1
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
2
|
Mendes M, Chen DZ, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, Howe JL, Pellecchia G, Nalpathamkalam T, Alexandrova R, Salazar NB, McKee EA, Alfaro NR, Lai MC, Bandres-Ciga S, Roshandel D, Bradley CA, Anagnostou E, Sun L, Scherer SW. Chromosome X-Wide Common Variant Association Study (XWAS) in Autism Spectrum Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310640. [PMID: 39108515 PMCID: PMC11302709 DOI: 10.1101/2024.07.18.24310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Autism Spectrum Disorder (ASD) displays a notable male bias in prevalence. Research into rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD suggests that females may require a higher genetic burden to manifest similar symptoms as males, yet the mechanisms remain unclear. Despite technological advances in genomics, the complexity of the biological nature of sex chromosomes leave them underrepresented in genome-wide studies. Here, we conducted an X chromosome-wide association study (XWAS) using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across Autism Speaks MSSNG, Simons Simplex Cohort SSC, and Simons Foundation Powering Autism Research SPARK, alongside 8,981 population controls (43% males). We analyzed 418,652 X-chromosome variants, identifying 59 associated with ASD (p-values 7.9×10-6 to 1.51×10-5), surpassing Bonferroni-corrected thresholds. Key findings include significant regions on chrXp22.2 (lead SNP=rs12687599, p=3.57×10-7) harboring ASB9/ASB11, and another encompassing DDX53/PTCHD1-AS long non-coding RNA (lead SNP=rs5926125, p=9.47×10-6). When mapping genes within 10kb of the 59 most significantly associated SNPs, 91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, OFD1, CDKL5, GPRASP2, NXF5, SH3KBP1). FGF13 emerged as a novel X-linked ASD candidate gene, highlighted by sex-specific differences in minor allele frequencies. These results reveal significant new insights into X chromosome biology in ASD, confirming and nominating genes and pathways for further investigation.
Collapse
Affiliation(s)
- Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Desmond Zeya Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ethan Alexander McKee
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Natalia Rivera Alfaro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5G 2C1, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Delnaz Roshandel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Clarrisa A. Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lei Sun
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 3E3, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
3
|
Uweru OJ, Okojie AK, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo UB. A P2RY12 deficiency results in sex-specific cellular perturbations and sexually dimorphic behavioral anomalies. J Neuroinflammation 2024; 21:95. [PMID: 38622726 PMCID: PMC11017545 DOI: 10.1186/s12974-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
Affiliation(s)
- Ogochukwu J Uweru
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| | - Akhabue K Okojie
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Aparna Trivedi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jordan Benderoth
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Lauren S Thomas
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Georgia Davidson
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Kendall Cox
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Uweru OJ, Okojie KA, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo U. A P2RY12 Deficiency Results in Sex-specific Cellular Perturbations and Sexually Dimorphic Behavioral Anomalies. RESEARCH SQUARE 2024:rs.3.rs-3997803. [PMID: 38496602 PMCID: PMC10942488 DOI: 10.21203/rs.3.rs-3997803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
|
5
|
McCarthy MM. Neural Control of Sexually Dimorphic Social Behavior: Connecting Development to Adulthood. Annu Rev Neurosci 2023; 46:321-339. [PMID: 37001242 DOI: 10.1146/annurev-neuro-121522-110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
An X, Guo W, Wu H, Fu X, Li M, Zhang Y, Li Y, Cui R, Yang W, Zhang Z, Zhao G. Sex Differences in Depression Caused by Early Life Stress and Related Mechanisms. Front Neurosci 2022; 16:797755. [PMID: 35663561 PMCID: PMC9157793 DOI: 10.3389/fnins.2022.797755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Depression is a common psychiatric disease caused by various factors, manifesting with continuous low spirits, with its precise mechanism being unclear. Early life stress (ELS) is receiving more attention as a possible cause of depression. Many studies focused on the mechanisms underlying how ELS leads to changes in sex hormones, neurotransmitters, hypothalamic pituitary adrenocortical (HPA) axis function, and epigenetics. The adverse effects of ELS on adulthood are mainly dependent on the time window when stress occurs, sex and the developmental stage when evaluating the impacts. Therefore, with regard to the exact sex differences of adult depression, we found that ELS could lead to sex-differentiated depression through multiple mechanisms, including 5-HT, sex hormone, HPA axis, and epigenetics.
Collapse
Affiliation(s)
- Xianquan An
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Huiying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yizhi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yanlin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhuo Zhang,
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Guoqing Zhao,
| |
Collapse
|
7
|
Joglekar R, Cauley M, Lipsich T, Corcoran DL, Patisaul HB, Levin ED, Meyer JN, McCarthy MM, Murphy SK. Developmental nicotine exposure and masculinization of the rat preoptic area. Neurotoxicology 2022; 89:41-54. [PMID: 35026373 PMCID: PMC8917982 DOI: 10.1016/j.neuro.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Nicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.
Collapse
Affiliation(s)
- Rashmi Joglekar
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Marty Cauley
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Taylor Lipsich
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Durham, NC 27708 USA
| | - Heather B. Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC 27708 USA
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC 27708 USA
| | - Margaret M. McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD 21201 USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics & Gynecology, Durham, NC 27708 USA
| |
Collapse
|
8
|
Bordeleau M, Fernández de Cossío L, Lacabanne C, Savage JC, Vernoux N, Chakravarty M, Tremblay MÈ. Maternal high-fat diet modifies myelin organization, microglial interactions, and results in social memory and sensorimotor gating deficits in adolescent mouse offspring. Brain Behav Immun Health 2021; 15:100281. [PMID: 34589781 PMCID: PMC8474164 DOI: 10.1016/j.bbih.2021.100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Prenatal exposure to maternal high-fat diet (mHFD) acts as a risk factor for various neurodevelopmental alterations in the progeny. Recent studies in mice revealed that mHFD results in both neuroinflammation and hypomyelination in the exposed offspring. Microglia, the brain-resident macrophages, play crucial roles during brain development, notably by modulating oligodendrocyte populations and performing phagocytosis of myelin sheaths. Previously, we reported that mHFD modifies microglial phenotype (i.e., morphology, interactions with their microenvironment, transcripts) in the hippocampus of male and female offspring. In the current study, we further explored whether mHFD may induce myelination changes among the hippocampal-corpus callosum-prefrontal cortex pathway, and result in behavioral outcomes in adolescent offspring of the two sexes. To this end, female mice were fed with control chow or HFD for 4 weeks before mating, during gestation, and until weaning of their litter. Histological and ultrastructural analyses revealed an increased density of myelin associated with a reduced area of cytosolic myelin channels in the corpus callosum of mHFD-exposed male compared to female offspring. Transcripts of myelination-associated genes including Igf1 -a growth factor released by microglia- were also lower, specifically in the hippocampus (without changes in the prefrontal cortex) of adolescent male mouse offspring. These changes in myelin were not related to an altered density, distribution, or maturation of oligodendrocytes, instead we found that microglia within the corpus callosum of mHFD-exposed offspring showed reduced numbers of mature lysosomes and increased synaptic contacts, suggesting microglial implication in the modified myelination. At the behavioral level, both male and female mHFD-exposed adolescent offspring presented loss of social memory and sensorimotor gating deficits. These results together highlight the importance of studying oligodendrocyte-microglia crosstalk and its involvement in the long-term brain alterations that result from prenatal mHFD in offspring across sexes.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | | | - Chloé Lacabanne
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Colombia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Delage CI, Nys G, Fillet M, Cornil CA. Effect of cyclo‑oxygenase inhibition on embryonic microglia and the sexual differentiation of the brain and behavior of Japanese quail (Coturnix japonica). Horm Behav 2021; 134:105024. [PMID: 34256221 DOI: 10.1016/j.yhbeh.2021.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Enduring sex differences in the brain are established during a developmental process known as brain sexual differentiation and are mainly driven by estrogens during a critical period. In rodents, the masculinization of the preoptic area by estrogens derived from the central aromatization of testosterone depends in part on the interaction between microglia and prostaglandin E2 (PGE2), a pro-inflammatory hormone of the prostanoid subclass. In contrast, in birds, estrogens produced by females induce a demasculinization, but whether an interaction with the neuro-immune system is involved in this process is unknown. This study addressed this question by testing the effects of blockade of cyclo‑oxygenases (COX), the rate-limiting enzymes for prostanoid synthesis, on embryonic microglia and the sexual differentiation of brain and behavior using the Japanese quail as an animal model. The results show that COX inhibition does not affect the behavior of females, but impairs male sexual behavior and suppresses the sex difference in microglial profiles at embryonic day 12 (E12) in the medial preoptic nucleus by increasing the number of microglia in males only. However, neither prostanoid concentrations nor PGE2 receptors differed between sexes in the hypothalamus and preoptic area (HPOA) during development. Overall, these results uncovered a potential role of prostanoids in the demasculinization of Japanese quail. Moreover, the parallel effect of COX inhibition on behavior and microglia suggests an interaction between prostanoids and microglia in brain demasculinization, thus fueling the hypothesis of a conserved role of the neuroimmune system in the organization of the brain by estrogens.
Collapse
Affiliation(s)
- Charlotte I Delage
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
10
|
Murdock BJ, Famie JP, Piecuch CE, Pawlowski KD, Mendelson FE, Pieroni CH, Iniguez SD, Zhao L, Goutman SA, Feldman EL. NK cells associate with ALS in a sex- and age-dependent manner. JCI Insight 2021; 6:147129. [PMID: 33974561 PMCID: PMC8262328 DOI: 10.1172/jci.insight.147129] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are innate immune cells implicated in ALS; whether NK cells impact ALS in a sex- and age-specific manner was investigated. Herein, NK cells were depleted in male and female SOD1G93A ALS mice, survival and neuroinflammation were assessed, and data were stratified by sex. NK cell depletion extended survival in female but not male ALS mice with sex-specific effects on spinal cord microglia. In humans, NK cell numbers, NK cell subpopulations, and NK cell surface markers were examined in prospectively blood collected from subjects with ALS and control subjects; longitudinal changes in these metrics were correlated to revised ALS functional rating scale (ALSFRS-R) slope and stratified by sex and age. Expression of NK cell trafficking and cytotoxicity markers was elevated in subjects with ALS, and changes in CXCR3+ NK cells and 7 trafficking and cytotoxicity markers (CD11a, CD11b, CD38, CX3CR1, NKG2D, NKp30, NKp46) correlated with disease progression. Age affected the associations between ALSFRS-R and markers NKG2D and NKp46, whereas sex impacted the NKp30 association. Collectively, these findings suggest that NK cells contribute to ALS progression in a sex- and age-specific manner and demonstrate that age and sex are critical variables when designing and assessing ALS immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
11
|
Murdock BJ, Goutman SA, Boss J, Kim S, Feldman EL. Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e953. [PMID: 33531377 PMCID: PMC8057067 DOI: 10.1212/nxi.0000000000000953] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Objective To determine whether neutrophils contribute to amyotrophic lateral sclerosis
(ALS) progression, we tested the association of baseline neutrophil count on
ALS survival, whether the effect was sex specific, and whether neutrophils
accumulate in the spinal cord. Methods A prospective cohort study was conducted between June 22, 2011, and October
30, 2019. Blood leukocytes were isolated from ALS participants and
neutrophil levels assessed by flow cytometry. Participant survival outcomes
were analyzed by groups (<2 × 106, 2–4 ×
106, and >4 × 106 neutrophils/mL) with
adjustments for relevant ALS covariates and by sex. Neutrophil levels were
assessed from CNS tissue from a subset of participants. Results A total of 269 participants with ALS within 2 years of an ALS diagnosis were
included. Participants with baseline neutrophil counts over 4 ×
106/mL had a 2.1 times higher mortality rate than those with
a neutrophil count lower than 2 × 106/mL (95% CI:
1.3–3.5, p = 0.004) when adjusting for age,
sex, and other covariates. This effect was more pronounced in females, with
a hazard ratio of 3.8 (95% CI: 1.8–8.2, p =
0.001) in the >4 × 106/mL vs <2 ×
106/mL group. Furthermore, ALS participants (n = 8) had
increased neutrophils in cervical (p = 0.049) and
thoracic (p = 0.022) spinal cord segments compared
with control participants (n = 8). Conclusions Higher neutrophil counts early in ALS associate with a shorter survival in
female participants. Furthermore, neutrophils accumulate in ALS spinal cord
supporting a pathophysiologic correlate. These data justify the
consideration of immunity and sex for personalized therapeutic development
in ALS. Classification of Evidence This study provides Class III evidence that in female participants with ALS,
higher baseline neutrophil counts are associated with shorter survival.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor.
| | - Jonathan Boss
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Sehee Kim
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., S.A.G., E.L.F.), and Department of Biostatistics (J.B., S.K.), School of Public Health, University of Michigan, Ann Arbor
| |
Collapse
|
12
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
14
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
15
|
Arambula SE, McCarthy MM. Neuroendocrine-Immune Crosstalk Shapes Sex-Specific Brain Development. Endocrinology 2020; 161:bqaa055. [PMID: 32270188 PMCID: PMC7217281 DOI: 10.1210/endocr/bqaa055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Sex is an essential biological variable that significantly impacts multiple aspects of neural functioning in both the healthy and diseased brain. Sex differences in brain structure and function are organized early in development during the critical period of sexual differentiation. While decades of research establish gonadal hormones as the primary modulators of this process, new research has revealed a critical, and perhaps underappreciated, role of the neuroimmune system in sex-specific brain development. The immune and endocrine systems are tightly intertwined and share processes and effector molecules that influence the nervous system. Thus, a natural question is whether endocrine-immune crosstalk contributes to sexual differentiation of the brain. In this mini-review, we first provide a conceptual framework by classifying the major categories of neural sex differences and review the concept of sexual differentiation of the brain, a process occurring early in development and largely controlled by steroid hormones. Next, we describe developmental sex differences in the neuroimmune system, which may represent targets or mediators of the sexual differentiation process. We then discuss the overwhelming evidence in support of crosstalk between the neuroendocrine and immune systems and highlight recent examples that shape sex differences in the brain. Finally, we review how early life events can perturb sex-specific neurodevelopment via aberrant immune activation.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
McCarthy MM. A new view of sexual differentiation of mammalian brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:369-378. [PMID: 31705197 PMCID: PMC7196030 DOI: 10.1007/s00359-019-01376-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Establishment of enduring sex differences in brain and behavior occurs during pre- or perinatal development, depending on species. For over 50 years the focus has been on gonadal steroid production by male fetuses and the impact on developing brain. An increasing awareness of the importance of sex chromosome complement has broadened the focus but identifying specific roles in development has yet to be achieved. Recent emphasis on transcriptomics has revealed myriad and unexpected differences in gene expression in specific regions of male and female brains which may produce sex differences, serve a compensatory role or provide latent sex differences revealed only in response to challenge. More surprising, however, has been the consistent observation of a central role for inflammatory signaling molecules and immune cells in masculinization of brain and behavior. The signal transduction pathways and specific immune cells vary by brain region, as does the neuroanatomical substrate subject to differentiation, reflecting substantial complexity emerging from what may be a common origin, the maternal immune system. A working hypothesis integrating these various ideas is proposed.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland, School of Medicine, MD, Baltimore, USA.
| |
Collapse
|
17
|
Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110543. [PMID: 31445081 DOI: 10.1016/j.cbpa.2019.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023]
Abstract
Breathing is a vital behavior that ensures both the adequate supply of oxygen and the elimination of CO2, and it is influenced by many factors. Despite that most of the studies in respiratory physiology rely heavily on male subjects, there is much evidence to suggest that sex is an important factor in the respiratory control system, including the susceptibility for some diseases. These different respiratory responses in males and females may be related to the actions of sex hormones, especially in adulthood. These hormones affect neuromodulatory systems that influence the central medullary rhythm/pontine pattern generator and integrator, sensory inputs to the integrator and motor output to the respiratory muscles. In this article, we will first review the sex dependence on the prevalence of some respiratory-related diseases. Then, we will discuss the role of sex and gonadal hormones in respiratory control under resting conditions and during respiratory challenges, such as hypoxia and hypercapnia, and whether hormonal fluctuations during the estrous/menstrual cycle affect breathing control. We will then discuss the role of the locus coeruleus, a sexually dimorphic CO2/pH-chemosensitive nucleus, on breathing regulation in males and females. Next, we will highlight the studies that exist regarding sex differences in respiratory control during development. Finally, the few existing studies regarding the influence of sex on breathing control in non-mammalian vertebrates will be discussed.
Collapse
|
18
|
Schwarz JM. Frank Beach Award Winner - The future of mental health research: Examining the interactions of the immune, endocrine and nervous systems between mother and infant and how they affect mental health. Horm Behav 2019; 114:104521. [PMID: 30981689 PMCID: PMC7367439 DOI: 10.1016/j.yhbeh.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Pregnancy and the postpartum period are periods of significant change in the immune and endocrine systems. This period of life is also associated with an increased risk of mental health disorders in the mother, and an increased risk of developmental and neuropsychiatric disorders in her infant. The collective data described here supports the idea that peripartum mood disorders in mother and developmental disorders in her infant likely reflects multiple pathogeneses, stemming from various interactions between the immune, endocrine and nervous systems, thereby resulting in various symptom constellations. In this case, testing the mechanisms underlying specific symptoms of these disorders (e.g. deficits in specific types of learning or anhedonia) may provide a better understanding of the various physiological interactions and multiple etiologies that most likely underlie the risk of mental health disorders during this unique time in life. The goal here is to summarize the current understanding of how immune and endocrine factors contribute to maternal mental health, while simultaneously understanding the impact these unique interactions have on the developing brain of her infant.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
19
|
Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. Int J Mol Sci 2019; 20:ijms20092270. [PMID: 31071949 PMCID: PMC6539135 DOI: 10.3390/ijms20092270] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Collapse
|
20
|
McCarthy MM. Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology 2019; 44:38-44. [PMID: 29977075 PMCID: PMC6235925 DOI: 10.1038/s41386-018-0138-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Identifying and understanding the sources of inherent risk to neurodevelopmental disorders is a fundamental goal of neuroscience. Being male or being exposed to inflammation early in life are two known risk factors, but they are only infrequently associated with each other. Cellular and molecular mechanisms mediating the masculinization of the brain in animal models reveal a consistent role for inflammatory signaling molecules and immune cells in the healthy male brain. Why this is so remains in the realm of speculation but may have its origins in the maternal immune system. Masculinization of the brain occurs during a restricted critical period that begins in utero and overlaps with the sensitive period during which maternal immune activation negatively impacts the developing brain. The convergence of maleness and early life inflammation as risk factors for neuropsychiatric disorders compels us to consider whether sexual differentiation of the brain in males creates an inherent and greater risk than that experienced by females.
Collapse
Affiliation(s)
- Margaret M. McCarthy
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655W. Baltimore St., Baltimore, MD 21201 USA
| |
Collapse
|
21
|
Lenz KM, Pickett LA, Wright CL, Davis KT, Joshi A, McCarthy MM. Mast Cells in the Developing Brain Determine Adult Sexual Behavior. J Neurosci 2018; 38:8044-8059. [PMID: 30093566 PMCID: PMC6136154 DOI: 10.1523/jneurosci.1176-18.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Many sex differences in brain and behavior are programmed during development by gonadal hormones, but the cellular mechanisms are incompletely understood. We found that immune-system-derived mast cells are a primary target for the masculinizing hormone estradiol and that mast cells are in turn primary mediators of brain sexual differentiation. Newborn male rats had greater numbers and more activated mast cells in the preoptic area (POA), a brain region essential for male copulatory behavior, than female littermates during the critical period for sexual differentiation. Inhibiting mast cells with a stabilizing agent blunted the masculinization of both POA neuronal and microglial morphology and adult sex behavior, whereas activating mast cells in females, even though fewer in number, induced masculinization. Treatment of newborn females with a masculinizing dose of estradiol increased mast cell number and induced mast cells to release histamine, which then stimulated microglia to release prostaglandins and thereby induced male-typical synaptic patterning. These findings identify a novel non-neuronal origin of brain sex differences and resulting motivated behaviors.SIGNIFICANCE STATEMENT We found that immune-system-derived mast cells are a primary target for the masculinizing hormone estradiol and that mast cells are in turn primary mediators of brain sexual differentiation. These findings identify a novel non-neuronal origin of brain sex differences and resulting motivated behaviors.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology,
- Department of Neuroscience, and
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210; and
| | - Lindsay A Pickett
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Christopher L Wright
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Katherine T Davis
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Margaret M McCarthy
- Department of Pharmacology and
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
22
|
VanRyzin JW, Pickett LA, McCarthy MM. Microglia: Driving critical periods and sexual differentiation of the brain. Dev Neurobiol 2018; 78:580-592. [PMID: 29243403 DOI: 10.1002/dneu.22569] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
The proverbial role of microglia during brain development is shifting from passive members of the brain's immune system to active participants that are able to dictate enduring outcomes. Despite these advances, little attention has been paid to one of the most critical components of early brain development-sexual differentiation. Mounting evidence suggests that the normal developmental functions microglia perform-cell number regulation and synaptic connectivity-may be involved in the sex-specific patterning of the brain during these early sensitive periods, and may have lasting sex-dependent and sex-independent effects on behavior. In this review, we outline the known functions of microglia during developmental sensitive periods, and highlight the role they play in the establishment of sex differences in brain and behavior. We also propose a framework for how researchers can incorporate microglia in their study of sex differences and vice versa. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 580-592, 2018.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
23
|
Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci 2017. [PMID: 28638119 DOI: 10.1038/nrn.2017.61] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field.
Collapse
|
24
|
McCarthy MM, Wright CL. Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:402-410. [PMID: 27871670 PMCID: PMC5285451 DOI: 10.1016/j.biopsych.2016.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol 2017; 149-150:1-20. [DOI: 10.1016/j.pneurobio.2017.01.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
|
26
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
27
|
McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav 2015; 76:3-10. [PMID: 25917865 PMCID: PMC4620061 DOI: 10.1016/j.yhbeh.2015.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan W VanRyzin
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine E Kight
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Kight KE, McCarthy MM. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis. Neurobiol Dis 2014; 72 Pt B:136-43. [PMID: 24892888 PMCID: PMC5322568 DOI: 10.1016/j.nbd.2014.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis.
Collapse
Affiliation(s)
- Katherine E Kight
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Margaret M McCarthy
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Abstract
Microglia, the resident innate immune cells in the brain, have long been understood to be crucial to maintenance in the nervous system, by clearing debris, monitoring for infiltration of infectious agents, and mediating the brain's inflammatory and repair response to traumatic injury, stroke, or neurodegeneration. A wave of new research has shown that microglia are also active players in many basic processes in the healthy brain, including cell proliferation, synaptic connectivity, and physiology. Microglia, both in their capacity as phagocytic cells and via secretion of many neuroactive molecules, including cytokines and growth factors, play a central role in early brain development, including sexual differentiation of the brain. In this review, we present the vast roles microglia play in normal brain development and how perturbations in the normal neuroimmune environment during development may contribute to the etiology of brain-based disorders. There are notable differences between microglia and neuroimmune signaling in the male and female brain throughout the life span, and these differences may contribute to the vast differences in the incidence of neuropsychiatric and neurological disorders between males and females.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology and Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D. Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior. ACTA ACUST UNITED AC 2014; 108:155-66. [PMID: 24794754 DOI: 10.1016/j.jphysparis.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 02/03/2023]
Abstract
Electric communication signals, produced by South American electric fish, vary across sexes and species and present an ideal opportunity to examine the bases of signal diversity, and in particular, the mechanisms underlying sexually dimorphic behavior. Gymnotiforms produce electric organ discharges (EOD) controlled by a hindbrain pacemaker nucleus (PN). Background studies have identified the general cellular mechanisms that underlie the production of communication signals, EOD chirps and interruptions, typically displayed in courtship and agonistic contexts. Brachyhypopomus gauderio emit sexually dimorphic signals, and recent studies have shown that the PN acquires the capability of generating chirps seasonally, only in breeding males, by modifying its glutamatergic system. We hypothesized that sexual dimorphism was caused by sexual differences in the roles of glutamate receptors. To test this hypothesis, we analyzed NMDA and AMPA mediated responses in PN slice preparations by field potential recordings, and quantified one AMPA subunit mRNA, in the PNs of males and females during the breeding season. In situ hybridization of GluR2B showed no sexual differences in quantities between the male and female PN. Functional responses of the PN to glutamate and AMPA, on the other hand, showed a clear cut sexual dimorphism. In breeding males, but not females, the PN responded to glutamate and AMPA with bursting activity, with a temporal pattern that resembled the pattern of EOD chirps. In this study, we have been successful in identifying cellular mechanisms of sexual dimorphic communication signals. The involvement of AMPA receptors in PN activity is part of the tightly regulated changes that account for the increase in signal diversity during breeding in this species, necessary for a successful reproduction.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Carolina Lescano
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Omar Macadar
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Lorenzo
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
31
|
Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors. Anesthesiology 2014; 120:447-58. [PMID: 23969560 DOI: 10.1097/aln.0b013e3182a76f74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prostacyclin (PGI2) is known to be an important mediator of peripheral pain sensation (nociception) whereas little is known about its role in central sensitization. METHODS The levels of the stable PGI2-metabolite 6-keto-prostaglandin F1α (6-keto-PGF1α) and of prostaglandin E2 (PGE2) were measured in the dorsal horn with the use of mass spectrometry after peripheral inflammation. Expression of the prostanoid receptors was determined by immunohistology. Effects of prostacyclin receptor (IP) activation on spinal neurons were investigated with biochemical assays (cyclic adenosine monophosphate-, glutamate release-measurement, Western blot analysis) in embryonic cultures and adult spinal cord. The specific IP antagonist Cay10441 was applied intrathecally after zymosan-induced mechanical hyperalgesia in vivo. RESULTS Peripheral inflammation caused a significant increase of the stable PGI2 metabolite 6-keto-PGF1α in the dorsal horn of wild-type mice (n = 5). IP was located on spinal neurons and did not colocalize with the prostaglandin E2 receptors EP2 or EP4. The selective IP-agonist cicaprost increased cyclic adenosine monophosphate synthesis in spinal cultures from wild-type but not from IP-deficient mice (n = 5-10). The combination of fluorescence-resonance-energy transfer-based cyclic adenosine monophosphate imaging and calcium imaging showed a cicaprost-induced cyclic adenosine monophosphate synthesis in spinal cord neurons (n = 5-6). Fittingly, IP activation increased glutamate release from acute spinal cord sections of adult mice (n = 13-58). Cicaprost, but not agonists for EP2 and EP4, induced protein kinase A-dependent phosphorylation of the GluR1 subunit and its translocation to the membrane. Accordingly, intrathecal administration of the IP receptor antagonist Cay10441 had an antinociceptive effect (n = 8-11). CONCLUSION Spinal prostacyclin synthesis during early inflammation causes the recruitment of GluR1 receptors to membrane fractions, thereby augmenting the onset of central sensitization.
Collapse
|
32
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The Prostanoid EP4 Receptor and Its Signaling Pathway. Pharmacol Rev 2013; 65:1010-52. [DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Abstract
Autism spectrum disorders (ASDs) are highly heritable, and six genome-wide association studies (GWASs) of ASDs have been published to date. In this study, we have integrated the findings from these GWASs with other genetic data to identify enriched genetic networks that are associated with ASDs. We conducted bioinformatics and systematic literature analyses of 200 top-ranked ASD candidate genes from five published GWASs. The sixth GWAS was used for replication and validation of our findings. Further corroborating evidence was obtained through rare genetic variant studies, that is, exome sequencing and copy number variation (CNV) studies, and/or other genetic evidence, including candidate gene association, microRNA and gene expression, gene function and genetic animal studies. We found three signaling networks regulating steroidogenesis, neurite outgrowth and (glutamatergic) synaptic function to be enriched in the data. Most genes from the five GWASs were also implicated--independent of gene size--in ASDs by at least one other line of genomic evidence. Importantly, A-kinase anchor proteins (AKAPs) functionally integrate signaling cascades within and between these networks. The three identified protein networks provide an important contribution to increasing our understanding of the molecular basis of ASDs. In addition, our results point towards the AKAPs as promising targets for developing novel ASD treatments.
Collapse
|
34
|
Lenz KM, Nugent BM, McCarthy MM. Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 2012; 6:26. [PMID: 22363256 PMCID: PMC3282918 DOI: 10.3389/fnins.2012.00026] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/04/2012] [Indexed: 11/20/2022] Open
Abstract
Steroid hormones of gonadal origin act on the neonatal brain to produce sex differences that underlie adult reproductive physiology and behavior. Neuronal sex differences occur on a variety of levels, including differences in regional volume and/or cell number, morphology, physiology, molecular signaling, and gene expression. In the rodent, many of these sex differences are determined by steroid hormones, particularly estradiol, and are established by diverse downstream effects. One brain region that is potently organized by estradiol is the preoptic area (POA), a region critically involved in many behaviors that show sex differences, including copulatory and maternal behaviors. This review focuses on the POA as a case study exemplifying the depth and breadth of our knowledge as well as the gaps in understanding the mechanisms through which gonadal hormones produce lasting neural and behavioral sex differences. In the POA, multiple cell types, including neurons, astrocytes, and microglia are masculinized by estradiol. Multiple downstream molecular mediators are involved, including prostaglandins, various glutamate receptors, protein kinase A, and several immune signaling molecules. Moreover, emerging evidence indicates epigenetic mechanisms maintain sex differences in the POA that are organized perinatally and thereby produce permanent behavioral changes. We also review emerging strategies to better elucidate the mechanisms through which genetics and epigenetics contribute to brain and behavioral sex differences.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Program in Neuroscience and Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|