1
|
Abualnadi R, Tarboush NA, Shhab M, Zihlif M. Gene expression alterations in hypoxic A549 lung cancer cell line. Biomed Rep 2024; 21:183. [PMID: 39420921 PMCID: PMC11484184 DOI: 10.3892/br.2024.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/26/2024] [Indexed: 10/19/2024] Open
Abstract
Human non-small cell lung cancer (NSCLC)is a very common disease with limited treatment options. Hypoxia is a characteristic feature of solid tumors associated with the resistance of cancer cells to radiotherapy and chemotherapy. Therefore, the expression changes in cancer-resistance genes may be biomarkers of hypoxia with value in targeted therapy. The aim of the present study was to examine the effect of hypoxia on gene expression and the changes that occur in relation to drug resistance in a human NSCLC cell line (A549). A549 cells were exposed to 72-h hypoxic episodes (<1% oxygen) for a total of 10 episodes (acute). The alterations in gene expression were examined using PCR array technology after 10 episodes of acute hypoxia and compared with normoxic cells. The chemoresistance of hypoxic cells toward doxorubicin was measured using a MTT cell proliferation assay. A549 cells were affected by acute hypoxia leading to induced doxorubicin chemoresistance. Evident changes in the gene expression level were identified following episodes of acute hypoxia. The most important changes occurred in the estrogen receptor 1 (ESR1) and Finkel-Biskis-Jinkins osteosarcoma (FOS) pathways and in different nucleic transcription factors such as aryl hydrocarbon receptor and cyclin-dependent kinase inhibitor. The present study showed that exposing cells to prolonged periods of hypoxia results in different gene expression changes. There was induction of chemo-resistance due to acute hypoxia. ESR1 and c-FOS are proposed as a potential hypoxia genes in lung cancer.
Collapse
Affiliation(s)
- Rania Abualnadi
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nafez Abu Tarboush
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Shhab
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
3
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
4
|
Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, Šegalo S, Papić E, Muchai Echengi E, Pugonja R, Kasapović T, Kavgić D, Nuhović A, Juković-Bihorac F, Đuričić S, Pojskić M. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers (Basel) 2024; 16:2089. [PMID: 38893207 PMCID: PMC11171068 DOI: 10.3390/cancers16112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The study aims to investigate the role of hypoxia-inducible factors (HIFs) in the development, progression, and therapeutic potential of glioblastomas. METHODOLOGY The study, following PRISMA guidelines, systematically examined hypoxia and HIFs in glioblastoma using MEDLINE (PubMed), Web of Science, and Scopus. A total of 104 relevant studies underwent data extraction. RESULTS Among the 104 studies, global contributions were diverse, with China leading at 23.1%. The most productive year was 2019, accounting for 11.5%. Hypoxia-inducible factor 1 alpha (HIF1α) was frequently studied, followed by hypoxia-inducible factor 2 alpha (HIF2α), osteopontin, and cavolin-1. Commonly associated factors and pathways include glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) receptors, vascular endothelial growth factor (VEGF), phosphoinositide 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway, and reactive oxygen species (ROS). HIF expression correlates with various glioblastoma hallmarks, including progression, survival, neovascularization, glucose metabolism, migration, and invasion. CONCLUSION Overcoming challenges such as treatment resistance and the absence of biomarkers is critical for the effective integration of HIF-related therapies into the treatment of glioblastoma with the aim of optimizing patient outcomes.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina;
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Semir Hadžić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Alma Mekić-Abazović
- Department of Oncology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Sabina Šegalo
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emsel Papić
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emmanuel Muchai Echengi
- College of Health Sciences, School of Medicine, Kenyatta University, Nairobi 43844-00100, Kenya
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Dalila Kavgić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Fatima Juković-Bihorac
- Department of Pathology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Slaviša Đuričić
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, 35033 Marburg, Germany
| |
Collapse
|
5
|
Shi Z, Hu C, Zheng X, Sun C, Li Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp Hematol Oncol 2024; 13:55. [PMID: 38778409 PMCID: PMC11110349 DOI: 10.1186/s40164-024-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the mechanisms underlying tumor radiosensitivity and progression.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Novin A, Wali K, Pant A, Liu S, Du W, Liu Y, Wang L, Xu M, Wang B, Suhail Y, Kshitiz. Oscillatory Hypoxia Can Induce Senescence of Adipose-Derived Mesenchymal Stromal Cells Potentiating Invasive Transformation of Breast Epithelial Cells. Cancers (Basel) 2024; 16:969. [PMID: 38473331 PMCID: PMC10930887 DOI: 10.3390/cancers16050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events.
Collapse
Affiliation(s)
- Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Khadija Wali
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Aditya Pant
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Lichao Wang
- Department of Immunology, University of Connecticut Health, Farmington, CT 06032, USA; (L.W.); (M.X.)
| | - Ming Xu
- Department of Immunology, University of Connecticut Health, Farmington, CT 06032, USA; (L.W.); (M.X.)
- Center for Aging Research, University of Connecticut Health, Farmington, CT 06032, USA;
| | - Binsheng Wang
- Center for Aging Research, University of Connecticut Health, Farmington, CT 06032, USA;
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (A.N.); (K.W.); (A.P.); (S.L.); (Y.S.)
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (W.D.); (Y.L.)
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT 06032, USA
| |
Collapse
|
7
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
8
|
Dong J, Qian Y, Zhang W, Wang Q, Jia M, Yue J, Fan Z, Jiang Y, Wang L, Wang Y, Huang Z, Yu L, Wang Y. Dual targeting agent Thiotert inhibits the progression of glioblastoma by inducing ER stress-dependent autophagy. Biomed Pharmacother 2024; 170:115867. [PMID: 38101281 DOI: 10.1016/j.biopha.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal type of tumor in the central nervous system, characterized by a high incidence and poor prognosis. Thiotert, as a novel dual targeting agent, has potential inhibitory effects on various tumors. Here, we found that Thiotert effectively inhibited the proliferation of GBM cells by inducing G2/M cell cycle arrest and suppressed the migratory ability in vitro. Furthermore, Thiotert disrupted the thioredoxin (Trx) system while causing cellular DNA damage, which in turn caused endoplasmic reticulum (ER) stress-dependent autophagy. Knockdown of ER stress-related protein ATF4 in U251 cells inhibited ER stress-dependent autophagy caused by Thiotert to some extent. Orthotopic transplantation experiments further showed that Thiotert had the same anti-GBM activity and mechanism as in vitro. Conclusively, these results suggest that Thiotert induces ER stress-dependent autophagy in GBM cells by disrupting redox homeostasis and causing DNA damage, which provides new insight for the treatment of GBM.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Juanqing Yue
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lipei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, Zhejiang, China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
9
|
Shinada M, Suzuki H, Hanyu M, Igarashi C, Matsumoto H, Takahashi M, Hihara F, Tachibana T, Sogawa C, Zhang MR, Higashi T, Sato H, Kurihara H, Yoshii Y, Doi Y. Trace Metal Impurities Effects on the Formation of [ 64Cu]Cu-diacetyl-bis( N4-methylthiosemicarbazone) ([ 64Cu]Cu-ATSM). Pharmaceuticals (Basel) 2023; 17:10. [PMID: 38275997 PMCID: PMC10821298 DOI: 10.3390/ph17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Masayuki Hanyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chizuru Sogawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Hidemitsu Sato
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroaki Kurihara
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
10
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
11
|
Lei FJ, Chiang JY, Chang HJ, Chen DC, Wang HL, Yang HA, Wei KY, Huang YC, Wang CC, Wei ST, Hsieh CH. Cellular and exosomal GPx1 are essential for controlling hydrogen peroxide balance and alleviating oxidative stress in hypoxic glioblastoma. Redox Biol 2023; 65:102831. [PMID: 37572455 PMCID: PMC10428075 DOI: 10.1016/j.redox.2023.102831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Tumor hypoxia promotes malignant progression and therapeutic resistance in glioblastoma partly by increasing the production of hydrogen peroxide (H2O2), a type of reactive oxygen species critical for cell metabolic responses due to its additional role as a second messenger. However, the catabolic pathways that prevent H2O2 overload and subsequent tumor cell damage in hypoxic glioblastoma remain unclear. Herein, we present a hypoxia-coordinated H2O2 regulatory mechanism whereby excess H2O2 in glioblastoma induced by hypoxia is diminished by glutathione peroxidase 1 (GPx1), an antioxidant enzyme detoxifying H2O2, via the binding of hypoxia-inducible factor-1α (HIF-1α) to GPx1 promoter. Depletion of GPx1 results in H2O2 overload and apoptosis in glioblastoma cells, as well as growth inhibition in glioblastoma xenografts. Moreover, tumor hypoxia increases exosomal GPx1 expression, which assists glioblastoma and endothelial cells in countering H2O2 or radiation-induced apoptosis in vitro and in vivo. Clinical data explorations further demonstrate that GPx1 expression was positively correlated with tumor grade and expression of HIF-1α, HIF-1α target genes, and exosomal marker genes; by contrast, it was inversely correlated with the overall survival outcome in human glioblastoma specimens. Our analyses validate that the redox balance of H2O2 within hypoxic glioblastoma is clinically relevant and could be maintained by HIF-1α-promoted or exosome-related GPx1.
Collapse
Affiliation(s)
- Fu-Ju Lei
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
| | - Jung-Ying Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Huan-Jui Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsi-An Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Yu Wei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Mingdao High School, Taichung, Taiwan
| | - Yen-Chih Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Imaging, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Sung-Tai Wei
- Division of Neurosurgery, Department of Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Pérez-Aliacar M, Ayensa-Jiménez J, Doblaré M. Modelling cell adaptation using internal variables: Accounting for cell plasticity in continuum mathematical biology. Comput Biol Med 2023; 164:107291. [PMID: 37586203 DOI: 10.1016/j.compbiomed.2023.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Cellular adaptation is the ability of cells to change in response to different stimuli and environmental conditions. It occurs via phenotypic plasticity, that is, changes in gene expression derived from changes in the physiological environment. This phenomenon is important in many biological processes, in particular in cancer evolution and its treatment. Therefore, it is crucial to understand the mechanisms behind it. Specifically, the emergence of the cancer stem cell phenotype, showing enhanced proliferation and invasion rates, is an essential process in tumour progression. We present a mathematical framework to simulate phenotypic heterogeneity in different cell populations as a result of their interaction with chemical species in their microenvironment, through a continuum model using the well-known concept of internal variables to model cell phenotype. The resulting model, derived from conservation laws, incorporates the relationship between the phenotype and the history of the stimuli to which cells have been subjected, together with the inheritance of that phenotype. To illustrate the model capabilities, it is particularised for glioblastoma adaptation to hypoxia. A parametric analysis is carried out to investigate the impact of each model parameter regulating cellular adaptation, showing that it permits reproducing different trends reported in the scientific literature. The framework can be easily adapted to any particular problem of cell plasticity, with the main limitation of having enough cells to allow working with continuum variables. With appropriate calibration and validation, it could be useful for exploring the underlying processes of cellular adaptation, as well as for proposing favourable/unfavourable conditions or treatments.
Collapse
Affiliation(s)
- Marina Pérez-Aliacar
- Mechanical Engineering Department, School of Engineering and Architecture, University of Zaragoza, C/ Maria de Luna, Zaragoza, 50018, Spain; Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain.
| | - Jacobo Ayensa-Jiménez
- Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain; Aragón Health Research Institute (IISAragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain.
| | - Manuel Doblaré
- Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain; Aragón Health Research Institute (IISAragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Avda. Monforte de Lemos, Madrid, 28029, Spain; Nanjing Tech University, South Puzhu Road, Nanging, 211800, China.
| |
Collapse
|
13
|
Eom JW, Lim JW, Kim H. Lutein Induces Reactive Oxygen Species-Mediated Apoptosis in Gastric Cancer AGS Cells via NADPH Oxidase Activation. Molecules 2023; 28:molecules28031178. [PMID: 36770846 PMCID: PMC9919728 DOI: 10.3390/molecules28031178] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Disruption of apoptosis leads to cancer cell progression; thus, anticancer agents target apoptosis of cancer cells. Reactive oxygen species (ROS) induce apoptosis by activating caspases and caspase-dependent DNase, leading to DNA fragmentation. ROS increase the expression of apoptotic protein Bax, which is mediated by activation of nuclear factor-κB (NF--κB). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of endogenous ROS, and its activation is involved in apoptosis. Lutein, an oxygenated carotenoid and known antioxidant, is abundant in leafy dark green vegetables, such as spinach and kale, and in yellow-colored foods, such as corn and egg yolk. High amounts of lutein increase ROS levels and exhibit anticancer activity. However, its anticancer mechanism remains unclear. This study aimed to determine whether lutein activates NADPH oxidase to produce ROS and induce apoptosis in gastric cancer AGS cells. Lutein increased ROS levels and promoted the activation of NADPH oxidase by increasing the translocation of NADPH oxidase subunit p47 phox to the cell membrane. It increased NF-κB activation and apoptotic indices, such as Bax, caspase-3 cleavage, and DNA fragmentation, and decreased Bcl-2, cell viability, and colony formation in AGS cells. The specific NADPH oxidase inhibitor ML171, and the known antioxidant N-acetyl cysteine reversed lutein-induced cell death, DNA fragmentation, and NF-κB DNA-binding activity in AGS cells. These results suggest that lutein-induced ROS production is dependent on NADPH oxidase, which mediates NF-κB activation and apoptosis in gastric cancer AGS cells. Therefore, lutein supplementation may be beneficial for increasing ROS-mediated apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
14
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
15
|
Wei S, Chiang J, Wang H, Lei F, Huang Y, Wang C, Cho D, Hsieh C. Hypoxia-induced CXC chemokine ligand 14 expression drives protumorigenic effects through activation of insulin-like growth factor-1 receptor signaling in glioblastoma. Cancer Sci 2022; 114:174-186. [PMID: 36106406 PMCID: PMC9807529 DOI: 10.1111/cas.15587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023] Open
Abstract
Hypoxic tumor microenvironment (HTM) promotes a more aggressive and malignant state in glioblastoma. However, little is known about the role and mechanism of CXC chemokine ligand 14 (CXCL14) in HTM-mediated glioblastoma progression. In this study, we report that CXCL14 expression correlated with poor outcomes, tumor grade, and hypoxia-inducible factor (HIF) expression in patients with glioblastoma. CXCL14 was upregulated in tumor cells within the hypoxic areas of glioblastoma. Hypoxia induced HIF-dependent expression of CXCL14, which promoted glioblastoma tumorigenicity and invasiveness in vitro and in vivo. Moreover, CXCL14 gain-of-function in glioblastoma cells activated insulin-like growth factor-1 receptor (IGF-1R) signal transduction to regulate the growth, invasiveness, and neurosphere formation of glioblastoma. Finally, systemic delivery of CXCL14 siRNA nanoparticles (NPs) with polysorbate 80 coating significantly suppressed tumor growth in vivo and extended the survival time in patient-derived glioblastoma xenografts. Together, these findings suggest that HIF-dependent CXCL14 expression contributes to HTM-promoted glioblastoma tumorigenicity and invasiveness through activation of the IGF-1R signaling pathway. CXCL14 siRNA NPs as an oligonucleotide drug can inhibit glioblastoma progression and constitute a translational path for the clinical treatment of glioblastoma patients.
Collapse
Affiliation(s)
- Sung‐Tai Wei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Jung‐Ying Chiang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of NeurosurgeryChina Medical University Hsinchu HospitalHsinchuTaiwan
| | - Hwai‐Lee Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Fu‐Ju Lei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Yen‐Chih Huang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ImagingChina Medical University and HospitalTaichungTaiwan
| | - Chi‐Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew TaipeiTaiwan
| | - Der‐Yang Cho
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Chia‐Hung Hsieh
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University HospitalTaichungTaiwan,Department of Biomedical InformaticsAsia UniversityTaichungTaiwan
| |
Collapse
|
16
|
Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, Xin Y, Jiang X. Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms. Front Pharmacol 2022; 13:921070. [PMID: 35935861 PMCID: PMC9355528 DOI: 10.3389/fphar.2022.921070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress refers to the imbalance between oxidation and antioxidant activity in the body. Oxygen is reduced by electrons as part of normal metabolism leading to the formation of various reactive oxygen species (ROS). ROS are the main cause of oxidative stress and can be assessed through direct detection. Oxidative stress is a double-edged phenomenon in that it has protective mechanisms that help to destroy bacteria and pathogens, however, increased ROS accumulation can lead to host cell apoptosis and damage. Glioma is one of the most common malignant tumors of the central nervous system and is characterized by changes in the redox state. Therapeutic regimens still encounter multiple obstacles and challenges. Glioma occurrence is related to increased free radical levels and decreased antioxidant defense responses. Oxidative stress is particularly important in the pathogenesis of gliomas, indicating that antioxidant therapy may be a means of treating tumors. This review evaluates oxidative stress and its effects on gliomas, describes the potential targets and therapeutic drugs in detail, and clarifies the effects of radiotherapy and chemotherapy on oxidative stress. These data may provide a reference for the development of precise therapeutic regimes of gliomas based on oxidative stress.
Collapse
Affiliation(s)
- Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
17
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
18
|
Identification and quantitative structure–activity relationship assessment of trace chemical impurities contained in the therapeutic formulation of [64Cu]Cu-ATSM. Nucl Med Biol 2022; 108-109:10-15. [DOI: 10.1016/j.nucmedbio.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
|
19
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
20
|
Prolonged sub-lethal exposure to galaxolide (HHCB) and tonalide (AHTN) promotes the metastatic potential of glioblastoma tumor spheroids. Neurotoxicology 2021; 87:219-230. [PMID: 34687775 DOI: 10.1016/j.neuro.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.
Collapse
|
21
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
22
|
Zhao H, Du P, Peng R, Peng G, Yuan J, Liu D, Liu Y, Mo X, Liao Y. Long Noncoding RNA OR7E156P/miR-143/HIF1A Axis Modulates the Malignant Behaviors of Glioma Cell and Tumor Growth in Mice. Front Oncol 2021; 11:690213. [PMID: 34422645 PMCID: PMC8377393 DOI: 10.3389/fonc.2021.690213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Gliomas are characterized by high incidence, recurrence and mortality all of which are significant challenges to efficacious clinical treatment. The hypoxic microenvironment in the inner core and intermediate layer of the tumor mass of gliomas is a critical contributor to glioma pathogenesis. In this study, we identified an upregulated lncRNA, OR7E156P, in glioma was identified. The silencing of OR7E156P inhibited cell invasion and DNA synthesis in vitro and tumor growth in vivo. OR7E156P was intricately linked to the HIF1A pathway. Hypoxia could induce OR7E156P expression, whereas OR7E156P silencing decreased HIF1A protein levels under hypoxic conditions. Hypoxia promoted glioma cell invasion and DNA synthesis, and HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of hypoxia. HIF1A overexpression promoted, whereas OR7E156P silencing inhibited tumor growth; the inhibitory effects of OR7E156P silencing on tumor growth were partially reversed by HIF1A overexpression. miR-143 directly targeted OR7E156P and HIF1A, respectively. miR-143 inhibition increased HIF1A protein levels, promoted glioma cell invasion and DNA synthesis. Moreover, they enhanced HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of miR-143 inhibition. HIF1A targeted the promoter region of miR-143 and inhibited miR-143 expression. Altogether a regulatory axis consisting of OR7E156P, miR-143, and HIF1A, was identified which is deregulated in glioma, and the process of the OR7E156P/miR-143/HIF1A axis modulating glioma cell invasion through ZEB1 and HUVEC tube formation through VEGF was demonstrated.
Collapse
Affiliation(s)
- Haiting Zhao
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China.,Department of Neurology, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Yi Liu
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Xin Mo
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, The Central South University (CSU), Changsha, China
| |
Collapse
|
23
|
NOX4-Derived ROS Mediates TGF- β1-Induced Metabolic Reprogramming during Epithelial-Mesenchymal Transition through the PI3K/AKT/HIF-1 α Pathway in Glioblastoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5549047. [PMID: 34257808 PMCID: PMC8257383 DOI: 10.1155/2021/5549047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 05/30/2021] [Indexed: 12/22/2022]
Abstract
Current studies on tumor progression focus on the roles of cytokines in the tumor microenvironment (TME), and recent research shows that transforming growth factor-β1 (TGF-β1) released from TME plays a pivotal role in tumor development and malignant transformation. The alteration in cellular metabolism is a hallmark of cancer, which not only provides cancer cells with ATP for fuel cellular reactions, but also generates metabolic intermediates for the synthesis of essential cellular ingredients, to support cell proliferation, migration, and invasion. Interestingly, we found a distinct metabolic change during TGF-β1-induced epithelial-mesenchymal transition (EMT) in glioblastoma cells. Indeed, TGF-β1 participates in metabolic reprogramming, and the molecular basis is still not well understood. NADPH oxidases 4 (NOX4), a member of the Nox family, also plays a key role in the biological effects of glioblastoma. However, the relationship between NOX4, TGF-β1, and cellular metabolic changes during EMT in glioblastoma remains obscure. Here, our findings demonstrated that TGF-β1 upregulated NOX4 expression accompanied by reactive oxygen species (ROS) through Smad-dependent signaling and then induced hypoxia-inducible factor 1α (HIF-1α) overexpression and nuclear accumulation resulting in metabolic reprogramming and promoting EMT. Besides, inhibition of glycolysis reversed EMT suggesting a causal relationship between TGF-β1-induced metabolic changes and tumorigenesis. Moreover, TGF-β1-induced metabolic reprogramming and EMT which modulated by NOX4/ROS were blocked when the phosphoinositide3-kinase (PI3K)/AKT/HIF-1α signaling pathways were inhibited. In conclusion, these suggest that NOX4/ROS induction by TGF-β1 can be one of the main mechanisms mediating the metabolic reprogramming during EMT of glioblastoma cells and provide promising strategies for cancer therapy.
Collapse
|
24
|
Vinaiphat A, Low JK, Yeoh KW, Chng WJ, Sze SK. Application of Advanced Mass Spectrometry-Based Proteomics to Study Hypoxia Driven Cancer Progression. Front Oncol 2021; 11:559822. [PMID: 33708620 PMCID: PMC7940826 DOI: 10.3389/fonc.2021.559822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the largest contributors to the burden of chronic disease in the world and is the second leading cause of death globally. It is associated with episodes of low-oxygen stress (hypoxia or ischemia/reperfusion) that promotes cancer progression and therapeutic resistance. Efforts have been made in the past using traditional proteomic approaches to decipher oxygen deprivation stress-related mechanisms of the disease initiation and progression and to identify key proteins as a therapeutic target for the treatment and prevention. Despite the potential benefits of proteomic in translational research for the discovery of new drugs, the therapeutic outcome with this approach has not met expectations in clinical trials. This is mainly due to the disease complexity which possess a multifaceted molecular pathology. Therefore, novel strategies to identify and characterize clinically important sets of modulators and molecular events for multi-target drug discovery are needed. Here, we review important past and current studies on proteomics in cancer with an emphasis on recent pioneered labeling approaches in mass spectrometry (MS)-based systematic quantitative analysis to improve clinical success. We also discuss the results of the selected innovative publications that integrate advanced proteomic technologies (e.g. MALDI-MSI, pSILAC/SILAC/iTRAQ/TMT-LC-MS/MS, MRM-MS) for comprehensive analysis of proteome dynamics in different biosystems, including cell type, cell species, and subcellular proteome (i.e. secretome and chromatome). Finally, we discuss the future direction and challenges in the application of these technological advancements in mass spectrometry within the context of cancer and hypoxia.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
A multiwell plate-based system for toxicity screening under multiple static or cycling oxygen environments. Sci Rep 2021; 11:4020. [PMID: 33597640 PMCID: PMC7890056 DOI: 10.1038/s41598-021-83579-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor tissue contains a continuous distribution of static and dynamically changing oxygen environments with levels ranging from physiologically normal oxygen down to anoxia. However, in vitro studies are often performed under oxygen levels that are far higher than those found in vivo. A number of devices are available to alter the oxygen environment in cell culture, including designs from our laboratory. However, in our devices and most other designs, changing the media in order to feed or dose cells remains a disruptive factor in maintaining a consistent hypoxic environment. This report presents a novel 96-well plate design that recirculates the local oxygen environment to shield cells during media changes and facilitates toxicity studies of cells cultured under varying oxygen levels. The principle behind the design is presented and the response of human pancreatic cancer PANC-1 cells treated with tirapazamine and doxorubicin under eight different static or cycling oxygen levels was measured. As expected, tirapazamine is progressively more toxic as oxygen levels decrease but retains some toxicity as oxygen is cycled between hypoxic and normoxic levels. Doxorubicin sensitivity is largely unaffected by changing oxygen levels. This technology is ideal for assessing the effects of oxygen as a variable in toxicity screens.
Collapse
|
26
|
Vedenko A, Panara K, Goldstein G, Ramasamy R, Arora H. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:143-158. [PMID: 33119871 DOI: 10.1007/978-3-030-50224-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cancer tissue exists not as a single entity, but as a combination of different cellular phenotypes which, taken together, dramatically contribute to the entirety of their ecosystem, collectively termed as the tumor microenvironment (TME). The TME is composed of both immune and nonimmune cell types, stromal components, and vasculature-all of which cooperate to promote cancer progression. Not all immune cells, however, are immune-suppressive; some of them can promote the immune microenvironment to fight the invading and uncontrollably dividing cell populations at the initial stages of tumor growth. Yet, many of these processes and cellular phenotypes fall short, and the immune ecosystem more often than not ends up stabilizing in favor of the "resistant" resident cells that begin clonal expansion and may progress to metastatic forms. Stromal components, making up the extracellular matrix and basement membrane, are also not the most innocuous: CAFs embedded throughout secrete proteases that allow the onset of one of the most invasive processes-angiogenesis-through destruction of the ECM and the basement membrane. Vasculature formation, because of angiogenesis, is the largest invader of the TME and the reason metastasis happens. Vasculature is so sporadic and omnipresent in the TME that most drug therapies are mainly focused on stopping this uncontrollable process. As the tumor continues to grow, different processes are constantly supplying it with the ingredients favorable for tumor progression and eventual metastasis. For example, angiogenesis promotes blood vessel formation that will allow the bona fide escape of tumor cells to take place. Another process like hypoxia will present itself in several forms throughout the tumor (mild or acute, cycling or permanent), starting mechanisms such as epithelial to mesenchymal transitions (EMT) of resident cells and inadvertently placing the cells in such a stressful condition that production of ROS and DNA damage is unavoidable. DNA damage can induce mutagenicity while allowing resistant cells to survive. This is where drugs and treatments can subsequently suffer in effectiveness. Finally, another molecule has just surfaced as being a very important player in the TME: nitric oxide. Often overlooked and equated with ROS and initially assigned in the category of pathogenic molecules, nitric oxide can definitely do some damage by causing metabolic reprogramming and promotion of immunosuppressive phenotypes at low concentrations. However, its actions seem to be extremely dose-dependent, and this issue has become a hot target of current treatment goals. Shockingly, nitric oxide, although omnipresent in the TME, can have a positive effect on targeting the TME broadly. Thus, while the TME is a myriad of cellular phenotypes and a combination of different tumor-promoting processes, each process is interconnected into one whole: the tumor microenvironment.
Collapse
Affiliation(s)
- Anastasia Vedenko
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kush Panara
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
27
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
28
|
Bader SB, Dewhirst MW, Hammond EM. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer. Cancers (Basel) 2020; 13:E23. [PMID: 33374581 PMCID: PMC7793090 DOI: 10.3390/cancers13010023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.
Collapse
Affiliation(s)
- Samuel B. Bader
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| | - Mark W. Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| |
Collapse
|
29
|
Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:371-381. [PMID: 33026209 DOI: 10.23736/s1824-4785.20.03285-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The most common and aggressive primary malignancy of the central nervous system is Glioblastoma that, as a wide range of malignant solid tumor, is characterized by extensive hypoxic regions. A great number of PET radiopharmaceuticals have been developed for the identification of hypoxia in solid tumors, among these, we find copper-based tracers. The aim of the current review paper was to provide an overview of radiocopper compounds applied for preclinical and clinical research in brain tumors and hypoxia imaging or therapy. EVIDENCE ACQUISITION Copper offers a wide variety of isotopes, useful for nuclear medicine applications, but only 64Cu and 67Cu are under the spotlight of the scientific community since being good candidates for theranostic applications. Between the two, 64Cu availability and production cost have attracted more interest of the scientific community. EVIDENCE SYNTHESIS In order to better understand the application of copper-bis thiosemicarbazones in hypoxia imaging, an overview of the role of hypoxia in cancer, existing non-imaging and imaging techniques for hypoxia identification and promising future avenues regarding hypoxia is necessary. Different proposed uptake mechanisms of [64Cu][Cu(ATSM)] inside the cell will be discussed and other 64Cu-based tracers for brain tumors described. CONCLUSIONS Among radio copper compounds [64Cu][Cu(ATSM)] is the most studied radiopharmaceutical for imaging and treatment of brain tumors. Experimental evidence suggested that [64Cu][Cu(ATSM)] could be more appropriately considered as a marker of over-reduced intracellular state rather than a pure hypoxia agent. Moreover, preliminary clinical data suggested that [64Cu]CuCl<inf>2</inf> can be a potentially useful diagnostic agent for malignancies of the central nervous system (CNS).
Collapse
Affiliation(s)
- Micol Pasquali
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy
| | - Petra Martini
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Arman Shahi
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Amir R Jalilian
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Joao A Osso
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Alessandra Boschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
30
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
31
|
Mapping transient hypoxia from in situ activation of 15O by photon beams: A simulation study. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [ 64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 2020; 10:33. [PMID: 32274601 PMCID: PMC7145880 DOI: 10.1186/s13550-020-00621-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tumor hypoxia (low tissue oxygenation) is an adverse condition of the solid tumor environment, associated with malignant progression, radiotherapy resistance, and poor prognosis. One method to detect tumor hypoxia is by positron emission tomography (PET) with the tracer [64Cu][Cu-diacetyl-bis(N(4)-methylthiosemicarbazone)] ([64Cu][Cu(ATSM)]), as demonstrated in both preclinical and clinical studies. In addition, emerging studies suggest using [64Cu][Cu(ATSM)] for molecular radiotherapy, mainly due to the release of therapeutic Auger electrons from copper-64, making [64Cu][Cu(ATSM)] a “theranostic” agent. However, the radiocopper retention based on a metal-ligand dissociation mechanism under hypoxia has long been controversial. Recent studies using ionic Cu(II) salts as tracers have raised further questions on the original mechanism and proposed a potential role of copper itself in the tracer uptake. We have reviewed the evidence of using the copper radiopharmaceuticals [60/61/62/64Cu][Cu(ATSM)]/ionic copper salts for PET imaging of tumor hypoxia, their possible therapeutic applications, issues related to the metal-ligand dissociation mechanism, and possible explanations of copper trapping based on studies of the copper metabolism under hypoxia. Results We found that hypoxia selectivity of [64Cu][Cu(ATSM)] has been clearly demonstrated in both preclinical and clinical studies. Preclinical therapeutic studies in mice have also demonstrated promising results, recently reporting significant tumor volume reductions and improved survival in a dose-dependent manner. Cu(II)-[Cu(ATSM)] appears to be accumulated in regions with substantially higher CD133+ expression, a marker for cancer stem cells. This, combined with the reported requirement of copper for activation of the hypoxia inducible factor 1 (HIF-1), provides a possible explanation for the therapeutic effects of [64Cu][Cu(ATSM)]. Comparisons between [64Cu][Cu(ATSM)] and ionic Cu(II) salts have showed similar results in both imaging and therapeutic studies, supporting the argument for the central role of copper itself in the retention mechanism. Conclusions We found promising evidence of using copper-64 radiopharmaceuticals for both PET imaging and treatment of hypoxic tumors. The Cu(II)-[Cu(ATSM)] retention mechanism remains controversial and future mechanistic studies should be focused on understanding the role of copper itself in the hypoxic tumor metabolism.
Collapse
Affiliation(s)
- Tengzhi Liu
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten Karlsen
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
33
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
34
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
35
|
Matsumoto H, Igarashi C, Kaneko E, Hashimoto H, Suzuki H, Kawamura K, Zhang MR, Higashi T, Yoshii Y. Process development of [64Cu]Cu-ATSM: efficient stabilization and sterilization for therapeutic applications. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Stuart JA, Aibueku O, Bagshaw O, Moradi F. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia. Med Hypotheses 2019; 129:109249. [DOI: 10.1016/j.mehy.2019.109249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
|
37
|
Matsumoto H, Yoshii Y, Baden A, Kaneko E, Hashimoto H, Suzuki H, Kawamura K, Zhang MR, Higashi T, Kurihara H. Preclinical Pharmacokinetic and Safety Studies of Copper-Diacetyl-Bis(N 4-Methylthiosemicarbazone) (Cu-ATSM): Translational Studies for Internal Radiotherapy. Transl Oncol 2019; 12:1206-1212. [PMID: 31252311 PMCID: PMC6600784 DOI: 10.1016/j.tranon.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Hypoxia plays important roles in the prognosis of malignant brain tumors such as glioblastoma because it causes drug delivery deficiencies and the induction of hypoxia-inducible factor-1α in tumor cells. Extensive hypoxic areas are associated with poor prognosis of these fatal diseases. We previously reported that multiple administrations of the hypoxia-targeted internal radiotherapy agent 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), four times at intervals of 1 or 2 weeks, show antitumor effects in glioblastoma without treatment-related adverse events. Before initiating clinical trials, preclinical safety studies using Cu-ATSM composed of stable isotopes and its precursor ATSM were required to understand the potential risks of systemic and repeated chemical exposure of our investigational drug. In this study, the concentrations of Cu-ATSM and ATSM in mouse plasma after intravenous administration were determined by liquid chromatography–tandem mass spectrometry, and the half-lives were estimated to be 21.5 and 22.4 minutes for Cu-ATSM and ATSM, respectively. Based on this result, approach 2 of the current ICH M3 [R2] guideline was adopted, and a 7-day intravenous toxicity study was conducted in mice. Cu-ATSM and ATSM in a ratio of 2:25 mimicking our current investigational drug was used, and no adverse effects were observed when Cu-ATSM and ATSM were administered at 81 μg/kg. These results and those of previous studies suggest that our current investigational drug formulation containing Cu-ATSM and ATSM at a dose of 15 μg can be safely administered to patients once per week for 4 weeks for treatment with 64Cu-ATSM.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Atsumi Baden
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Emi Kaneko
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Hiroki Hashimoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hisashi Suzuki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| |
Collapse
|
38
|
Mahjour A, Khazaei M, Nourmohammadi E, Khoshdel-Sarkarizi H, Ebrahimzadeh-Bideskan A, Rahimi HR, Safipour Afshar A. Evaluation of antitumor effect of oxygen nanobubble water on breast cancer-bearing BALB/c mice. J Cell Biochem 2019; 120:15546-15552. [PMID: 31050374 DOI: 10.1002/jcb.28821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/31/2023]
Abstract
Hypoxia is a condition of low oxygen level which poses a common feature of most cancers. In the current study, we investigated effect of water containing oxygen nanobubble (ONB) on tumor growth in breast cancer 4T1-bearing mice during 14-day treatment period. Tumor-bearing mice were randomly divided into three groups (six mice per group), including the ONB group drinking water containing ONB, the air nanobubble (ANB) group drinking water containing ANB, and control group drinking normal water. Tumor weight and size were measured in 2-day interval during 14-day treatment. mRNA expression of p53, vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), and cyclin D/Cdk2 genes were measured in the treated and control mice. After 8, 12, and 14 days of treatment, tumor size in ONB group was significantly decreased by 40.5%, 32.8%, and 28%, respectively, when compared with the control group. In addition, ANB group showed a significant reduction in tumor burden as well. The messenger RNA (mRNA) level of p53 in tumor cells of ONB and ANB group was found to be 36-fold (P = 0.0001) and 33-fold (P = 0.0001) higher than that in the control group, respectively. There was a ninefold increase in mRNA expression of VEGF gene in tumor cells of ANB mice than that in control mice; however, there was no significant changes in ONB group. Expression of HIF gene was significantly lower in tumor cells of ONB and ANB group than in the control group. It is concluded that drinking ONB water has potential to inhibit tumor growth, however more preclinical and proof-of-concept studies are needed to confirm its safety and therapeutic effect.
Collapse
Affiliation(s)
- Azita Mahjour
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Majid Khazaei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Nourmohammadi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomical Sciences and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomical Sciences and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
39
|
Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation. Mol Cell Biol 2019; 39:MCB.00268-18. [PMID: 30692272 DOI: 10.1128/mcb.00268-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.
Collapse
|
40
|
Ali M, Kowkuntla S, Delloro DJ, Galambos C, Hathi D, Janz S, Shokeen M, Tripathi C, Xu H, Yuk J, Zhan F, Tomasson MH, Bates ML. Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R678-R686. [PMID: 30892915 DOI: 10.1152/ajpregu.00388.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity is the only known modifiable risk factor for multiple myeloma (MM), an incurable cancer of bone marrow plasma cells. The mechanism linking the two is unknown. Obesity is associated with an increased risk of sleep apnea, which results in chronic intermittent hypoxia (CIH), and drives solid tumor aggressiveness. Given the link between CIH and solid tumor progression, we tested the hypothesis that CIH drives the proliferation of MM cells in culture and their engraftment and progression in vivo. Malignant mouse 5TGM1 cells were cultured in CIH, static hypoxia, or normoxia as a control in custom, gas-permeable plates. Typically MM-resistant C57BL/6J mice were exposed to 10 h/day CIH (AHI = 12/h), static hypoxia, or normoxia for 7 days, followed by injection with 5TGM1 cells and an additional 28 days of exposure. CIH and static hypoxia slowed the growth of 5TGM1 cells in culture. CIH-exposed mice developed significantly more MM than controls (67 vs. 12%, P = 0.005), evidenced by hindlimb paralysis, gammopathy, bone lesions, and bone tumor formation. Static hypoxia was not a significant driver of MM progression and did not reduce survival (P = 0.117). Interestingly, 5TGM1 cells preferentially engrafted in the bone marrow and promoted terminal disease in CIH mice, despite a lower tumor burden, compared with the positive controls. These first experiments in the context of hematological cancer demonstrate that CIH promotes MM through mechanisms distinct from solid tumors and that sleep apnea may be a targetable risk factor in patients with or at risk for blood cancer.
Collapse
Affiliation(s)
- Mahmoud Ali
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Sandeep Kowkuntla
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Derick J Delloro
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, Colorado
| | - Deep Hathi
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Siegfried Janz
- Department of Pathology, University of Iowa , Iowa City, Iowa
| | - Monica Shokeen
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Chakrapani Tripathi
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Hongwei Xu
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Jisung Yuk
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Michael H Tomasson
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Melissa L Bates
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa.,Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
41
|
Qiu W, Song S, Chen W, Zhang J, Yang H, Chen Y. Hypoxia-induced EPHB2 promotes invasive potential of glioblastoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:539-548. [PMID: 31933858 PMCID: PMC6945092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 06/10/2023]
Abstract
EphB2, a receptor tyrosine kinase for ephrin ligands, is overexpressed in various cancers and plays an important role in tumor progression. EPHB2 promotes endothelial-mesenchymal transition (EMT) and elicits associated pathologic characteristics of glioblastoma multiforme (GBM) such as invasion and migration. However, the mechanisms of the EPHB2 regulatory network in glioma remain enigmatic. Here, we report that EPHB2 is epigenetically overexpressed in hypoxia, a condition highly prevalent in malignancy. Furthermore, HIF-2α is required for EPHB2 stabilization by hypoxia. Lastly, we discovered that the overexpression of EPHB2 promotes GBM invasion by the phosphorylation of paxillin in hypoxia. These findings establish the HIF-2α-EPHB2-paxillin axis as a regulatory mechanism of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, Guizhou Province, People’s Republic of China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, Guizhou Province, People’s Republic of China
| | - Wei Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, Guizhou Province, People’s Republic of China
| | - Jiale Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, Guizhou Province, People’s Republic of China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, Guizhou Province, People’s Republic of China
| |
Collapse
|
42
|
Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel) 2019; 11:cancers11010112. [PMID: 30669417 PMCID: PMC6357097 DOI: 10.3390/cancers11010112] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a mainstay treatment for many types of cancer and kills cancer cells via generation of reactive oxygen species (ROS). Incorporating radiation with pharmacological ROS inducers, therefore, has been widely investigated as an approach to enhance aerobic radiosensitization. However, this strategy was overlooked in hypoxic counterpart, one of the most important causes of radiotherapy failure, due to the notion that hypoxic cells are immune to ROS insults because of the shortage of ROS substrate oxygen. Paradoxically, evidence reveals that ROS are produced more in hypoxic than normoxic cells and serve as signaling molecules that render cells adaptive to hypoxia. As a result, hypoxic tumor cells heavily rely on antioxidant systems to sustain the ROS homeostasis. Thereby, they become sensitive to insults that impair the ROS detoxification network, which has been verified in diverse models with or without radiation. Of note, hypoxic radioresistance has been overviewed in different contexts. To the best of our knowledge, this review is the first to systemically summarize the interplay among radiation, hypoxia, and ROS, and to discuss whether perturbation of ROS homeostasis could provide a new avenue to tackle hypoxic radioresistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Melissa Van De Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
43
|
Yang J, Li W, Luo L, Jiang M, Zhu C, Qin B, Yin H, Yuan X, Yin X, Zhang J, Luo Z, Du Y, You J. Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance. Biomaterials 2018; 182:145-156. [DOI: 10.1016/j.biomaterials.2018.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
44
|
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 2018; 18:576-585. [PMID: 29891961 PMCID: PMC6441333 DOI: 10.1038/s41568-018-0030-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal changes in blood flow are commonly observed in malignant tumours, but the evolutionary causes and consequences are rarely considered. We propose that stochastic temporal variations in blood flow and microenvironmental conditions arise from the eco-evolutionary dynamics of tumour angiogenesis in which cancer cells, as individual units of selection, can influence and respond only to local environmental conditions. This leads to new vessels arising from the closest available vascular structure regardless of the size or capacity of this parental vessel. These dynamics produce unstable vascular networks with unpredictable spatial and temporal variations in blood flow and microenvironmental conditions. Adaptations of evolving populations to temporally varying environments in nature include increased diversity, greater motility and invasiveness, and highly plastic phenotypes, allowing for broad metabolic adaptability and rapid shifts to high rates of proliferation and profound quiescence. These adaptive strategies, when adopted in cancer cells, promote many commonly observed phenotypic properties including those found in the stem phenotype and in epithelial-to-mesenchymal transition. Temporal variations in intratumoural blood flow, which occur through the promotion of cancer cell phenotypes that facilitate both metastatic spread and resistance to therapy, may have substantial clinical consequences.
Collapse
Affiliation(s)
- Robert J Gillies
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Robert A Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
45
|
Peretti M, Raciti FM, Carlini V, Verduci I, Sertic S, Barozzi S, Garré M, Pattarozzi A, Daga A, Barbieri F, Costa A, Florio T, Mazzanti M. Mutual Influence of ROS, pH, and CLIC1 Membrane Protein in the Regulation of G 1-S Phase Progression in Human Glioblastoma Stem Cells. Mol Cancer Ther 2018; 17:2451-2461. [PMID: 30135216 DOI: 10.1158/1535-7163.mct-17-1223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability. In vitro, CLIC1 inhibition leads to a significant arrest of GB CSCs in G1 phase of the cell cycle. Furthermore, CLIC1 knockdown impairs tumor growth in vivo Here, we demonstrate that CLIC1 membrane localization and function is specific for GB CSCs. Mesenchymal stem cells (MSC) do not show CLIC1-associated chloride permeability, and inhibition of CLIC1 protein function has no influence on MSC cell-cycle progression. Investigation of the basic functions of GB CSCs reveals a constitutive state of oxidative stress and cytoplasmic alkalinization compared with MSCs. Both intracellular oxidation and cytoplasmic pH changes have been reported to affect CLIC1 membrane functional expression. We now report that in CSCs these three elements are temporally linked during CSC G1-S transition. Impeding CLIC1-mediated chloride current prevents both intracellular ROS accumulation and pH changes. CLIC1 membrane functional impairment results in GB CSCs resetting from an allostatic tumorigenic condition to a homeostatic steady state. In contrast, inhibiting NADPH oxidase and NHE1 proton pump results in cell death of both GB CSCs and MSCs. Our results show that CLIC1 membrane protein is crucial and specific for GB CSC proliferation, and is a promising pharmacologic target for successful brain tumor therapies. Mol Cancer Ther; 17(11); 2451-61. ©2018 AACR.
Collapse
Affiliation(s)
- Marta Peretti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Carlini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Ivan Verduci
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sara Barozzi
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy and Cogentech S.c.a.r.l., IFOM Via Adamello, Milan, Italy
| | - Massimiliano Garré
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy and Cogentech S.c.a.r.l., IFOM Via Adamello, Milan, Italy
| | - Alessandra Pattarozzi
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy
| | - Antonio Daga
- IRCCS Policlinico San Martino and Dipartimento delle Terapie Oncologiche Integrate, Ospedale San Martino, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genova, Italy.,IRCCS Policlinico San Martino and Dipartimento delle Terapie Oncologiche Integrate, Ospedale San Martino, Genova, Italy
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
46
|
Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 2018; 37:4214-4225. [DOI: 10.1038/s41388-018-0259-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
|
47
|
Demethoxycurcumin mediated targeting of MnSOD leading to activation of apoptotic pathway and inhibition of Akt/NF-κB survival signalling in human glioma U87 MG cells. Toxicol Appl Pharmacol 2018; 345:75-93. [DOI: 10.1016/j.taap.2018.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
|
48
|
Stadlbauer A, Mouridsen K, Doerfler A, Bo Hansen M, Oberndorfer S, Zimmermann M, Buchfelder M, Heinz G, Roessler K. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. J Cereb Blood Flow Metab 2018; 38:422-432. [PMID: 28273720 PMCID: PMC5851132 DOI: 10.1177/0271678x17694905] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynamic susceptibility contrast (DSC) perfusion MRI provide information about differences in macro- and microvasculature when executed with gradient-echo (GE; sensitive to macrovasculature) and spin-echo (SE; sensitive to microvasculature) contrast. This study investigated whether there are differences between macro- and microvascular transit time heterogeneity (MVTH and µVTH) and tissue oxygen tension (PO2mit) in newly-diagnosed and recurrent glioblastoma. Fifty-seven patients with glioblastoma (25 newly-diagnosed/32 recurrent) were examined with GE- and SE-DSC perfusion sequences, and a quantitative blood-oxygen-level-dependent (qBOLD) approach. Maps of MVTH, µVTH and coefficient of variation (MCOV and µCOV) were calculated from GE- and SE-DSC data, respectively, using an extended flow-diffusion equation. PO2mit maps were calculated from qBOLD data. Newly-diagnosed and recurrent glioblastoma showed significantly lower ( P ≤ 0.001) µCOV values compared to both normal brain and macrovasculature (MCOV) of the lesions. Recurrent glioblastoma had significantly higher µVTH ( P = 0.014) and µCOV ( P = 0.039) as well as significantly lower PO2mit values ( P = 0.008) compared to newly-diagnosed glioblastoma. The macrovasculature, however, showed no significant differences. Our findings provide evidence of microvascular adaption in the disorganized tumor vasculature for retaining the metabolic demands in stress response of therapeutically-uncontrolled glioblastomas. Thus, µVTH and PO2mit mapping gives insight into the tumor microenvironment (vascular and hypoxic niches) responsible for therapy resistance.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany.,2 Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Kim Mouridsen
- 3 Center of Functionally Integrative Neuroscience and MIND Lab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arnd Doerfler
- 4 Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mikkel Bo Hansen
- 3 Center of Functionally Integrative Neuroscience and MIND Lab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stefan Oberndorfer
- 5 Department of Neurology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Max Zimmermann
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gertraud Heinz
- 2 Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Karl Roessler
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Xu Q, Kulkarni AA, Sajith AM, Hussein D, Brown D, Güner OF, Reddy MD, Watkins EB, Lassègue B, Griendling KK, Bowen JP. Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorg Med Chem 2018; 26:989-998. [PMID: 29426628 PMCID: PMC5895456 DOI: 10.1016/j.bmc.2017.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 11/26/2022]
Abstract
NADPH oxidases (Nox enzymes) are critical mediators of both physiologic and pathophysiologic processes. Nox enzymes catalyze NADPH-dependent generation of reactive oxygen species (ROS), including superoxide and hydrogen peroxide. Until recently, Nox4 was proposed to be involved exclusively in normal physiologic functions. Compelling evidence, however, suggests that Nox4 plays a critical role in fibrosis, as well as a host of pathologies and diseases. These considerations led to a search for novel, small molecule inhibitors of this important enzyme. Ultimately, a series of novel tertiary sulfonylureas (23-25) was designed using pharmacophore modeling, synthesized, and evaluated for inhibition of Nox4-dependent signaling.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Amol A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA.
| | - Ayyiliath M Sajith
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Dilbi Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - David Brown
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Osman F Güner
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Current address: Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA 95401, USA
| | - M Damoder Reddy
- Department of Pharmaceutical Sciences, College of Pharmacy, Union University, Jackson, TN 38305, USA
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Union University, Jackson, TN 38305, USA
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - J Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
50
|
Yoshii Y, Matsumoto H, Yoshimoto M, Zhang MR, Oe Y, Kurihara H, Narita Y, Jin ZH, Tsuji AB, Yoshinaga K, Fujibayashi Y, Higashi T. Multiple Administrations of 64Cu-ATSM as a Novel Therapeutic Option for Glioblastoma: a Translational Study Using Mice with Xenografts. Transl Oncol 2017; 11:24-30. [PMID: 29154146 PMCID: PMC5697999 DOI: 10.1016/j.tranon.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is the most aggressive malignant brain tumor in humans and is difficult to cure using current treatment options. Hypoxic regions are frequently found in glioblastoma, and increased levels of hypoxia are associated with poor clinical outcomes of glioblastoma patients. Hypoxia plays important roles in the progression and recurrence of glioblastoma because of drug delivery deficiencies and induction of hypoxia-inducible factor-1α in tumor cells, which lead to poor prognosis. We focused on a promising hypoxia-targeted internal radiotherapy agent, 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), to address the need for additional treatment for glioblastoma. This compound can target the overreduced state under hypoxic conditions within tumors. Clinical positron emission tomography studies using radiolabeled Cu-ATSM have shown that Cu-ATSM accumulates in glioblastoma and its uptake is associated with high hypoxia-inducible factor-1α expression. To evaluate the therapeutic potential of this agent for glioblastoma, we examined the efficacy of 64Cu-ATSM in mice bearing U87MG glioblastoma tumors. Administration of single dosage (18.5, 37, 74, 111, and 148 MBq) and multiple dosages (37 MBq × 4) of 64Cu-ATSM was investigated. Single administration of 64Cu-ATSM in high-dose groups dose-dependently inhibited tumor growth and prolonged survival, with slight and reverse signs of adverse events. Multiple dosages of 64Cu-ATSM remarkably inhibited tumor growth and prolonged survival. By splitting the dose of 64Cu-ATSM, no adverse effects were observed. Our findings indicate that multiple administrations of 64Cu-ATSM have effective antitumor effects in glioblastoma without side effects, indicating its potential for treating this fatal disease.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Hiroki Matsumoto
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, 277-8577, Kashiwa, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yoko Oe
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| | - Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Keiichiro Yoshinaga
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|