1
|
Rosellini M, Schulze A, Omer EA, Ali NT, Marini F, Küpper JH, Efferth T. The Effect of Plastic-Related Compounds on Transcriptome-Wide Gene Expression on CYP2C19-Overexpressing HepG2 Cells. Molecules 2023; 28:5952. [PMID: 37630204 PMCID: PMC10459118 DOI: 10.3390/molecules28165952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the food chain and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or lubricants, whose impact on human health is also under investigation. At the cellular level, the most important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450 monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular balance, their interactions with plastic and related products are unexplored. In this study, the possible interactions between several plastic-related compounds and one of the most important cytochromes, CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to more than 1000 commercially available plastic-related compounds, we identified candidates that are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three candidate molecules were identified, i.e., 2,2'-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2'-methylene bis(6-cyclohexyl-4-methylphenol)), which bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and interacted with several metabolic pathways, of which the 'cholesterol biosynthesis process' was the most affected. In addition, other affected pathways involved mitosis, DNA replication, and inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related compounds could damage the liver by affecting several molecular pathways.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Senftenberg, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| |
Collapse
|
2
|
Zhou Q, Kong D, Li W, Shi Z, Liu Y, Sun R, Ma X, Qiu C, Liu Z, Hou Y, Jiang J. LncRNA HOXB-AS3 binding to PTBP1 protein regulates lipid metabolism by targeting SREBP1 in endometrioid carcinoma. Life Sci 2023; 320:121512. [PMID: 36858312 DOI: 10.1016/j.lfs.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Endometrial cancer (EC) is a malignant tumor with a high incidence in women, and the survival rate of high-risk patients decreases significantly after disease progression. The regulatory role of long non-coding RNAs (LncRNAs) in tumors has been widely appreciated, but there have been few studies in EC. To investigate the effect of HOXB-AS3 in EC, we used bioinformatics tools for prediction and collected clinical samples to detect the expression of HOXB-AS3. Colony formation assay, MTT assay, flow cytometry and apoptosis assay, and transwell assay were used to verify the role of HOXB-AS3 in EC. HOXB-AS3 was upregulated in EC, promoted the proliferation and invasive ability of EC cells, and inhibited apoptosis. In addition, the ROC curve illustrated its diagnostic value. We explored experiments via lentiviral transduction, FISH, Oil Red O staining, TC and FFA content detection, RNA-pulldown, RIP, and other mechanisms to reveal that HOXB-AS3 can bind to PTBP1 and co-regulate the expression of SREBP1, thereby regulating lipid metabolism in EC cells. To the best of our knowledge, this is the first study on HOXB-AS3 in disorders of lipid metabolism in EC. In addition, we believe HOXB-AS3 has the potential to be a neoplastic marker or a therapeutic target.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yixin Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Identification of candidate genomic regions for thermogelled egg yolk traits based on a genome-wide association study. Poult Sci 2022; 102:102402. [PMID: 36610105 PMCID: PMC9850194 DOI: 10.1016/j.psj.2022.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Egg yolk texture is an important indicator for evaluating egg yolk quality. Genetic markers associated with economic traits predict genomes and facilitate mining for potential genes. Numerous genome-wide association studies have been conducted on egg traits. However, studies on the genetic basis of thermogelled yolk texture are still lacking. The aim of the present study was to find significant single nucleotide polymorphism (SNP) sites and candidate genes related to thermogelled yolk texture in Hetian Dahei chicken (HTHD) flocks that can be used as genetic markers. Five traits, including hardness, cohesiveness, gumminess, chewiness, and resilience, had low heritability (0.044-0.078). Ten genes, including U6, FSHR, PKDCC, SLC7A11, TIMM9, ARID4A, PSMA3, ACTR10, EML4, and SLC35F4 may control the hardness of the thermogelled egg yolks. In addition, 12 SNPs associated with cohesiveness were identified. RELCH located on GGA2 participates in cholesterol transport. The candidate gene LRRK2, which is associated with gumminess, influences the concentrations of very low-density lipoprotein in blood. Eight SNPs associated with resilience were identified, mainly on GGA3 and GCA28. In total, 208 SNPs associated with chewiness were identified, and 159 candidate genes, which were mainly involved in proteasome-mediated ubiquitin-dependent protein catabolic process, negative regulation of transport, lipid droplet organization, and vehicle docking involved in exocytosis, were found near these regions. Thermogel egg yolk texture is a complex phenotype controlled by multiple genes. Based on heritability assays and GWAS results, there is a genetic basis for the texture of thermogelled egg yolks. We identified a series of SNPs associated with yolk texture and candidate genes. Our result provides a theoretical basis for breeding high-quality egg yolk using molecular marker-assisted selection and could facilitate the development of novel traits.
Collapse
|
4
|
Prediction of Intrinsically Disordered Proteins Using Machine Learning Based on Low Complexity Methods. ALGORITHMS 2022. [DOI: 10.3390/a15030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prediction of intrinsic disordered proteins is a hot area in the field of bio-information. Due to the high cost of evaluating the disordered regions of protein sequences using experimental methods, we used a low-complexity prediction scheme. Sequence complexity is used in this scheme to calculate five features for each residue of the protein sequence, including the Shannon entropy, the Topo-logical entropy, the Permutation entropy and the weighted average values of two propensities. Particularly, this is the first time that permutation entropy has been applied to the field of protein sequencing. In addition, in the data preprocessing stage, an appropriately sized sliding window and a comprehensive oversampling scheme can be used to improve the prediction performance of our scheme, and two ensemble learning algorithms are also used to verify the prediction results before and after. The results show that adding permutation entropy improves the performance of the prediction algorithm, in which the MCC value can be improved from the original 0.465 to 0.526 in our scheme, proving its universality. Finally, we compare the simulation results of our scheme with those of some existing schemes to demonstrate its effectiveness.
Collapse
|
5
|
Alternative Splicing in Cardiovascular Disease-A Survey of Recent Findings. Genes (Basel) 2021; 12:genes12091457. [PMID: 34573439 PMCID: PMC8469243 DOI: 10.3390/genes12091457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease. Thus far, the role of alternative splicing has been uncovered in areas ranging from heart development, the response to myocardial infarction to cardiac structural disease. Circular RNAs, a product of alternative back-splicing, were initially discovered in 1976, but landmark publications have only recently identified their regulatory role, tissue-specific expression, and transcriptomic abundance, spurring a renewed interest in the topic. The aim of this review is to provide a brief insight into some of the available findings on the role of alternative splicing in cardiovascular disease, with a focus on atherosclerosis, myocardial infarction, heart failure, dilated cardiomyopathy and circular RNAs in myocardial infarction.
Collapse
|
6
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
7
|
Chen W, Li L, Wang J, Li Q, Zhang R, Wang S, Wu Y, Xing D. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta 2021; 517:15-22. [DOI: 10.1016/j.cca.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
|
8
|
Gok S, Kuzmenko O, Babinskyi A, Severcan F. Vitamin E Derivative with Modified Side Chain Induced Apoptosis by Modulating the Cellular Lipids and Membrane Dynamics in MCF7 Cells. Cell Biochem Biophys 2021; 79:271-287. [PMID: 33442824 DOI: 10.1007/s12013-020-00961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The vitamin E derivative with side chain modification (TC6OAc) has been shown to possess anticancer activity in our earlier in vivo studies. It was hypothesized that, as Vitamin E (VE) and VE derivative are fat soluble lipophilic molecules, they exert their function by modulating the lipid metabolism and related pathways. This study aimed to evaluate the cellular impact of this VE derivative (2,5,7,8-Tetramethyl-2-(4'-Methyl-3'-Pentenyl)-6-Acetoxy Chromane-TC6OH), using α-tocopherol as a reference compound throughout the experiments. Their effects on the cellular metabolism, the biophysical properties of cellular lipids and the functional characteristics of cells were monitored in human estrogen receptor (ER) positive breast cancer cells. It has been documented that TC6OH treatment induces tumor cell apoptosis by dissipating the mitochondrial membrane potential, modulating the lipid, transportation and degradation as well as downregulating certain anti-apoptotic and growth factor related proteins. Due to resistance of ER positive cells to the established therapies, the findings of this study are of translational value.
Collapse
Affiliation(s)
- Seher Gok
- The Scientific and Technological Research Council of Turkey, Ankara, Turkey
| | - Oleksandr Kuzmenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Andrii Babinskyi
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Feride Severcan
- Faculty of Medicine, Department of Biophysics, Altinbas University, Istanbul, Turkey.
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
9
|
Gourain V, Armant O, Lübke L, Diotel N, Rastegar S, Strähle U. Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Front Neurosci 2021; 15:671249. [PMID: 34054419 PMCID: PMC8162057 DOI: 10.3389/fnins.2021.671249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Zebrafish is an attractive model to investigate regeneration of the nervous system. Despite major progress in our understanding of the underlying processes, the transcriptomic changes are largely unknown. We carried out a computational analysis of the transcriptome of the regenerating telencephalon integrating changes in the expression of mRNAs, their splice variants and investigated the putative role of regulatory RNAs in the modulation of these transcriptional changes. Profound changes in the expression of genes and their splice variants engaged in many distinct processes were observed. Differential transcription and splicing are important processes in response to injury of the telencephalon. As exemplified by the coordinated regulation of the cholesterol synthesizing enzymes and transporters, the genome responded to injury of the telencephalon in a multi-tiered manner with distinct and interwoven changes in expression of enzymes, transporters and their regulatory molecules. This coordinated genomic response involved a decrease of the mRNA of the key transcription factor SREBF2, induction of microRNAs (miR-182, miR-155, miR-146, miR-31) targeting cholesterol genes, shifts in abundance of splice variants as well as regulation of long non-coding RNAs. Cholesterol metabolism appears to be switched from synthesis to relocation of cholesterol. Based on our in silico analyses, this switch involves complementary and synergistic inputs by different regulatory principles. Our studies suggest that adaptation of cholesterol metabolism is a key process involved in regeneration of the injured zebrafish brain.
Collapse
Affiliation(s)
- Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1064 Centre de Recherche en Transplantation en Immunologie, Nantes, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-Lez-Durance, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien CYROI, Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,COS, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Qin N, Zhang R, Zhang M, Niu Y, Fu S, Wang Y, Wang D, Chen Y, Zhao C, Chen Q, Lu H. Global Profiling of Dynamic Alternative Splicing Modulation in Arabidopsis Root upon Ralstonia solanacearum Infection. Genes (Basel) 2020; 11:genes11091078. [PMID: 32942673 PMCID: PMC7563316 DOI: 10.3390/genes11091078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important mechanism by which eukaryotes regulate transcription and protein diversity. The dynamic changes in AS that occur on a genome-wide scale during interactions between plant roots and pathogens remain unknown. Here, we used the interaction between Arabidopsis and Ralstonia solanacearum as a model to explore the AS changes that take place during the response of roots to infection by means of high-throughput RNA-sequencing. We showed that dynamic changes in AS occur much earlier than changes at the level of transcription during R.solanacearum infection. Comparing genes that are regulated at the transcriptional and AS levels indicated that there are few common genes between differentially spliced genes (DSGs) and differentially expressed genes (DEGs). The functional gene ontology (GO) analysis identified that the enriched GO terms for the DSGs were different from those of the DEGs. The DSGs were over-represented in GO terms associated with post-transcriptional and translational regulations, suggesting that AS may act on RNA stability and during post-translation, thus affecting the output of plant defense molecules. Meanwhile, changes in DSGs were infection stage-specific. Furthermore, the nucleotide binding domain and leucine-rich repeat proteins and receptor-like kinases, key regulators in plant immunity, were shown to undergo dynamic changes in AS in response to R. solanacearum. Taken together, AS, along with transcription, modulates plant root defense to R. solanacearum through transcriptome reprogramming.
Collapse
Affiliation(s)
- Ning Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Ruize Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.C.); (H.L.); Tel.: +86-18829010553 (H.L.)
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
- Correspondence: (Q.C.); (H.L.); Tel.: +86-18829010553 (H.L.)
| |
Collapse
|
11
|
Xue L, Qi H, Zhang H, Ding L, Huang Q, Zhao D, Wu BJ, Li X. Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol 2020; 10:1510. [PMID: 32974183 PMCID: PMC7472741 DOI: 10.3389/fonc.2020.01510] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, targeting metabolic reprogramming has emerged as a potential therapeutic approach for fighting cancer. Sterol regulatory element binding protein-2 (SREBP-2), a basic helix-loop-helix leucine zipper transcription factor, mainly regulates genes involved in cholesterol biosynthesis and homeostasis. SREBP-2 binds to the sterol regulatory elements (SREs) in the promoters of its target genes and activates the transcription of mevalonate pathway genes, such as HMG-CoA reductase (HMGCR), mevalonate kinase and other key enzymes. In this review, we first summarized the structure of SREBP-2 and its activation and regulation by multiple signaling pathways. We then found that SREBP-2 and its regulated enzymes, including HMGCR, FPPS, SQS, and DHCR4 from the mevalonate pathway, participate in the progression of various cancers, including prostate, breast, lung, and hepatocellular cancer, as potential targets. Importantly, preclinical and clinical research demonstrated that fatostatin, statins, and N-BPs targeting SREBP-2, HMGCR, and FPPS, respectively, alone or in combination with other drugs, have been used for the treatment of different cancers. This review summarizes new insights into the critical role of the SREBP-2-regulated mevalonate pathway for cancer and its potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Linyuan Xue
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Gene expression changes in lymphoblastoid cell lines and primary B cells by dexamethasone. Pharmacogenet Genomics 2020; 29:58-64. [PMID: 30562215 DOI: 10.1097/fpc.0000000000000365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) have been thought to be a useful model system for pharmacogenomics studies. The purpose of this study was to determine the effect of Epstein-Barr virus transformation on gene expression changes by dexamethasone (Dex) in LCLs and primary B cells (PBCs) derived from the same individuals. PATIENTS AND METHODS We prepared LCLs and purified PBCs from the same six male donors participating in the Childhood Asthma Management Program clinical trial, and compared mRNA profiles after 6 h incubation with Dex (10 mol/l) or sham buffer. We assessed differential expression and put the list of differentially expressed genes into the web interface of ConsensusPathDB to find the pathway-level interpretation of our genes specified. As a supplementary analysis, we looked at the expression of the Dex-regulated (inducing or repressing) genes in treatment-naive PBCs and LCLs (pre-Dex treatment) from the GSE30916 dataset. RESULTS By hierarchical clustering, we found clustering of probes by cell types but not by individuals irrespective of Dex treatment. We observed that the Dex-regulated genes significantly overlapped in PBCs and LCLs. In addition, the expression of these genes showed significant correlations between treatment-naive PBCs and LCLs. Common genes showing significantly decreased expressions by the Dex treatment in both cells were enriched in immune responses and proinflammatory signaling pathways. CONCLUSION Taken together, these results suggest the uses of LCLs are representative of the primary biologic effects of corticosteroids treatment.
Collapse
|
13
|
Zhu W, Zhou BL, Rong LJ, Ye L, Xu HJ, Zhou Y, Yan XJ, Liu WD, Zhu B, Wang L, Jiang XJ, Ren CP. Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis. J Zhejiang Univ Sci B 2020; 21:122-136. [PMID: 32115910 DOI: 10.1631/jzus.b1900422] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, proliferation, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer. In this review, we summarize recent findings related to PTBP1 and discuss how it regulates the development of cancer cells.
Collapse
Affiliation(s)
- Wei Zhu
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo-Lun Zhou
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li-Juan Rong
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Ye
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong-Juan Xu
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yao Zhou
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xue-Jun Yan
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei-Dong Liu
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Zhu
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xing-Jun Jiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cai-Ping Ren
- NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
15
|
Liu Y, Wang X, Liu B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief Bioinform 2019; 20:330-346. [PMID: 30657889 DOI: 10.1093/bib/bbx126] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/06/2023] Open
Abstract
Intrinsically disordered proteins and regions are widely distributed in proteins, which are associated with many biological processes and diseases. Accurate prediction of intrinsically disordered proteins and regions is critical for both basic research (such as protein structure and function prediction) and practical applications (such as drug development). During the past decades, many computational approaches have been proposed, which have greatly facilitated the development of this important field. Therefore, a comprehensive and updated review is highly required. In this regard, we give a review on the computational methods for intrinsically disordered protein and region prediction, especially focusing on the recent development in this field. These computational approaches are divided into four categories based on their methodologies, including physicochemical-based method, machine-learning-based method, template-based method and meta method. Furthermore, their advantages and disadvantages are also discussed. The performance of 40 state-of-the-art predictors is directly compared on the target proteins in the task of disordered region prediction in the 10th Critical Assessment of protein Structure Prediction. A more comprehensive performance comparison of 45 different predictors is conducted based on seven widely used benchmark data sets. Finally, some open problems and perspectives are discussed.
Collapse
Affiliation(s)
- Yumeng Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| | - Xiaolong Wang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| |
Collapse
|
16
|
ZNF542P is a pseudogene associated with LDL response to simvastatin treatment. Sci Rep 2018; 8:12443. [PMID: 30127457 PMCID: PMC6102286 DOI: 10.1038/s41598-018-30859-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Statins are the most commonly prescribed cardiovascular disease drug, but their inter-individual efficacy varies considerably. Genetic factors uncovered to date have only explained a small proportion of variation in low-density lipoprotein cholesterol (LDLC) lowering. To identify novel markers and determinants of statin response, we used whole transcriptome sequence data collected from simvastatin and control incubated lymphoblastoid cell lines (LCLs) established from participants of the Cholesterol and Pharmacogenetics (CAP) simvastatin clinical trial. We looked for genes whose statin-induced expression changes were most different between LCLs derived from individuals with high versus low plasma LDLC statin response during the CAP trial. We created a classification model of 82 “signature” gene expression changes that distinguished high versus low LDLC statin response. One of the most differentially changing genes was zinc finger protein 542 pseudogene (ZNF542P), the signature gene with changes most correlated with statin-induced change in cellular cholesterol ester, an in vitro marker of statin response. ZNF542P knock-down in a human hepatoma cell line increased intracellular cholesterol ester levels upon simvastatin treatment. Together, these findings imply a role for ZNF542P in LDLC response to simvastatin and, importantly, highlight the potential significance of noncoding RNAs as a contributing factor to variation in drug response.
Collapse
|
17
|
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. THE PLANT CELL 2018; 30:1424-1444. [PMID: 29764987 PMCID: PMC6096597 DOI: 10.1105/tpc.18.00177] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 05/18/2023]
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Allan B James
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Paige E Panter
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hugh G Nimmo
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
18
|
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. THE PLANT CELL 2018; 30:1424-1444. [PMID: 29764987 DOI: 10.1101/251876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Allan B James
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Paige E Panter
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hugh G Nimmo
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
19
|
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 2018; 293:13297-13309. [PMID: 29925592 DOI: 10.1074/jbc.ra118.001769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/18/2018] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and α-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.
Collapse
Affiliation(s)
- Kateřina Melková
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Zapletal
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Séverine Jansen
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Erik Nomilner
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Milan Zachrdla
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jozef Hritz
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Nováček
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic
| | - Markus Zweckstetter
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,the German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany, and
| | | | | | - Lukáš Žídek
- From Masaryk University, Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic, .,Masaryk University, Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Cano-Corres R, Candás-Estébanez B, Padró-Miquel A, Fanlo-Maresma M, Pintó X, Alía-Ramos P. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. J Clin Lab Anal 2018; 32:e22566. [PMID: 29732606 DOI: 10.1002/jcla.22566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with dyslipidemia are often treated with statins to reduce lipids and hence cardiovascular risk, but treatment response is variable, partly due to genetic factors. METHODS We studied the influence of 6 gene variants (APOE c.526C > T (APOE2), APOE c.388T > C (APOE4), SLCO1B1 c.521T > C, CYP3A4 c.-392G > A, HMGCR c.1564-106A > G, and LPA c.3947 + 467T > C) on statin efficacy assessing 2 indicators: the percent reduction in total cholesterol (TC) and non-HDL cholesterol (non-HDL), as well as the achievement of therapeutic goals. The study was performed in a group of patients (n = 100) without previous pharmacological treatment. Multiple regression models were used to calculate the percentage of explanation in response variability added by every variant to a basal model constructed with significant nongenetic control variables. RESULTS The most influential variant was HMGCR c.1564-106A > G (rs3846662), and carriers showed a significantly lower reduction in TC and non-HDL. This variant is related to an alternative splicing involving exon 13, which is also regulated by lipid concentrations in patients without the variant. Concerning therapeutic goals, HMGCR c.1564-106A > G hindered the achievement of TC targets on patients. CONCLUSIONS The HMGCR c.1564-106A > G variant was associated with less statin efficacy to decrease cholesterol.
Collapse
Affiliation(s)
- Ruth Cano-Corres
- Clinical Laboratory, Biochemistry Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Beatriz Candás-Estébanez
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Ariadna Padró-Miquel
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Marta Fanlo-Maresma
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, CiberObn, Idibell, Barcelona, Spain
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, CiberObn, Idibell, Barcelona, Spain
| | - Pedro Alía-Ramos
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| |
Collapse
|
21
|
ArulJothi KN, Suruthi Abirami B, Devi A. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population. Clin Chim Acta 2017; 478:28-36. [PMID: 29269200 DOI: 10.1016/j.cca.2017.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. OBJECTIVE This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. METHODS Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. RESULTS This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. CONCLUSION This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports.
Collapse
Affiliation(s)
- K N ArulJothi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - B Suruthi Abirami
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - Arikketh Devi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India.
| |
Collapse
|
22
|
Deschênes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell 2017; 16:918-933. [PMID: 28703423 PMCID: PMC5595669 DOI: 10.1111/acel.12646] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| |
Collapse
|
23
|
Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 2017; 36:165-170. [PMID: 28456680 DOI: 10.1016/j.arr.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease.
Collapse
|
24
|
Theusch E, Kim K, Stevens K, Smith JD, Chen YDI, Rotter JI, Nickerson DA, Medina MW. Statin-induced expression change of INSIG1 in lymphoblastoid cell lines correlates with plasma triglyceride statin response in a sex-specific manner. THE PHARMACOGENOMICS JOURNAL 2017; 17:222-229. [PMID: 26927283 PMCID: PMC5008997 DOI: 10.1038/tpj.2016.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed to lower plasma low-density lipoprotein (LDL) cholesterol levels. They also modestly reduce plasma triglyceride (TG), an independent cardiovascular disease risk factor, in most people. The mechanism and inter-individual variability of TG statin response is poorly understood. We measured statin-induced gene expression changes in lymphoblastoid cell lines derived from 150 participants of a simvastatin clinical trial and identified 23 genes (false discovery rate, FDR=15%) with expression changes correlated with plasma TG response. The correlation of insulin-induced gene 1 (INSIG1) expression changes with TG response (rho=0.32, q=0.11) was driven by men (interaction P=0.0055). rs73161338 was associated with INSIG1 expression changes (P=5.4 × 10-5) and TG response in two statin clinical trials (P=0.0048), predominantly in men. A combined model including INSIG1 expression level and splicing changes accounted for 29.5% of plasma TG statin response variance in men (P=5.6 × 10-6). Our results suggest that INSIG1 variation may contribute to statin-induced changes in plasma TG in a sex-specific manner.
Collapse
Affiliation(s)
- E Theusch
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - K Kim
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - K Stevens
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - J D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Y -D I Chen
- Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor–UCLA, Torrance, CA, USA
| | - J I Rotter
- Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor–UCLA, Torrance, CA, USA
| | - D A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - M W Medina
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
25
|
Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:349-362. [PMID: 28088440 DOI: 10.1016/j.bbagrm.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Intermediary metabolism studies have typically concentrated on four major regulatory mechanisms-substrate availability, allosteric enzyme regulation, post-translational enzyme modification, and regulated enzyme synthesis. Although transcriptional control has been a big focus, it is becoming increasingly evident that many post-transcriptional events are deeply embedded within the core regulatory circuits of enzyme synthesis/breakdown that maintain metabolic homeostasis. The prominent post-transcriptional mechanisms affecting intermediary metabolism include alternative pre-mRNA processing, mRNA stability and translation control, and the more recently discovered regulation by noncoding RNAs. In this review, we discuss the latest advances in our understanding of these diverse mechanisms at the cell-, tissue- and organismal-level. We also highlight the dynamics, complexity and non-linear nature of their regulatory roles in metabolic decision making, and deliberate some of the outstanding questions and challenges in this rapidly expanding field.
Collapse
|
26
|
Leduc V, Bourque L, Poirier J, Dufour R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics 2016; 26:1-11. [PMID: 26466344 DOI: 10.1097/fpc.0000000000000178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess the contribution of the rs3846662 polymorphism of HMGCR on serum lipid levels and statin efficacy, we measured in vivo HMGCR mRNA and lipid levels in French Canadian individuals affected by heterozygous familial hypercholesterolemia due to the deletion of more than 15 kb of the LDLR gene. RESULTS Men and women carrying the AA genotype at rs3846662, and no APOE4 allele, had higher levels of total cholesterol (5.43 vs. 4.58 mmol/l, P<0.05) and LDL-cholesterol (5.20 vs. 4.39 mmol/l, P<0.05) at baseline. However, with regard to statin efficacy, the penetrance of the AA genotype was sex dependent. Indeed, the percentage reduction in LDL-cholesterol upon statin treatment was significantly decreased in women with the AA genotype compared with women without it (38.4 vs. 46.2%, P<0.05), whereas this was not observed in men. Although both men and women bearing the AA genotype showed a higher ratio of full-length HMGCR mRNA/total HMGCR mRNA compared with individuals without it (n=37, P<0.05), overall transcription of HMGCR was decreased and increased in men and women carrying this genotype, respectively (n=37, P<0.01 and P<0.05). Finally, in our familial hypercholesterolemia cohort, HMGCR alternative splicing explained between 22 and 55% of the variance in statin response. CONCLUSION rs3846662 polymorphism and the alternative splicing of HMGCR mRNA significantly impact women's response to statin therapy.
Collapse
Affiliation(s)
- Valerie Leduc
- aCentre for Studies in Alzheimer's disease prevention bDouglas Mental Health University Institute, McGill University cDepartment of Nutrition, Clinical Research Institute of Montreal (IRCM), Montreal University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Kim MJ, Yu CY, Theusch E, Naidoo D, Stevens K, Kuang YL, Schuetz E, Chaudhry AS, Medina MW. SUGP1 is a novel regulator of cholesterol metabolism. Hum Mol Genet 2016; 25:3106-3116. [PMID: 27206982 PMCID: PMC5181593 DOI: 10.1093/hmg/ddw151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1. Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20–50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.
Collapse
Affiliation(s)
- Mee J Kim
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Elizabeth Theusch
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Devesh Naidoo
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Kristen Stevens
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Erin Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
28
|
Mitchel K, Theusch E, Cubitt C, Dosé AC, Stevens K, Naidoo D, Medina MW. RP1-13D10.2 Is a Novel Modulator of Statin-Induced Changes in Cholesterol. ACTA ACUST UNITED AC 2016; 9:223-30. [PMID: 27071970 DOI: 10.1161/circgenetics.115.001274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/30/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Numerous genetic contributors to cardiovascular disease risk have been identified through genome-wide association studies; however, identifying the molecular mechanism underlying these associations is not straightforward. The Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial of rosuvastatin users identified a sub-genome-wide association of rs6924995, a single-nucleotide polymorphism ≈10 kb downstream of myosin regulatory light chain interacting protein (MYLIP, aka IDOL and inducible degrader of low-density lipoprotein receptor [LDLR]), with LDL cholesterol statin response. Interestingly, although this signal was initially attributed to MYLIP, rs6924995 lies within RP1-13D10.2, an uncharacterized long noncoding RNA. METHODS AND RESULTS Using simvastatin and sham incubated lymphoblastoid cell lines from participants of the Cholesterol and Pharmacogenetics (CAP) simvastatin clinical trial, we found that statin-induced change in RP1-13D10.2 levels differed between cell lines from the tails of the white and black low-density lipoprotein cholesterol response distributions, whereas no difference in MYLIP was observed. RP1-13D10.2 overexpression in Huh7 and HepG2 increased LDLR transcript levels, increased LDL uptake, and decreased media levels of apolipoprotein B. In addition, we found a trend of slight differences in the effects of RP1-13D10.2 overexpression on LDLR transcript levels between hepatoma cells transfected with the rs6924995 A versus G allele and a suggestion of an association between rs6924995 and RP1-10D13.2 expression levels in the CAP lymphoblastoid cell lines. Finally, RP1-13D10.2 expression levels seem to be sterol regulated, consistent with its potential role as a novel lipid regulator. CONCLUSIONS RP1-13D10.2 is a long noncoding RNA that regulates LDLR and may contribute to low-density lipoprotein cholesterol response to statin treatment. These findings highlight the potential role of noncoding RNAs as determinants of interindividual variation in drug response.
Collapse
Affiliation(s)
| | | | - Celia Cubitt
- From the Children's Hospital Oakland Research Institute, CA
| | - Andréa C Dosé
- From the Children's Hospital Oakland Research Institute, CA
| | | | - Devesh Naidoo
- From the Children's Hospital Oakland Research Institute, CA
| | - Marisa W Medina
- From the Children's Hospital Oakland Research Institute, CA.
| |
Collapse
|
29
|
Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 17:137-145. [PMID: 26856248 PMCID: PMC4980276 DOI: 10.1038/tpj.2015.93] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Variation in the expression level and activity of genes involved in drug disposition and action (‘pharmacogenes') can affect drug response and toxicity, especially when in tissues of pharmacological importance. Previous studies have relied primarily on microarrays to understand gene expression differences, or have focused on a single tissue or small number of samples. The goal of this study was to use RNA-sequencing (RNA-seq) to determine the expression levels and alternative splicing of 389 Pharmacogenomics Research Network pharmacogenes across four tissues (liver, kidney, heart and adipose) and lymphoblastoid cell lines, which are used widely in pharmacogenomics studies. Analysis of RNA-seq data from 139 different individuals across the 5 tissues (20–45 individuals per tissue type) revealed substantial variation in both expression levels and splicing across samples and tissue types. Comparison with GTEx data yielded a consistent picture. This in-depth exploration also revealed 183 splicing events in pharmacogenes that were previously not annotated. Overall, this study serves as a rich resource for the research community to inform biomarker and drug discovery and use.
Collapse
|
30
|
Hwang D, Jo SP, Lee J, Kim JK, Kim KH, Lim YH. Antihyperlipidaemic effects of oxyresveratrol-containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Leduc V, Théroux L, Dea D, Dufour R, Poirier J. Effects of rs3846662 Variants on HMGCR mRNA and Protein Levels and on Markers of Alzheimer's Disease Pathology. J Mol Neurosci 2015; 58:109-19. [PMID: 26541602 DOI: 10.1007/s12031-015-0666-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023]
Abstract
3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is a cholesterol-regulating gene with statin relevance. rs3846662 being involved in regulation of HMGCR alternative splicing, we explored its impact on HMGCR messenger RNA (mRNA) and protein levels in the brain and the associations between those levels and levels of Alzheimer's disease pathological markers. We used brain samples derived from a cohort of 33 non-demented controls and 90 Alzheimer's disease autopsied-confirmed cases. HMGCR mRNA levels were determined in the frontal cortex (n = 114) and cerebellum (n = 110) using Taqman-qPCR, and HMGCR protein levels were determined in the frontal cortex (n = 117) using a commercial enzyme immunoassay. While densities of neurofibrillary tangles and senile plaques were determined in the frontal cortex (n = 74), total tau, phosphorylated Tau, and beta-amyloid 1-42 levels were determined in the frontal cortex (n = 94) and cerebellum (n = 91) using commercial enzyme immunoassays. Despite an increase in full-length HMGCR mRNA ratio in the frontal cortex of women carrying the AA genotype, there were no associations between rs3846662 and HMGCR mRNA or protein levels. An increased Δ13 HMGCR mRNA ratio was associated with increased levels of HMGCR proteins and neurofibrillary tangles in the frontal cortex but with reduced beta-amyloid 1-42 levels in the cerebellum, suggesting a brain cell type- or a disease progression-dependent association.
Collapse
Affiliation(s)
- Valerie Leduc
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada.,Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Louise Théroux
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Doris Dea
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Robert Dufour
- Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Judes Poirier
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada. .,Centre for Studies in the Prevention of Alzheimer's Disease, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
32
|
Di Taranto MD, D'Agostino MN, Fortunato G. Functional characterization of mutant genes associated with autosomal dominant familial hypercholesterolemia: integration and evolution of genetic diagnosis. Nutr Metab Cardiovasc Dis 2015; 25:979-987. [PMID: 26165249 DOI: 10.1016/j.numecd.2015.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
AIMS Familial Hypercholesterolemia (FH) is one of the most frequent dyslipidemias, the autosomal dominant form of which is primarily caused by mutations in the LDL receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes, although in around 20% of patients the genetic cause remains unidentified. Genetic testing has notably improved the identification of patients suffering from FH, the most frequent cause of which is the presence of mutations in the LDLR gene. Although more than 1200 different mutations have been identified in this gene, about 80% are recognized to be pathogenic. We aim to overview the current methods used to perform the functional characterization of mutations causing FH and to highlight the conditions requiring a functional characterization of the variant in order to obtain a diagnostic report. DATA SYNTHESIS In the current review, we summarize the different types of functional assays - including their advantages and disadvantages - performed to characterize mutations in the LDLR, APOB and PCSK9 genes helping to better define their pathogenic role. We describe the evaluation of splicing alterations and two major procedures for functional characterization: 1. ex vivo methods, using cells from FH patients; 2. in vitro methods using cell lines. CONCLUSIONS Functional characterization of the LDLR, APOB and PCSK9 mutant genes associated with FH can be considered a necessary integration of its genetic diagnosis.
Collapse
Affiliation(s)
| | - M N D'Agostino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - G Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
33
|
Li J, Feng Y, Wang X, Li J, Liu W, Rong L, Bao J. An Overview of Predictors for Intrinsically Disordered Proteins over 2010-2014. Int J Mol Sci 2015; 16:23446-62. [PMID: 26426014 PMCID: PMC4632708 DOI: 10.3390/ijms161023446] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
The sequence-structure-function paradigm of proteins has been changed by the occurrence of intrinsically disordered proteins (IDPs). Benefiting from the structural disorder, IDPs are of particular importance in biological processes like regulation and signaling. IDPs are associated with human diseases, including cancer, cardiovascular disease, neurodegenerative diseases, amyloidoses, and several other maladies. IDPs attract a high level of interest and a substantial effort has been made to develop experimental and computational methods. So far, more than 70 prediction tools have been developed since 1997, within which 17 predictors were created in the last five years. Here, we presented an overview of IDPs predictors developed during 2010-2014. We analyzed the algorithms used for IDPs prediction by these tools and we also discussed the basic concept of various prediction methods for IDPs. The comparison of prediction performance among these tools is discussed as well.
Collapse
Affiliation(s)
- Jianzong Li
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
| | - Yu Feng
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
| | - Xiaoyun Wang
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
| | - Jing Li
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wen Liu
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
| | - Li Rong
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
| | - Jinku Bao
- College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
Peric D, Barragan I, Giraud-Triboult K, Egesipe AL, Meyniel-Schicklin L, Cousin C, Lotteau V, Petit V, Touhami J, Battini JL, Sitbon M, Pinset C, Ingelman-Sundberg M, Laustriat D, Peschanski M. Cytostatic Effect of Repeated Exposure to Simvastatin: A Mechanism for Chronic Myotoxicity Revealed by the Use of Mesodermal Progenitors Derived from Human Pluripotent Stem Cells. Stem Cells 2015; 33:2936-48. [DOI: 10.1002/stem.2107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Delphine Peric
- INSERM U861; I-Stem, Evry Cedex Paris France
- UEVE U861; I-Stem, Evry Cedex Paris France
| | - Isabel Barragan
- Department of Physiology and Pharmacology; Karolinska Institute; Stockholm Sweden
| | | | - Anne-Laure Egesipe
- INSERM U861; I-Stem, Evry Cedex Paris France
- UEVE U861; I-Stem, Evry Cedex Paris France
| | - Laurène Meyniel-Schicklin
- CIRI, International Center for Infectiology Research; Université de Lyon; Lyon France
- INSERM U1111; Lyon France
| | | | - Vincent Lotteau
- CIRI, International Center for Infectiology Research; Université de Lyon; Lyon France
- INSERM U1111; Lyon France
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535; Université de Montpellier; Montpellier France
| | - Jean-Luc Battini
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535; Université de Montpellier; Montpellier France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535; Université de Montpellier; Montpellier France
| | - Christian Pinset
- INSERM U861; I-Stem, Evry Cedex Paris France
- UEVE U861; I-Stem, Evry Cedex Paris France
| | | | | | - Marc Peschanski
- INSERM U861; I-Stem, Evry Cedex Paris France
- UEVE U861; I-Stem, Evry Cedex Paris France
| |
Collapse
|
35
|
Polimorfismos de los genes LEP, LDLR, APOA4, sus relaciones con sobrepeso, obesidad y riesgo de enfermedades crónicas en adultos del estado Sucre, Venezuela. BIOMEDICA 2015; 36:78-90. [DOI: 10.7705/biomedica.v36i1.2702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/12/2015] [Indexed: 01/05/2023]
|
36
|
Rocha CSJ, Wiklander OPB, Larsson L, Moreno PMD, Parini P, Lundin KE, Smith CIE. RNA therapeutics inactivate PCSK9 by inducing a unique intracellular retention form. J Mol Cell Cardiol 2015; 82:186-93. [PMID: 25791168 DOI: 10.1016/j.yjmcc.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/22/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
Hypercholesterolemia is a medical condition often characterized by high levels of low-density lipoprotein cholesterol (LDL-C) in the blood. Despite the available therapies, not all patients show sufficient responses, especially those with very high levels of LDL-C or those with familial hypercholesterolemia. Regulation of plasma cholesterol levels is very complex and several proteins are involved (both receptors and enzymes). From these, the proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising pharmacologic target. The objective of this work is to develop a new approach to inactivate PCSK9 by splice-switching oligonucleotides (SSOs), converting the normal splice form to a natural, less abundant and inactive, splice variant. For this purpose, a new RNA therapeutic approach for hypercholesterolemia based on SSOs was developed for modulation of the splice pattern of human PCSK9 pre-mRNA. Our results show an increase of the selected splice form at both the mRNA and protein level when compared to non-treated Huh7 and HepG2 cell lines, with concomitant increase of the protein level of the low-density lipoprotein receptor (LDLR) demonstrating the specificity and efficiency of the system. In vivo, full conversion to the splice form was achieved in a reporter system when mice were treated with the specific oligonucleotide, thus further indicating the therapeutic potential of the approach. In conclusion, PCSK9 activity can be modulated by splice-switching through an RNA therapeutic approach. The tuning of the natural active to non-active isoforms represents a physiological way of regulating the cholesterol metabolism, by controlling the amount of LDL receptor available and the rate of LDL-cholesterol clearance.
Collapse
Affiliation(s)
- Cristina S J Rocha
- Division Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Oscar P B Wiklander
- Division Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Lilian Larsson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Pedro M D Moreno
- Division Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Karin E Lundin
- Division Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - C I Edvard Smith
- Division Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
37
|
Stormo C, Kringen MK, Lyle R, Olstad OK, Sachse D, Berg JP, Piehler AP. RNA-sequencing analysis of HepG2 cells treated with atorvastatin. PLoS One 2014; 9:e105836. [PMID: 25153832 PMCID: PMC4143339 DOI: 10.1371/journal.pone.0105836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/30/2014] [Indexed: 01/28/2023] Open
Abstract
The cholesterol-lowering drug atorvastatin is among the most prescribed drug in the world. Alternative splicing in a number of genes has been reported to be associated with variable statin response. RNA-seq has proven to be a powerful technique for genome-wide splice variant analysis. In the present study, we sought to investigate atorvastatin responsive splice variants in HepG2 cells using RNA-seq analysis to identify novel candidate genes implicated in cholesterol homeostasis and in the statin response. HepG2 cells were treated with 10 µM atorvastatin for 24 hours. RNA-seq and exon array analyses were performed. The validation of selected genes was performed using Taqman gene expression assays. RNA-seq analysis identified 121 genes and 98 specific splice variants, of which four were minor splice variants to be differentially expressed, 11 were genes with potential changes in their splicing patterns (SYCP3, ZNF195, ZNF674, MYD88, WHSC1, KIF16B, ZNF92, AGER, FCHO1, SLC6A12 and AKAP9), and one was a gene (RAP1GAP) with differential promoter usage. The IL21R transcript was detected to be differentially expressed via RNA-seq and RT-qPCR, but not in the exon array. In conclusion, several novel candidate genes that are affected by atorvastatin treatment were identified in this study. Further studies are needed to determine the biological significance of the atorvastatin responsive splice variants that have been uniquely identified using RNA-seq.
Collapse
Affiliation(s)
- Camilla Stormo
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Daniel Sachse
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens P. Berg
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
38
|
Medina MW, Bauzon F, Naidoo D, Theusch E, Stevens K, Schilde J, Schubert C, Mangravite LM, Rudel LL, Temel RE, Runz H, Krauss RM. Transmembrane protein 55B is a novel regulator of cellular cholesterol metabolism. Arterioscler Thromb Vasc Biol 2014; 34:1917-23. [PMID: 25035345 DOI: 10.1161/atvbaha.113.302806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Interindividual variation in pathways affecting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of lymphoblastoid cell lines. APPROACH AND RESULTS Expression array profiling was performed on 480 lymphoblastoid cell lines established from participants of the Cholesterol and Pharmacogenetics (CAP) statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29; P=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knockdown in human hepatoma cell lines promoted the decay rate of the low-density lipoprotein receptor, reduced cell surface low-density lipoprotein receptor protein, impaired low-density lipoprotein uptake, and reduced intracellular cholesterol. CONCLUSIONS Here, we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis.
Collapse
Affiliation(s)
- Marisa W Medina
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.).
| | - Frederick Bauzon
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Devesh Naidoo
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Elizabeth Theusch
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Kristen Stevens
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Jessica Schilde
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Christian Schubert
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Lara M Mangravite
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Lawrence L Rudel
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Ryan E Temel
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Heiko Runz
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Ronald M Krauss
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| |
Collapse
|
39
|
A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci Rep 2014; 4:5285. [PMID: 24923838 PMCID: PMC4055904 DOI: 10.1038/srep05285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are semi-autonomous organelles regulated by a complex network of proteins that are vital for many cellular functions. Because mitochondrial modulators can impact many aspects of cellular homeostasis, their identification and validation has proven challenging. It requires the measurement of multiple parameters in parallel to understand the exact nature of the changes induced by such compounds. We developed a platform of assays scoring for mitochondrial function in two complementary models systems, mammalian cells and C. elegans. We first optimized cell culture conditions and established the mitochondrial signature of 1,200 FDA-approved drugs in liver cells. Using cell-based and C. elegans assays, we further defined the metabolic effects of two pharmacological classes that emerged from our hit list, i.e. imidazoles and statins. We found that these two drug classes affect respiration through different and cholesterol-independent mechanisms in both models. Our screening strategy enabled us to unequivocally identify compounds that have toxic or beneficial effects on mitochondrial activity. Furthermore, the cross-species approach provided novel mechanistic insight and allowed early validation of hits that act on mitochondrial function.
Collapse
|
40
|
Pavlovic Z, Singh RK, Bakovic M. A novel murine CTP:phosphoethanolamine cytidylyltransferase splice variant is a post-translational repressor and an indicator that both cytidylyltransferase domains are required for activity. Gene 2014; 543:58-68. [PMID: 24703999 DOI: 10.1016/j.gene.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) has an important regulatory function in biosynthesis of the membrane phospholipid phosphatidylethanolamine. We previously determined that the full-length Pcyt2α and its splice variant Pcyt2β are the main active isoforms of this enzyme. Here we report that mouse Pcyt2 could be spliced at Introns 7 and 8 to produce a unique third isoform, Pcyt2γ, in which the second cytidylyltransferase domain at the C-terminus becomes deleted. Pcyt2γ is ubiquitously expressed in embryonic and adult mouse tissues, and is the most abundant in the kidney, skeletal muscle and testis. Pcyt2γ splicing mechanism dominates over Pcyt2β exon-skipping mechanism in most examined tissues. Although Pcyt2γ maintains the N-terminal cytidylyltransferase domain as most cytidylyltransferases, the lack of the C-terminal cytidylyltransferase domain causes a complete loss of catalytic activity. However, Pcyt2γ interacts with the active isoform, Pcyt2α, and significantly reduces Pcyt2α homodimerization and activity. The inactive N-domain (H35Y, H35A) and C-domain (H244Y, H244A) mutants of Pcyt2α also reduce Pcyt2α homodimerization and activity. This study revealed the importance of both cytidylyltransferase (35)HYGH and (244)HIGH motifs for the activity of murine Pcyt2α and established that the naturally occurring splice variant Pcyt2γ has a function to restrain the enzyme activity through the formation of unproductive enzyme complexes.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada.
| | - Ratnesh Kumar Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
41
|
Gelissen IC, McLachlan AJ. The pharmacogenomics of statins. Pharmacol Res 2013; 88:99-106. [PMID: 24365577 DOI: 10.1016/j.phrs.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022]
Abstract
The statin class of cholesterol-lowering drugs have been used for decades to successfully lower plasma cholesterol concentrations and cardiovascular risk. Adverse effects of statins are generally considered mild, but increase with age of patients and polypharmacy. One aspect of statin therapy that is still difficult for prescribers to predict is the individual's response to statin therapy. Recent advances in the field of pharmacogenomics have indicated variants of candidate genes that affect statin efficacy and safety. In this review, a number of candidates that affect statin pharmacokinetics and pharmacodynamics are discussed. Some of these candidates, in particular those involved in import and efflux of statins, have now been linked to increased risk of side effects. Furthermore, pharmacogenomic studies continue to reveal new players that are involved in the fine-tuning of the complex regulation of cholesterol homeostasis and response to statins.
Collapse
Affiliation(s)
| | - Andrew J McLachlan
- Faculty of Pharmacy, University of Sydney, NSW, Australia; Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia
| |
Collapse
|
42
|
Bolotin E, Armendariz A, Kim K, Heo SJ, Boffelli D, Tantisira K, Rotter JI, Krauss RM, Medina MW. Statin-induced changes in gene expression in EBV-transformed and native B-cells. Hum Mol Genet 2013; 23:1202-10. [PMID: 24179175 DOI: 10.1093/hmg/ddt512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human lymphoblastoid cell lines (LCLs), generated through Epstein-Barr Virus (EBV) transformation of B-lymphocytes (B-cells), are a commonly used model system for identifying genetic influences on human diseases and on drug responses. We have previously used LCLs to examine the cellular effects of genetic variants that modulate the efficacy of statins, the most prescribed class of cholesterol-lowering drugs used for the prevention and treatment of cardiovascular disease. However, statin-induced gene expression differences observed in LCLs may be influenced by their transformation, and thus differ from those observed in native B-cells. To assess this possibility, we prepared LCLs and purified B-cells from the same donors, and compared mRNA profiles after 24 h incubation with simvastatin (2 µm) or sham buffer. Genes involved in cholesterol metabolism were similarly regulated between the two cell types under both the statin and sham-treated conditions, and the statin-induced changes were significantly correlated. Genes whose expression differed between the native and transformed cells were primarily implicated in cell cycle, apoptosis and alternative splicing. We found that ChIP-seq signals for MYC and EBNA2 (an EBV transcriptional co-activator) were significantly enriched in the promoters of genes up-regulated in the LCLs compared with the B-cells, and could be involved in the regulation of cell cycle and alternative splicing. Taken together, the results support the use of LCLs for the study of statin effects on cholesterol metabolism, but suggest that drug effects on cell cycle, apoptosis and alternative splicing may be affected by EBV transformation. This dataset is now uploaded to GEO at the accession number GSE51444.
Collapse
Affiliation(s)
- Eugene Bolotin
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, Mecham BH, Howie B, Shim H, Naidoo D, Feng Q, Rieder MJ, Chen YDI, Rotter JI, Ridker PM, Hopewell JC, Parish S, Armitage J, Collins R, Wilke RA, Nickerson DA, Stephens M, Krauss RM. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature 2013; 502:377-80. [PMID: 23995691 PMCID: PMC3933266 DOI: 10.1038/nature12508] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/26/2013] [Indexed: 01/28/2023]
Abstract
Statins are prescribed widely to lower plasma low-density lipoprotein (LDL) concentrations and cardiovascular disease risk and have been shown to have beneficial effects in a broad range of patients. However, statins are associated with an increased risk, albeit small, of clinical myopathy and type 2 diabetes. Despite evidence for substantial genetic influence on LDL concentrations, pharmacogenomic trials have failed to identify genetic variations with large effects on either statin efficacy or toxicity, and have produced little information regarding mechanisms that modulate statin response. Here we identify a downstream target of statin treatment by screening for the effects of in vitro statin exposure on genetic associations with gene expression levels in lymphoblastoid cell lines derived from 480 participants of a clinical trial of simvastatin treatment. This analysis identified six expression quantitative trait loci (eQTLs) that interacted with simvastatin exposure, including rs9806699, a cis-eQTL for the gene glycine amidinotransferase (GATM) that encodes the rate-limiting enzyme in creatine synthesis. We found this locus to be associated with incidence of statin-induced myotoxicity in two separate populations (meta-analysis odds ratio = 0.60). Furthermore, we found that GATM knockdown in hepatocyte-derived cell lines attenuated transcriptional response to sterol depletion, demonstrating that GATM may act as a functional link between statin-mediated lowering of cholesterol and susceptibility to statin-induced myopathy.
Collapse
Affiliation(s)
- Lara M Mangravite
- Sage Bionetworks, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yu CY, Theusch E, Lo K, Mangravite LM, Naidoo D, Kutilova M, Medina MW. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Hum Mol Genet 2013; 23:319-32. [PMID: 24001602 DOI: 10.1093/hmg/ddt422] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway and is inhibited by statins, a class of cholesterol-lowering drugs. Expression of an alternatively spliced HMGCR transcript lacking exon 13, HMGCR13(-), has been implicated in the variation of plasma LDL-cholesterol (LDL-C) and is the single most informative molecular marker of LDL-C response to statins. Given the physiological importance of this transcript, our goal was to identify molecules that regulate HMGCR alternative splicing. We recently reported gene expression changes in 480 lymphoblastoid cell lines (LCLs) after in vitro simvastatin treatment, and identified a number of statin-responsive genes involved in mRNA splicing. Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) was chosen for follow-up since rs3846662, an HMGCR SNP that regulates exon 13 skipping, was predicted to alter an HNRNPA1 binding motif. Here, we not only demonstrate that rs3846662 modulates HNRNPA1 binding, but also that sterol depletion of human hepatoma cell lines reduced HNRNPA1 mRNA levels, an effect that was reversed with sterol add-back. Overexpression of HNRNPA1 increased the ratio of HMGCR13(-) to total HMGCR transcripts by both directly increasing exon 13 skipping in an allele-related manner and specifically stabilizing the HMGCR13(-) transcript. Importantly, HNRNPA1 overexpression also diminished HMGCR enzyme activity, enhanced LDL-C uptake and increased cellular apolipoprotein B (APOB). rs1920045, an SNP associated with HNRNPA1 exon 8 alternative splicing, was also associated with smaller statin-induced reduction in total cholesterol from two independent clinical trials. These results suggest that HNRNPA1 plays a role in the variation of cardiovascular disease risk and statin response.
Collapse
Affiliation(s)
- Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 2013; 288:18707-15. [PMID: 23696639 DOI: 10.1074/jbc.r113.479808] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW With the advent of whole-transcriptome sequencing, or RNA-seq, we now know that alternative splicing is a generalized phenomenon, with nearly all multiexonic genes subject to alternative splicing. In this review, we highlight recent studies examining alternative splicing as a modulator of cellular cholesterol homeostasis and as an underlying mechanism of dyslipidemia. RECENT FINDINGS A number of key genes involved in cholesterol metabolism are known to undergo functionally relevant alternative splicing. Recently, we have identified coordinated changes in alternative splicing in multiple genes in response to alterations in cellular sterol content. We and others have implicated several splicing factors as regulators of lipid metabolism. Furthermore, a number of cis-acting human gene variants that modulate alternative splicing have been implicated in a variety of human metabolic diseases. SUMMARY Alternative splicing is of importance in various types of genetically influenced dyslipidemias and in the regulation of cellular cholesterol metabolism.
Collapse
Affiliation(s)
- Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
47
|
Gao F, Ihn HE, Medina MW, Krauss RM. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum Mol Genet 2013; 22:1424-31. [PMID: 23297366 DOI: 10.1093/hmg/dds559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P < 0.05) and showed that this triggered nonsense-mediated decay (NMD) of the alternatively spliced LDLR mRNA. However, since synonymous single nucleotide polymorphisms may influence structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P < 0.01). Moreover, in the presence of exogenous proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein that reduces cellular LDL uptake by promoting lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.
Collapse
Affiliation(s)
- Feng Gao
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | | | |
Collapse
|
48
|
RHOA is a modulator of the cholesterol-lowering effects of statin. PLoS Genet 2012; 8:e1003058. [PMID: 23166513 PMCID: PMC3499361 DOI: 10.1371/journal.pgen.1003058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Although statin drugs are generally efficacious for lowering plasma LDL-cholesterol levels, there is considerable variability in response. To identify candidate genes that may contribute to this variation, we used an unbiased genome-wide filter approach that was applied to 10,149 genes expressed in immortalized lymphoblastoid cell lines (LCLs) derived from 480 participants of the Cholesterol and Pharmacogenomics (CAP) clinical trial of simvastatin. The criteria for identification of candidates included genes whose statin-induced changes in expression were correlated with change in expression of HMGCR, a key regulator of cellular cholesterol metabolism and the target of statin inhibition. This analysis yielded 45 genes, from which RHOA was selected for follow-up because it has been found to participate in mediating the pleiotropic but not the lipid-lowering effects of statin treatment. RHOA knock-down in hepatoma cell lines reduced HMGCR, LDLR, and SREBF2 mRNA expression and increased intracellular cholesterol ester content as well as apolipoprotein B (APOB) concentrations in the conditioned media. Furthermore, inter-individual variation in statin-induced RHOA mRNA expression measured in vitro in CAP LCLs was correlated with the changes in plasma total cholesterol, LDL-cholesterol, and APOB induced by simvastatin treatment (40 mg/d for 6 wk) of the individuals from whom these cell lines were derived. Moreover, the minor allele of rs11716445, a SNP located in a novel cryptic RHOA exon, dramatically increased inclusion of the exon in RHOA transcripts during splicing and was associated with a smaller LDL-cholesterol reduction in response to statin treatment in 1,886 participants from the CAP and Pravastatin Inflamation and CRP Evaluation (PRINCE; pravastatin 40 mg/d) statin clinical trials. Thus, an unbiased filter approach based on transcriptome-wide profiling identified RHOA as a gene contributing to variation in LDL-cholesterol response to statin, illustrating the power of this approach for identifying candidate genes involved in drug response phenotypes. Statins, or HMG CoA reductase inhibitors, are widely used to lower plasma LDL-cholesterol levels as a means of reducing risk for cardiovascular disease. We performed an unbiased genome-wide survey to identify novel candidate genes that may be involved in statin response using genome-wide mRNA expression analysis in a sequential filtering strategy to identify those most likely to be relevant to cholesterol metabolism based on their gene expression characteristics. Among these, RHOA was selected for further functional study. A role for this gene in the maintenance of intracellular cholesterol homeostasis was confirmed by knock-down in hepatoma cell lines. In addition, statin-induced RHOA transcript levels measured in a panel of lymphoblastoid cell lines was correlated with statin-induced change in plasma LDL-cholesterol measured in individuals from whom the cell lines were derived. Lastly, a cis-acting splicing QTL associated with expression of a rare cryptic RHOA exon was also associated with statin-induced changes in plasma LDLC levels. This result exemplifies the power of applying biological information of well understood molecular pathways with genome-wide expression data for the identification of candidate genes that influence drug response.
Collapse
|
49
|
Stormo C, Kringen MK, Grimholt RM, Berg JP, Piehler AP. A novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) splice variant with an alternative exon 1 potentially encoding an extended N-terminus. BMC Mol Biol 2012; 13:29. [PMID: 22989091 PMCID: PMC3526503 DOI: 10.1186/1471-2199-13-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The major rate-limiting enzyme for de novo cholesterol synthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). HMGCR is sterically inhibited by statins, the most commonly prescribed drugs for the prevention of cardiovascular events. Alternative splicing of HMGCR has been implicated in the control of cholesterol homeostasis. The aim of this study was to identify novel alternatively spliced variants of HMGCR with potential physiological importance. Results Bioinformatic analyses predicted three novel HMGCR transcripts containing an alternative exon 1 (HMGCR-1b, -1c, -1d) compared with the canonical transcript (HMGCR-1a). The open reading frame of the HMGCR-1b transcript potentially encodes 20 additional amino acids at the N-terminus, compared with HMGCR-1a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to examine the mRNA levels of HMGCR in different tissues; HMGCR-1a was the most highly expressed variant in most tissues, with the exception of the skin, esophagus, and uterine cervix, in which HMGCR-1b was the most highly expressed transcript. Atorvastatin treatment of HepG2 cells resulted in increased HMGCR-1b mRNA levels, but unaltered proximal promoter activity compared to untreated cells. In contrast, HMGCR-1c showed a more restricted transcription pattern, but was also induced by atorvastatin treatment. Conclusions The gene encoding HMGCR uses alternative, mutually exclusive exon 1 sequences. This contributes to an increased complexity of HMGCR transcripts. Further studies are needed to investigate whether HMGCR splice variants identified in this study are physiologically functional.
Collapse
Affiliation(s)
- Camilla Stormo
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Ullevål, P,O box 4956, Nydalen, Oslo, 0424, Norway.
| | | | | | | | | |
Collapse
|
50
|
MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 2012; 13:111. [PMID: 22624656 PMCID: PMC3465245 DOI: 10.1186/1471-2105-13-111] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/26/2012] [Indexed: 11/28/2022] Open
Abstract
Background Intrinsically unstructured proteins (IUPs) lack a well-defined three-dimensional structure. Some of them may assume a locally stable structure under specific conditions, e.g. upon interaction with another molecule, while others function in a permanently unstructured state. The discovery of IUPs challenged the traditional protein structure paradigm, which stated that a specific well-defined structure defines the function of the protein. As of December 2011, approximately 60 methods for computational prediction of protein disorder from sequence have been made publicly available. They are based on different approaches, such as utilizing evolutionary information, energy functions, and various statistical and machine learning methods. Results Given the diversity of existing intrinsic disorder prediction methods, we decided to test whether it is possible to combine them into a more accurate meta-prediction method. We developed a method based on arbitrarily chosen 13 disorder predictors, in which the final consensus was weighted by the accuracy of the methods. We have also developed a disorder predictor GSmetaDisorder3D that used no third-party disorder predictors, but alignments to known protein structures, reported by the protein fold-recognition methods, to infer the potentially structured and unstructured regions. Following the success of our disorder predictors in the CASP8 benchmark, we combined them into a meta-meta predictor called GSmetaDisorderMD, which was the top scoring method in the subsequent CASP9 benchmark. Conclusions A series of disorder predictors described in this article is available as a MetaDisorder web server at http://iimcb.genesilico.pl/metadisorder/. Results are presented both in an easily interpretable, interactive mode and in a simple text format suitable for machine processing.
Collapse
|