1
|
Ozkan J, Majzoub ME, Khan M, Coroneo M, Thomas T, Willcox M. The Effect of Face Mask Wear on the Ocular Surface and Contact Lens Microbiome. Eye Contact Lens 2024; 50:467-474. [PMID: 39252208 PMCID: PMC11487008 DOI: 10.1097/icl.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES As face mask wear can result in the redirection of nasal and oral exhalation toward the ocular region, this study investigated the impact of face mask wear on the conjunctiva, eyelid margin, and contact lens (CL) surface microbiome. METHODS In this prospective, cross-over study, experienced CL wearers (N=20) were randomized to wear a face mask for 6 hr/day (minimum) for a week or no mask for a week. The conjunctiva, eyelid, and CLs were then sampled. After a 1-week washout period, participants were crossed over into the alternate treatment for 1 week and sampling was repeated. Sampling was bilateral and randomly assigned to be processed for culturing or 16S ribosomal(r) RNA gene sequencing. RESULTS Culturing showed no effect of mask wear on the average number of bacterial colonies isolated on the conjunctiva, eyelid, or CL, but there was increased isolation of Staphylococcus capitis on CL samples with mask wear ( P =0.040). Culture-independent sequencing found differences in the taxonomic complexity and bacterial composition between the three sites ( P <0.001), but there was no effect of bacterial diversity within and between sites. Mask wear did not impact dry eye or CL discomfort, but increased ocular surface staining was reported ( P =0.035). CONCLUSIONS Mask wear did not substantially alter the microbiome of the conjunctiva, eyelid margin, or CL surfaces in uncompromised healthy eyes.
Collapse
Affiliation(s)
- Jerome Ozkan
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Marwan E. Majzoub
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mahjabeen Khan
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Minas Coroneo
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science (J.O., M.K., M.W.), University of New South Wales, Sydney, Australia; Host-Microbiome Interactions Group (M.E.M.), School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Department of Ophthalmology (M.C.), Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney, Australia; and School of Biological (J.O., T.T.), Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Bessesen MT. Interventions targeting the nasal microbiome to eradicate MRSA. Clin Microbiol Infect 2024:S1198-743X(24)00504-4. [PMID: 39481681 DOI: 10.1016/j.cmi.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen in many sites, including bloodstream, skin and soft tissue, bone and joints. When infection is caused by methicillin resistant S. aureus (MRSA) therapy is more difficult and outcomes are less favorable. Nasal colonization is associated with increased risk for MRSA infections. The nasal microbiome may play a role in risk for nasal colonization and infection. OBJECTIVES To review the role of the microbiome in MRSA nasal colonization and infection. SOURCES Peer reviewed literature identified in a Medline search using MRSA, S. aureus, prebiotic and microbiota as search terms. CONTENT Reduction of S. aureus nasal colonization has been shown to reduce risk of S. aureus infections, but decolonization methods are imperfect. The role of the nasal microbiome in host defense against S. aureus colonization and infection is explored. Numerous organisms have been shown to be negatively associated with S. aureus colonization. Antimicrobial molecules produced by these organisms are an active area of research. IMPLICATIONS Future research should focus on development of safe and effective molecules that can inhibit S. aureus in the nasal vestibule. Damage to the diverse nasal microbiota by unnecessary antibiotics should be avoided.
Collapse
Affiliation(s)
- Mary T Bessesen
- University of Colorado Anschutz School of Medicine; Infectious Diseases, Veterans Affairs Eastern Colorado Healthcare System, 1700 North Wheeling, Aurora, CO, 80045.
| |
Collapse
|
3
|
Li B, Wang D, Zhang C, Wang Y, Huang Z, Yang L, Yang H, Liang N, Li S, Liu Z. Role of respiratory system microbiota in development of lung cancer and clinical application. IMETA 2024; 3:e232. [PMID: 39429871 PMCID: PMC11488069 DOI: 10.1002/imt2.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
Microbes play a significant role in human tumor development and profoundly impact treatment efficacy, particularly in immunotherapy. The respiratory tract extensively interacts with the external environment and possesses a mucosal immune system. This prompts consideration of the relationship between respiratory microbiota and lung cancer. Advancements in culture-independent techniques have revealed unique communities within the lower respiratory tract. Here, we provide an overview of the respiratory microbiota composition, dysbiosis characteristics in lung cancer patients, and microbiota profiles within lung cancer. We delve into how the lung microbiota contributes to lung cancer onset and progression through direct functions, sustained immune activation, and immunosuppressive mechanisms. Furthermore, we emphasize the clinical utility of respiratory microbiota in prognosis and treatment optimization for lung cancer.
Collapse
Affiliation(s)
- Bowen Li
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Daoyun Wang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chengye Zhang
- Institute for Immunology, School of Basic Medical SciencesTsinghua UniversityBeijingChina
| | - Yadong Wang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhicheng Huang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Libing Yang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huaxia Yang
- Department of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Naixin Liang
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihua Liu
- Institute for Immunology, School of Basic Medical SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
4
|
Amaeze NJ, Akinbobola AB, Kean R, Ramage G, Williams C, Mackay W. Transfer of micro-organisms from dry surface biofilms and the influence of long survival under conditions of poor nutrition and moisture on the virulence of Staphylococcusaureus. J Hosp Infect 2024; 150:34-39. [PMID: 38823646 DOI: 10.1016/j.jhin.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Biofilms on dry hospital surfaces can enhance the persistence of micro-organisms on dry harsh clinical surfaces and can potentially act as reservoirs of infectious agents on contaminated surfaces. AIM This study was conducted to quantify the transfer of viable Staphylococcus aureus cells from dry biofilms through touching and to investigate the impact of nutrient and moisture deprivation on virulence levels in S. aureus. METHODS Dry biofilms of S. aureus ATCC 25923 and a defective biofilm-forming ability mutant, S. aureus 1132, were formed in 24-well plates under optimized conditions mimicking dry biofilm formation on clinical surfaces. Microbial cell transfer was induced through the touching of the dry biofilms, which were quantified on nutrient agar. To investigate the impact of nutrient and moisture deprivation on virulence levels, dry and standard biofilms as well as planktonic cells of S. aureus ATCC 25923 were inoculated into Galleria mellonella and their kill rates compared. FINDINGS Results of this study showed that viable cells from dry biofilms of S. aureus ATCC 25923 were significantly more virulent and readily transferrable from dry biofilms through a touch test, therefore representing a greater risk of infection. The biofilm-forming capability of S. aureus strains had no significant impact on their transferability with more cells transferring when biofilm surfaces were wet. CONCLUSIONS These findings indicate that dry biofilms on hospital surfaces may serve as a reservoir for the dissemination of pathogenic micro-organisms in hospitals, thus highlighting the importance of regular cleaning and adequate disinfection of hospital surfaces.
Collapse
Affiliation(s)
- N J Amaeze
- School of Health and Life Sciences, University of West of Scotland, Lanarkshire Campus, South Lanarkshire, UK
| | - A B Akinbobola
- Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - R Kean
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - G Ramage
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - C Williams
- University Hospitals of Morecambe NHS Foundation Trust, Kendal, UK
| | - W Mackay
- School of Health and Life Sciences, University of West of Scotland, Lanarkshire Campus, South Lanarkshire, UK.
| |
Collapse
|
5
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
6
|
Ceccanti S, Vecchiani S, Leonangeli G, Burgalassi S, Federigi I, Carducci A, Verani M. How to Evaluate If Microorganisms Isolated From Sterile Drug Production Environments Monitoring Are Undesirable. J Pharm Sci 2024; 113:1682-1688. [PMID: 38325736 DOI: 10.1016/j.xphs.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
This study addresses the identification of undesirable microorganisms (MOs) recovered during the environmental monitoring in manufacture of sterile medicinal products. We developed a methodology evaluation based on a decision tree; then, such approach was applied to hypothetical scenarios of uncommon MOs isolation in sterile drugs production settings. The scenarios were formulated on the basis of our field experience, in terms of both MOs selection and types of sampling site. The MOs were chosen in order to include emerging pathogens and MOs responsible for drug recall, and several sampling sites were considered for their detection (air, surfaces, and personnel). The classification of the unusual MOs revealed that most of them were undesirable, because they represented the loss of environmental control or a potential impact on the quality of the product. In some cases, the uncommon MOs were not considered as undesirable. Therefore, our results demonstrated the importance of a methodology, also in terms of recovery rate of unusual MOs and of the threshold probability for the unacceptability (e.g., 1% or 5%). The proposed methodology allowed an easy and documented evaluation for the undesirable MOs isolated from the environment of the analyzed settings for sterile drugs production.
Collapse
Affiliation(s)
- Stefano Ceccanti
- Abiogen Pharma, Quality Unit, Via Meucci 36, Ospedaletto, 56014 Pisa, Italy
| | - Sandra Vecchiani
- Abiogen Pharma, Quality Unit, Via Meucci 36, Ospedaletto, 56014 Pisa, Italy
| | - Giulia Leonangeli
- Abiogen Pharma, Quality Unit, Via Meucci 36, Ospedaletto, 56014 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Ileana Federigi
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Marco Verani
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| |
Collapse
|
7
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 2024; 24:150. [PMID: 38678223 PMCID: PMC11055347 DOI: 10.1186/s12866-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania.
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
8
|
Olivo G, Zakia LS, Ribeiro MG, da Cunha MDLRDS, Riboli DFM, Mello PL, Teixeira NB, de Araújo CET, Oliveira-Filho JP, Borges AS. Methicillin-resistant Staphylococcus spp. investigation in hospitalized horses and contacting personnel in a teaching veterinary hospital. J Equine Vet Sci 2024; 134:105031. [PMID: 38336267 DOI: 10.1016/j.jevs.2024.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Staphylococci are well-known opportunistic pathogens associated with suppurative diseases in humans and animals. Antimicrobial resistance is an emergent threat to humans and animals worldwide. This study investigated the prevalence of methicillin-resistant Staphylococcus spp. (MRS) in hospitalized horses and contacting personnel (veterinarians and staff), and assessed possible interspecies transmission in a teaching veterinary hospital. Nasal swabs from horses (n = 131) and humans (n = 35) were collected. The microorganisms were identified by traditional biochemical tests and genotypic methods, i.e., PCR, internal transcript spacer PCR (ITS-PCR), and gene sequencing. Staphylococcal species were isolated in 18% (23/131) of the horses, of which 8% (11/131) were S. hyicus, 4 % (5/131) were S. aureus, 4% (5/131) were S. pseudintermedius, and 2% (2/131) were S. schleiferi subsp. coagulans. The mecA gene was detected in an S. pseudintermedius isolate. Staphylococcus spp. was isolated in 40% (14/35) of the human samples, all of which were S. aureus. In four samples of S. aureus, the clonal profile ST398 was identified; among them, a clonal similarity of 98.1% was observed between a horse and a contacting human. This finding supports the need for biosecurity measures to avoid the spread of multidrug-resistant staphylococci in humans and horses.
Collapse
Affiliation(s)
- Giovane Olivo
- Department of Veterinary Clinical Science, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Luiza Stachewski Zakia
- Department of Veterinary Clinical Science, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil.
| | - Márcio Garcia Ribeiro
- Department of Animal Production and Preventive Medicine, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Maria de Lourdes Ribeiro de Souza da Cunha
- Department of Chemical and Biological Sciences, Sao Paulo State University (Unesp), Institute of Biosciences, 250 Professor Doctor Antônio Celso Wagner Zanin Street, Botucatu, Sao Paulo, Brazil
| | - Danilo Flávio Morais Riboli
- Department of Chemical and Biological Sciences, Sao Paulo State University (Unesp), Institute of Biosciences, 250 Professor Doctor Antônio Celso Wagner Zanin Street, Botucatu, Sao Paulo, Brazil
| | - Priscila Luiza Mello
- Department of Chemical and Biological Sciences, Sao Paulo State University (Unesp), Institute of Biosciences, 250 Professor Doctor Antônio Celso Wagner Zanin Street, Botucatu, Sao Paulo, Brazil
| | - Nathalia Bibiana Teixeira
- Department of Chemical and Biological Sciences, Sao Paulo State University (Unesp), Institute of Biosciences, 250 Professor Doctor Antônio Celso Wagner Zanin Street, Botucatu, Sao Paulo, Brazil
| | - César Erineudo Tavares de Araújo
- Department of Veterinary Clinical Science, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil
| | - José Paes Oliveira-Filho
- Department of Veterinary Clinical Science, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Alexandre Secorun Borges
- Department of Veterinary Clinical Science, Sao Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Professor Doctor Walter Mauricio Correa Street, Botucatu, Sao Paulo, 18618-681, Brazil
| |
Collapse
|
9
|
沈 小, 滕 支, 李 琦, 于 振. [Analysis of nasal flora composition in children with perennial allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:127-132;139. [PMID: 38297866 PMCID: PMC11116145 DOI: 10.13201/j.issn.2096-7993.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 02/02/2024]
Abstract
Objective:This paper focuses on the diversity of nasal microbiota in children with perennial allergic rhinitis and the differences in species composition, which may be used in the future as a biomarker for disease progression and treatment. Methods:A total of 65 subjects were enrolled, including 35 perennial AR patients(AR group) and a Control group(CG group) of 30 children without AR. Collect basic information and examination reports of nasal swabs. 16S-rDNA high-throughput sequencing technology was used to detect the microbial sequence in nasal swabs, and the composition and difference of microbial diversity in each group were analyzed by bioinformatics methods. Results:The Simpson and Shannon index of the alpha diversity in the AR group had a significantly increase compared to the CG group. Beta diversity was not different between the groups. Staphylococcus(Firmicutes) of the AR group were significantly higher than that of the CG group, but Moraxella is lower than that of the CG group. Conclusion:Nasal microbial diversity and species composition of children with allergic rhinitis differ from those of healthy children, and how the differential microorganisms interact with the host and participate in immune regulation and inflammatory response requires further study.
Collapse
Affiliation(s)
- 小飞 沈
- 南京医科大学附属儿童医院耳鼻咽喉科(南京,210008)Department of Otorhinolaryngology, the Affiliated Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - 支盼 滕
- 南京医科大学附属儿童医院耳鼻咽喉科(南京,210008)Department of Otorhinolaryngology, the Affiliated Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - 琦 李
- 南京医科大学附属儿童医院耳鼻咽喉科(南京,210008)Department of Otorhinolaryngology, the Affiliated Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - 振坤 于
- 南京医科大学附属明基医院耳鼻咽喉科Department of Otorhinolaryngology, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University
| |
Collapse
|
10
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
de Buys M, Moodley K, Cakic JN, Pietrzak JRT. Staphylococcus aureus colonization and periprosthetic joint infection in patients undergoing elective total joint arthroplasty: a narrative review. EFORT Open Rev 2023; 8:680-689. [PMID: 37655845 PMCID: PMC10548302 DOI: 10.1530/eor-23-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Peri-prosthetic joint infections (PJIs) following total joint arthroplasty (TJA) are associated with higher treatment costs, longer hospital admissions and increased morbidity and mortality. Colonization with Staphylococcus aureus is an independent and modifiable risk factor for PJIs and carriers of S. aureus are ten times more likely than non-carriers for post-operative infections. Screening and targeted decolonization, vs universal decolonization without screening, remains a controversial topic. We recommend a tailored approach, based on local epidemiological patterns, resource availability and logistical capacity. Universal decolonization is associated with lower rates of SSI and may reduce treatment costs.
Collapse
Affiliation(s)
- Michael de Buys
- Orthopaedic Surgery, University of Witswatersrand, Johannesburg, South Africa
| | | | - Josip Nenad Cakic
- Department Orthopaedic Surgery, Life Fourways Hospital, Johannesburg, South Africa
| | - Jurek R T Pietrzak
- Orthopaedic Surgery, University of Witswatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Lensmire JM, Wischer MR, Kraemer-Zimpel C, Kies PJ, Sosinski L, Ensink E, Dodson JP, Shook JC, Delekta PC, Cooper CC, Havlichek DH, Mulks MH, Lunt SY, Ravi J, Hammer ND. The glutathione import system satisfies the Staphylococcus aureus nutrient sulfur requirement and promotes interspecies competition. PLoS Genet 2023; 19:e1010834. [PMID: 37418503 PMCID: PMC10355420 DOI: 10.1371/journal.pgen.1010834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.
Collapse
Affiliation(s)
- Joshua M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael R Wischer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina Kraemer-Zimpel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Paige J Kies
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lo Sosinski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack P Dodson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John C Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher C Cooper
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel H Havlichek
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Martha H Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Janani Ravi
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz, Aurora, Colorado, United States of America
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
13
|
Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, Nunez-Parra A, Reyes-Cerpa S, Fuenzalida LF. Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 2023; 11:1635. [PMID: 37512807 PMCID: PMC10384449 DOI: 10.3390/microorganisms11071635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The respiratory microbiome is dynamic, varying between anatomical niches, and it is affected by various host and environmental factors, one of which is lifestyle. Few studies have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy adults. METHODS We analyzed nasal samples from 110 healthy adults who were living in Santiago, Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured questionnaire about lifestyle. RESULTS The composition and abundance of taxonomic groups varied across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in the function of physical activity, nutritional status, smoking, and the interaction between nutritional status and smoking, although the significant impact of those variables varied between women and men. Although physical activity and nutritional status were significantly associated with all indexes of alpha diversity among women, the diversity of microbiota among men was associated with smoking and the interaction between nutritional status and smoking. CONCLUSIONS The alpha diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on sex and nutritional status. Our results suggest that future studies of the airway microbiome may provide a better resolution if data are stratified for differences in sex and nutritional status.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan P Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Francisco Zorondo-Rodríguez
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago 8910060, Chile
| | - Damariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Evelyn Silva-Moreno
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Puebla
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Alexia Nunez-Parra
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Loreto F Fuenzalida
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
14
|
Cedillo-González EI, Chierici P, Buttazzo M, Siligardi C, Blasi E, Ardizzoni A. Correlating the physico-chemical properties of two conventional glazed porcelain stoneware tiles in relation to cleanability and sanitization. MATERIALS TODAY. COMMUNICATIONS 2023; 34:105191. [PMID: 36567982 PMCID: PMC9758761 DOI: 10.1016/j.mtcomm.2022.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Keeping surfaces clean can reduce the spread of infections. In particular, to decrease the potential for SARS CoV-2 contamination, performing disinfection of high-touching surfaces. Several ceramic tiles and porcelain stoneware tiles with antimicrobial properties are already available on the market. However, the widespread use of antimicrobial glazed stoneware tiles may require to replace the ceramic surfaces already present in many buildings. The unfeasibility of such replacement can be due to both product durability (lifetime of a tile is usually long) and/or monetary restrictions. Furthermore, as porcelain stoneware per se does not have antimicrobial activity, these materials are fabricated by adding chemical agents able to provide antimicrobial properties. This approach requires a compatibility between the antimicrobial agents and the glaze formulation, as well as a careful control of the firing cycle and the final properties of the ceramic products. It follows that the final cost of antimicrobial tiles is not competitive with that of conventional tiles. In the latter, the persistence of potential pathogens on the surfaces is a crucial problem to face: the longer a pathogen survives on a surface, the longer it may be a source of transmission and thus endanger susceptible subjects. In this work, bacteria's capacity to adhere and to be effectively removed from two conventional glazed porcelain stoneware tiles (under dirty and clean conditions) was investigated. Two different glazes were tested, one mainly glassy (glossy) and the other mainly crystalline (matt). The sanitization procedures were carried out by chemical and chemo-mechanical procedures. The results showed that chemo-mechanical sanitization was the most effective, and the best results could be obtained on the stoneware tiles coated with the mainly glassy glaze, with the lowest porosity and the lower roughness values and water contact angles, especially under clean conditions.
Collapse
Affiliation(s)
- Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, Florence 50121, Italy
| | - Paolo Chierici
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| | - Marta Buttazzo
- SMALTICERAM UNICER S.p.A., Via della Repubblica 10/12, 42014 Roteglia, RE, Italy
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, Florence 50121, Italy
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
15
|
Rosas-Salazar C, Kimura KS, Shilts MH, Strickland BA, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Rajagopala SV, Turner JH, Das SR. Upper respiratory tract microbiota dynamics following COVID-19 in adults. Microb Genom 2023; 9:mgen000957. [PMID: 36820832 PMCID: PMC9997743 DOI: 10.1099/mgen.0.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
To date, little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, on the upper respiratory tract (URT) microbiota over time. To fill this knowledge gap, we used 16S ribosomal RNA gene sequencing to characterize the URT microbiota in 48 adults, including (1) 24 participants with mild-to-moderate COVID-19 who had serial mid-turbinate swabs collected up to 21 days after enrolment and (2) 24 asymptomatic, uninfected controls who had mid-turbinate swabs collected at enrolment only. To compare the URT microbiota between groups in a comprehensive manner, different types of statistical analyses that are frequently employed in microbial ecology were used, including ⍺-diversity, β-diversity and differential abundance analyses. Final statistical models included age, sex and the presence of at least one comorbidity as covariates. The median age of all participants was 34.00 (interquartile range=28.75-46.50) years. In comparison to samples from controls, those from participants with COVID-19 had a lower observed species index at day 21 (linear regression coefficient=-13.30; 95 % CI=-21.72 to -4.88; q=0.02). In addition, the Jaccard index was significantly different between samples from participants with COVID-19 and those from controls at all study time points (PERMANOVA q<0.05 for all comparisons). The abundance of three amplicon sequence variants (ASVs) (one Corynebacterium ASV, Frederiksenia canicola, and one Lactobacillus ASV) were decreased in samples from participants with COVID-19 at all seven study time points, whereas the abundance of one ASV (from the family Neisseriaceae) was increased in samples from participants with COVID-19 at five (71.43 %) of the seven study time points. Our results suggest that mild-to-moderate COVID-19 can lead to alterations of the URT microbiota that persist for several weeks after the initial infection.
Collapse
Affiliation(s)
- Christian Rosas-Salazar
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kyle S Kimura
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meghan H Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Britton A Strickland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael H Freeman
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Veerain Gupta
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hunter M Brown
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Helen H Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin H Turner
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman Ranjan Das
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Ong'era E, Kagira J, Maina N, Kiboi D, Waititu K, Michira L, Ngotho M. Prevalence and Potential Risk Factors for the Acquisition of Antibiotic-Resistant Staphylococcus spp. Bacteria Among Pastoralist Farmers in Kajiado Central Subcounty, Kenya. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3573056. [PMID: 37082192 PMCID: PMC10113052 DOI: 10.1155/2023/3573056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial resistance (AMR) is a growing health problem globally. To address this challenge, there is a need to generate baseline data on the prevalence and AMR profile of the main disease-causing bacteria. Here, we interrogated the prevalence of bacteria in the nasal cavity of healthy pastoralists in Kajiado Central Subcounty, Kenya, and the occurrence of AMR in Staphylococcus isolates among the study subjects. Nasal swabs from 176 pastoralists were cultured, and the bacteria isolates identified using standard phenotypic and biochemical bacteriological methods. Among the obtained 195 isolates, the most prevalent isolates were coagulase-negative Staphylococcus (CoNS) (44.9%), followed by Enterococci spp. (43.2%) while Staphylococcus aureus prevalence was 8%. Antimicrobial sensitivity of the Staphylococcus spp. isolates to 14 antibiotics representing six antibiotic groups was undertaken using the Kirby-Bauer disk diffusion method. Among the CoNS, the highest resistance was reported in amoxicillin (78.7%) and ceftazidime (76%), while the most resistance for S. aureus was reported in ceftazidime (100%), amoxicillin (71.4%), and streptomycin (71.4%). From an administered questionnaire looking at gender, animal contact frequency, history of hospital visitation and antibiotic usage, and habitual intake of raw milk, the study showed that male participants had a higher risk of carrying multiple drug resistant (MDR) bacteria than females (p = 0.02, OR = 1.3). Likewise, habitual intake of raw milk was significantly associated MDR acquisition (p = 0.02, OR = 1.82). This study reveals a high prevalence of AMR Staphylococcus isolates in the study area laying a foundation for further analysis of molecular characterization of the observed resistance as well as the development of interventions that can reduce the occurrence of AMR in the study area.
Collapse
Affiliation(s)
- Edidah Ong'era
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - John Kagira
- Department of Animal Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Kenneth Waititu
- Department of Animal Science, Institute of Primate Research, P.O. Box 24481 Karen 00502 Nairobi, Kenya
| | - Lynda Michira
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Maina Ngotho
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya P.O. Box 30197-GPO
| |
Collapse
|
17
|
Wang Y, Li X, Gu S, Fu J. Characterization of dysbiosis of the conjunctival microbiome and nasal microbiome associated with allergic rhinoconjunctivitis and allergic rhinitis. Front Immunol 2023; 14:1079154. [PMID: 37020561 PMCID: PMC10068870 DOI: 10.3389/fimmu.2023.1079154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Allergic rhinoconjunctivitis (ARC) and allergic rhinitis (AR) are prevalent allergic diseases. People are becoming increasingly aware of the impact of microbial disorders on host immunity and allergic diseases. Studies have demonstrated an association between allergic diseases and the microbiome, but much remains unknown. We assessed changes in the conjunctival microbiome and nasal microbiome in patients with ARC or AR. Methods Conjunctival swabs and nasal swabs were collected from each participant for 16S rRNA amplicon sequencing. Bacterial communities were analyzed. Results Forty patients with ARC, 20 patients suffering from AR, and 34 healthy controls (HCs) were recruited. This study found the abundance of conjunctival microbiome in patients with ARC or AR was significantly lower than that in HCs. The diversity of conjunctival microbiome in patients with AR was significantly lower than those in the other two groups. There is no significant difference in abundance of nasal microbiome between the three groups. The diversities of nasal microbiome in patients with ARC or AR were significantly lower than that in HCs. We found significant differences in microbiota compositions in patients with ARC or AR compared with those in HCs. However, no significant difference in microbiota compositions was found between patients with ARC and patients with AR. Microbiome functions in the ARC group and AR group were also altered compared with HCs. Conclusions We revealed changes in the composition and function of the conjunctival microbiome and nasal microbiome of patients with ARC or AR, which suggests that there is a relationship between allergic conditions and the local microbiome.
Collapse
Affiliation(s)
- Yuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Department of Otolaryngology-Head & Neck Surgery, Tianjin TEDA Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
- *Correspondence: Xuan Li,
| | - Shuntong Gu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Department of Vascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Junhong Fu
- Department of Ophthalmology, Tianjin TEDA Hospital, Tianjin, China
| |
Collapse
|
18
|
Erdmann N, Schilling T, Hentschel J, Lehmann T, von Bismarck P, Ankermann T, Duckstein F, Baier M, Zagoya C, Mainz JG. Divergent dynamics of inflammatory mediators and multiplex PCRs during airway infection in cystic fibrosis patients and healthy controls: Serial upper airway sampling by nasal lavage. Front Immunol 2022; 13:947359. [PMID: 36466839 PMCID: PMC9716083 DOI: 10.3389/fimmu.2022.947359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2023] Open
Abstract
Background In cystic fibrosis (CF), acute respiratory exacerbations critically enhance pulmonary destruction. Since these mainly occur outside regular appointments, they remain unexplored. We previously elaborated a protocol for home-based upper airway (UAW) sampling obtaining nasal-lavage fluid (NLF), which, in contrast to sputum, does not require immediate processing. The aim of this study was to compare UAW inflammation and pathogen colonization during stable phases and exacerbations in CF patients and healthy controls. Methods Initially, we obtained NLF by rinsing 10 ml of isotonic saline/nostril during stable phases. During exacerbations, subjects regularly collected NLF at home. CF patients directly submitted one aliquot for microbiological cultures. The remaining samples were immediately frozen until transfer on ice to our clinic, where PCR analyses were performed and interleukin (IL)-1β/IL-6/IL-8, neutrophil elastase (NE), matrix metalloproteinase (MMP)-9, and tissue inhibitor of metalloproteinase (TIMP)-1 were assessed. Results Altogether, 49 CF patients and 38 healthy controls (HCs) completed the study, and 214 NLF samples were analyzed. Of the 49 CF patients, 20 were at least intermittently colonized with P. aeruginosa and received azithromycin and/or inhaled antibiotics as standard therapy. At baseline, IL-6 and IL-8 tended to be elevated in CF compared to controls. During infection, inflammatory mediators increased in both cohorts, reaching significance only for IL-6 in controls (p=0.047). Inflammatory responses tended to be higher in controls [1.6-fold (NE) to 4.4-fold (MMP-9)], while in CF, mediators increased only moderately [1.2-1.5-fold (IL-6/IL-8/NE/TIMP-1/MMP-9)]. Patients receiving inhalative antibiotics or azithromycin (n=20 and n=15, respectively) revealed lower levels of IL-1β/IL-6/IL-8 and NE during exacerbation compared to CF patients not receiving those antibiotics. In addition, CF patients receiving azithromycin showed MMP-9 levels significantly lower than CF patients not receiving azithromycin at stable phase and exacerbation. Altogether, rhinoviruses were the most frequently detected virus, detected at least once in n=24 (49.0%) of the 49 included pwCF and in n=26 (68.4%) of the 38 healthy controls over the 13-month duration of the study. Remarkably, during exacerbation, rhinovirus detection rates were significantly higher in the HC group compared to those in CF patients (65.8% vs. 22.4%; p<0.0001). Conclusion Non-invasive and partially home-based UAW sampling opens new windows for the assessment of inflammation and pathogen colonization in the unified airway system.
Collapse
Affiliation(s)
- Nina Erdmann
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | | | - Julia Hentschel
- Institute of Human Genetics, Leipzig University Hospital, Leipzig, Germany
| | - Thomas Lehmann
- Jena University Hospital, Center for Clinical Studies (Biometrics), Jena, Germany
| | - Philipp von Bismarck
- Klinik für Kinder- und Jugendmedizin I, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Germany
| | - Tobias Ankermann
- Klinik für Kinder- und Jugendmedizin I, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Germany
| | - Franziska Duckstein
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Michael Baier
- Jena University Hospital, Department of Medical Microbiology, Jena, Germany
| | - Carlos Zagoya
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Jochen G. Mainz
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
- Jena University Hospital, CF-Center, Jena, Germany
- Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Cottbus, Brandenburg an der Havel and Potsdam, Germany
| |
Collapse
|
19
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Mostolizadeh R, Glöckler M, Dräger A. Towards the human nasal microbiome: Simulating D. pigrum and S. aureus. Front Cell Infect Microbiol 2022; 12:925215. [PMID: 36605126 PMCID: PMC9810029 DOI: 10.3389/fcimb.2022.925215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023] Open
Abstract
The human nose harbors various microbes that decisively influence the wellbeing and health of their host. Among the most threatening pathogens in this habitat is Staphylococcus aureus. Multiple epidemiological studies identify Dolosigranulum pigrum as a likely beneficial bacterium based on its positive association with health, including negative associations with S. aureus. Carefully curated GEMs are available for both bacterial species that reliably simulate their growth behavior in isolation. To unravel the mutual effects among bacteria, building community models for simulating co-culture growth is necessary. However, modeling microbial communities remains challenging. This article illustrates how applying the NCMW fosters our understanding of two microbes' joint growth conditions in the nasal habitat and their intricate interplay from a metabolic modeling perspective. The resulting community model combines the latest available curated GEMs of D. pigrum and S. aureus. This uses case illustrates how to incorporate genuine GEM of participating microorganisms and creates a basic community model mimicking the human nasal environment. Our analysis supports the role of negative microbe-microbe interactions involving D. pigrum examined experimentally in the lab. By this, we identify and characterize metabolic exchange factors involved in a specific interaction between D. pigrum and S. aureus as an in silico candidate factor for a deep insight into the associated species. This method may serve as a blueprint for developing more complex microbial interaction models. Its direct application suggests new ways to prevent disease-causing infections by inhibiting the growth of pathogens such as S. aureus through microbe-microbe interactions.
Collapse
Affiliation(s)
- Reihaneh Mostolizadeh
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany,Department of Computer Science, University of Tübingen, Tübingen, Germany,German Center for Infection Research (DZIF), Partner site, Tübingen, Germany,Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Tübingen, Germany,*Correspondence: Reihaneh Mostolizadeh,
| | - Manuel Glöckler
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany,Department of Computer Science, University of Tübingen, Tübingen, Germany,German Center for Infection Research (DZIF), Partner site, Tübingen, Germany,Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Huang S, Hon K, Bennett C, Hu H, Menberu M, Wormald PJ, Zhao Y, Vreugde S, Liu S. Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Front Microbiol 2022; 13:984741. [PMID: 36187946 PMCID: PMC9515799 DOI: 10.3389/fmicb.2022.984741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Background Corynebacterium accolens (C. accolens) is a common nasal colonizer, whereas Staphylococcus aureus (S. aureus) is typically regarded a pathogenic organism in patients with chronic rhinosinusitis (CRS). This study aims to evaluate the interaction of the two bacteria in vitro. Methods Clinical isolates of C. accolens and S. aureus from sinonasal swabs, as well as primary human nasal epithelial cells (HNECs) cultured from cellular brushings of both healthy and CRS patients were used for this study. The cell-free culture supernatants of all isolates grown alone and in co-cultures were tested for their effects on transepithelial electrical resistance (TER), FITC-Dextran permeability, lactate dehydrogenase (LDH), and IL-6 and IL-8 secretion of HNECs. Confocal scanning laser microscopy and immunofluorescence were also used to visualize the apical junctional complexes. C. accolens cell-free culture supernatants were also tested for antimicrobial activity and growth on planktonic and biofilm S. aureus growth. Results The cell-free culture supernatants of 3\C. accolens strains (at 60% for S. aureus reference strain and 30% concentration for S. aureus clinical strains) inhibited the growth of both the planktonic S. aureus reference and clinical strains significantly. The C. accolens cell-free culture supernatants caused no change in the TER or FITC-Dextran permeability of the HNEC-ALI cultures, while the cell-free culture supernatants of S. aureus strains had a detrimental effect. Cell-free culture supernatants of C. accolens co-cultured with both the clinical and reference strains of S. aureus delayed the S. aureus-dependent mucosal barrier damage in a dose-dependent manner. Conclusion Corynebacterium accolens cell-free culture supernatants appear to inhibit the growth of the S. aureus planktonic bacteria, and may reduce the mucosal barrier damage caused by S. aureus.
Collapse
Affiliation(s)
- Shuman Huang
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Rhinology, The ENT Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Catherine Bennett
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hua Hu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Martha Menberu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Yulin Zhao
- Department of Rhinology, The ENT Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review. Microorganisms 2022; 10:microorganisms10071405. [PMID: 35889124 PMCID: PMC9320618 DOI: 10.3390/microorganisms10071405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
The nasal region is one of the distinct environments for the survival of various microbiota. The human microbial niche begins to inhabit the human body right from birth, and the microbiota survive as commensals or opportunistic pathogens throughout the life of humans in their bodies in various habitats. These microbial communities help to maintain a healthy microenvironment by preventing the attack of pathogens and being involved in immune regulation. Any dysbiosis of microbiota residing in the mucosal surfaces, such as the nasal passages, guts, and genital regions, causes immune modulation and severe infections. The coexistence of microorganisms in the mucosal layers of respiratory passage, resulting in infections due to their co-abundance and interactions, and the background molecular mechanisms responsible for such interactions, need to be considered for investigation. Additional clinical evaluations can explain the interactions among the nasal microbiota, nasal dysbiosis and neurodegenerative diseases (NDs). The respiratory airways usually act as a substratum place for the microbes and can act as the base for respiratory tract infections. The microbial metabolites and the microbes can cross the blood–brain barrier and may cause NDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and multiple sclerosis (MS). The scientific investigations on the potential role of the nasal microbiota in olfactory functions and the relationship between their dysfunction and neurological diseases are limited. Recently, the consequences of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in patients with neurological diseases are under exploration. The crosstalk between the gut and the nasal microbiota is highly influential, because their mucosal regions are the prominent microbial niche and are connected to the olfaction, immune regulation, and homeostasis of the central nervous system. Diet is one of the major factors, which strongly influences the mucosal membranes of the airways, gut, and lung. Unhealthy diet practices cause dysbiosis in gut microbiota and the mucosal barrier. The current review summarizes the interrelationship between the nasal microbiota dysbiosis, resulting olfactory dysfunctions, and the progression of NDs during aging and the involvement of coronavirus disease 2019 in provoking the NDs.
Collapse
|
23
|
Blum FC, Whitmire JM, Bennett JW, Carey PM, Ellis MW, English CE, Law NN, Tribble DR, Millar EV, Merrell DS. Nasal microbiota evolution within the congregate setting imposed by military training. Sci Rep 2022; 12:11492. [PMID: 35798805 PMCID: PMC9263147 DOI: 10.1038/s41598-022-15059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The human microbiome is comprised of a complex and diverse community of organisms that is subject to dynamic changes over time. As such, cross-sectional studies of the microbiome provide a multitude of information for a specific body site at a particular time, but they fail to account for temporal changes in microbial constituents resulting from various factors. To address this shortcoming, longitudinal research studies of the human microbiome investigate the influence of various factors on the microbiome of individuals within a group or community setting. These studies are vital to address the effects of host and/or environmental factors on microbiome composition as well as the potential contribution of microbiome members during the course of an infection. The relationship between microbial constituents and disease development has been previously explored for skin and soft tissue infections (SSTIs) within congregate military trainees. Accordingly, approximately 25% of the population carries Staphylococcus aureus within their nasal cavity, and these colonized individuals are known to be at increased risk for SSTIs. To examine the evolution of the nasal microbiota of U.S. Army Infantry trainees, individuals were sampled longitudinally from their arrival at Fort Benning, Georgia, until completion of their training 90 days later. These samples were then processed to determine S. aureus colonization status and to profile the nasal microbiota using 16S rRNA gene-based methods. Microbiota stability differed dramatically among the individual trainees; some subjects exhibited great stability, some subjects showed gradual temporal changes and some subjects displayed a dramatic shift in nasal microbiota composition. Further analysis utilizing the available trainee metadata suggests that the major drivers of nasal microbiota stability may be S. aureus colonization status and geographic origin of the trainees. Nasal microbiota evolution within the congregate setting imposed by military training is a complex process that appears to be affected by numerous factors. This finding may indicate that future campaigns to prevent S. aureus colonization and future SSTIs among high-risk military trainees may require a ‘personalized’ approach.
Collapse
Affiliation(s)
- Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick M Carey
- Benning Martin Army Community Hospital, Fort Benning, GA, USA
| | | | - Caroline E English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
24
|
Essigmann HT, Hanis CL, DeSantis SM, Perkison WB, Aguilar DA, Jun G, Robinson DA, Brown EL. Worsening Glycemia Increases the Odds of Intermittent but Not Persistent Staphylococcus aureus Nasal Carriage in Two Cohorts of Mexican American Adults. Microbiol Spectr 2022; 10:e0000922. [PMID: 35583495 PMCID: PMC9241628 DOI: 10.1128/spectrum.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Numerous host and environmental factors contribute to persistent and intermittent nasal Staphylococcus aureus carriage in humans. The effects of worsening glycemia on the odds of S. aureus intermittent and persistent nasal carriage was established in two cohorts from an adult Mexican American population living in Starr County, Texas. The anterior nares were sampled at two time points and the presence of S. aureus determined by laboratory culture and spa-typing. Persistent carriers were defined by the presence of S. aureus of the same spa-type at both time points, intermittent carriers were S. aureus-positive for 1 of 2 swabs, and noncarriers were negative for S. aureus at both time points. Diabetes status was obtained through personal interview and physical examination that included a blood draw for the determination of percent glycated hemoglobin A1c (%HbA1c), fasting plasma glucose, and other blood chemistry values. Using logistic regression and general estimating equations, the odds of persistent and intermittent nasal carriage compared to noncarriers across the glycemic spectrum was determined controlling for covariates. Increasing fasting plasma glucose and %HbA1c in the primary and replication cohort, respectively, were significantly associated with increasing odds of S. aureus intermittent, but not persistent nasal carriage. These data suggest that increasing dysglycemia is a risk factor for intermittent S. aureus nasal carriage potentially placing those with poorly controlled diabetes at an increased risk of acquiring an S. aureus infection. IMPORTANCE Factors affecting nasal S. aureus colonization have been studied primarily in the context of persistent carriage. In contrast, few studies have examined factors affecting intermittent nasal carriage with this pathogen. This study demonstrates that the odds of intermittent but not persistent nasal carriage of S. aureus significantly increases with worsening measures of dysglycemia. This is important in the context of poorly controlled diabetes since the risk of becoming colonized with one of the primary organisms associated with diabetic foot infections can lead to increased morbidity and mortality.
Collapse
Affiliation(s)
- Heather T. Essigmann
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - Stacia M. DeSantis
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - William B. Perkison
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - David A. Aguilar
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Goo Jun
- Human Genetics Center, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| | - D. Ashley Robinson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Eric L. Brown
- Center for Infectious Disease, Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
25
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
26
|
Fritz SA, Wylie TN, Gula H, Hogan PG, Boyle MG, Muenks CE, Sullivan ML, Burnham CAD, Wylie KM. Longitudinal Dynamics of Skin Bacterial Communities in the Context of Staphylococcus aureus Decolonization. Microbiol Spectr 2022; 10:e0267221. [PMID: 35384711 PMCID: PMC9045213 DOI: 10.1128/spectrum.02672-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Decolonization with topical antimicrobials is frequently prescribed in health care and community settings to prevent Staphylococcus aureus infection. However, effects on commensal skin microbial communities remains largely unexplored. Within a household affected by recurrent methicillin-resistant S. aureus skin and soft tissue infections (SSTI), skin swabs were collected from the anterior nares, axillae, and inguinal folds of 14 participants at 1- to 3-month intervals over 24 months. Four household members experienced SSTI during the first 12-months (observational period) and were prescribed a 5-day decolonization regimen with intranasal mupirocin and bleach water baths at the 12-month study visit. We sequenced the 16S rRNA gene V1-V2 region and compared bacterial community characteristics between the pre- and post-intervention periods and between younger and older subjects. The median Shannon diversity index was stable during the 12-month observational period at all three body sites. Bacterial community characteristics (diversity, stability, and taxonomic composition) varied with age. Among all household members, not exclusively among the four performing decolonization, diversity was unstable throughout the year post-intervention. In the month after decolonization, bacterial communities were changed. Although communities largely returned to their baseline states, relative abundance of some taxa remained changed throughout the year following decolonization (e.g., more abundant Bacillus; less abundant Cutibacterium). This 5-day decolonization regimen caused disruption of skin bacteria, and effects differed in younger and older subjects. Some effects were observed throughout the year post-intervention, which emphasizes the need for better understanding of the collateral effects of decolonization for S. aureus eradication. IMPORTANCE Decolonization with topical antimicrobials is frequently prescribed to prevent Staphylococcus aureus infection, but the effects on commensal skin bacteria are undetermined. We found that decolonization with mupirocin and bleach water baths leads to sustained disruption of bacterial communities.
Collapse
Affiliation(s)
- Stephanie A. Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haley Gula
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick G. Hogan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary G. Boyle
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carol E. Muenks
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie L. Sullivan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carey-Ann D. Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Debnath N, Kumar A, Yadav AK. Probiotics as a biotherapeutics for the management and prevention of respiratory tract diseases. Microbiol Immunol 2022; 66:277-291. [DOI: 10.1111/1348-0421.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology Central University of Jammu Samba 181143 Jammu and Kashmir (UT) India
| | - Ashwani Kumar
- Department of Nutrition Biology Central University of Haryana, Mahendergarh Jant‐Pali 123031 Haryana India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology Central University of Jammu Samba 181143 Jammu and Kashmir (UT) India
| |
Collapse
|
28
|
Li Y, van Houten CB, Boers SA, Jansen R, Cohen A, Engelhard D, Kraaij R, Hiltemann SD, Ju J, Fernández D, Mankoc C, González E, de Waal WJ, de Winter-de Groot KM, Wolfs TFW, Meijers P, Luijk B, Oosterheert JJ, Sankatsing SUC, Bossink AWJ, Stein M, Klein A, Ashkar J, Bamberger E, Srugo I, Odeh M, Dotan Y, Boico O, Etshtein L, Paz M, Navon R, Friedman T, Simon E, Gottlieb TM, Pri-Or E, Kronenfeld G, Oved K, Eden E, Stubbs AP, Bont LJ, Hays JP. The diagnostic value of nasal microbiota and clinical parameters in a multi-parametric prediction model to differentiate bacterial versus viral infections in lower respiratory tract infections. PLoS One 2022; 17:e0267140. [PMID: 35436301 PMCID: PMC9015155 DOI: 10.1371/journal.pone.0267140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background The ability to accurately distinguish bacterial from viral infection would help clinicians better target antimicrobial therapy during suspected lower respiratory tract infections (LRTI). Although technological developments make it feasible to rapidly generate patient-specific microbiota profiles, evidence is required to show the clinical value of using microbiota data for infection diagnosis. In this study, we investigated whether adding nasal cavity microbiota profiles to readily available clinical information could improve machine learning classifiers to distinguish bacterial from viral infection in patients with LRTI. Results Various multi-parametric Random Forests classifiers were evaluated on the clinical and microbiota data of 293 LRTI patients for their prediction accuracies to differentiate bacterial from viral infection. The most predictive variable was C-reactive protein (CRP). We observed a marginal prediction improvement when 7 most prevalent nasal microbiota genera were added to the CRP model. In contrast, adding three clinical variables, absolute neutrophil count, consolidation on X-ray, and age group to the CRP model significantly improved the prediction. The best model correctly predicted 85% of the ‘bacterial’ patients and 82% of the ‘viral’ patients using 13 clinical and 3 nasal cavity microbiota genera (Staphylococcus, Moraxella, and Streptococcus). Conclusions We developed high-accuracy multi-parametric machine learning classifiers to differentiate bacterial from viral infections in LRTI patients of various ages. We demonstrated the predictive value of four easy-to-collect clinical variables which facilitate personalized and accurate clinical decision-making. We observed that nasal cavity microbiota correlate with the clinical variables and thus may not add significant value to diagnostic algorithms that aim to differentiate bacterial from viral infections.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chantal B. van Houten
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan A. Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Dan Engelhard
- Division of Paediatric Infectious Disease Unit, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saskia D. Hiltemann
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Wouter J. de Waal
- Department of Paediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Karin M. de Winter-de Groot
- Department of Paediatric Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tom F. W. Wolfs
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter Meijers
- Department of Paediatrics, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Bart Luijk
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Jelrik Oosterheert
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Aik W. J. Bossink
- Department of Respiratory Medicine, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Michal Stein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Adi Klein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Jalal Ashkar
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Ellen Bamberger
- MeMed, Tirat Carmel, Israel
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Isaac Srugo
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Majed Odeh
- Department of Internal Medicine A, Bnai Zion Medical Centre, Haifa, Israel
| | - Yaniv Dotan
- Pulmonary Division, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | - Andrew P. Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Louis J. Bont
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Psaltis AJ, Mackenzie BW, Cope EK, Ramakrishnan VR. Unravelling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1513-1521. [PMID: 35300985 DOI: 10.1016/j.jaci.2022.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Chronic rhinosinusitis (CRS) is a complex, heterogenous condition with likely infectious and inflammatory causative factors. Renewed interest in the role that microbes play in this condition has stemmed from advancements in microbe identification and parallel research that has implicated the role of the microbiome in other chronic inflammatory conditions. This clinical commentary provides a review of the current literature relevant to chronic rhinosinusitis. Particular focus is paid to factors specific to the investigation of the sinonasal microbiome, evidence for the role of dysbiosis in the disease state and influences that may impact the microbiome. Possible mechanisms of disease and therapeutic implications through microbial manipulation are also reviewed, as are deficiencies and limitations of the current body of research.
Collapse
Affiliation(s)
- Alkis J Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, Australia.
| | | | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
30
|
Hon K, Liu S, Cooksley C, Vreugde S, Psaltis A. Low pH nasal rinse solution enhances mupirocin antimicrobial efficacy. Rhinology 2022. [DOI: 10.4193/rhin21.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background: Chronic rhinosinusitis (CRS) is a common condition negatively impacting a patient’s quality of life. It has been hypothesized that bacterial biofilms are involved in the pathogenesis of CRS due to their persistence and difficulty to eradicate with conventional antibiotic therapy. Hence, the topical delivery of antibiotics via nasal rinse solution has gained a lot of attention due to the ability to deliver higher local concentrations, with less systemic absorption and side effects. This study investigates the efficacy of mupirocin dissolved in the 3 most commonly used sinus rinses in Australia Neilmed (isotonic saline), Flo Sinus Care (sodium chloride, sodium bicarbonate, potassium chloride, glucose anhydrous and calcium lactate and Pentahydrate) and FloCRS (sodium chloride, potassium chloride and xylitol). Methods: Planktonic and biofilm cultures of S. aureus (ATCC25923, 2 methicillin-resistant S. aureus (MRSA) (C222 and C263), and 2 methicillin-susceptible S. aureus (MSSS) (C311 and C349) clinical isolates) were treated with mupirocin dissolved in three sinus rinses (Neilmed, Flo Sinus Care and FloCRS with different pH). To establish whether pH was a significant factor in determining antibiotic activity, experiments with Flo CRS were performed both at pH 5.64 and elevated pH 7.7. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for planktonic cells. The biofilm biomass and metabolic activity were assessed by using crystal violet assay and alamarBlue assay respectively. Results: The combination of mupirocin in low pH (pH 5.64) sinus rinse (FloCRS) had the highest efficacy in reducing the growth of S. aureus in both the planktonic and biofilm forms. Mupirocin diluted in FloCRS (pH 5.64) showed a significantly higher reduction in both biomass and metabolic activity than that was observed when mupirocin was diluted in Neilmed, Flo Sinus Care or FloCRS (pH 7.7). Conclusion: The choice of irrigant solution for topical mupirocin delivery appears to be important for antimicrobial activity. The delivery of mupirocin via low pH FloCRS could be useful in eliminating S. aureus biofilms present on the sinus mucosa of patients with CRS.
Collapse
|
31
|
Korkmaz H, Çetinkol Y, Korkmaz M, Çalgın MK, Kaşko Arıcı Y. Effect of Antibiotic Exposure on Upper Respiratory Tract Bacterial Flora. Med Sci Monit 2022; 28:e934931. [PMID: 34987147 PMCID: PMC8750656 DOI: 10.12659/msm.934931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The human microbiota modulates the immune system and forms the surface flora. Antibiotic administration causes dysbiosis in the intestinal flora. It is not clear if antibiotic administration in the community effects the upper airway flora in the mid-term or long-term. This study aims to define long-term influence of antibiotics on upper airway flora. Material/Methods In this prospective study, aerobic microbiological analysis of nasal and nasopharyngeal surfaces was performed. Antibiotic administration history of the last 6 months was retrieved using the social insurance database. Culture results of antibiotic-treated and antibiotic-naïve subjects were compared by Pearson’s chi-square test or Fisher’s exact test. Results A total of 210 subjects were included in the study. Normal flora were documented in 86 nasal swabs and 99 nasopharyngeal swabs. Most of the remaining cases demonstrated gram-positive bacterial overgrowth. There were 113 subjects who did not receive any antibiotic, and 93% of the remaining 97 patients received broad-spectrum antibiotics. Statistical analysis showed that nasal and nasopharyngeal flora did not change upon antibiotic administration, but antibiotic administration during the last month caused increased methicillin resistance development of coagulase-negative Staphylococcus and Staphylococcus aureus microorganisms. Conclusions Antibiotic exposure did not lead to perturbations in general composition of upper airway flora within 6 months, although the incidence of methicillin resistance in coagulase-positive and -negative Staphylococci demonstrated significant increases when patients received antibiotic during the last month. This should be considered in case of broad-spectrum antibiotic administration, since methicillin resistance increases the morbidity and mortality of nosocomial Staphylococcus infections.
Collapse
Affiliation(s)
- Hakan Korkmaz
- Department of Otorhinolaryngology, Ordu University Faculty of Medicine, Ordu, Turkey
| | - Yeliz Çetinkol
- Department of Medical Microbiology, Ordu University Faculty of Medicine, Ordu, Turkey
| | - Mukadder Korkmaz
- Department of Otorhinolaryngology, Private Practice, Ordu, Turkey
| | - Mustafa Kerem Çalgın
- Department of Medical Microbiology, Ordu University Faculty of Medicine, Ordu, Turkey
| | - Yeliz Kaşko Arıcı
- Department of Biostatistics and Medical Informatics, Ordu University Faculty of Medicine, Ordu, Turkey
| |
Collapse
|
32
|
Abstract
Coronavirus disease 2019 (COVID-19) is the leading pandemic facing the world in 2019/2020; it is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which necessitates clear understanding of the infectious agent. The virus manifests aggressive behavior with severe clinical presentation and high mortality rate, especially among the elderly and patients living with chronic diseases. In the recent years, the role of gut microbiota, in health and disease, has been progressively studied and highlighted. It is through gut microbiota-organ bidirectional pathways, such as gut-brain axis, gut-liver axis, and gut-lung axis, that the role of gut microbiota in prompting lung disease, among other diseases, has been proposed and accepted. It is also known that respiratory viral infections, such as COVID-19, induce alterations in the gut microbiota, which can influence immunity. Based on the fact that gut microbiota diversity is decreased in old age and in patients with certain chronic diseases, which constitute two of the primary fatality groups in COVID-19 infections, it can be assumed that the gut microbiota may play a role in COVID-19 pathology and fatality rate. Improving gut microbiota diversity through personalized nutrition and supplementation with prebiotics/probiotics will mend the immunity of the body and hence could be one of the prophylactic strategies by which the impact of COVID-19 can be minimized in the elderly and immunocompromised patients. In this chapter, the role of dysbiosis in COVID-19 will be clarified and the possibility of using co-supplementation of personalized prebiotics/probiotics with current therapies will be discussed.
Collapse
|
33
|
Next-generation microbial drugs developed from microbiome's natural products. ADVANCES IN GENETICS 2021; 108:341-382. [PMID: 34844715 DOI: 10.1016/bs.adgen.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Scientists working in natural products chemistry have been enticed by the current advancements being made in the discovery of novel "magic bullets" from microbes homed to all conceivable environments. Even though researchers continue to face challenges funneling the novel bioactive compounds in the global therapeutic industries, it seems most likely that the discovery of some "hit molecules" with significant biomedical applications is not that far. We applaud novel natural products for their ability to combat the spread of superbugs and aid in the prevention of currently observed antibiotic resistance. This in-depth investigation covers a wide range of microbiomes with a proclivity for synthesizing novel compounds to combat the spread of superbugs. Furthermore, we use this opportunity to explore various groups of secondary metabolites and their biosynthetic pathways in various microbiota found in mammals, insects, and humans. This systematic study, when taken as a whole, offers detail understanding on the biomedical fate of various groups of compounds originated from diverse microbiomes. For gathering all information that has been uncovered and released so far, we have also presented the huge diversity of microbes that are associated with humans and their metabolic products. To conclude, this concrete review suggests novel ideas that will prove immensely helpful in reducing the danger posed by superbugs while also improving the efficacy of antibiotics.
Collapse
|
34
|
Bencardino D, Amagliani G, Brandi G. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
36
|
Qekwana DN, Odoi A, Oguttu JW. Efficacy Profiles of Antimicrobials Evaluated against Staphylococcus Species Isolated from Canine Clinical Specimens. Animals (Basel) 2021; 11:ani11113232. [PMID: 34827963 PMCID: PMC8614345 DOI: 10.3390/ani11113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Clinical cases associated with staphylococci infections are common among dogs and cats. There is evidence to suggest that staphylococci infections are increasingly becoming unresponsive to commonly used antimicrobials. This negatively impacts the ability of these infections to be treated successfully. Although resistance among these organisms has been linked to several factors, including sharing the same mechanism of action or belonging to the same group, there is evidence to suggest that cross resistance can occur between unrelated antimicrobials. The findings of this study not only confirm that antimicrobials that belong to the same group share the same mechanism of resistance and similar antimicrobial efficacy against staphylococcal infections, but also show that cross resistance occurs between unrelated antimicrobials. This should be taken into consideration when selecting antimicrobials for inclusion in the susceptibility testing panel as well as for the treatment of staphylococci infections. Abstract Cross-resistance occurs between antimicrobials with either similar mechanisms of action and/or similar chemical structures, or even between unrelated antimicrobials. This study employed a multivariate approach to investigate the associations between the efficacy profile of antimicrobials and the clustering of eleven different antimicrobial agents based on their efficacy profile. Records of the susceptibility of 382 confirmed Staphylococcus species isolates against 15 antimicrobials based on the disc diffusion method were included in this study. Tetrachoric correlation coefficients were computed to assess the correlations of antimicrobial efficacy profiles against Staphylococcus aureus. Principal components analysis and factor analysis were used to assess the clustering of antimicrobial susceptibility profiles. Strong correlations were observed among aminoglycosides, penicillins, fluroquinolones, and lincosamides. Three main factors were extracted, with Factor 1 dominated by the susceptibility profile of enrofloxacin (factor loading (FL) = 0.859), gentamicin (FL = 0.898), tylosin (FL = 0.801), and ampicillin (FL = −0.813). Factor 2, on the other hand, was dominated by the susceptibility profile of clindamycin (FL = 0.927) and lincomycin-spectinomycin (FL = 0.848) and co-trimazole (FL = −0.693). Lastly, Factor 3 was dominated by the susceptibility profile of amoxicillin-clavulanic acid (FL = 0.848) and cephalothin (FL = 0.824). Antimicrobials belonging to the same category or class of antimicrobial, tended to exhibit similar efficacy profiles, therefore, laboratories must choose only one of the antimicrobials in each group to help reduce the cost of antimicrobial susceptibility tests.
Collapse
Affiliation(s)
- Daniel Nenene Qekwana
- Section of Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Correspondence:
| | - Agricola Odoi
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 709, South Africa;
| |
Collapse
|
37
|
Characterising clinical Staphylococcus aureus isolates from the sinuses of patients with chronic rhinosinusitis. Sci Rep 2021; 11:21940. [PMID: 34753993 PMCID: PMC8578559 DOI: 10.1038/s41598-021-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
The role of Staphylococcus aureus in the pathogenesis of the chronic sinonasal disease chronic rhinosinusitis (CRS), has not been definitively established. Comparative analyses of S. aureus isolates from CRS with those from control participants may offer insight into a possible pathogenic link between this organism and CRS. The intra- and inter-subject S. aureus strain-level diversity in the sinuses of patients with and without CRS were compared in this cross-sectional study. In total, 100 patients (CRS = 64, control = 36) were screened for S. aureus carriage. The overall carriage prevalence of S. aureus in this cohort was 24% (CRS n = 13, control n = 11). Cultured S. aureus isolates from 18 participants were strain-typed using spa gene sequencing. The bacterial community composition of the middle meatus was assessed using amplicon sequencing targeting the V3V4 hypervariable region of the bacterial 16S rRNA gene. S. aureus isolates cultured from patients were grown in co-culture with the commensal bacterium Dolosigranulum pigrum and characterised. All participants harboured a single S. aureus strain and no trend in disease-specific strain-level diversity was observed. Bacterial community analyses revealed a significant negative correlation in the relative abundances of S. aureus and D. pigrum sequences, suggesting an antagonistic interaction between these organisms. Co-cultivation experiments with these bacteria, however, did not confirm this interaction in vitro. We saw no significant associations of CRS disease with S. aureus strain types. The functional role that S. aureus occupies in CRS likely depends on other factors such as variations in gene expression and interactions with other members of the sinus bacterial community.
Collapse
|
38
|
Fabbrizzi A, Nannini G, Lavorini F, Tomassetti S, Amedei A. Microbiota and IPF: hidden and detected relationships. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2021; 38:e2021028. [PMID: 34744424 PMCID: PMC8552575 DOI: 10.36141/svdld.v38i3.11365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Lung microbiota (LM) is an interesting new way to consider and redesign pathogenesis and possible therapeutic approach to many lung diseases, such as idiopathic pulmonary fibrosis (IPF), which is an interstitial pneumonia with bad prognosis. Chronic inflammation is the basis but probably not the only cause of lung fibrosis and although the risk factors are not completely clear, endogenous factors (e.g. gastroesophageal reflux) and environmental factors like cigarette smoking, industrial dusts, and precisely microbial agents could contribute to the IPF development. It is well demonstrated that many bacteria can cause epithelial cell injuries in the airways through induction of a host immune response or by activating flogosis mediators following a chronic, low-level antigenic stimulus. This persistent host response could influence fibroblast responsiveness suggesting that LM may play a role in repetitive alveolar injury in IPF. We reviewed literature regarding not only bacteria but also the role of virome and mycobiome in IPF. In fact, some viruses such as hepatitis C virus or certain fungi could be etiological agents or co-factors in the IPF progress. We aim to illustrate how the cross-talk between different local microbiotas throughout specific axis and immune modulation governed by microorganisms could be at the basis of lung dysfunctions and IPF development. Finally, since the future direction of medicine will be personalized, we suggest that the analysis of LM could be a goal to research new therapies also in IPF.
Collapse
Affiliation(s)
- Alessio Fabbrizzi
- Department of Respiratory Physiopathology, Palagi Hospital, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
39
|
Ladaycia A, Passirani C, Lepeltier E. Microbiota and nanoparticles: Description and interactions. Eur J Pharm Biopharm 2021; 169:220-240. [PMID: 34736984 DOI: 10.1016/j.ejpb.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The healthy human body is inhabited with a large number of bacteria, forming natural flora. It is even estimated that for a human body, its amount of DNA is less important that its bacterial genetic material. This flora plays major roles in the sickness and health of the human body and any change in its composition may lead to different diseases. Nanoparticles are widely used in numerous fields: cosmetics, food, industry, and as drug delivery carrier in the medical field. Being included in these various applications, nanoparticles may interact with the human body at various levels and with different mechanisms. These interactions differ depending on the nanoparticle nature, its structure, its concentration and manifest in different ways on the microbiota, leading to its destabilization, its restoring or showing no toxic effect. Nanoparticles may also be used as a vehicle to regulate the microbiota or to treat some of its diseases.
Collapse
Affiliation(s)
- Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
40
|
Zhao N, Khamash DF, Koh H, Voskertchian A, Egbert E, Mongodin EF, White JR, Hittle L, Colantuoni E, Milstone AM. Low Diversity in Nasal Microbiome Associated With Staphylococcus aureus Colonization and Bloodstream Infections in Hospitalized Neonates. Open Forum Infect Dis 2021; 8:ofab475. [PMID: 34651052 PMCID: PMC8507450 DOI: 10.1093/ofid/ofab475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of infectious morbidity and mortality in neonates. Few data exist on the association of the nasal microbiome and susceptibility to neonatal S. aureus colonization and infection. METHODS We performed 2 matched case-control studies (colonization cohort-neonates who did and did not acquire S. aureus colonization; bacteremia cohort-neonates who did [colonized neonates] and did not [controls] acquire S. aureus colonization and neonates with S. aureus bacteremia [bacteremic neonantes]). Neonates in 2 intensive care units were enrolled and matched on week of life at time of colonization or infection. Nasal samples were collected weekly until discharge and cultured for S. aureus, and the nasal microbiome was characterized using 16S rRNA gene sequencing. RESULTS In the colonization cohort, 43 S. aureus-colonized neonates were matched to 82 controls. At 1 week of life, neonates who acquired S. aureus colonization had lower alpha diversity (Wilcoxon rank-sum test P < .05) and differed in beta diversity (omnibus MiRKAT P = .002) even after adjusting for birth weight (P = .01). The bacteremia cohort included 10 neonates, of whom 80% developed bacteremia within 4 weeks of birth and 70% had positive S. aureus cultures within a few days of bacteremia. Neonates with bacteremia had an increased relative abundance of S. aureus sequences and lower alpha diversity measures compared with colonized neonates and controls. CONCLUSIONS The association of increased S. aureus abundance and decrease of microbiome diversity suggest the need for interventions targeting the nasal microbiome to prevent S. aureus disease in vulnerable neonates.
Collapse
Affiliation(s)
- Ni Zhao
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dina F Khamash
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyunwook Koh
- Deptartment of Applied Mathematics & Statistics, The State University of New York, Korea (SUNY Korea), Incheon, South Korea
| | - Annie Voskertchian
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Egbert
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Elizabeth Colantuoni
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron M Milstone
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, Tan LTH, Lee LH. Streptomyces sp.-A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci 2021; 22:ijms22179360. [PMID: 34502269 PMCID: PMC8431294 DOI: 10.3390/ijms22179360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| |
Collapse
|
42
|
Allegrone G, Ceresa C, Rinaldi M, Fracchia L. Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm. Pharmaceutics 2021; 13:1172. [PMID: 34452132 PMCID: PMC8402037 DOI: 10.3390/pharmaceutics13081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.
Collapse
|
43
|
Dekkema GJ, Rutgers A, Sanders JS, Stegeman CA, Heeringa P. The Nasal Microbiome in ANCA-Associated Vasculitis: Picking the Nose for Clues on Disease Pathogenesis. Curr Rheumatol Rep 2021; 23:54. [PMID: 34196846 PMCID: PMC8249244 DOI: 10.1007/s11926-021-01015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The onset and progression of small vessel vasculitis associated with anti-neutrophil cytoplasmic antibodies has been linked to microbial infections. Here, we provide a brief overview of the association of nasal colonization of Staphylococcus aureus with ANCA-associated vasculitis (AAV) and discuss several recent studies mapping the nasal microbiome in AAV patients in particular. RECENT FINDINGS Nasal microbiome studies revealed dysbiosis as a common trait in active AAV which tends to normalize upon immunosuppressive treatment and quiescent disease. However, due to differences in study design, patient selection, and methodology, the reported microbiome profiles differ considerably precluding conclusions on causal relationships. The microbiome is an emerging area of research in AAV warranting further investigation. Ideally, such studies should be combined with mechanistic studies to unravel key elements related to host-microbe interactions and their relevance for AAV pathogenesis.
Collapse
Affiliation(s)
- G J Dekkema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J S Sanders
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C A Stegeman
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
44
|
Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus. Sci Rep 2021; 11:10722. [PMID: 34021227 PMCID: PMC8140078 DOI: 10.1038/s41598-021-90252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.
Collapse
|
45
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
46
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:ijms22094942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
47
|
Rahim MA, Seo H, Kim S, Jeong YK, Tajdozian H, Kim M, Lee S, Song HY. A Clinical Trial to Evaluate the Efficacy of α-Viniferin in Staphylococcus aureus - Specific Decolonization without Depleting the Normal Microbiota of Nares. Pol J Microbiol 2021; 70:117-130. [PMID: 33815533 PMCID: PMC8008767 DOI: 10.33073/pjm-2021-011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is currently a significant multidrug-resistant bacterium, causing severe healthcare-associated and community-acquired infections worldwide. The current antibiotic regimen against this pathogen is becoming ineffective due to resistance, in addition, they disrupt the normal microbiota. It highlights the urgent need for a pathogen-specific drug with high antibacterial efficacy against S. aureus. α-Viniferin, a bioactive phytochemical compound, has been reported to have excellent anti-Staphylococcus efficacy as a topical agent. However, so far, there were no clinical trials that have been conducted to elucidate its efficacy. The present study aimed to investigate the antibacterial efficacy of α-viniferin against S. aureus in a ten-day clinical trial. Based on the results, α-viniferin showed 50% minimum inhibitory concentrations (MIC50 values) of 7.8 μg/ml in culture broth medium. α-Viniferin was administered in the nares three times a day for ten days using a sterile cotton swab stick. Nasal swab specimens were collected before (0 days) and after finishing the trial (10th day), and then analyzed. In the culture and RT-PCR-based analysis, S. ureus was reduced significantly: 0.01. In addition, 16S ribosomal RNA-based amplicon sequencing analysis showed that S. aureus reduced from 51.03% to 23.99% at the genus level. RNA-seq analysis was also done to gain insights into molecular mechanisms of α-viniferin against S. aureus, which revealed that some gene groups were reduced in 5-fold FC cutoff at two times MIC conditions. The study results demonstrate α-viniferin as a potential S. aureus-specific drug candidate.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | | | - Hanieh Tajdozian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | - Mijung Kim
- Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Probiotics Microbiome Convergence Center, Asan, Republic of Korea
| |
Collapse
|
48
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Abstract
Like other microbes that live on or in the human body, the bacteria that inhabit the upper respiratory tract, in particular the nasal cavity, have evolved to survive in an environment that presents a number of physical and chemical challenges; these microbes are constantly bombarded with nutritional fluctuations, changes in humidity, the presence of inhaled particulate matter (odorants and allergens), and competition with other microbes. Indeed, only a specialized set of species is able to colonize this niche and successfully contend with the host's immune system and the constant threat from competitors. To this end, bacteria that live in the nasal cavity have evolved a variety of approaches to outcompete contenders for the limited nutrients and space; broadly speaking, these strategies may be considered a type of "bacterial warfare." A greater molecular understanding of bacterial warfare has the potential to reveal new approaches or molecules that can be developed as novel therapeutics. As such, there are many studies within the last decade that have sought to understand the complex polymicrobial interactions that occur in various environments. Here, we review what is currently known about the age-dependent structure and interbacterial relationships within the nasal microbiota and summarize the molecular mechanisms that are predicted to dictate bacterial warfare in this niche. Although the currently described interactions are complex, in reality, we have likely only scratched the surface in terms of a true understanding of the types of interbacterial competition and cooperation that are thought to take place in and on the human body.
Collapse
|
50
|
Speck PG, Warner MS, Bihari S, Bersten AD, Mitchell JG, Tucci J, Gordon DL. Potential for bacteriophage therapy for Staphylococcus aureus pneumonia with influenza A coinfection. Future Microbiol 2021; 16:135-142. [PMID: 33538181 DOI: 10.2217/fmb-2020-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ability of influenza A virus to evolve, coupled with increasing antimicrobial resistance, could trigger an influenza pandemic with great morbidity and mortality. Much of the 1918 influenza pandemic mortality was likely due to bacterial coinfection, including Staphylococcus aureus pneumonia. S. aureus resists many antibiotics. The lack of new antibiotics suggests alternative antimicrobials, such as bacteriophages, are needed. Potential delivery routes for bacteriophage therapy (BT) include inhalation and intravenous injection. BT has recently been used successfully in compassionate access pulmonary infection cases. Phage lysins, enzymes that hydrolyze bacterial cell walls and which are bactericidal, are efficacious in animal pneumonia models. Clinical trials will be needed to determine whether BT can ameliorate disease in influenza and S. aureus coinfection.
Collapse
Affiliation(s)
- Peter G Speck
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Morgyn S Warner
- The Queen Elizabeth Hospital, Infectious Diseases Unit, Woodville, SA, 5011, Australia.,Microbiology & Infectious Diseases Directorate, SA Pathology, Adelaide, SA, 5000, Australia.,University of Adelaide, Faculty of Health & Medical Sciences, Adelaide, SA, 5006, Australia
| | - Shailesh Bihari
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - Andrew D Bersten
- Flinders Medical Centre, Intensive & Critical Care Unit, Bedford Park, SA, 5042, Australia.,Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia
| | - James G Mitchell
- Flinders University of South Australia, College of Science and Engineering, Bedford Park, SA, 5042, Australia
| | - Joseph Tucci
- Department of Pharmacy & Biomedical Science, LaTrobe University, La Trobe Institute for Molecular Science, Bendigo, Victoria, 3552, Australia
| | - David L Gordon
- Flinders University of South Australia, College of Medicine and Public Health, Bedford Park, SA, 5042, Australia.,Department of Microbiology and Infectious Diseases, Flinders Medical Centre, Bedford Park, SA, 5042, Australia
| |
Collapse
|