rebecca Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ravinay Bhindi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia
| | | | | | - Keith Ward
- Reata Pharmaceuticals, Inc. Irving, TX, USA
| | - Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia.
| |
Collapse
|
36
|
Wei J, Zhu H, Lord G, Bhattachayya M, Jones BM, Allaway G, Biswal SS, Korman B, Marangoni RG, Tourtellotte WG, Varga J. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res 2017; 183:71-86.e1. [PMID: 28027929 PMCID: PMC7205471 DOI: 10.1016/j.trsl.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) governs antioxidant, innate immune and cytoprotective responses and its deregulation is prominent in chronic inflammatory conditions. To examine the hypothesis that Nrf2 might be implicated in systemic sclerosis (SSc), we investigated its expression, activity, and mechanism of action in SSc patient samples and mouse models of fibrosis and evaluated the effects of a novel pharmacologic Nrf2 agonist. We found that both expression and activity of Nrf2 were significantly reduced in SSc patient skin biopsies and showed negative correlation with inflammatory gene expression. In skin fibroblasts, Nrf2 mitigated fibrotic responses by blocking canonical transforming growth factor-β (TGF-β)-Smad signaling, whereas silencing Nrf2 resulted in constitutively elevated collagen synthesis, spontaneous myofibroblast differentiation, and enhanced TGF-ß responses. Bleomycin treatment of Nrf2-null mice resulted in exaggerated fibrosis. In wild-type mice, treatment with a novel pharmacologic Nrf2 agonist 2-trifluoromethyl-2'-methoxychalcone prevented dermal fibrosis induced by TGF-β. These findings are the first to identify Nrf2 as a cell-intrinsic antifibrotic factor with key roles in maintaining extracellular matrix homeostasis and a pathogenic role in SSc. Pharmacologic reactivation of Nrf2, therefore, represents a novel therapeutic strategy toward effective treatment of fibrosis in SSc.
Collapse
Affiliation(s)
- Jun Wei
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| | - Hongyan Zhu
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Gabriel Lord
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Mitra Bhattachayya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Md
| | - Benjamin Korman
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | - Warren G Tourtellotte
- Department of Pathology, Feinberg School of Medicine, Chicago, Ill; Department of Neurology, Feinberg School of Medicine, Chicago, Ill
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
37
|
The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc Diabetol 2017; 16:33. [PMID: 28253885 PMCID: PMC5335831 DOI: 10.1186/s12933-017-0513-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Vascular dysfunction is a pivotal event in the development of diabetes-associated vascular disease. Increased inflammation and oxidative stress are major contributors to vascular dysfunction. Nrf2, a master regulator of several anti-oxidant genes and a suppressor of inflammatory NF-κB, has potential as a target to combat oxidative stress and inflammation. The aim of this study was to investigate the effects of a novel Nrf2 activator, the bardoxolone methyl derivative dh404, on endothelial function in vitro and in vivo. Methods dh404 at 3 mg/kg was administered to male Akita mice, an established diabetic mouse model of insulin insufficiency and hyperglycemia, from 6 weeks of age. At 26 weeks of age, vascular reactivity was assessed by wire myography, pro-inflammatory expression was assessed in the aortas by qRT-PCR and immunohistochemistry, and systemic and vascular oxidative stress measurements were determined. Additionally, studies in human aortic endothelial cells (HAECs) derived from normal and diabetic patients in the presence or absence of dh404 included assessment of pro-inflammatory genes by qRT-PCR and western blotting. Oxidative stress was assessed by three methods; L-012, DCFDA and amplex red. Static adhesion assays were performed to determine the leukocyte–endothelial interaction in the presence or absence of dh404. Results Dh404 significantly attenuated endothelial dysfunction in diabetic Akita mice characterized by reduced contraction in response to phenylephrine and the downregulation of inflammatory genes (VCAM-1, ICAM-1, p65, IL-1β) and pro-oxidant genes (Nox1 and Nox2). Furthermore, reduced systemic and vascular oxidative stress levels were observed in diabetic Akita mice. dh404 exhibited cytoprotective effects in diabetic HAECs in vitro, reflected by significant upregulation of Nrf2-responsive genes, NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), reduction of oxidative stress markers (O2·− and H2O2), inhibition of inflammatory genes (VCAM-1 and the p65 subunit of NF-κB) and attenuation of leukocyte–endothelial interactions (P < 0.05 for all in vitro and in vivo parameters; one or two-way ANOVA as appropriate with post hoc testing). Conclusion These studies demonstrate that upregulation of Nrf2 by dh404 represents a novel therapeutic strategy to limit diabetes-associated vascular injury. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0513-y) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Abusarah J, Benabdoune H, Shi Q, Lussier B, Martel-Pelletier J, Malo M, Fernandes JC, de Souza FP, Fahmi H, Benderdour M. Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis. J Cell Biochem 2017; 118:1003-1013. [PMID: 27463229 DOI: 10.1002/jcb.25659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022]
Abstract
Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1β in the presence or absence of protandim (0-10 μg/ml) or 6-gingerol (0-10 μM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 μl of vehicle or protandim (10 μg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1β-induced NO, PGE2 , MMP-13, and HNE production as well as IL-β-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1β-induced HNE and MMP-13 as well as IL-1β-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1β was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Houda Benabdoune
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Qin Shi
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Bertrand Lussier
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Michel Malo
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Julio C Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| | - Fátima Pereira de Souza
- Universidade Estadual Paulista "Júlio de Mesquita Filho", (UNESP), Departamento de Física, Laboratório de Biologia Molecular, Centro Multiusuário de Inovação Biomolecular (CMIB), 15054-000, São José Do Rio Preto, SP, Brazil
| | - Hassan Fahmi
- Osteoarthritis Research Unit and Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada H2L 4M1
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, Université de Montréal, 5400 Gouin Blvd. West, Montreal, Quebec, Canada H4J 1C5
| |
Collapse
|
39
|
David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. J Diabetes Res 2017; 2017:4826724. [PMID: 28913364 PMCID: PMC5585663 DOI: 10.1155/2017/4826724] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Despite improvements in awareness and treatment of type II diabetes mellitus (TIIDM), this disease remains a major source of morbidity and mortality worldwide, and prevalence continues to rise. Oxidative damage caused by free radicals has long been known to contribute to the pathogenesis and progression of TIIDM and its complications. Only recently, however, has the role of the Nrf2/Keap1/ARE master antioxidant pathway in diabetic dysfunction begun to be elucidated. There is accumulating evidence that this pathway is implicated in diabetic damage to the pancreas, heart, and skin, among other cell types and tissues. Animal studies and clinical trials have shown promising results suggesting that activation of this pathway can delay or reverse some of these impairments in TIIDM. In this review, we outline the role of oxidative damage and the Nrf2/Keap1/ARE pathway in TIIDM, focusing on current and future efforts to utilize this relationship as a therapeutic target for prevention, prognosis, and treatment of TIID.
Collapse
Affiliation(s)
- Joshua A. David
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - William J. Rifkin
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel J. Ceradini
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
- *Daniel J. Ceradini:
| |
Collapse
|
40
|
Huerta C, Jiang X, Trevino I, Bender CF, Ferguson DA, Probst B, Swinger KK, Stoll VS, Thomas PJ, Dulubova I, Visnick M, Wigley WC. Characterization of novel small-molecule NRF2 activators: Structural and biochemical validation of stereospecific KEAP1 binding. Biochim Biophys Acta Gen Subj 2016; 1860:2537-2552. [PMID: 27474998 DOI: 10.1016/j.bbagen.2016.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/16/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Semi-synthetic oleanane triterpenoid antioxidant inflammation modulators (tpAIMs) are small molecules that interact with KEAP1 cysteine residue 151 (C151) and activate NRF2. Exploration of the structure-activity relationship between the tpAIMs and KEAP1 is limited by the predominantly hydrocarbon nature of the oleanane triterpenoid pentacyclic ring structure. Therefore, we used novel, chemically-tractable, synthetic antioxidant inflammation modulators (sAIMs) to probe the stereoselectivity of the ligand-protein interaction. METHODS We measured several parameters of NRF2 activation to assess the potency of sAIM enantiomers with natural (tpAIM-like) 4(S),5(S),10(R) or unnatural 4(R),5(R),10(S) configurations. Additionally, we determined the crystal structure of the KEAP1 BTB domain in complex with two different sAIMs. RESULTS We found that the potencies of sAIM enantiomers in the natural configuration were similar to those of the tpAIM, RTA 405. Strikingly, sAIM enantiomers in the unnatural configuration were 10- to 40-fold less potent than their natural counterparts. Crystallographic studies of sAIMs in complex with the KEAP1 BTB domain demonstrated that these ligands form a covalent bond with C151 and revealed the presence of additional hydrogen bonds, Van der Waals interactions, and pi-stacking interactions. CONCLUSIONS Although KEAP1 C151 is required for NRF2 activation by tpAIMs and sAIMs, interactions with other KEAP1 residues are critical for the stereospecific recognition and potency of these ligands. GENERAL SIGNIFICANCE This work demonstrates that reversible cyanoenone Michael acceptors, such as the tpAIMs and sAIMs, can be specifically tuned to regulate redox sensitive cysteine residues on key signaling molecules, an approach with significant promise for innovative drug development.
Collapse
Affiliation(s)
- Carlos Huerta
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States; Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Xin Jiang
- Department of Discovery Chemistry, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | - Isaac Trevino
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | - Christopher F Bender
- Department of Discovery Chemistry, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | - Deborah A Ferguson
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | - Brandon Probst
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | | | | | - Philip J Thomas
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Irina Dulubova
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States
| | - Melean Visnick
- Department of Discovery Chemistry, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States.
| | - W Christian Wigley
- Department of Research, Reata Pharmaceuticals, Inc., Irving, TX 75063, United States.
| |
Collapse
|
41
|
Wong MHL, Bryan HK, Copple IM, Jenkins RE, Chiu PH, Bibby J, Berry NG, Kitteringham NR, Goldring CE, O'Neill PM, Park BK. Design and Synthesis of Irreversible Analogues of Bardoxolone Methyl for the Identification of Pharmacologically Relevant Targets and Interaction Sites. J Med Chem 2016; 59:2396-409. [PMID: 26908173 DOI: 10.1021/acs.jmedchem.5b01292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Semisynthetic triterpenoids such as bardoxolone methyl (methyl-2-cyano 3,12-dioxooleano-1,9-dien-28-oate; CDDO-Me) (4) are potent inducers of antioxidant and anti-inflammatory signaling pathways, including those regulated by the transcription factor Nrf2. However, the reversible nature of the interaction between triterpenoids and thiols has hindered attempts to identify pharmacologically relevant targets and characterize the sites of interaction. Here, we report a shortened synthesis and SAR profiling of 4, enabling the design of analogues that react irreversibly with model thiols, as well as the model protein glutathione S-transferase P1, in vitro. We show that one of these analogues, CDDO-epoxide (13), is comparable to 4 in terms of cytotoxicity and potency toward Nrf2 in rat hepatoma cells and stably modifies specific cysteine residues (namely, Cys-257, -273, -288, -434, -489, and -613) within Keap1, the major repressor of Nrf2, both in vitro and in living cells. Supported by molecular modeling, these data demonstrate the value of 13 for identifying site(s) of interaction with pharmacologically relevant targets and informing the continuing development of triterpenoids as novel drug candidates.
Collapse
Affiliation(s)
- Michael H L Wong
- Department of Chemistry, University of Liverpool , L69 7ZD Liverpool, U.K
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Holly K Bryan
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Ian M Copple
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Pak Him Chiu
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Jaclyn Bibby
- Department of Chemistry, University of Liverpool , L69 7ZD Liverpool, U.K
| | - Neil G Berry
- Department of Chemistry, University of Liverpool , L69 7ZD Liverpool, U.K
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Christopher E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool , L69 7ZD Liverpool, U.K
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , L69 3GE Liverpool, U.K
| |
Collapse
|
42
|
A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy. Clin Sci (Lond) 2016; 130:1375-87. [PMID: 27005782 DOI: 10.1042/cs20160068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/22/2016] [Indexed: 01/06/2023]
Abstract
An imbalance in oxidative stress and antioxidant defense mechanisms contributes to the development of ischaemic retinopathies such as diabetic retinopathy and retinopathy of prematurity (ROP). Currently, the therapeutic utility of targeting key transcription factors to restore this imbalance remains to be determined. We postulated that dh404, an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), the master regulator of oxidative stress responses, would attenuate retinal vasculopathy by mechanisms involving protection against oxidative stress-mediated damage to glia. Oxygen-induced retinopathy (OIR) was induced in neonatal C57BL/6J mice by exposure to hyperoxia (phase I) followed by room air (phase II). dh404 (1 mg/kg/every second day) reduced the vaso-obliteration of phase I OIR and neovascularization, vascular leakage and inflammation of phase II OIR. In phase I, the astrocytic template and vascular endothelial growth factor (VEGF) expression necessary for physiological angiogenesis are compromised resulting in vaso-obliteration. These events were attenuated by dh404 and related to dh404's ability to reduce the hyperoxia-induced increase in reactive oxygen species (ROS) and markers of cell damage as well as boost the Nrf2-responsive antioxidants in cultured astrocytes. In phase II, neovascularization and vascular leakage occurs following gliosis of Müller cells and their subsequent increased production of angiogenic factors. dh404 reduced Müller cell gliosis and vascular leakage in OIR as well as the hypoxia-induced increase in ROS and angiogenic factors with a concomitant increase in Nrf2-responsive antioxidants in cultured Müller cells. In conclusion, agents such as dh404 that reduce oxidative stress and promote antioxidant capacity offer a novel approach to lessen the vascular and glial cell damage that occurs in ischaemic retinopathies.
Collapse
|
43
|
Qin A, Qin J, Jin Y, Xie W, Fan L, Jiang L, Mo F. DHEA improves the antioxidant capacity of endometrial stromal cells and improves endometrium receptivity via androgen receptor. Eur J Obstet Gynecol Reprod Biol 2016; 198:120-126. [DOI: 10.1016/j.ejogrb.2016.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 11/15/2022]
|
44
|
Nrf2 activator ameliorates hemorrhagic transformation in focal cerebral ischemia under warfarin anticoagulation. Neurobiol Dis 2016; 89:136-46. [PMID: 26850917 DOI: 10.1016/j.nbd.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/08/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress has been reported to be a main cause of neuronal cell death in ischemia reperfusion injury (IRI). Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important factor involved in anti-oxidative responses. We previously reported that bardoxolone methyl (BARD), an Nrf2 activator, prevented damage induced by IRI. In this study, we investigated the effect of BARD on hemorrhagic transformation in the context of blood brain barrier (BBB) protection. METHODS Mice received pre-treatment with warfarin (4.0 mg/kg, p.o.). IRI was subsequently induced 18 h after the warfarin administration by transient middle cerebral artery occlusion (MCAO) for 6 h. BARD (0.06, 0.2, 0.6 or 2.0 mg/kg) or saline was injected intravenously immediately after reperfusion. The infarct volume, neurological score, intracranial hemorrhage volume, and BBB permeability were evaluated 24 h after MCAO. The survival rate and behavioral functional recovery were evaluated for 7 days following IRI. Furthermore, the effects of BARD on BBB components were investigated by western blotting and immunostaining analysis. RESULTS BARD suppressed warfarin-mediated increases in the intracranial hemorrhage volume without affecting the infarct volume. BBB permeability was also suppressed by administration of BARD. Western blotting showed that BARD increased expression of BBB components such as endothelial cells, pericytes, and tight junction proteins. Furthermore, immunostaining showed that BARD induced localization of Nrf2 to endothelial cells and pericytes. CONCLUSIONS BARD suppressed the exacerbation hemorrhage caused by warfarin pretreatment and ameliorated BBB disruption by protecting endothelial cells, pericytes, and tight junction protein expressions. These results indicate that Nrf2 activators may be an effective therapy against hemorrhagic transformation caused by anticoagulant drugs.
Collapse
|
45
|
Elango B, Dornadula S, Paulmurugan R, Ramkumar KM. Pterostilbene Ameliorates Streptozotocin-Induced Diabetes through Enhancing Antioxidant Signaling Pathways Mediated by Nrf2. Chem Res Toxicol 2016; 29:47-57. [DOI: 10.1021/acs.chemrestox.5b00378] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Ramasamy Paulmurugan
- Department
of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, United States
| | | |
Collapse
|
46
|
Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes. Apoptosis 2015; 20:285-97. [PMID: 25542256 DOI: 10.1007/s10495-014-1081-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P < 0.01) and CHOP expression (P < 0.05), and increased the Bcl-2/Bax ratio (P < 0.01). MR-1 overexpression suppressed H/R-induced PERK phosphorylation, Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). While MR-1 knockdown aggravated H/R-induced apoptosis, increased expression of GRP78 and CHOP (P < 0.05), and decreased the Bcl-2/Bax ratio (P < 0.01). MR-1 knockdown significantly increased H/R-induced PERK phosphorylation (P < 0.05), Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). These findings suggest that MR-1 alleviates H/R-induced cardiomyocyte apoptosis through inhibition of the PERK/Nrf2 pathway.
Collapse
|
47
|
Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:407580. [PMID: 26583056 PMCID: PMC4637098 DOI: 10.1155/2015/407580] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.
Collapse
|
48
|
Montero RM, Covic A, Gnudi L, Goldsmith D. Diabetic nephropathy: What does the future hold? Int Urol Nephrol 2015; 48:99-113. [PMID: 26438328 PMCID: PMC4705119 DOI: 10.1007/s11255-015-1121-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/19/2015] [Indexed: 12/24/2022]
Abstract
The consensus management of diabetic nephropathy (DN) in 2015 involves good control of glycaemia, dyslipidaemia and blood pressure (BP). Blockade of the renin-angiotensin-aldosterone system using angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers or mineralocorticoid inhibitors are key therapeutic approaches, shown to be beneficial once overt nephropathy is manifest, as either, or both, of albuminuria and loss of glomerular filtration rate. Some significant additional clinical benefits in slowing the progression of DN was reported from the Remission clinic experience, where simultaneous intensive control of BP, tight glycaemic control, weight loss, exercise and smoking cessation were prioritised in the management of DN. This has not proved possible to translate to more conventional clinical settings. This review briefly looks over the history and limitations of current therapy from landmark papers and expert reviews, and following an extensive PubMed search identifies the most promising clinical biomarkers (both established and proposed). Many challenges need to be addressed urgently as in order to obtain novel therapies in the clinic; we also need to examine what we mean by remission, stability and progression of DN in the modern era.
Collapse
Affiliation(s)
- R M Montero
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK.
| | - A Covic
- Hospital "C.I.Parhon" and University of Medicine "Grigore T Popa", Iasi, Romania
| | - L Gnudi
- Cardiovascular Division, Department of Diabetes and Endocrinology, Guy's and St Thomas' Hospital, School of Medicine and Life Science, King's College London, London, UK
| | - D Goldsmith
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
49
|
Choi SH, Park S, Oh CJ, Leem J, Park KG, Lee IK. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation. Vascul Pharmacol 2015; 73:11-9. [PMID: 26187356 DOI: 10.1016/j.vph.2015.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 07/11/2015] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2.
Collapse
Affiliation(s)
- Seung Hee Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Joo Oh
- Research Institutes of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jaechan Leem
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Keun-Gyu Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea; Research Institutes of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
50
|
Qu C, Li B, Lai Y, Li H, Windust A, Hofseth LJ, Nagarkatti M, Nagarkatti P, Wang XL, Tang D, Janicki JS, Tian X, Cui T. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:326-336. [PMID: 25882312 PMCID: PMC4810680 DOI: 10.1016/j.jep.2015.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. MATERIALS AND METHODS A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. RESULTS A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC-UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. CONCLUSIONS These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart.
Collapse
Affiliation(s)
- Chen Qu
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Bin Li
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Reproductive Medicine, Linyi People׳s Hospital, Linyi, Shandong 276003, China
| | - Yimu Lai
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Hechu Li
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Anthony Windust
- Measurement Science and Standards, National Research Council, Ottawa, Canada
| | - Lorne J Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Xing Li Wang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dongqi Tang
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|