1
|
Hernández-Herrera P, Ugartechea-Chirino Y, Torres-Martínez HH, Arzola AV, Chairez-Veloz JE, García-Ponce B, Sánchez MDLP, Garay-Arroyo A, Álvarez-Buylla ER, Dubrovsky JG, Corkidi G. Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. PLANT PHYSIOLOGY 2022; 188:846-860. [PMID: 34791452 PMCID: PMC8825436 DOI: 10.1093/plphys/kiab530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 05/13/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.
Collapse
Affiliation(s)
- Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Yamel Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - José Eduardo Chairez-Veloz
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, C.P. 07350, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
2
|
Liu Y, Patko D, Engelhardt I, George TS, Stanley-Wall NR, Ladmiral V, Ameduri B, Daniell TJ, Holden N, MacDonald MP, Dupuy LX. Plant-environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. Proc Natl Acad Sci U S A 2021; 118:e2109176118. [PMID: 34819371 PMCID: PMC8640753 DOI: 10.1073/pnas.2109176118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Our understanding of plant-microbe interactions in soil is limited by the difficulty of observing processes at the microscopic scale throughout plants' large volume of influence. Here, we present the development of three-dimensional live microscopy for resolving plant-microbe interactions across the environment of an entire seedling growing in a transparent soil in tailor-made mesocosms, maintaining physical conditions for the culture of both plants and microorganisms. A tailor-made, dual-illumination light sheet system acquired photons scattered from the plant while fluorescence emissions were simultaneously captured from transparent soil particles and labeled microorganisms, allowing the generation of quantitative data on samples ∼3,600 mm3 in size, with as good as 5 µm resolution at a rate of up to one scan every 30 min. The system tracked the movement of Bacillus subtilis populations in the rhizosphere of lettuce plants in real time, revealing previously unseen patterns of activity. Motile bacteria favored small pore spaces over the surface of soil particles, colonizing the root in a pulsatile manner. Migrations appeared to be directed toward the root cap, the point of "first contact," before the subsequent colonization of mature epidermis cells. Our findings show that microscopes dedicated to live environmental studies present an invaluable tool to understand plant-microbe interactions.
Collapse
Affiliation(s)
- Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Daniel Patko
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Ilonka Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
| | - Timothy S George
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Vincent Ladmiral
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Bruno Ameduri
- Institut Charles Gerhardt de Montpellier, Université de Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Tim J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nicola Holden
- Northern Faculty, Scotland's Rural College, Aberdeen AB21 9YA, United Kingdom
| | - Michael P MacDonald
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom;
| | - Lionel X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom;
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
3
|
Desvoyes B, Echevarría C, Gutierrez C. A perspective on cell proliferation kinetics in the root apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6708-6715. [PMID: 34159378 PMCID: PMC8513163 DOI: 10.1093/jxb/erab303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Organogenesis in plants is primarily postembryonic and relies on a strict balance between cell division and cell expansion. The root is a particularly well-suited model to study cell proliferation in detail since the two processes are spatially and temporally separated for all the different tissues. In addition, the root is amenable to detailed microscopic analysis to identify cells progressing through the cell cycle. While it is clear that cell proliferation activity is restricted to the root apical meristem (RAM), understanding cell proliferation kinetics and identifying its parameters have required much effort over many years. Here, we review the main concepts, experimental settings, and findings aimed at obtaining a detailed knowledge of how cells proliferate within the RAM. The combination of novel tools, experimental strategies, and mathematical models has contributed to our current view of cell proliferation in the RAM. We also discuss several lines of research that need to be explored in the future.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Clara Echevarría
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nat Commun 2021; 12:1657. [PMID: 33712581 PMCID: PMC7954861 DOI: 10.1038/s41467-021-21802-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.
Collapse
|
5
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Amarteifio S, Fallesen T, Pruessner G, Sena G. A random-sampling approach to track cell divisions in time-lapse fluorescence microscopy. PLANT METHODS 2021; 17:25. [PMID: 33685468 PMCID: PMC7941913 DOI: 10.1186/s13007-021-00723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Particle-tracking in 3D is an indispensable computational tool to extract critical information on dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imaging in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where background, recognisable keypoints and independently moving objects of interest are permanently visible. Under these conditions, simple registration and identity management algorithms can track the objects of interest over time. In contrast, here we consider the case of transient signals and objects whose movements are constrained within a tissue, where standard algorithms fail to provide robust tracking. RESULTS To optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into a registration algorithm that uses random sampling to solve the identity management problem. We describe the design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method by comparing the algorithm performance against both surrogate data and manual tracking. CONCLUSION This method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets using transient fluorescent markers in unregistered images.
Collapse
Affiliation(s)
| | - Todd Fallesen
- Department of Life Sciences, Imperial College London, London, UK
- Crick Advanced Light Microscopy, Francis Crick Institute, London, UK
| | | | - Giovanni Sena
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Madison I, Melvin C, Buckner E, Williams C, Sozzani R, Long T. MAGIC: Live imaging of cellular division in plant seedlings using lightsheet microscopy. Methods Cell Biol 2020; 160:405-418. [PMID: 32896331 DOI: 10.1016/bs.mcb.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Imaging technologies have been used to understand plant genetic and developmental processes, from the dynamics of gene expression to tissue and organ morphogenesis. Although the field has advanced incredibly in recent years, gaps remain in identifying fine and dynamic spatiotemporal intervals of target processes, such as changes to gene expression in response to abiotic stresses. Lightsheet microscopy is a valuable tool for such studies due to its ability to perform long-term imaging at fine intervals of time and at low photo-toxicity of live vertically oriented seedlings. In this chapter, we describe a detailed method for preparing and imaging Arabidopsis thaliana seedlings for lightsheet microscopy via a Multi-Sample Imaging Growth Chamber (MAGIC), which allows simultaneous imaging of at least four samples. This method opens new avenues for acquiring imaging data at a high temporal resolution, which can be eventually probed to identify key regulatory time points and any spatial dependencies of target developmental processes.
Collapse
Affiliation(s)
- Imani Madison
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Charles Melvin
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States
| | - Eli Buckner
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Cranos Williams
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| | - Terri Long
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
8
|
Clark NM, Van den Broeck L, Guichard M, Stager A, Tanner HG, Blilou I, Grossmann G, Iyer-Pascuzzi AS, Maizel A, Sparks EE, Sozzani R. Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:789-816. [PMID: 32119794 DOI: 10.1146/annurev-arplant-050718-100038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput. When high throughput is combined with high temporal and spatial resolution, the resulting image-derived data sets could be combined with molecular large-scale data sets to enable unprecedented systems-level computational modeling. Such image-driven functional genomics studies may be expected to appear at an accelerating rate in the near future given the early success of the foundational efforts reviewed here. We present new imaging modalities and review how they have enabled a better understanding of plant growth from the microscopic to the macroscopic scale.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50010, USA;
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| | - Marjorie Guichard
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Adam Stager
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Herbert G Tanner
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Ikram Blilou
- Department of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Guido Grossmann
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA;
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| |
Collapse
|
9
|
Ovečka M, Luptovčiak I, Komis G, Šamajová O, Samakovli D, Šamaj J. Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:734. [PMID: 32582258 PMCID: PMC7296145 DOI: 10.3389/fpls.2020.00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 05/04/2023]
Abstract
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
Collapse
|
10
|
Dumur T, Duncan S, Graumann K, Desset S, Randall RS, Scheid OM, Prodanov D, Tatout C, Baroux C. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 2019; 10:181-212. [PMID: 31362571 PMCID: PMC6682351 DOI: 10.1080/19491034.2019.1644592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Collapse
Affiliation(s)
- Tao Dumur
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Susan Duncan
- Norwich Research Park, Earlham Institute, Norwich, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, Leuven, Belgium
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
12
|
Rahni R, Birnbaum KD. Week-long imaging of cell divisions in the Arabidopsis root meristem. PLANT METHODS 2019; 15:30. [PMID: 30988691 PMCID: PMC6446972 DOI: 10.1186/s13007-019-0417-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/19/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Characterizing the behaviors of dynamic systems requires capturing them with high temporal and spatial resolution. Owing to its transparency and genetic tractability, the Arabidopsis thaliana root lends itself well to live imaging when combined with cell and tissue-specific fluorescent reporters. We developed a novel 4D imaging method that utilizes simple confocal microscopy and readily available components to track cell divisions in the root stem cell niche and surrounding region for up to 1 week. RESULTS Using this method, we performed a direct measurement of cell division intervals within and around the root stem cell niche. The results reveal a short, steep gradient of cell division rates in proximal stem cells, with progressively more rapid cell division rates from quiescent center (QC), to cells in direct contact with the QC (initials), to their immediate daughters, after which division rates appear to become more homogeneous. CONCLUSIONS These results provide a baseline to study how perturbations in signaling could affect cell division patterns in the root meristem. This new setup further allows us to finely analyze meristematic cell division rates that lead to patterning.
Collapse
Affiliation(s)
- Ramin Rahni
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003 USA
| | - Kenneth D. Birnbaum
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003 USA
| |
Collapse
|
13
|
Romano Armada N, Doccula FG, Candeo A, Valentini G, Costa A, Bassi A. In Vivo Light Sheet Fluorescence Microscopy of Calcium Oscillations in Arabidopsis thaliana. Methods Mol Biol 2019; 1925:87-101. [PMID: 30674019 DOI: 10.1007/978-1-4939-9018-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Calcium imaging in plants requires a high-resolution microscope, able to perform volumetric acquisition in a few seconds, inducing as low photobleaching and phototoxicity as possible to the sample. Light sheet fluorescence microscopy offers these capabilities, with the further chance to mount the sample in vertical position, mimicking the plant's growth and physiological conditions.A protocol for plant preparation and mounting in a light sheet microscope is presented. First, the growth of Arabidopsis thaliana in a sample holder compatible with light sheet microscopy is described. Then, the requirements for sample alignment and image acquisition are detailed. Finally, the image processing steps to analyze calcium oscillations are discussed, with particular emphasis on ratiometric calcium imaging in Arabidopsis root hairs.
Collapse
Affiliation(s)
- Neli Romano Armada
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- INIQUI y Facultad de Ingeniería, Universidad Nacional de Salta, Salta, Argentina
| | | | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy.
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
14
|
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. Multiscale imaging of plant development by light-sheet fluorescence microscopy. NATURE PLANTS 2018; 4:639-650. [PMID: 30185982 DOI: 10.1038/s41477-018-0238-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Daniel von Wangenheim
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Chatterjee K, Pratiwi FW, Wu FCM, Chen P, Chen BC. Recent Progress in Light Sheet Microscopy for Biological Applications. APPLIED SPECTROSCOPY 2018; 72:1137-1169. [PMID: 29926744 DOI: 10.1177/0003702818778851] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell-cell and cell-matrix interactions, plant developmental biology, and brain imaging and developmental biology.
Collapse
Affiliation(s)
- Krishnendu Chatterjee
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 3 Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Feby Wijaya Pratiwi
- 1 Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- 4 Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Peilin Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- 2 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
17
|
Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T. Green light for quantitative live-cell imaging in plants. J Cell Sci 2018; 131:jcs.209270. [PMID: 29361538 DOI: 10.1242/jcs.209270] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants.
Collapse
Affiliation(s)
- Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Alexis Maizel
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joop E M Vermeer
- Laboratory for Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
18
|
New live screening of plant-nematode interactions in the rhizosphere. Sci Rep 2018; 8:1440. [PMID: 29362410 PMCID: PMC5780396 DOI: 10.1038/s41598-017-18797-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Free living nematodes (FLN) are microscopic worms found in all soils. While many FLN species are beneficial to crops, some species cause significant damage by feeding on roots and vectoring viruses. With the planned legislative removal of traditionally used chemical treatments, identification of new ways to manage FLN populations has become a high priority. For this, more powerful screening systems are required to rapidly assess threats to crops and identify treatments efficiently. Here, we have developed new live assays for testing nematode responses to treatment by combining transparent soil microcosms, a new light sheet imaging technique termed Biospeckle Selective Plane Illumination Microscopy (BSPIM) for fast nematode detection, and Confocal Laser Scanning Microscopy for high resolution imaging. We show that BSPIM increased signal to noise ratios by up to 60 fold and allowed the automatic detection of FLN in transparent soil samples of 1.5 mL. Growing plant root systems were rapidly scanned for nematode abundance and activity, and FLN feeding behaviour and responses to chemical compounds observed in soil-like conditions. This approach could be used for direct monitoring of FLN activity either to develop new compounds that target economically damaging herbivorous nematodes or ensuring that beneficial species are not negatively impacted.
Collapse
|
19
|
Baesso P, Randall RS, Sena G. Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development. Methods Mol Biol 2018. [PMID: 29525955 DOI: 10.1007/978-1-4939-7747-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light sheet fluorescence microscopy (LSFM) allows sustained and repeated optical sectioning of living specimens at high spatial and temporal resolution, with minimal photodamage. Here, we describe in detail both the hardware and the software elements of a live imaging method based on LSFM and optimized for tracking and 3D scanning of Arabidopsis root tips grown vertically in physiological conditions. The system is relatively inexpensive and with minimal footprint; hence it is well suited for laboratories of any size.
Collapse
Affiliation(s)
- Paolo Baesso
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Giovanni Sena
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
20
|
Drapek C, Sparks EE, Benfey PN. Uncovering Gene Regulatory Networks Controlling Plant Cell Differentiation. Trends Genet 2017; 33:529-539. [PMID: 28647055 PMCID: PMC5522350 DOI: 10.1016/j.tig.2017.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/05/2023]
Abstract
The development of multicellular organisms relies on the precise regulation of cellular differentiation. As such, there has been significant effort invested to understand the process through which an immature cell undergoes differentiation. In this review, we highlight key discoveries and advances that have contributed to our understanding of the transcriptional networks underlying Arabidopsis root endodermal differentiation. To conclude, we propose perspectives on how advances in molecular biology, microscopy, and nucleotide sequencing will provide the tools to test the biological significance of these gene regulatory networks (GRN).
Collapse
Affiliation(s)
| | | | - Philip N Benfey
- Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
21
|
von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 2017. [PMID: 28628006 PMCID: PMC5498147 DOI: 10.7554/elife.26792] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker - a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes.
Collapse
Affiliation(s)
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vanessa Barone
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
22
|
Kirchhelle C, Moore I. A Simple Chamber for Long-term Confocal Imaging of Root and Hypocotyl Development. J Vis Exp 2017. [PMID: 28570544 PMCID: PMC5607966 DOI: 10.3791/55331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several aspects of plant development, such as lateral root morphogenesis, occur on time spans of several days. To study underlying cellular and subcellular processes, high resolution time-lapse microscopy strategies that preserve physiological conditions are required. Plant tissues must have adequate nutrient and water supply with sustained gaseous exchange but, when submerged and immobilized under a coverslip, they are particularly susceptible to anoxia. One strategy that has been successfully employed is the use of a perfusion system to maintain a constant supply of oxygen and nutrients. However, such arrangements can be complicated, cumbersome, and require specialized equipment. Presented here is an alternative strategy for a simple imaging system using perfluorodecalin as an immersion medium. This system is easy to set up, requires minimal equipment, and is easily mounted on a microscope stage, allowing several imaging chambers to be set up and imaged in parallel. In this system, lateral root growth rates are indistinguishable from growth rates under standard conditions on agar plates for the first two days, and lateral root growth continues at reduced rates for at least another day. Plant tissues are supplied with nutrients via an agar slab that can be used also to administer a range of pharmacological compounds. The system was established to monitor lateral root development but is readily adaptable to image other plant organs such as hypocotyls and primary roots.
Collapse
Affiliation(s)
| | - Ian Moore
- Department of Plant Sciences, University of Oxford;
| |
Collapse
|
23
|
von Wangenheim D, Hauschild R, Friml J. Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel. J Vis Exp 2017. [PMID: 28190052 PMCID: PMC5352271 DOI: 10.3791/55044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions.
Collapse
Affiliation(s)
- Daniel von Wangenheim
- Developmental and Cell Biology of Plants, Institute of Science and Technology Austria;
| | - Robert Hauschild
- Bioimaging Facility, Institute of Science and Technology Austria
| | - Jiří Friml
- Developmental and Cell Biology of Plants, Institute of Science and Technology Austria
| |
Collapse
|
24
|
Siddhanta S, Paidi SK, Bushley K, Prasad R, Barman I. Exploring Morphological and Biochemical Linkages in Fungal Growth with Label-Free Light Sheet Microscopy and Raman Spectroscopy. Chemphyschem 2016; 18:72-78. [PMID: 27860053 DOI: 10.1002/cphc.201601062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 01/23/2023]
Abstract
Imaging tip growth in fungal hyphae is highly warranted to unravel the molecular mechanism of this extraordinarily precise and localized phenomenon. In situ probing of fungal cultures, however, have been challenging due to their inherent complexity and light penetration issues associated with conventional optical imaging. In this work, we report a label-free approach using a combination of light sheet microscopy and Raman spectroscopy to obtain concomitant morphological and biochemical information from the growing specimen. We show that the variance in morphology in the symbiotic fungus Piriformospora indica are rooted in the underlying differences in chemical composition in the specific growth zones. Our findings suggest that this potent two-pronged approach can comprehensively characterize growth areas and elucidate microbe interactions in still developing colonies with high sensitivity and multiplexing capability.
Collapse
Affiliation(s)
- Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kathryn Bushley
- Department of Plant Biology, University of Minnesota, MN, 55108, USA
| | - Ram Prasad
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Amity Institute of Microbial Technology, Amity University, Noida, 201303, India), Tel: (+91) 874-585-5570, Fax: (+91) 120-243-1878
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA), Tel: (+1) 410-516-0656, Fax: (+1) 410-516-4316
| |
Collapse
|
25
|
Daetwyler S, Huisken J. Fast Fluorescence Microscopy with Light Sheets. THE BIOLOGICAL BULLETIN 2016; 231:14-25. [PMID: 27638692 DOI: 10.1086/689588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
26
|
Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Dev Biol 2016; 419:19-25. [PMID: 27235815 DOI: 10.1016/j.ydbio.2016.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022]
Abstract
Time-course imaging experiments on live organisms are critical for understanding the dynamics of growth and development. Light-sheet microscopy has advanced the field of long-term imaging of live specimens by significantly reducing photo-toxicity and allowing fast acquisition of three-dimensional data over time. However, current light-sheet technology does not allow the imaging of multiple plant specimens in parallel. To achieve higher throughput, we have developed a Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) that provides near-physiological imaging conditions and allows high-throughput time-course imaging experiments in the ZEISS Lightsheet Z.1. Here, we illustrate MAGIC's imaging capabilities by following cell divisions, as an indicator of plant growth and development, over prolonged time periods. To automatically quantify the number of cell divisions in long-term experiments, we present a FIJI-based image processing pipeline. We demonstrate that plants imaged with our chamber undergo cell divisions for >16 times longer than those with the glass capillary system supplied by the ZEISS Z1.
Collapse
|
27
|
Reidt SL, O'Brien DJ, Wood K, MacDonald MP. Polarised light sheet tomography. OPTICS EXPRESS 2016; 24:11239-11249. [PMID: 27409945 DOI: 10.1364/oe.24.011239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets.
Collapse
|
28
|
BERTHET BÉATRICE, MAIZEL ALEXIS. Light sheet microscopy and live imaging of plants. J Microsc 2016; 263:158-64. [DOI: 10.1111/jmi.12393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- BÉATRICE BERTHET
- Center for Organismal Studies (COS) University of Heidelberg Heidelberg Germany
| | - ALEXIS MAIZEL
- Center for Organismal Studies (COS) University of Heidelberg Heidelberg Germany
| |
Collapse
|
29
|
Novák D, Kuchařová A, Ovečka M, Komis G, Šamaj J. Developmental Nuclear Localization and Quantification of GFP-Tagged EB1c in Arabidopsis Root Using Light-Sheet Microscopy. FRONTIERS IN PLANT SCIENCE 2016; 6:1187. [PMID: 26779221 PMCID: PMC4700127 DOI: 10.3389/fpls.2015.01187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
The development of the root apex is determined by progress of cells from the meristematic region to the successive post-mitotic developmental zones for transition, cell elongation and final cell differentiation. We addressed root development, tissue architecture and root developmental zonation by means of light-sheet microscopic imaging of Arabidopsis thaliana seedlings expressing END BINDING protein 1c (EB1c) fused to green fluorescent protein (GFP) under control of native EB1c promoter. Unlike the other two members of the EB1 family, plant-specific EB1c shows prominent nuclear localization in non-dividing cells in all developmental zones of the root apex. The nuclear localization of EB1c was previously mentioned solely in meristematic cells, but not further addressed. With the help of advanced light-sheet microscopy, we report quantitative evaluations of developmentally-regulated nuclear levels of the EB1c protein tagged with GFP relatively to the nuclear size in diverse root tissues (epidermis, cortex, and endodermis) and root developmental zones (meristem, transition, and elongation zones). Our results demonstrate a high potential of light-sheet microscopy for 4D live imaging of fluorescently-labeled nuclei in complex samples such as developing roots, showing capacity to quantify parameters at deeper cell layers (e.g., endodermis) with minimal aberrations. The data presented herein further signify the unique role of developmental cell reprogramming in the transition from cell proliferation to cell differentiation in developing root apex.
Collapse
Affiliation(s)
| | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University OlomoucOlomouc, Czech Republic
| |
Collapse
|
30
|
Avramova V, Sprangers K, Beemster GTS. The Maize Leaf: Another Perspective on Growth Regulation. TRENDS IN PLANT SCIENCE 2015; 20:787-797. [PMID: 26490722 DOI: 10.1016/j.tplants.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 05/12/2023]
Abstract
The Arabidopsis thaliana root tip has been a key experimental system to study organ growth regulation. It has clear advantages for genetic, transcriptomic, and cell biological studies that focus on the control of cell division and expansion along its longitudinal axis. However, the system shows some limitations for methods that currently require too much tissue to perform them at subzonal resolution, including quantification of proteins, enzyme activity, hormone, and metabolite levels and cell wall extensibility. By contrast, the larger size of the maize leaf does allow such analyses. Here we highlight exciting new possibilities to advance mechanistic understanding of plant growth regulation by using the maize leaf as a complimentary system to the Arabidopsis root tip.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Katrien Sprangers
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerrit T S Beemster
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
31
|
Komis G, Šamajová O, Ovečka M, Šamaj J. Super-resolution Microscopy in Plant Cell Imaging. TRENDS IN PLANT SCIENCE 2015; 20:834-843. [PMID: 26482957 DOI: 10.1016/j.tplants.2015.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 05/20/2023]
Abstract
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
32
|
Collings DA. Optimisation approaches for concurrent transmitted light imaging during confocal microscopy. PLANT METHODS 2015; 11:40. [PMID: 26300953 PMCID: PMC4546172 DOI: 10.1186/s13007-015-0085-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The transmitted light detectors present on most modern confocal microscopes are an under-utilised tool for the live imaging of plant cells. As the light forming the image in this detector is not passed through a pinhole, out-of-focus light is not removed. It is this extended focus that allows the transmitted light image to provide cellular and organismal context for fluorescence optical sections generated confocally. More importantly, the transmitted light detector provides images that have spatial and temporal registration with the fluorescence images, unlike images taken with a separately-mounted camera. RESULTS Because plants often provide difficulties for taking transmitted light images, with the presence of pigments and air pockets in leaves, this study documents several approaches to improving transmitted light images beginning with ensuring that the light paths through the microscope are correctly aligned (Köhler illumination). Pigmented samples can be imaged in real colour using sequential scanning with red, green and blue lasers. The resulting transmitted light images can be optimised and merged in ImageJ to generate colour images that maintain registration with concurrent fluorescence images. For faster imaging of pigmented samples, transmitted light images can be formed with non-absorbed wavelengths. Transmitted light images of Arabidopsis leaves expressing GFP can be improved by concurrent illumination with green and blue light. If the blue light used for YFP excitation is blocked from the transmitted light detector with a cheap, coloured glass filters, the non-absorbed green light will form an improved transmitted light image. Changes in sample colour can be quantified by transmitted light imaging. This has been documented in red onion epidermal cells where changes in vacuolar pH triggered by the weak base methylamine result in measurable colour changes in the vacuolar anthocyanin. CONCLUSIONS Many plant cells contain visible levels of pigment. The transmitted light detector provides a useful tool for documenting and measuring changes in these pigments while maintaining registration with confocal imaging.
Collapse
Affiliation(s)
- David A. Collings
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140 New Zealand
| |
Collapse
|
33
|
Fraas S, Lüthen H. Novel imaging-based phenotyping strategies for dissecting crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4947-4955. [PMID: 26041318 DOI: 10.1093/jxb/erv265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In an era of genomics, proteomics, and metabolomics a large number of mutants are available. The discovery of their phenotypes is fast becoming the bottleneck of molecular plant physiology. This crisis can be overcome by imaging-based phenotyping, an emerging, rapidly developing and innovative approach integrating plant and computer science. A tremendous amount of digital image data are automatically analysed using techniques of 'machine vision'. This minireview will shed light on the available imaging strategies and discuss standard methods for the automated analysis of images to give the non-bioinformatic reader an idea how the new technology works. A number of successful platforms will be described and the prospects that image-based phenomics may offer for elucidating hormonal cross-talk and molecular growth physiology will be discussed.
Collapse
Affiliation(s)
- Simon Fraas
- Biozentrum Hamburg der Universität, Physiology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Hartwig Lüthen
- Biozentrum Hamburg der Universität, Physiology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
34
|
Abstract
Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.
Collapse
|
35
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
36
|
Montenegro-Johnson TD, Stamm P, Strauss S, Topham AT, Tsagris M, Wood ATA, Smith RS, Bassel GW. Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas. THE PLANT CELL 2015; 27:1018-33. [PMID: 25901089 PMCID: PMC4558707 DOI: 10.1105/tpc.15.00175] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 05/04/2023]
Abstract
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth.
Collapse
Affiliation(s)
| | - Petra Stamm
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Soeren Strauss
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Alexander T Topham
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michail Tsagris
- University of Nottingham, Division of Statistics, School of Mathematical Sciences, Nottingham NG7 2RD, United Kingdom
| | - Andrew T A Wood
- University of Nottingham, Division of Statistics, School of Mathematical Sciences, Nottingham NG7 2RD, United Kingdom
| | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
37
|
Pampaloni F, Chang BJ, Stelzer EHK. Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res 2015; 360:129-41. [DOI: 10.1007/s00441-015-2144-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
|
38
|
Sozzani R, Busch W, Spalding EP, Benfey PN. Advanced imaging techniques for the study of plant growth and development. TRENDS IN PLANT SCIENCE 2014; 19:304-10. [PMID: 24434036 PMCID: PMC4008707 DOI: 10.1016/j.tplants.2013.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/29/2013] [Accepted: 12/11/2013] [Indexed: 05/07/2023]
Abstract
A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling.
Collapse
Affiliation(s)
- Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Wolfgang Busch
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706 USA
| | - Philip N Benfey
- Department of Biology, Duke Center for Systems Biology, and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
39
|
Schmidt T, Pasternak T, Liu K, Blein T, Aubry-Hivet D, Dovzhenko A, Duerr J, Teale W, Ditengou FA, Burkhardt H, Ronneberger O, Palme K. The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:806-14. [PMID: 24417645 DOI: 10.1111/tpj.12429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 05/04/2023]
Abstract
To achieve a detailed understanding of processes in biological systems, cellular features must be quantified in the three-dimensional (3D) context of cells and organs. We described use of the intrinsic root coordinate system (iRoCS) as a reference model for the root apical meristem of plants. iRoCS enables direct and quantitative comparison between the root tips of plant populations at single-cell resolution. The iRoCS Toolbox automatically fits standardized coordinates to raw 3D image data. It detects nuclei or segments cells, automatically fits the coordinate system, and groups the nuclei/cells into the root's tissue layers. The division status of each nucleus may also be determined. The only manual step required is to mark the quiescent centre. All intermediate outputs may be refined if necessary. The ability to learn the visual appearance of nuclei by example allows the iRoCS Toolbox to be easily adapted to various phenotypes. The iRoCS Toolbox is provided as an open-source software package, licensed under the GNU General Public License, to make it accessible to a broad community. To demonstrate the power of the technique, we measured subtle changes in cell division patterns caused by modified auxin flux within the Arabidopsis thaliana root apical meristem.
Collapse
Affiliation(s)
- Thorsten Schmidt
- Institute for Computer Science, Albert Ludwigs University Freiburg, Georges Köhler Allee, Gebäude 52, D-79110, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
von Wangenheim D, Daum G, Lohmann JU, Stelzer EK, Maizel A. Live imaging of Arabidopsis development. Methods Mol Biol 2014; 1062:539-550. [PMID: 24057385 DOI: 10.1007/978-1-62703-580-4_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Live cell imaging is an essential methodology for studying the structure, dynamics, and functions of cells in a living plant under normal or stressed growth conditions. Arabidopsis thaliana is perfectly amenable to various live microscopy techniques. In this chapter, we provide guidelines to design live-imaging experiments. We discuss specifically the respective advantage of each microscopy technique, the choice of reporter, and the preparation of the sample. Detailed protocols for imaging of shoot and roots are provided.
Collapse
Affiliation(s)
- Daniel von Wangenheim
- Physical Biology, Frankfurt Institute for Molecular Life Sciences (FMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.
Collapse
|
42
|
Costa A, Candeo A, Fieramonti L, Valentini G, Bassi A. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS One 2013; 8:e75646. [PMID: 24146766 PMCID: PMC3797704 DOI: 10.1371/journal.pone.0075646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Selective Plane Illumination Microscopy (SPIM) is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET). Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca2+ signal percolation, predicted in previous studies, has been directly visualized.
Collapse
Affiliation(s)
- Alex Costa
- Dipartimento di Bioscienze, Università degli studi di Milano, Milano, Italy
- * E-mail:
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Luca Fieramonti
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | | | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| |
Collapse
|
43
|
Kast EJ, Nguyen MDT, Lawrence RE, Rabeler C, Kaplinsky NJ. The RootScope: a simple high-throughput screening system for quantitating gene expression dynamics in plant roots. BMC PLANT BIOLOGY 2013; 13:158. [PMID: 24119322 PMCID: PMC3852858 DOI: 10.1186/1471-2229-13-158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND High temperature stress responses are vital for plant survival. The mechanisms that plants use to sense high temperatures are only partially understood and involve multiple sensing and signaling pathways. Here we describe the development of the RootScope, an automated microscopy system for quantitating heat shock responses in plant roots. RESULTS The promoter of Hsp17.6 was used to build a Hsp17.6p:GFP transcriptional reporter that is induced by heat shock in Arabidopsis. An automated fluorescence microscopy system which enables multiple roots to be imaged in rapid succession was used to quantitate Hsp17.6p:GFP response dynamics. Hsp17.6p:GFP signal increased with temperature increases from 28°C to 37°C. At 40°C the kinetics and localization of the response are markedly different from those at 37°C. This suggests that different mechanisms mediate heat shock responses above and below 37°C. Finally, we demonstrate that Hsp17.6p:GFP expression exhibits wave like dynamics in growing roots. CONCLUSIONS The RootScope system is a simple and powerful platform for investigating the heat shock response in plants.
Collapse
Affiliation(s)
- Erin J Kast
- Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA
| | | | | | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, 19081, USA
| | | |
Collapse
|
44
|
Wells DM, Laplaze L, Bennett MJ, Vernoux T. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. TRENDS IN PLANT SCIENCE 2013; 18:244-249. [PMID: 23291242 DOI: 10.1016/j.tplants.2012.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Fluorescent reporters are valuable tools for plant science research, particularly as sensors to monitor biological signals and developmental processes. Such biosensors are particularly useful to monitor the spatial and temporal distribution of small signalling molecules such as phytohormones. Knowledge of perception and signalling pathways can be exploited to design biosensors for estimating intracellular abundance of hormones. However, the nonlinear relationship between target molecule and reporter necessitates the development of parameterised mathematical models to quantitatively relate sensor fluorescence to hormone abundance. In this opinion article, we will discuss the use of transcriptional reporters, sensor design strategy, and the importance of mathematical modelling approaches and technological advances in the development of new techniques to allow truly quantitative analyses of hormone regulated processes.
Collapse
Affiliation(s)
- Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | | | | |
Collapse
|
45
|
Pampaloni F, Ansari N, Stelzer EHK. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 2013; 352:161-77. [DOI: 10.1007/s00441-013-1589-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/12/2013] [Indexed: 01/13/2023]
|
46
|
Shaw SL, Ehrhardt DW. Smaller, faster, brighter: advances in optical imaging of living plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:351-75. [PMID: 23506334 DOI: 10.1146/annurev-arplant-042110-103843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The advent of fluorescent proteins and access to modern imaging technologies have dramatically accelerated the pace of discovery in plant cell biology. Remarkable new insights into such diverse areas as plant pathogenesis, cytoskeletal dynamics, sugar transport, cell wall synthesis, secretory control, and hormone signaling have come from careful examination of living cells using advanced optical probes. New technologies, both commercially available and on the horizon, promise a continued march toward more quantitative methods for imaging and for extending the optical exploration of biological structure and activity to molecular scales. In this review, we lay out fundamental issues in imaging plant specimens and look ahead to several technological innovations in molecular tools, instrumentation, imaging methods, and specimen handling that show promise for shaping the coming era of plant cell biology.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
47
|
A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat Methods 2012; 9:1101-6. [PMID: 23023597 PMCID: PMC3492502 DOI: 10.1038/nmeth.2185] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/04/2012] [Indexed: 11/08/2022]
Abstract
To fully describe gene expression dynamics requires the ability to quantitatively capture expression in individual cells over time. Automated systems for acquiring and analyzing real-time images are needed to obtain unbiased data across many samples and conditions. We developed a microfluidics device, the RootArray, in which 64 Arabidopsis thaliana seedlings can be grown and their roots imaged by confocal microscopy over several days without manual intervention. To achieve high throughput, we decoupled acquisition from analysis. In the acquisition phase, we obtain images at low resolution and segment to identify regions of interest. Coordinates are communicated to the microscope to record the regions of interest at high resolution. In the analysis phase, we reconstruct three-dimensional objects from stitched high-resolution images and extract quantitative measurements from a virtual medial section of the root. We tracked hundreds of roots to capture detailed expression patterns of 12 transgenic reporter lines under different conditions.
Collapse
|
48
|
3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots. Proc Natl Acad Sci U S A 2012; 109:16794-9. [PMID: 23010923 DOI: 10.1073/pnas.1209287109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that the size of the deformation varies with gel stiffness as expected by a mathematical model based on the theory of buckled rods. Moreover, we show that plant-to-plant variations can be accounted for by biomechanically plausible values of the model parameters.
Collapse
|
49
|
Abstract
Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels.
Collapse
Affiliation(s)
- E M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
50
|
Jorand R, Le Corre G, Andilla J, Maandhui A, Frongia C, Lobjois V, Ducommun B, Lorenzo C. Deep and clear optical imaging of thick inhomogeneous samples. PLoS One 2012; 7:e35795. [PMID: 22558226 PMCID: PMC3338470 DOI: 10.1371/journal.pone.0035795] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/21/2012] [Indexed: 01/03/2023] Open
Abstract
Inhomogeneity in thick biological specimens results in poor imaging by light microscopy, which deteriorates as the focal plane moves deeper into the specimen. Here, we have combined selective plane illumination microscopy (SPIM) with wavefront sensor adaptive optics (wao). Our waoSPIM is based on a direct wavefront measure using a Hartmann-Shack wavefront sensor and fluorescent beads as point source emitters. We demonstrate the use of this waoSPIM method to correct distortions in three-dimensional biological imaging and to improve the quality of images from deep within thick inhomogeneous samples.
Collapse
Affiliation(s)
- Raphael Jorand
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
| | - Gwénaële Le Corre
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
| | - Jordi Andilla
- ICFO, Institut de Ciences Fotonique, Mediterraneen Technology Park, Castelldefels, Barcelona, Spain
| | - Amina Maandhui
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
| | - Céline Frongia
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
| | - Valérie Lobjois
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
| | - Bernard Ducommun
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- CHU de Toulouse, Toulouse, France
| | - Corinne Lorenzo
- University of Toulouse, ITAV-UMS3039, Toulouse, France
- CNRS, ITAV-UMS3039, Toulouse, France
- * E-mail:
| |
Collapse
|