1
|
Muto M, Suzuki H, Suzuki Y. New Insights and Future Perspectives of APRIL in IgA Nephropathy. Int J Mol Sci 2024; 25:10340. [PMID: 39408691 PMCID: PMC11476402 DOI: 10.3390/ijms251910340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
IgA nephropathy (IgAN) is characterized by immune-mediated glomerulonephritis, with the accumulation of galactose-deficient IgA1 (Gd-IgA1) in the glomeruli and increased levels of circulating Gd-IgA1 and Gd-IgA1-containing immune complexes. An incomplete understanding of the underlying mechanisms and differences in clinical and pathological features between individuals and ethnicities has contributed to the lack of established treatments for IgAN. A tumor necrosis factor (TNF) family member, a proliferation-inducing ligand (APRIL), is a crucial cytokine essential for the generation and survival of plasma cells. Recent studies demonstrated that APRIL is a pivotal mediator in the production of Gd-IgA1 in IgAN. As our understanding of the autoimmune pathogenesis underlying IgAN has improved, various pharmacological therapeutic targets, including APRIL antagonists, have emerged. Preliminary results showed that APRIL-targeting agents effectively reduced proteinuria and Gd-IgA1 levels without significantly increasing adverse events, indicating their potential as novel therapeutic agents for IgAN. In the present review, we discuss the current understanding of the role of APRIL in the pathogenesis of IgAN and novel therapeutic strategies focusing on APRIL-targeting agents for IgAN. APRIL inhibitors may offer new hope to patients with IgAN.
Collapse
Affiliation(s)
- Masahiro Muto
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
| |
Collapse
|
2
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
3
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
4
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
5
|
Wang X, Dong Z, Awuah D, Chang WC, Cheng WA, Vyas V, Cha S, Anderson A, Zhang T, Wang Z, Szymura S, Kuang B, Clark MC, Aldoss I, Forman SJ, Kwak LW, Qin H. CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia 2022; 36:1015-1024. [PMID: 35039637 PMCID: PMC8983465 DOI: 10.1038/s41375-021-01477-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL), but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission, we developed a dual-targeting approach using an optimized, bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release, degranulation, and cytotoxicity against both CD19-/- and BAFF-R-/- variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19-/- and BAFF-R-/- variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19-/- and BAFF-R-/- ALL variants, whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19-/BAFF-R+ or CD19+/BAFF-R- tumors, respectively. Further, CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence, raising the possibility that these cells may have the potential to promote durable remissions. Together, our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.
Collapse
Affiliation(s)
- Xiuli Wang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhenyuan Dong
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Dennis Awuah
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wesley A Cheng
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Vibhuti Vyas
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Soungchul Cha
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Aaron Anderson
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Tiantian Zhang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhe Wang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Szymon Szymura
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Benjamin Kuang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mary C. Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Ibrahim Aldoss
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA,Corresponding Authors: Larry W. Kwak, MD., Ph.D., Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, ; Phone: 626-256-4673 ext. 80025; Fax: 626-218-3607, Stephen J. Forman., MD., Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope1500 E. Duarte Rd., Duarte, CA 91010, ; Tel: 626-218-2405; Fax: 626-301-8256
| | - Larry W Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| | - Hong Qin
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Wong DP, Roy NK, Zhang K, Anukanth A, Asthana A, Shirkey-Son NJ, Dunmire S, Jones BJ, Lahr WS, Webber BR, Moriarity BS, Caimi P, Parameswaran R. A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers. Nat Commun 2022; 13:217. [PMID: 35017485 PMCID: PMC8752722 DOI: 10.1038/s41467-021-27853-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
B cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- B-Cell Activating Factor/genetics
- B-Cell Activating Factor/immunology
- B-Cell Activation Factor Receptor/genetics
- B-Cell Activation Factor Receptor/immunology
- B-Cell Maturation Antigen/genetics
- B-Cell Maturation Antigen/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/therapy
- Lysosomal-Associated Membrane Protein 1/genetics
- Lysosomal-Associated Membrane Protein 1/immunology
- Male
- Mice
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Multiple Myeloma/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Protein Binding
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transmembrane Activator and CAML Interactor Protein/genetics
- Transmembrane Activator and CAML Interactor Protein/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Derek P Wong
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Nand K Roy
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Keman Zhang
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anusha Anukanth
- Division of Pediatric Hematology/Oncology, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Abhishek Asthana
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Paolo Caimi
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Reshmi Parameswaran
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
7
|
Valenzuela NM. IFNγ, and to a Lesser Extent TNFα, Provokes a Sustained Endothelial Costimulatory Phenotype. Front Immunol 2021; 12:648946. [PMID: 33936069 PMCID: PMC8082142 DOI: 10.3389/fimmu.2021.648946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Vascular endothelial cells (EC) are critical for regulation of local immune responses, through coordination of leukocyte recruitment from the blood and egress into the tissue. Growing evidence supports an additional role for endothelium in activation and costimulation of adaptive immune cells. However, this function remains somewhat controversial, and the full repertoire and durability of an enhanced endothelial costimulatory phenotype has not been wholly defined. Methods Human endothelium was stimulated with continuous TNFα or IFNγ for 1-48hr; or primed with TNFα or IFNγ for only 3hr, before withdrawal of stimulus for up to 45hr. Gene expression of cytokines, costimulatory molecules and antigen presentation molecules was measured by Nanostring, and publicly available datasets of EC stimulation with TNFα or IFNγ were leveraged to further corroborate the results. Cell surface protein expression was detected by flow cytometry, and secretion of cytokines was assessed by Luminex and ELISA. Key findings were confirmed in primary human endothelial cells from 4-6 different vascular beds. Results TNFα triggered mostly positive immune checkpoint molecule expression on endothelium, including CD40, 4-1BB, and ICOSLG but in the context of only HLA class I and immunoproteasome subunits. IFNγ promoted a more tolerogenic phenotype of high PD-L1 and PD-L2 expression with both HLA class I and class II molecules and antigen processing genes. Both cytokines elicited secretion of IL-15 and BAFF/BLyS, with TNFα stimulated EC additionally producing IL-6, TL1A and IL-1β. Moreover, endothelium primed for a short period (3hr) with TNFα mostly failed to alter the costimulatory phenotype 24-48hr later, with only somewhat augmented expression of HLA class I. In contrast, brief exposure to IFNγ was sufficient to cause late expression of antigen presentation, cytokines and costimulatory molecules. In particular HLA class I, PD-1 ligand and cytokine expression was markedly high on endothelium two days after IFNγ was last present. Conclusions Endothelia from multiple vascular beds possess a wide range of other immune checkpoint molecules and cytokines that can shape the adaptive immune response. Our results further demonstrate that IFNγ elicits prolonged signaling that persists days after initiation and is sufficient to trigger substantial gene expression changes and immune phenotype in vascular endothelium.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Aberrant Expression of a Proliferation-Inducing Ligand Underlies Autoimmune Mechanisms in Immune Thrombocytopenia. J Immunol Res 2021; 2021:3676942. [PMID: 33564689 PMCID: PMC7867467 DOI: 10.1155/2021/3676942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose To study the relationship between surface membrane-bound APRIL and ITP. Methods The peripheral blood of all subjects, 50 patients diagnosed with ITP and 25 healthy controls, was collected. Flow cytometry was used to detect the expression of membrane-bound APRIL on immune cells and platelets. ELISA was used to detect the content of soluble APRIL in plasma. Results Membrane-bound APRIL was only expressed on the surface of platelets in both ITP patients and controls. APRIL expression on the platelet surface was significantly lower in newly diagnosed (P < 0.001) and chronic (P < 0.001) ITP patients than in controls. Platelet surface APRIL level was significantly enhanced in patients with complete remission after treatment (P = 0.02) but not in those with no response after treatment. Platelet surface APRIL level in ITP patients was negatively correlated with serum APRIL level (r = −0.09765, P = 0.0424). Conclusions Platelet surface APRIL may play a key immunoregulative role. Platelet surface APRIL is likely to be one source of the excessive serum APRIL in ITP patients. The effectiveness of treatment may be measured by determining the platelet surface APRIL levels in ITP patients.
Collapse
|
9
|
Magliozzi R, Marastoni D, Calabrese M. The BAFF / APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1135-1145. [PMID: 32900236 DOI: 10.1080/14728222.2020.1821647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The complex system of BAFF (B-cell-activating factor of the TNF family) and APRIL (A proliferation-inducing ligand) has been studied in animal models of autoimmune diseases such as those resembling human systemic lupus erythematosus and Sjogren's syndrome and multiple sclerosis (MS). Accumulating evidence suggests that BAFF and APRIL have a physiological role in B cell immunity regulation, however inappropriate production of these factors may represent a key event which disrupts immune tolerance which is associated with systemic autoimmune diseases. AREAS COVERED We provide an update on the latest studies of the BAFF/APRIL system in multiple sclerosis, as well as on related clinical trials. EXPERT OPINION Experimental and clinical evidence suggests that increased BAFF levels may interfere directly and indirectly with B cell immunity; this can lead to breakdown of immune tolerance, the production of autoantibodies and continuous local intracerebral inflammation and brain tissue destruction. A more comprehensive understanding of the cell/molecular mechanism immune reactions specifically regulated by BAFF/APRIL in MS would better elucidate the specific cell phenotype targeted by actual anti-BAFF/APRIL therapies; this may enable the identification of either specific biomarkers of MS subgroups that would benefit of anti-BAFF/APRIL treatments or new targets of MS-specific anti-BAFF/APRIL therapies.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona , Verona, Italy
| |
Collapse
|
10
|
Dogan A, Siegel D, Tran N, Fu A, Fowler J, Belani R, Landgren O. B-cell maturation antigen expression across hematologic cancers: a systematic literature review. Blood Cancer J 2020; 10:73. [PMID: 32606424 PMCID: PMC7327051 DOI: 10.1038/s41408-020-0337-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
B-cell maturation antigen (BCMA) plays a critical role in regulating B-cell proliferation and survival. There is evidence for BCMA expression in various hematologic malignancies, suggesting that BCMA may play an important role as a biomarker or therapeutic target in these diseases. Given advances in understanding the role of BCMA in B-cell development and the promise of BCMA as a therapeutic target, a systematic review is needed to rigorously assess the evidence for BCMA expression and identify areas of consensus and future research. The objective of this review was to summarize the evidence on BCMA protein and mRNA expression across hematologic malignancies. Using a PubMed database search up to 28 August 2019, a systematic literature review of publications reporting BCMA expression in patients with hematologic malignancies was conducted. Data from published congress abstracts presented at the American Society of Clinical Oncology and the American Society of Hematology were also searched. Studies that assessed BCMA expression (protein or mRNA) in patients of any age with hematologic malignancies were included. A total of 21 studies met inclusion criteria and were included in the review. BCMA was expressed in several hematologic malignancies, including multiple myeloma (MM), chronic lymphocytic leukemia, acute B-lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), and Hodgkin lymphoma. BCMA was expressed at uniformly high levels across all 13 MM studies and at low to moderate levels in acute myeloid leukemia and acute lymphoblastic leukemia. These results suggest that BCMA is a relevant target in MM as well as in a subset of B-cell leukemia. BCMA expression in Hodgkin lymphoma and NHL varied across studies, and further research is needed to determine the utility of BCMA as an antibody target and biomarker in these diseases. Differences in sample type, timing of sample collection, and laboratory technique used may have affected the reporting of BCMA levels.
Collapse
Affiliation(s)
- Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Alan Fu
- Amgen, Inc., Thousand Oaks, CA, USA
| | | | | | - Ola Landgren
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Khlaiphuengsin A, Chuaypen N, Sodsai P, Buranapraditkun S, Boonpiyathad T, Hirankarn N, Tangkijvanich P. Decreased of BAFF-R expression and B cells maturation in patients with hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2020; 26:2645-2656. [PMID: 32523317 PMCID: PMC7265148 DOI: 10.3748/wjg.v26.i20.2645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent evidence has indicated the role of B cells and B cell-activating factor (BAFF) in the development of hepatocellular carcinoma (HCC).
AIM To characterize circulating BAFF receptor expression and B cell subpopulations in patients with hepatitis B virus (HBV)-related HCC.
METHODS Peripheral blood samples collected from 41 patients with chronic HBV infection (25 patients without HCC and 16 patients with HCC) and 9 healthy controls were assessed for BAFF receptors [BAFF-R(B cell-activating factor receptor), transmembrane activator and cyclophilin ligand interactor, B-cell maturation antigen] and B cell subpopulations by multicolor flow cytometry.
RESULTS The frequency of BAFF-R expressing B cells to total B cells was significantly lower in patients with HCC (3.39% ± 2.12%) compared with the non-HCC group (5.37% ± 1.90%) and healthy controls (6.23% ± 2.32%), whereas there was no difference in transmembrane activator and cyclophilin ligand interactor and B-cell maturation antigen. The frequencies of CD27+IgD+ memory B cells, CD27+IgD- class-switched memory B cells and plasmablasts were significantly lower in the patients with HCC compared to patients without HCC (1.23 ± 1.17 vs 3.09 ± 1.55, P = 0.001, 0.60 ± 0.44 vs 1.69 ± 0.86, P < 0.0001 and 0.16 ± 0.12 vs 0.37 ± 0.30, P = 0.014, respectively). However, the ratio of naïve and transitional B cell did not differ significantly between the three groups. In addition, decreased BAFF-R expression on B cells was significantly correlated with large tumor size and advanced tumor stage.
CONCLUSION Our data demonstrated BAFF-R expression was reduced in B cells that involved with the frequencies of B cells maturation in patients with HCC. The depletion of BAFF-R might play an important role in the development of HCC in patients with chronic HBV infection.
Collapse
Affiliation(s)
- Apichaya Khlaiphuengsin
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci Rep 2020; 10:3865. [PMID: 32123265 PMCID: PMC7052189 DOI: 10.1038/s41598-020-60763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have reported activation of the B cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) system in T independent immunity against malaria infection. Plasmodium falciparum (P. falciparum) infected animal model is not feasible. Therefore, little is known about the occurrence of BAFF/APRIL system and changes in falciparum lymphoid tissues. This study aimed to investigate the expression of BAFF/APRIL system components in lymphoid tissues from P. falciparum infected patients. Spleen and lymph node samples from 14 patients were collected at autopsy. Normal spleens and bacterially infected tonsils served as controls. The protein and/or mRNA expression of BAFF/APRIL and their cognate receptors, BAFF-R, TACI and BCMA, were determined by immunohistochemistry and RT-qPCR, respectively. The spleens of the patients exhibited significantly higher BAFF-R protein expression than normal spleens. Although without appropriate control, BCMA protein was markedly observed only in the lymph nodes. BAFF and BCMA mRNA levels were also significantly elevated in the spleen tissues of the patients compared with normal spleens. The overall BAFF-R protein levels in the lymphoid tissues of the patients correlated positively with parasitaemia. These findings are the first to confirm that BAFF/APRIL system activation in lymphoid tissues and is positively correlated with the parasitaemia levels in falciparum malaria.
Collapse
|
13
|
Lyall R, Schlebusch SA, Proctor J, Prag M, Hussey SG, Ingle RA, Illing N. Vegetative desiccation tolerance in the resurrection plant Xerophyta humilis has not evolved through reactivation of the seed canonical LAFL regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1349-1367. [PMID: 31680354 PMCID: PMC7187197 DOI: 10.1111/tpj.14596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/25/2023]
Abstract
It has been hypothesised that vegetative desiccation tolerance in resurrection plants evolved via reactivation of the canonical LAFL (i.e. LEC1, ABI3, FUS3 and LEC2) transcription factor (TF) network that activates the expression of genes during the maturation of orthodox seeds leading to desiccation tolerance of the plant embryo in most angiosperms. There is little direct evidence to support this, however, and the transcriptional changes that occur during seed maturation in resurrection plants have not previously been studied. Here we performed de novo transcriptome assembly for Xerophyta humilis, and analysed gene expression during seed maturation and vegetative desiccation. Our results indicate that differential expression of a set of 4205 genes is common to maturing seeds and desiccating leaves. This shared set of genes is enriched for gene ontology terms related to abiotic stress, including water stress and abscisic acid signalling, and includes many genes that are seed-specific in Arabidopsis thaliana and targets of ABI3. However, while we observed upregulation of orthologues of the canonical LAFL TFs and ABI5 during seed maturation, similar to what is seen in A. thaliana, this did not occur during desiccation of leaf tissue. Thus, reactivation of components of the seed desiccation program in X. humilis vegetative tissues likely involves alternative transcriptional regulators.
Collapse
Affiliation(s)
- Rafe Lyall
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Stephen A. Schlebusch
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Jessica Proctor
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Mayur Prag
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Robert A. Ingle
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Nicola Illing
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| |
Collapse
|
14
|
Sevdali E, Katsantoni E, Smulski CR, Moschovi M, Palassopoulou M, Kolokotsa EN, Argentou N, Giannakoulas N, Adamaki M, Vassilopoulos G, Polychronopoulou S, Germenis AE, Eibel H, Speletas M. BAFF/APRIL System Is Functional in B-Cell Acute Lymphoblastic Leukemia in a Disease Subtype Manner. Front Oncol 2019; 9:594. [PMID: 31380267 PMCID: PMC6657364 DOI: 10.3389/fonc.2019.00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
BAFF, APRIL and their receptors regulate the survival, maturation and homeostasis of mature B-cells. Despite the lack of a functional role of BAFF/APRIL system during normal early B-cell development, previous studies indicated a contribution of these molecules in the pathogenesis of B-lineage acute lymphoblastic leukemia (B-ALL). Here, we evaluated the expression of this system in B-ALL and its involvement in spontaneous and drug-induced apoptosis of B-lymphoblasts, taking into consideration the distinct disease subtypes. We found that BAFFR is the most predominant aberrantly expressed receptor in B-ALL and that its expression, along with BCMA and APRIL, positively correlates with the maturation stage of B-lymphoblasts. Moreover, the binding of the E2A-PBX1 chimeric protein to the BAFFR promoter suggests that the transcriptional activator promotes the increase in BAFFR expression observed in about 50% of pre-B-ALL patients carrying the t (1, 19) translocation. BAFF binding to BAFFR led to the processing of NF-κB2 p100 in pre-B ALL cells suggesting that BAFFR can activate the NF-κB2 pathway in pre-B ALL cells. Surprisingly, we found that BAFF treatment promotes the cell death of primary BCR-ABL+ BAFFR+ pre-B-lymphoblasts in adult B-ALL. It also enhances glucocorticoid-induced apoptosis in the E2A-PBX1+ pre-B-ALL cell line 697. These data suggest that BAFF/BAFFR signaling in B-ALL cells differs from normal B cells and that it may affect the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eirini Sevdali
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Cristian R Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Maria Moschovi
- Hematology/Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Palassopoulou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni-Nefeli Kolokotsa
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoletta Argentou
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Adamaki
- Hematology/Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Georgios Vassilopoulos
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Matthaios Speletas
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
15
|
The role of APRIL - A proliferation inducing ligand - In autoimmune diseases and expectations from its targeting. J Autoimmun 2018; 95:179-190. [DOI: 10.1016/j.jaut.2018.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
16
|
Cho SF, Anderson KC, Tai YT. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front Immunol 2018; 9:1821. [PMID: 30147690 PMCID: PMC6095983 DOI: 10.3389/fimmu.2018.01821] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023] Open
Abstract
The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed at significantly higher levels in all patient MM cells but not on other normal tissues except normal plasma cells. Importantly, it is an antigen targeted by chimeric antigen receptor (CAR) T-cells, which have already shown significant clinical activities in patients with RRMM who have undergone at least three prior treatments, including a proteasome inhibitor and an immunomodulatory agent. Moreover, the first anti-BCMA antibody–drug conjugate also has achieved significant clinical responses in patients who failed at least three prior lines of therapy, including an anti-CD38 antibody, a proteasome inhibitor, and an immunomodulatory agent. Both BCMA targeting immunotherapies were granted breakthrough status for patients with RRMM by FDA in Nov 2017. Other promising BCMA-based immunotherapeutic macromolecules including bispecific T-cell engagers, bispecific molecules, bispecific or trispecific antibodies, as well as improved forms of next generation CAR T cells, also demonstrate high anti-MM activity in preclinical and even early clinical studies. Here, we focus on the biology of this promising MM target antigen and then highlight preclinical and clinical data of current BCMA-targeted immunotherapies with various mechanisms of action. These crucial studies will enhance selective anti-MM response, transform the treatment paradigm, and extend disease-free survival in MM.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Hammam AA, Elhoseiny SM, Sheir RES, Issa H. APRIL gene expression in a cohort of Egyptian acute myeloid leukemia patients: Clinical and prognostic significance. Cancer Genet 2018; 220:24-31. [PMID: 29310835 DOI: 10.1016/j.cancergen.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022]
Abstract
APRIL (A Proliferation Inducing Ligand) is a member of the tumor necrosis factor (TNF) family. It is essential for the survival of normal and malignant B lymphocytes. Increased expression of APRIL is noted in most of hematological malignancies and auto immune diseases. We investigated the expression level of APRIL mRNA in 50 de novo acute myeloid leukemia (AML) patients, together with 20 healthy controls using a Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RTQ-PCR) with a specific aim of determining its relation to clinical features and laboratory findings at diagnosis and its impact on the response to therapy. APRIL mRNA expression level was significantly higher in AML patients than in controls (p = < 0.001). APRIL expression level was significantly higher in patients who didn't achieve CR compared to those who achieved CR (p < 0.001). Patients who did not achieve CR also had higher TLC, lower platelets and older age than CR patients. The difference was statistically significant (p < 0.001, p = 0.047, p = 0.019) respectively. APRIL levels showed significant positive correlation with TLC (r = 0.743.p < 0.001), with age (r = 0.296,p = 0.037) and a negative correlation with platelets count (r = -0.443,p = 0.001) and no correlation with gender, Hb level, BM blast, HSM or LNs enlargement. Our study has shown that APRIL is overexpressed in AML patients, its level might serve as an indicator for disease progression. APRIL might be an indicator for poor prognosis and treatment resistance in AML patient; therefore, APRIL antagonists may represent a novel therapeutic approach for the treatment of AML.
Collapse
Affiliation(s)
- Amira Ahmed Hammam
- Department of Clinical and Chemical Pathology, Beni Suef Teaching Hospital, Faculty of Medicine, Beni Suef University, Egypt
| | - Shereen Mohamed Elhoseiny
- Department of Clinical and Chemical Pathology, Beni Suef Teaching Hospital, Faculty of Medicine, Beni Suef University, Egypt
| | - Rania El-Sayed Sheir
- Department of Internal Medicine, Beni Suef Teaching Hospital, Faculty of Medicine, Beni Suef University, Egypt
| | - Hisham Issa
- Department of Clinical and Chemical Pathology, Beni Suef Teaching Hospital, Faculty of Medicine, Beni Suef University, Egypt.
| |
Collapse
|
18
|
Schwarting A, Relle M, Meineck M, Föhr B, Triantafyllias K, Weinmann A, Roth W, Weinmann-Menke J. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus 2017; 27:243-256. [PMID: 28659046 DOI: 10.1177/0961203317717083] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B-cell activating factor of the tumour necrosis factor family (BAFF) is a cytokine, mainly produced by hematopoietic cells (e.g. monocytes/macrophages, dendritic cells), indispensable for B-cell maturation. The BLISS studies have demonstrated that blocking BAFF by the human monoclonal antibody belimumab is a valuable therapeutic approach in patients with clinically and serologically active systemic lupus erythematosus (SLE). However, the defined sources of BAFF, which contributes to SLE, are still unclear. Recent findings show that BAFF expression is not restricted to myeloid cells. Since lupus nephritis is the main cause of morbidity and mortality for SLE patients, the aim of this study was to investigate whether renal tubular epithelial cells (TEC) are an important source of BAFF and thus may contribute to the pathogenesis and progression of SLE. We found BAFF expression both in cultured murine and human TEC. These results could be verified with in situ data from the kidney. Moreover, BAFF expression in the kidneys of lupus-prone MRL- Faslpr mice correlated with disease activity, and BAFF expression on TEC in biopsies of patients with diffuse proliferative lupus nephritis showed a correlation with the histopathological activity index. In vitro functional assays revealed an autocrine loop of BAFF with its binding receptors on TEC, resulting in a strong induction of colony stimulating factor-1. Finally, we identified divergent effects of BAFF on TEC depending on the surrounding milieu ('inflammatory versus non-inflammatory'). Taken together, our findings indicate that renal-derived BAFF may play an important role in the pathophysiology of the systemic autoimmune disease SLE.
Collapse
Affiliation(s)
- A Schwarting
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.,2 Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - M Relle
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - M Meineck
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - B Föhr
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - K Triantafyllias
- 2 Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - A Weinmann
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.,3 Clinical Registry Unit, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - W Roth
- 4 Tissue Bank and Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - J Weinmann-Menke
- 1 Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
19
|
Bürgler S, Nadal D. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory? Mol Cell Pediatr 2017; 4:6. [PMID: 28508352 PMCID: PMC5432458 DOI: 10.1186/s40348-017-0072-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells—expanded during an infection in early childhood—migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.
Collapse
Affiliation(s)
- Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, 8008, Zürich, Switzerland.
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital Zürich, 8008, Zürich, Switzerland
| |
Collapse
|
20
|
Ding J, Fishel ML, Reed AM, McAdams E, Czader MB, Cardoso AA, Kelley MR. Ref-1/APE1 as a Transcriptional Regulator and Novel Therapeutic Target in Pediatric T-cell Leukemia. Mol Cancer Ther 2017; 16:1401-1411. [PMID: 28446640 DOI: 10.1158/1535-7163.mct-17-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
The increasing characterization of childhood acute lymphoblastic leukemia (ALL) has led to the identification of multiple molecular targets but has yet to translate into more effective targeted therapies, particularly for high-risk, relapsed T-cell ALL. Searching for master regulators controlling multiple signaling pathways in T-ALL, we investigated the multifunctional protein redox factor-1 (Ref-1/APE1), which acts as a signaling "node" by exerting redox regulatory control of transcription factors important in leukemia. Leukemia patients' transcriptome databases showed increased expression in T-ALL of Ref-1 and other genes of the Ref-1/SET interactome. Validation studies demonstrated that Ref-1 is expressed in high-risk leukemia T cells, including in patient biopsies. Ref-1 redox function is active in leukemia T cells, regulating the Ref-1 target NF-κB, and inhibited by the redox-selective Ref-1 inhibitor E3330. Ref-1 expression is not regulated by Notch signaling, but is upregulated by glucocorticoid treatment. E3330 disrupted Ref-1 redox activity in functional studies and resulted in marked inhibition of leukemia cell viability, including T-ALL lines representing different genotypes and risk groups. Potent leukemia cell inhibition was seen in primary cells from ALL patients, relapsed and glucocorticoid-resistant T-ALL cells, and cells from a murine model of Notch-induced leukemia. Ref-1 redox inhibition triggered leukemia cell apoptosis and downregulation of survival genes regulated by Ref-1 targets. For the first time, this work identifies Ref-1 as a novel molecular effector in T-ALL and demonstrates that Ref-1 redox inhibition results in potent inhibition of leukemia T cells, including relapsed T-ALL. These data also support E3330 as a specific Ref-1 small-molecule inhibitor for leukemia. Mol Cancer Ther; 16(7); 1401-11. ©2017 AACR.
Collapse
Affiliation(s)
- Jixin Ding
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa L Fishel
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - April M Reed
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erin McAdams
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Magdalena B Czader
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angelo A Cardoso
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Muto M, Manfroi B, Suzuki H, Joh K, Nagai M, Wakai S, Righini C, Maiguma M, Izui S, Tomino Y, Huard B, Suzuki Y. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy. J Am Soc Nephrol 2016; 28:1227-1238. [PMID: 27920152 DOI: 10.1681/asn.2016050496] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022] Open
Abstract
The TNF family member a proliferation-inducing ligand (APRIL; also known as TNFSF13), produced by myeloid cells, participates in the generation and survival of antibody-producing plasma cells. We studied the potential role of APRIL in the pathogenesis of IgA nephropathy (IgAN). We found that a significant proportion of germinal centers (GCs) in tonsils of patients with IgAN contained cells aberrantly producing APRIL, contributing to an overall upregulation of tonsillar APRIL expression compared with that in tonsils of control patients with tonsillitis. In IgAN GC, antigen-experienced IgD-CD38+/-CD19+ B cells expressing a switched IgG/IgA B cell receptor produced APRIL. Notably, these GC B cells expressed mRNA encoding the common cleavable APRIL-α but also, the less frequent APRIL-δ/ζ mRNA, which encodes a protein that lacks a furin cleavage site and is, thus, the uncleavable membrane-bound form. Significant correlation between TLR9 and APRIL expression levels existed in tonsils from patients with IgAN. In vitro, repeated TLR9 stimulation induced APRIL expression in tonsillar B cells from control patients with tonsillitis. Clinically, aberrant APRIL expression in tonsillar GC correlated with greater proteinuria, and patients with IgAN and aberrant APRIL overexpression in tonsillar GC responded well to tonsillectomy, with parallel decreases in serum levels of galactose-deficient IgA1. Taken together, our data indicate that antibody disorders in IgAN associate with TLR9-induced aberrant expression of APRIL in tonsillar GC B cells.
Collapse
Affiliation(s)
- Masahiro Muto
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Tokyo, Japan
| | - Benoit Manfroi
- Analytical Immunology for Chronic Pathologies, Albert Bonniot Institute, Institut National de la Santé et de la Recherche Médicale/University Joseph Fourier U823, Grenoble, France
| | - Hitoshi Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Joh
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Nagai
- Division of Nephrology and Diabetology, Narita Memorial Hospital, Toyohashi, Japan
| | - Sachiko Wakai
- Department of Internal Medicine, Tokyo Metropolitan Health and Medical Treatment Corporation, Okubo Hospital, Tokyo, Japan
| | - Christian Righini
- Department of Otolaryngology, Head and Neck Surgery, Grenoble University Hospital, Grenoble, France; and
| | - Masayuki Maiguma
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Tokyo, Japan
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Tokyo, Japan
| | - Bertrand Huard
- Analytical Immunology for Chronic Pathologies, Albert Bonniot Institute, Institut National de la Santé et de la Recherche Médicale/University Joseph Fourier U823, Grenoble, France;
| | - Yusuke Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Tokyo, Japan;
| |
Collapse
|
22
|
van Attekum M, Terpstra S, Reinen E, Kater AP, Eldering E. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discov 2016; 2:16020. [PMID: 27551513 PMCID: PMC4979474 DOI: 10.1038/cddiscovery.2016.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022] Open
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells is mainly driven by interactions within the lymph node (LN) microenvironment with bystander cells such as T cells or cells from the monocytic lineage. Although the survival effect by T cells is largely governed by the TNFR ligand family member CD40L, the exact mechanism of monocyte-derived cell-induced survival is not known. An important role has been attributed to the TNFR ligand, a proliferation-inducing ligand (APRIL), although the exact mechanism remained unclear. Since we detected that APRIL was expressed by CD68+ cells in CLL LN, we addressed its relevance in various aspects of CLL biology, using a novel APRIL overexpressing co-culture system, recombinant APRIL, and APRIL reporter cells. Unexpectedly, we found, that in these various systems, APRIL had no effect on survival of CLL cells, and activation of NF-κB was not enhanced on APRIL stimulation. Moreover, APRIL stity mulation did not affect CLL proliferation, neither as single stimulus nor in combination with known CLL proliferation stimuli. Furthermore, the survival effect conveyed by macrophages to CLL cells was not affected by transmembrane activator and CAML interactor-Fc, an APRIL decoy receptor. We conclude that the direct role ascribed to APRIL in CLL cell survival might be overestimated due to application of supraphysiological levels of recombinant APRIL.
Collapse
Affiliation(s)
- Mha van Attekum
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - S Terpstra
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E Reinen
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - A P Kater
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E Eldering
- Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
23
|
B-Cell Activating Factor as a Cancer Biomarker and Its Implications in Cancer-Related Cachexia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:792187. [PMID: 26339644 PMCID: PMC4538579 DOI: 10.1155/2015/792187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/28/2015] [Indexed: 01/21/2023]
Abstract
B-cell activating factor (BAFF) is a cytokine and adipokine of the TNF ligand superfamily. The main biological function of BAFF in maintaining the maturation of B-cells to plasma cells has recently made it a target of the first FDA-approved selective BAFF antibody, belimumab, for the therapy of systemic lupus erythematosus. Concomitantly, the role of BAFF in cancer has been a subject of research since its discovery. Here we review BAFF as a biomarker of malignant disease activity and prognostic factor in B-cell derived malignancies such as multiple myeloma. Moreover, anti-BAFF therapy seems to be a promising approach in treatment of B-cell derived leukemias/lymphomas. In nonhematologic solid tumors, BAFF may contribute to cancer progression by mechanisms both dependent on and independent of BAFF's proinflammatory role. We also describe ongoing research into the pathophysiological link between BAFF and cancer-related cachexia. BAFF has been shown to contribute to inflammation and insulin resistance which are known to worsen cancer cachexia syndrome. Taking all the above together, BAFF is emerging as a biomarker of several malignancies and a possible hallmark of cancer cachexia.
Collapse
|
24
|
Effect of TACI signaling on humoral immunity and autoimmune diseases. J Immunol Res 2015; 2015:247426. [PMID: 25866827 PMCID: PMC4381970 DOI: 10.1155/2015/247426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/04/2015] [Indexed: 02/02/2023] Open
Abstract
Transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) is one of the receptors of B cell activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL). TACI is a regulator in the immune responses. TACI inhibits B cell expansion and promotes the differentiation and survival of plasma cells. The mechanisms underlying these effects probably involve changed expressions of some crucial molecules, such as B lymphocyte induced maturation protein-1 (Blimp-1) and inducible T-cell costimulator ligand (ICOSL) in B cells and/or plasma cells. However, abnormal TACI signaling may relate to autoimmune disorders. Common variable immune deficiency (CVID) patients with heterozygous mutations in TACI alleles increase susceptibility to autoimmune diseases. Taci−/− mice and BAFF transgenic mice both develop signs of human SLE. These findings that indicate inappropriate levels of TACI signaling may disrupt immune system balance, thereby promoting the development of autoimmune diseases. In this review, we summarize the basic characteristics of the TACI ligands BAFF and APRIL, and detail the research findings on the role of TACI in humoral immunity. We also discuss the possible mechanisms underlying the susceptibility of CVID patients with TACI mutations to autoimmune diseases and the role of TACI in the pathogenesis of SLE.
Collapse
|
25
|
Wild J, Schmiedel BJ, Maurer A, Raab S, Prokop L, Stevanović S, Dörfel D, Schneider P, Salih HR. Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis. Leukemia 2015; 29:1676-83. [PMID: 25710310 DOI: 10.1038/leu.2015.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.
Collapse
Affiliation(s)
- J Wild
- 1] Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - B J Schmiedel
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - A Maurer
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tuebingen, Germany
| | - S Raab
- 1] Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Prokop
- Department of Immunology, Eberhard Karls University, Tuebingen, Germany
| | - S Stevanović
- Department of Immunology, Eberhard Karls University, Tuebingen, Germany
| | - D Dörfel
- 1] Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - H R Salih
- 1] Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Figgett WA, Vincent FB, Saulep-Easton D, Mackay F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 2014; 26:191-202. [PMID: 24996229 DOI: 10.1016/j.smim.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabien B Vincent
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Damien Saulep-Easton
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabienne Mackay
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
27
|
Abstract
B cell maturation antigen (BCMA) is a tumor necrosis family receptor (TNFR) member that is predominantly expressed on terminally differentiated B cells and, upon binding to its ligands B cell activator of the TNF family (BAFF) and a proliferation inducing ligand (APRIL), delivers pro-survival cell signals. Thus, BCMA is mostly known for its functional activity in mediating the survival of plasma cells that maintain long-term humoral immunity. The expression of BCMA has also been linked to a number of cancers, autoimmune disorders, and infectious diseases that suggest additional roles for BCMA activity. Despite recent advances in our understanding of the roles for the related TNFR members BAFF-R and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), the signaling pathway used by BCMA for mediating plasma cell survival as well as its putative function in certain disease states are not well understood. By examining the expression, regulation, and signaling targets of BCMA, we may gain further insight into this receptor and how it operates within cells in both health and disease. This information is important for identifying new therapeutic targets that may be relevant in treating diseases that involve the BAFF/APRIL cytokine network.
Collapse
Affiliation(s)
- Christine M Coquery
- Department of Microbiology, Immunology, & Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
28
|
Parameswaran R, Lim M, Fei F, Abdel-Azim H, Arutyunyan A, Schiffer I, McLaughlin ME, Gram H, Huet H, Groffen J, Heisterkamp N. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc-engineered monoclonal antibody targeting the BAFF-R. Mol Cancer Ther 2014; 13:1567-77. [PMID: 24825858 DOI: 10.1158/1535-7163.mct-13-1023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell activating factor receptor (BAFF-R) is expressed on precursor B acute lymphoblastic leukemia (pre-B ALL) cells, but not on their pre-B normal counterparts. Thus, selective killing of ALL cells is possible by targeting this receptor. Here, we have further examined therapeutic targeting of pre-B ALL based on the presence of the BAFF-R. Mouse pre-B ALL cells lacking BAFF-R function had comparable viability and proliferation to wild-type cells, but were more sensitive to drug treatment in vitro. Viability of human pre-B ALL cells was further reduced when antibodies to the BAFF-R were combined with other drugs, even in the presence of stromal protection. This indicates that inhibition of BAFF-R function reduces fitness of stressed pre-B ALL cells. We tested a novel humanized anti-BAFF-R monoclonal antibody optimalized for FcRγIII-mediated, antibody-dependent cell killing by effector cells. Antibody binding to human ALL cells was inhibitable, in a dose-dependent manner, by recombinant human BAFF. There was no evidence for internalization of the antibodies. The antibodies significantly stimulated natural killer cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in an immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen. In view of the restricted expression of the BAFF-R on normal cells and the multiple anti-pre-B ALL activities stimulated by this antibody, a further examination of its use for treatment of pre-B ALL is warranted.
Collapse
Affiliation(s)
- Reshmi Parameswaran
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Min Lim
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Fei Fei
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hisham Abdel-Azim
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Anna Arutyunyan
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Isabelle Schiffer
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Margaret E McLaughlin
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hermann Gram
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Heather Huet
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - John Groffen
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Nora Heisterkamp
- Authors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, SwitzerlandAuthors' Affiliations: Section of Molecular Carcinogenesis; Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute, Children's Hospital Los Angeles; Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; Oncology Translational Medicine and Oncology Research, Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts; and Autoimmunity, Transplantation and Inflammation, Novartis Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
29
|
Abstract
Systemic lupus erythematosus (SLE) is characterized by multisystem immune-mediated injury in the setting of autoimmunity to nuclear antigens. The clinical heterogeneity of SLE, the absence of universally agreed clinical trial end points, and the paucity of validated therapeutic targets have, historically, contributed to a lack of novel treatments for SLE. However, in 2011, a therapeutic monoclonal antibody that neutralizes the cytokine TNF ligand superfamily member 13B (also known as B-cell-activating factor of the TNF family [BAFF]), belimumab, became the first targeted therapy for SLE to have efficacy in a randomized clinical trial. Because of its specificity, the efficacy of belimumab provides an opportunity to increase understanding of SLE pathophysiology. Although belimumab depletes B cells, this effect is not as powerful as that of other B-cell-directed therapies that have not been proven efficacious in randomized clinical trials. In this article, therefore, we review results suggesting that neutralizing BAFF can have effects on the immune system other than depletion of B cells. We also identify aspects of the BAFF system for which data in relation to SLE are still missing, and we suggest studies to investigate the pathogenesis of SLE and ways to refine anti-BAFF therapies. The role of a related cytokine, TNF ligand superfamily member 13 (also known as a proliferation-inducing ligand [APRIL]) in SLE is much less well understood, and hence this review focuses on BAFF.
Collapse
|
30
|
Secreto F, Manske M, Price-Troska T, Ziesmer S, Hodge LS, Ansell SM, Cerhan JR, Novak AJ. B-cell activating factor-receptor specific activation of tumor necrosis factor receptor associated factor 6 and the phosphatidyl inositol 3-kinase pathway in lymphoma B cells. Leuk Lymphoma 2014; 55:1884-92. [PMID: 24206092 DOI: 10.3109/10428194.2013.862619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
B-cell activating factor-receptor (BAFF-R) is the primary BAFF receptor that is responsible for promoting B-cell development and survival. Malignant B-cells exploit the BAFF/BAFF-R system, and high serum BAFF levels or genetic alterations in BAFF receptors have been found in B-cell cancers. BAFF signaling impacts pro-survival pathways. However, other than nuclear factor-κB2 (NF-κB2), little is known about the specific pathways activated by individual BAFF receptors. Using a novel BAFF-R expression model we have demonstrated that activation of BAFF-R, independent of transmembrane activator and cytophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), can induce phosphorylation of Akt and glycogen synthase kinase 3β (GSK3β). Expression of an activated form of BAFF-R also enhanced a pro-survival gene expression pattern, including the novel BAFF-regulated gene Pin1, whose expression was phosphatidyl inositol 3-kinase (PI3K)-dependent. Additionally, we showed that TRAF6 is essential for mediating BAFF-R dependent activation of Akt. Together these data describe a novel role for TRAF6 in BAFF-R-specific activation of the PI3K pathway and provide evidence suggesting a new role for Pin1 in BAFF-R signaling.
Collapse
Affiliation(s)
- Frank Secreto
- Division of Hematology, Mayo Clinic , Rochester, MN , USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, Castanas E. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 2013; 8:e83250. [PMID: 24376672 PMCID: PMC3869762 DOI: 10.1371/journal.pone.0083250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.
Collapse
Affiliation(s)
- Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- Laboratories of Pathology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
- INSERM U976, Hôpital Saint Louis, Paris, France; (4) Université Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
32
|
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24:203-15. [PMID: 23684423 PMCID: PMC7108297 DOI: 10.1016/j.cytogfr.2013.04.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Fabienne Mackay
- Corresponding author at: Department of Immunology, Monash University, Central Clinical School, Alfred Hospital, 89 Commercial Road, Melbourne, Victoria 3004, Australia. Tel.: +61 3 99030713; fax: +61 3 99030038.
| |
Collapse
|
33
|
Xu G, Shen XJ, Pu J, Chu SP, Wang XD, Wu XH, Sun CJ, Zhang X, Zhu BL, Ju SQ. BLyS expression and JNK activation may form a feedback loop to promote survival and proliferation of multiple myeloma cells. Cytokine 2012; 60:505-13. [PMID: 22850273 DOI: 10.1016/j.cyto.2012.06.317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 12/25/2022]
Abstract
B-Lymphocyte stimulator (BLyS), a member of tumor necrosis factor superfamily, is a potent co-activator of B cells in vitro, and in vivo induces B cell proliferation and immunoglobulin secretion. Multiple myeloma (MM) is an incurable malignancy of terminally differentiated B cells (plasma cells). Previous studies have well ascertained that BLyS plays an important contributory role in the pathogenesis and propagation of multiple myeloma by virtue of its ability to promote B cell survival, expansion, and differentiation. However, the intracellular signaling of BLyS in human MM cells remains undefined. This study was designed to see whether there was interaction between MAPK signaling pathway and BLyS expression. It was found that the active protein p-JNK was expressed in KM3, U266 and PBMCs of MM patients, and that the expression of BLyS could be changed by JNK pathway activator and inhibitor. In addition, recombinant BLyS activated JNK pathway, while BLyS siRNA treatment inhibited the activation of JNK pathway. The level of BLyS expression and the activation of JNK pathway were positively correlated. These findings suggest that JNK activation and BLyS expression in MM cells may form a positive feedback loop that promotes the survival and proliferation of MM cells, and these may shed some light on the pathogenesis and treatment of MM.
Collapse
Affiliation(s)
- G Xu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, JS, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sanchez E, Li M, Kitto A, Li J, Wang CS, Kirk DT, Yellin O, Nichols CM, Dreyer MP, Ahles CP, Robinson A, Madden E, Waterman GN, Swift RA, Bonavida B, Boccia R, Vescio RA, Crowley J, Chen H, Berenson JR. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol 2012; 158:727-38. [PMID: 22804669 DOI: 10.1111/j.1365-2141.2012.09241.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022]
Abstract
Although TNFRSF17 (also designated as B-cell maturation antigen (BCMA)) is expressed on tumour cells in B-cell malignancies, it has not been found in serum. The present study found that BCMA concentrations were higher in the supernatants of cultured bone marrow mononuclear cells from multiple myeloma (MM) patients than in healthy subjects. Serum BCMA levels were measured in samples from MM patients (n = 209), monoclonal gammopathy of undetermined significance (MGUS) individuals (n = 23) and age-matched controls (n = 40). BCMA was detected in the serum of untreated MM patients (n = 50) and levels were higher than in MGUS patients (P = 0·0157) and healthy subjects (P < 0·0001). Serum BCMA levels were higher among patients with progressive disease (n = 80) compared to those with responsive disease (n = 79; P = 0·0038). Among all MM patients, overall survival was shorter among patients whose serum BCMA levels were above the median (P = 0·001). We also demonstrated that sera from mice with human MM xenografts contained human BCMA, and levels correlated with the change in tumour volume in response to melphalan or cyclophosphamide with bortezomib. These results suggest that serum BCMA levels may be a new biomarker for monitoring disease status and overall survival of MM patients.
Collapse
Affiliation(s)
- Eric Sanchez
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA 90069, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Parameswaran R, Yu M, Lyu MA, Lim M, Rosenblum MG, Groffen J, Heisterkamp N. Treatment of acute lymphoblastic leukemia with an rGel/BLyS fusion toxin. Leukemia 2012; 26:1786-96. [PMID: 22373785 PMCID: PMC3376225 DOI: 10.1038/leu.2012.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy affecting children and a major cause of mortality from hematopoietic malignancies in adults. A substantial number of patients become drug resistant during chemotherapy, necessitating the development of alternative modes of treatment. rGel (recombinant Gelonin)/BlyS (B-lymphocyte stimulator) is a toxin-cytokine fusion protein used for selective killing of malignant B-cells expressing receptors for B-cell-activating factor (BAFF/BLyS) by receptor-targeted delivery of the toxin, Gelonin. Here, we demonstrate that rGel/BLyS binds to ALL cells expressing BAFF receptor (BAFF-R) and upon internalization, it induces apoptosis of these cells and causes downregulation of survival genes even in the presence of stromal protection. Using an immunodeficient transplant model for human ALL, we show that rGel/BLyS prolongs survival of both Philadelphia chromosome-positive and negative ALL-bearing mice. Furthermore, we used AMD3100, a CXCR4 antagonist, to mobilize the leukemic cells protected in the bone marrow (BM) microenvironment and the combination with rGel/BLyS resulted in a significant reduction of the tumor load in the BM and complete eradication of ALL cells from the circulation. Thus, a combination treatment with the B-cell-specific fusion toxin rGel/BLyS and the mobilizing agent AMD3100 could be an effective alternative approach to chemotherapy for the treatment of primary and relapsed ALL.
Collapse
Affiliation(s)
- R Parameswaran
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|