1
|
Gayen M, Benoit MR, Fan Q, Hudobenko J, Yan R. The CX3CL1 intracellular domain exhibits neuroprotection via insulin receptor/ insulin like growth factor receptor signaling. J Biol Chem 2022; 298:102532. [PMID: 36162508 DOI: 10.1016/j.jbc.2022.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022] Open
Abstract
CX3CL1, also known as fractalkine, is best known for its signaling activity through interactions with its cognate receptor CX3CR1. However, its intrinsic function that is independent of interaction with CX3CR1 remains to be fully understood. We demonstrate that the intracellular domain of CX3CL1 (CX3CL1-ICD), generated upon sequential cleavages by α-/β-secretase and γ-secretase, initiates a back signaling activity, which mediates direct signal transmission to gene expression in the nucleus. To study this, we fused a synthetic peptide derived from CX3CL1-ICD, named Tet34, with a 13-amino acid tetanus sequence at the N-terminus to facilitate translocation into neuronal cells. We show that treatment of mouse neuroblastoma Neuro-2A cells with Tet34, but not its scrambled control (Tet34s), induced cell proliferation, as manifested by changes in protein levels of transcription factors and pro-growth molecules Foxo-1, -3, cyclin D1, PCNA, Sox5, and cdk2. Further biochemical assays reveal elevation of phosphorylated insulin receptor β subunit, insulin-like growth factor-1 (IGF-1) receptor β subunit and insulin receptor substrates as well as activation of proliferation-linked kinase AKT. In addition, transgenic mice overexpressing membrane-anchored C-terminal CX3CL1 (CX3CL1- ct) also exhibited activation of insulin/IGF-1 receptor signaling. Remarkably, we found this Tet34 peptide, but not Tet34s, protected against endoplasmic reticulum stress and cellular apoptosis when Neuro-2A cells were challenged with toxic oligomers of β-amyloid peptide or hydrogen peroxide. Taken together, our results suggest CX3CL1-ICD may have translational potential for neuroprotection in Alzheimer's disease and for disorders resulting from insulin resistance.
Collapse
Affiliation(s)
- Manoshi Gayen
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| | - Marc R Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| | - Qingyuan Fan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| | - Jacob Hudobenko
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT., USA.
| |
Collapse
|
2
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
3
|
Uddin MS, Al Mamun A, Rahman MA, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease. Curr Top Med Chem 2021; 20:2380-2390. [PMID: 32479244 DOI: 10.2174/1568026620666200601161703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. SUMMARY Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. CONCLUSION Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Deike S, Rothemund S, Voigt B, Samantray S, Strodel B, Binder WH. β-Turn mimetic synthetic peptides as amyloid-β aggregation inhibitors. Bioorg Chem 2020; 101:104012. [PMID: 32683138 DOI: 10.1016/j.bioorg.2020.104012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Aggregation of amyloid peptides results in severe neurodegenerative diseases. While the fibril structures of Aβ40 and Aβ42 have been described recently, resolution of the aggregation pathway and evaluation of potent inhibitors still remains elusive, in particular in view of the hairpin-region of Aβ40. We here report the preparation of beta-turn mimetic conjugates containing synthetic turn mimetic structures in the turn region of Aβ40 and Aβ16-35, replacing 2 amino acids in the turn-region G25 - K28. The structure of the turn mimic induces both, acceleration of fibrillation and the complete inhibition of fibrillation, confirming the importance of the turn region on the aggregation. Replacing position G25-S26 provided the best inhibition effect for both beta-turn mimetics, the bicyclic BTD 1 and the aromatic TAA 2, while positions N27-K28 and V24-G25 showed only weaker or no inhibitory effects. When comparing different turn mimetics at the same position (G25-S26), conjugate 1a bearing the BTD turn showed the best inhibition of Aβ40 aggregation, while 5-amino-valeric acid 4a showed the weakest effect. Thus there is a pronounced impact on fibrillation with the chemical nature of the embedded beta-turn-mimic: the conformationally constrained turns 1 and 2 lead to a significantly reduced fibrillation, even inhibiting fibrillation of native Aβ40 when added in amounts down to 1/10, whereas the more flexible beta-turn-mimics 4-amino-benzoic acid 3a and 5-amino-valeric acid 4a lead to enhanced fibrillation. Toxicity-testing of the most successful conjugate showed only minor toxicity in cell-viability assays using the N2a cell line. Structural downsizing lead to the short fragment BTD/peptide Aβ16-35 as inhibitor of the aggregation of Aβ40, opening large potential for further small peptide based inhibitors.
Collapse
Affiliation(s)
- Stefanie Deike
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Sven Rothemund
- Core Unit Peptid-Technologien, University Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Bruno Voigt
- Department of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimannstrasse 7 4, 06120 Halle, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang H Binder
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany.
| |
Collapse
|
5
|
Rojas-Charry L, Calero-Martinez S, Morganti C, Morciano G, Park K, Hagel C, Marciniak SJ, Glatzel M, Pinton P, Sepulveda-Falla D. Susceptibility to cellular stress in PS1 mutant N2a cells is associated with mitochondrial defects and altered calcium homeostasis. Sci Rep 2020; 10:6455. [PMID: 32296078 PMCID: PMC7160112 DOI: 10.1038/s41598-020-63254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Presenilin 1 (PS1) mutations are the most common cause of familial Alzheimer's disease (FAD). PS1 also plays a role in cellular processes such as calcium homeostasis and autophagy. We hypothesized that mutant presenilins increase cellular vulnerability to stress. We stably expressed human PS1, mutant PS1E280A and mutant PS1Δ9 in mouse neuroblastoma N2a cells. We examined early signs of stress in different conditions: endoplasmic reticulum (ER) stress, calcium overload, oxidative stress, and Aβ 1-42 oligomers toxicity. Additionally, we induced autophagy via serum starvation. PS1 mutations did not have an effect in ER stress but PS1E280A mutation affected autophagy. PS1 overexpression influenced calcium homeostasis and generated mitochondrial calcium overload modifying mitochondrial function. However, the opening of the mitochondrial permeability transition pore (MPTP) was affected in PS1 mutants, being accelerated in PS1E280A and inhibited in PS1Δ9 cells. Altered autophagy in PS1E280A cells was neither modified by inhibition of γ-secretase, nor by ER calcium retention. MPTP opening was directly regulated by γ-secretase inhibitors independent on organelle calcium modulation, suggesting a novel direct role for PS1 and γ-secretase in mitochondrial stress. We identified intrinsic cellular vulnerability to stress in PS1 mutants associated simultaneously with both, autophagic and mitochondrial function, independent of Aβ pathology.
Collapse
Affiliation(s)
- Liliana Rojas-Charry
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Calero-Martinez
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Kyungeun Park
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
bioNMR-based identification of natural anti-Aβ compounds in Peucedanum ostruthium. Bioorg Chem 2019; 83:76-86. [DOI: 10.1016/j.bioorg.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
|
7
|
Ciaramelli C, Palmioli A, De Luigi A, Colombo L, Sala G, Riva C, Zoia CP, Salmona M, Airoldi C. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts. Food Chem 2018; 252:171-180. [DOI: 10.1016/j.foodchem.2018.01.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
|
8
|
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D'Alessandro A. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies. Expert Rev Proteomics 2018; 15:293-309. [PMID: 29540077 PMCID: PMC6174679 DOI: 10.1080/14789450.2018.1453362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
Collapse
Affiliation(s)
- Julie A Reisz
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Alexander S Barrett
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Travis Nemkov
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Kirk C Hansen
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
9
|
Salza R, Lethias C, Ricard-Blum S. The Multimerization State of the Amyloid-β42 Amyloid Peptide Governs its Interaction Network with the Extracellular Matrix. J Alzheimers Dis 2018; 56:991-1005. [PMID: 28106549 DOI: 10.3233/jad-160751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The goals of this work were i) to identify the interactions of amyloid-β (Aβ)42 under monomeric, oligomeric, and fibrillar forms with the extracellular matrix (ECM) and receptors, ii) to determine the influence of Aβ42 supramolecular organization on these interactions, and iii) to identify the molecular functions, biological processes, and pathways targeted by Aβ42 in the ECM. The ECM and cell surface partners of Aβ42 and its supramolecular forms were identified with protein and glycosaminoglycan (GAG) arrays (81 molecules in triplicate) probed by surface plasmon resonance imaging. The number of partners of Aβ42 increased upon its multimerization, ranging from 4 for the peptide up to 53 for the fibrillar aggregates. The peptide interacted only with ECM proteins but their percentage among Aβ42 partners decreased upon multimerization. Aβ42 and its supramolecular forms recognized different molecular features on their partners, and the partners of Aβ42 fibrillar forms were enriched in laminin IV-A, N-terminal, and EGF-like domains. Aβ42 oligomerization triggered interactions with receptors, whereas Aβ42 fibrillogenesis promoted binding to GAGs, proteoglycans, enzymes, and growth factors and the ability to interact with perineuronal nets. Fibril aggregation bind to further membrane proteins including tumor endothelial marker-8, syndecan-4, and discoidin-domain receptor-2. The partners of the Aβ42 supramolecular forms are enriched in proteins contributing to cell growth and/or maintenance, involved in integrin cell surface interactions and expressed in kidney cancer, preadipocytes, and dentin. In conclusion, the supramolecular assembly of Aβ42 governs its ability to interact in vitro with ECM proteins, remodeling and crosslinking ECM enzymes, proteoglycans, and receptors.
Collapse
Affiliation(s)
- Romain Salza
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| | - Claire Lethias
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS - Université Lyon 1, Lyon, Cedex 07, France
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| |
Collapse
|
10
|
Algamal M, Ahmed R, Jafari N, Ahsan B, Ortega J, Melacini G. Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid β (Aβ) peptides in the monomer and protofibril states. J Biol Chem 2017; 292:17158-17168. [PMID: 28798235 DOI: 10.1074/jbc.m117.792853] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/08/2017] [Indexed: 01/23/2023] Open
Abstract
Self-association of amyloid β (Aβ) peptides is a hallmark of Alzheimer's disease and serves as a general prototype for amyloid formation. A key endogenous inhibitor of Aβ self-association is human serum albumin (HSA), which binds ∼90% of plasma Aβ. However, the exact molecular mechanism by which HSA binds Aβ monomers and protofibrils is not fully understood. Here, using dark-state exchange saturation transfer NMR and relaxation experiments complemented by morphological characterization, we mapped the HSA-Aβ interactions at atomic resolution by examining the effects of HSA on Aβ monomers and soluble high-molecular weight oligomeric protofibrils. We found that HSA binds both monomeric and protofibrillar Aβ, but the affinity of HSA for Aβ monomers is lower than for Aβ protofibrils (Kd values are submillimolar rather than micromolar) yet physiologically relevant because of the ∼0.6-0.7 mm plasma HSA concentration. In both Aβ protofibrils and monomers, HSA targets key Aβ self-recognition sites spanning the β strands found in cross-β protofibril structures, leading to a net switch from direct to tethered contacts between the monomeric Aβ and the protofibril surface. These HSA-Aβ interactions are isoform-specific, because the HSA affinity of Aβ monomers is lower for Aβ(1-42) than for Aβ(1-40). In addition, the HSA-induced perturbations of the monomer/protofibrils pseudo-equilibrium extend to the C-terminal residues in the Aβ(1-42) isoform but not in Aβ(1-40). These results provide an unprecedented view of how albumin interacts with Aβ and illustrate the potential of dark-state exchange saturation transfer NMR in mapping the interactions between amyloid-inhibitory proteins and amyloidogenic peptides.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Naeimeh Jafari
- From the Departments of Chemistry and Chemical Biology and
| | - Bilal Ahsan
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Joaquin Ortega
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and .,Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
11
|
Jan A, Jansonius B, Delaidelli A, Somasekharan SP, Bhanshali F, Vandal M, Negri GL, Moerman D, MacKenzie I, Calon F, Hayden MR, Taubert S, Sorensen PH. eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathol 2017; 133:101-119. [PMID: 27752775 DOI: 10.1007/s00401-016-1634-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Soluble oligomers of amyloid-β (Aβ) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer's disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aβ oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aβ oligomers activate neuronal eEF2K, suggesting a potential link to Aβ induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aβ42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aβ42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aβ42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aβ-mediated oxidative stress in AD.
Collapse
Affiliation(s)
- Asad Jan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Brandon Jansonius
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | - Forum Bhanshali
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Milène Vandal
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Gian Luca Negri
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ian MacKenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
12
|
Zhang YL, Zhou Z, Han WW, Zhang LL, Song WS, Huang JH, Liu S. Oleanolic Acid Inhibiting the Differentiation of Neural Stem Cells into Astrocyte by Down-Regulating JAK/STAT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:103-17. [PMID: 26916917 DOI: 10.1142/s0192415x16500075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the effect of oleanolic acid (OA) on the differentiation of neural stem cells (NSCs) induced by A[Formula: see text] via regulating the JAK/STAT signaling pathway, a neurotoxicity cell model involving the induction of NSCs by soluble A[Formula: see text] (5 [Formula: see text]M) was used. The WST-1 method and immunofluorescence tests were used respectively to detect the activity of cell model and the expression of GFAP[Formula: see text]/DAPI and Tubulin[Formula: see text]/DAPI. Western blotting and real-time PCR analyses were used to observe the effects of OA on NSCs differentiation by examining key targets of the JAK/STAT signal transduction pathway. Compared with normal NSCs, A[Formula: see text]-induced NSCs had down-regulated expression of Ngn1 and up-regulated STAT3 expression and phosphorylation, and inhibited neuronal differentiation. OA treatment effectively inhibited the A[Formula: see text]-induced activation of JAK/STAT signaling, with a significant increase in Ngn1 expression and a significant decrease in p-STAT3/STAT3. These results indicate that OA could inhibit the excessive differentiation of NSCs into astrocytes by down-regulating JAK/STAT signaling which might retard the progress of AD.
Collapse
Affiliation(s)
- Yu-Lian Zhang
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Zhen Zhou
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Wen-Wen Han
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Lin-Lin Zhang
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Wan-Shan Song
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Jian-Hua Huang
- † Institute of Traditional Chinese and Western Medicine, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Shuang Liu
- * Department of Neurology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| |
Collapse
|
13
|
Guzzi C, Colombo L, Luigi AD, Salmona M, Nicotra F, Airoldi C. Flavonoids and Their Glycosides as Anti-amyloidogenic Compounds: Aβ1-42 Interaction Studies to Gain New Insights into Their Potential for Alzheimer's Disease Prevention and Therapy. Chem Asian J 2016; 12:67-75. [DOI: 10.1002/asia.201601291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/19/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Cinzia Guzzi
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
| | - Laura Colombo
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Ada De Luigi
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Mario Salmona
- Department Biochemistry and Molecular Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”; Via Giuseppe La Masa, 19 20156 Milan Italy
| | - Francesco Nicotra
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
- Milan Center of Neuroscience (NeuroMI); 20126 Milan Italy
| | - Cristina Airoldi
- Department of Biotecnology and Bioscience; University of Milano-Bicocca; Piazza della Scienza 2 I-20126 Milan Italy
- Milan Center of Neuroscience (NeuroMI); 20126 Milan Italy
| |
Collapse
|
14
|
Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, Perry G, Odetti P, Arancio O, Tamagno E, Tabaton M. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell 2016; 15:914-23. [PMID: 27406053 PMCID: PMC5013016 DOI: 10.1111/acel.12500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 01/14/2023] Open
Abstract
The mechanistic relationship between amyloid β1-42 (Aβ1-42) and the alteration of Tau protein are debated. We investigated the effect of Aβ1-42 monomers and oligomers on Tau, using mice expressing wild-type human Tau that do not spontaneously develop Tau pathology. After intraventricular injection of Aβ1-42, mice were sacrificed after 3 h or 4 days. The short-lasting treatment with Aβ monomers, but not oligomers, showed a conformational PHF-like change of Tau, together with hyperphosphorylation. The same treatment induced increase in concentration of GSK3 and MAP kinases. The inhibition of the kinases rescued the Tau changes. Aβ monomers increased the levels of total Tau, through the inhibition of proteasomal degradation. Aβ oligomers reproduced all the aforementioned alterations only after 4 days of treatment. It is known that Aβ1-42 monomers foster synaptic activity. Our results suggest that Aβ monomers physiologically favor Tau activity and dendritic sprouting, whereas their excess causes Tau pathology. Moreover, our study indicates that anti-Aβ therapies should be targeted to Aβ1-42 monomers too.
Collapse
Affiliation(s)
- Giusi Manassero
- Department of Neuroscience University of Torino via Cherasco 15 10126 Torino Italy
- Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO) University of Torino Regione Gonzole 1010043 OrbassanoTorino Italy
- Unit of Geriatric Medicine Department of Internal Medicine and Medical Specialties (DIMI) University of Genova Viale Benedetto XV, 616132 Genova Italy
| | - Michela Guglielmotto
- Department of Neuroscience University of Torino via Cherasco 15 10126 Torino Italy
- Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO) University of Torino Regione Gonzole 1010043 OrbassanoTorino Italy
| | - Raluca Zamfir
- Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO) University of Torino Regione Gonzole 1010043 OrbassanoTorino Italy
| | - Roberta Borghi
- Unit of Geriatric Medicine Department of Internal Medicine and Medical Specialties (DIMI) University of Genova Viale Benedetto XV, 616132 Genova Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology IRCCS‐Istituto di Ricerche Farmacologiche ‘Mario Negri’ Via Giuseppe La Masa 19, 20156 Milan Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology IRCCS‐Istituto di Ricerche Farmacologiche ‘Mario Negri’ Via Giuseppe La Masa 19, 20156 Milan Italy
| | - George Perry
- College of Sciences The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Patrizio Odetti
- Unit of Geriatric Medicine Department of Internal Medicine and Medical Specialties (DIMI) University of Genova Viale Benedetto XV, 616132 Genova Italy
- IRCCS San Martino‐IST University of Genova Viale Benedetto XV, 616132 Genova Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology Taub Institute for Research on Alzheimer's Disease and the Aging Brain Columbia University 630 West 168th Street, P&S 12‐420D New York NY 10032 USA
| | - Elena Tamagno
- Department of Neuroscience University of Torino via Cherasco 15 10126 Torino Italy
- Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO) University of Torino Regione Gonzole 1010043 OrbassanoTorino Italy
| | - Massimo Tabaton
- Unit of Geriatric Medicine Department of Internal Medicine and Medical Specialties (DIMI) University of Genova Viale Benedetto XV, 616132 Genova Italy
| |
Collapse
|
15
|
Wang DD, Li J, Yu LP, Wu MN, Sun LN, Qi JS. Desipramine improves depression-like behavior and working memory by up-regulating p-CREB in Alzheimer’s disease associated mice. J Integr Neurosci 2016; 15:247-60. [DOI: 10.1142/s021963521650014x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
16
|
Forloni G, Artuso V, La Vitola P, Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov Disord 2016; 31:771-81. [DOI: 10.1002/mds.26624] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gianluigi Forloni
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | | | - Pietro La Vitola
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | - Claudia Balducci
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| |
Collapse
|
17
|
Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Sci Rep 2016; 6:20997. [PMID: 26880066 PMCID: PMC4754687 DOI: 10.1038/srep20997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment.
Collapse
|
18
|
The cell-permeable Aβ1-6A2VTAT(D) peptide reverts synaptopathy induced by Aβ1-42wt. Neurobiol Dis 2015; 89:101-11. [PMID: 26721320 DOI: 10.1016/j.nbd.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia. Loss of hippocampal synapses is the first neurodegenerative event in AD. Synaptic loss has been associated with the accumulation in the brain parenchyma of soluble oligomeric forms of amyloid β peptide (Aβ1-42wt). Clinical observations have shown that a mutation in the APP protein (A673V) causes an early onset AD-type dementia in homozygous carriers while heterozygous carriers are unaffected. This mutation leads to the formation of mutated Aβ peptides (Aβ1-42A2V) in homozygous patients, while in heterozygous subjects both Aβ1-42wt and Aβ1-42A2V are present. To better understand the impact of the A673V mutation in AD, we analyzed the synaptotoxic effect of oligomers formed by aggregation of different Aβ peptides (Aβ1-42wt or Aβ1-42A2V) and the combination of the two Aβ1-42MIX (Aβ1-42wt and Aβ1-42A2V) in an in vitro model of synaptic injury. We showed that Aβ1-42A2V oligomers are more toxic than Aβ1-42wt oligomers in hippocampal neurons, confirming the results previously obtained in cell lines. Furthermore, we reported that oligomers obtained by the combination of both wild type and mutated peptides (Aβ1-42MIX) did not exert synaptic toxicity. We concluded that the combination of Aβ1-42wt and Aβ1-42A2V peptides hinders the toxicity of Aβ1-42A2V and counteracts the manifestation of synaptopathy in vitro. Finally we took advantage of this finding to generate a cell-permeable peptide for clinical application, by fusing the first six residues of the Aβ1-42A2V to the TAT cargo sequence (Aβ1-6A2VTAT(D)). Noteworthy, the treatment with Aβ1-6A2VTAT(D) confers neuroprotection against both in vitro and in vivo synaptopathy models. Therefore Aβ1-6A2VTAT(D) may represent an innovative therapeutic tool to prevent synaptic degeneration in AD.
Collapse
|
19
|
Altman R, Ly S, Hilt S, Petrlova J, Maezawa I, Kálai T, Hideg K, Jin LW, Laurence TA, Voss JC. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1860-1870. [PMID: 26374940 DOI: 10.1016/j.bbapap.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/20/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers.
Collapse
Affiliation(s)
- Robin Altman
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Sonny Ly
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore CA 94550, USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Jitka Petrlova
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento CA 95817, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento CA 95817, USA
| | - Ted A Laurence
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore CA 94550, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA.
| |
Collapse
|
20
|
Colombo L, Zoia L, Violatto MB, Previdi S, Talamini L, Sitia L, Nicotra F, Orlandi M, Salmona M, Recordati C, Bigini P, La Ferla B. Organ Distribution and Bone Tropism of Cellulose Nanocrystals in Living Mice. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00805] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Laura Colombo
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Luca Zoia
- Department
of Earth and Environmental Science, University of Milano-Bicocca, Piazza
della Scienza 1, 20126 Milan, Italy
| | | | - Sara Previdi
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Laura Talamini
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Leopoldo Sitia
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Francesco Nicotra
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| | - Marco Orlandi
- Department
of Earth and Environmental Science, University of Milano-Bicocca, Piazza
della Scienza 1, 20126 Milan, Italy
| | - Mario Salmona
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Camilla Recordati
- Mouse
and Animal Pathology Laboratory, Fondazione Filarete, Viale Ortles
22/4, 20139 Milano, Italy
| | - Paolo Bigini
- IRCCS-Istituto
di Ricerche Farmacologiche “Mario Negri”, 20156 Milan, Italy
| | - Barbara La Ferla
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
21
|
Parthasarathy R, Chow KM, Derafshi Z, Fautsch MP, Hetling JR, Rodgers DW, Hersh LB, Pepperberg DR. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin. Exp Eye Res 2015; 138:134-44. [PMID: 26142956 DOI: 10.1016/j.exer.2015.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
Amyloid-beta (Aβ) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aβ plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aβ levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aβ is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aβ in the living eye under physiological conditions could prove useful for research on ocular Aβ physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aβ monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aβ-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aβ levels in mice that exhibit readily measurable, aqueous buffer-extractable Aβ40 and Aβ42, two principal forms of Aβ. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 μg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aβ40 and Aβ42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aβ (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aβ40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 μg sNEP. At 4 ng sNEP the average Aβ40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 μg sNEP produced an Aβ40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aβ42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 μg sNEP, conditions that on average led, respectively, to an 82% and 91% Aβ40 reduction in C57BL/6J eyes, an 87% and 92% Aβ40 reduction in 5XFAD eyes, and a 23% and 52% Aβ42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aβ levels reported here represents a possible approach for determining effects of Aβ reduction in normally functioning eyes and in models of retinal degenerative disease.
Collapse
Affiliation(s)
- Rajni Parthasarathy
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - K Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Zahra Derafshi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | | | - John R Hetling
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - David R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Reale M, Di Nicola M, Velluto L, D'Angelo C, Costantini E, Lahiri DK, Kamal MA, Yu QS, Greig NH. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr Alzheimer Res 2015; 11:608-22. [PMID: 24359497 DOI: 10.2174/1567205010666131212113218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests that elevated production and/or reduced clearance of amyloid-β peptide (Aβ) drives the early pathogenesis of Alzheimer's disease (AD). Aβ soluble oligomers trigger a neurotoxic cascade that leads to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within brain and systemically, together with a deficiency in the neurotransmitter acetylcholine (ACh) that underpinned the development of anticholinesterases for AD symptomatic treatment, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy controls (HC) and AD patients. Plasma levels of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and Aβ were significantly elevated in AD vs. HC subjects, and ACh showed a trend towards reduced levels. Aβ challenge of PBMCs induced a greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways underpinning Aβ-induced changes in cytokine expression. As amyloid-β precursor protein expression, and hence Aβ, has been reported regulated by particular cytokines and anticholinesterases, the latter were evaluated on Aβ- and PHA-induced chemocytokine expression. Co-incubation with selective AChE/BuChE inhibitors, (-)-phenserine (AChE) and (-)-cymserine analogues (BuChE), mitigated the rise in cytokine levels and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nigel H Greig
- Dept. of Experimental and Clinical Sciences, Unit ofImmunodiagnostic and Molecular Pathology, University "G. D'Annunzio", N.P.D., Ed. C, III lev., Via dei Vestini, 31, 66123 Chieti, Italy.
| |
Collapse
|
23
|
Sethi A, Delatte J, Foil L, Husseneder C. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts. PLoS One 2014; 9:e106199. [PMID: 25198727 PMCID: PMC4157778 DOI: 10.1371/journal.pone.0106199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| | - Jennifer Delatte
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Lane Foil
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| |
Collapse
|
24
|
Sironi E, Colombo L, Lompo A, Messa M, Bonanomi M, Regonesi ME, Salmona M, Airoldi C. Natural Compounds against Neurodegenerative Diseases: Molecular Characterization of the Interaction of Catechins from Green Tea with Aβ1–42, PrP106–126, and Ataxin‐3 Oligomers. Chemistry 2014; 20:13793-800. [DOI: 10.1002/chem.201403188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Erika Sironi
- Department of Biotechnology and Biosciences University of Milano‐Bicocca, P.zza della Scienza, 2, 20126, Milano (Italy), Fax: (+39) 02‐6448‐3565
| | - Laura Colombo
- Department Biochemistry and Molecular Pharmacology, IRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa, 19 20156 Milano (Italy)
| | - Angela Lompo
- Department of Biotechnology and Biosciences University of Milano‐Bicocca, P.zza della Scienza, 2, 20126, Milano (Italy), Fax: (+39) 02‐6448‐3565
| | - Massimo Messa
- Department Biochemistry and Molecular Pharmacology, IRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa, 19 20156 Milano (Italy)
| | - Marcella Bonanomi
- Department of Biotechnology and Biosciences University of Milano‐Bicocca, P.zza della Scienza, 2, 20126, Milano (Italy), Fax: (+39) 02‐6448‐3565
| | - Maria Elena Regonesi
- Department of Statistics and Quantitative Methods, University of Milano‐Bicocca, Via Bicocca degli Arcimboldi, 8, 20126, Milano (Italy)
| | - Mario Salmona
- Department Biochemistry and Molecular Pharmacology, IRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa, 19 20156 Milano (Italy)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences University of Milano‐Bicocca, P.zza della Scienza, 2, 20126, Milano (Italy), Fax: (+39) 02‐6448‐3565
| |
Collapse
|
25
|
Messa M, Colombo L, del Favero E, Cantù L, Stoilova T, Cagnotto A, Rossi A, Morbin M, Di Fede G, Tagliavini F, Salmona M. The peculiar role of the A2V mutation in amyloid-β (Aβ) 1-42 molecular assembly. J Biol Chem 2014; 289:24143-52. [PMID: 25037228 DOI: 10.1074/jbc.m114.576256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We recently reported a novel Aβ precursor protein mutation (A673V), corresponding to position 2 of Aβ1-42 peptides (Aβ1-42A2V), that caused an early onset AD-type dementia in a homozygous individual. The heterozygous relatives were not affected as an indication of autosomal recessive inheritance of this mutation. We investigated the folding kinetics of native unfolded Aβ1-42A2V in comparison with the wild type sequence (Aβ1-42WT) and the equimolar solution of both peptides (Aβ1-42MIX) to characterize the oligomers that are produced in the early phases. We carried out the structural characterization of the three preparations using electron and atomic force microscopy, fluorescence emission, and x-ray diffraction and described the soluble oligomer formation kinetics by laser light scattering. The mutation promoted a peculiar pathway of oligomerization, forming a connected system similar to a polymer network with hydrophobic residues on the external surface. Aβ1-42MIX generated assemblies very similar to those produced by Aβ1-42WT, albeit with slower kinetics due to the difficulties of Aβ1-42WT and Aβ1-42A2V peptides in building up of stable intermolecular interaction.
Collapse
Affiliation(s)
- Massimo Messa
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Laura Colombo
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Elena del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, V.le F.lli Cervi 93, 20090 Segrate, Italy, and
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milan, V.le F.lli Cervi 93, 20090 Segrate, Italy, and
| | - Tatiana Stoilova
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Alfredo Cagnotto
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Alessandro Rossi
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Michela Morbin
- Neurology V and Neuropathology, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Giuseppe Di Fede
- Neurology V and Neuropathology, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Fabrizio Tagliavini
- Neurology V and Neuropathology, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Mario Salmona
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy,
| |
Collapse
|
26
|
Carvalho C, Katz PS, Dutta S, Katakam PVG, Moreira PI, Busija DW. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J Alzheimers Dis 2014; 38:75-83. [PMID: 23948922 DOI: 10.3233/jad-130464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal Department of Life Sciences - Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Multhammer M, Michels A, Zintl M, Mendoza MC, Klünemann HH. A large ApoE ε4/ε4 homozygous cohort reveals no association with Parkinson's disease. Acta Neurol Belg 2014; 114:25-31. [PMID: 23794363 DOI: 10.1007/s13760-013-0223-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
To investigate the correlation between cognitive impairment, Parkinson's disease (PD) symptoms and ApoE ε4/ε4 homozygosity an ApoE ε4/ε4 homozygous cohort was compared with an ApoE ε3/ε3 homozygous comparison group. A total of 696 outpatients with memory complaints had undergone comprehensive neuropsychiatric assessment including interview and examination by clinical psychiatrists and neurologists as well as laboratory blood testing (including ApoE genotyping). Patients also underwent the Consortium to Establish a Registry on Alzheimer's Disease (CERAD) test battery and the Clock-Drawing Test (Shulman scoring). Of the 623 selected individuals 258 were homozygous for ApoE ε3 and 133 were homozygous for ApoE ε4, while 232 were heterozygous for ApoE ε3/ε4. Thirty patients in the entire sample were diagnosed with PD (4.8 %). In the ApoE ε4/ε4 group seven persons had PD (5.3 %), while in the ApoE ε3/ε3 comparison group nine persons were diagnosed with PD (3.5 %). In the ApoE ε3/ε4 heterozygous group we found 14 (6.03 %) subjects meeting criteria for PD, P = 0.406. This is to our knowledge the largest retrospective cohort study to date of ApoE ε4 homozygous carriers. In comparison with the ApoE ε3 homozygous carriers in our study, subjects who were homozygous for ApoE ε4 demonstrated a slightly but statistically insignificant higher prevalence of PD, while in the ApoE ε3/ε4 heterozygous group we detected the highest rate of probands diagnosed with PD. We conclude that there is no correlation between allele combinations of ApoE ε3 and ApoE ε4 in their heterozygote and homozygote composition and prevalence of PD.
Collapse
Affiliation(s)
- Manuel Multhammer
- Department of Psychiatry and Psychotherapy, Gedächtnisambulanz des Bezirksklinikums der Universität Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany,
| | | | | | | | | |
Collapse
|
28
|
Wang ZJ, Han WN, Yang GZ, Yuan L, Liu XJ, Li QS, Qi JS. The neuroprotection of Rattin against amyloid β peptide in spatial memory and synaptic plasticity of rats. Hippocampus 2013; 24:44-53. [PMID: 23996574 DOI: 10.1002/hipo.22202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
Rattin, a specific derivative of humanin in rats, shares the ability with HN to protect neurons against amyloid β (Aβ) peptide-induced cellular toxicity. However, it is still unclear whether Rattin can protect against Aβ-induced deficits in cognition and synaptic plasticity in rats. In the present study, we observed the effects of Rattin and Aβ31-35 on the spatial reference memory and in vivo hippocampal Long-term potentiation of rats by using Morris water maze test and hippocampal field potential recording. Furthermore, the probable molecular mechanism underlying the neuroprotective roles of Rattin was investigated. We showed that intra-hippocampal injection of Rattin effectively prevented the Aβ31-35-induced spatial memory deficits and hippocampal LTP suppression in rats; the Aβ31-35-induced activation of Caspase-3 and inhibition of STAT3 in the hippocampus were also prevented by Rattin treatment. These findings indicate that Rattin treatment can protect spatial memory and synaptic plasticity of rats against Aβ31-35-induced impairments, and the underlying protective mechanism of Rattin may be involved in STAT3 and Caspases-3 pathways. Therefore, application of Rattin or activation of its signaling pathways in the brain might be beneficial to the prevention of Aβ-related cognitive deficits.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Neurobiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Stoilova T, Colombo L, Forloni G, Tagliavini F, Salmona M. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem 2013; 56:5987-6006. [PMID: 23611039 DOI: 10.1021/jm400161p] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of tetracyclines has declined because of the appearance of resistant bacterial strains. However, the indications of nonantimicrobial activities of these drugs have considerably raised interest and triggered clinical trials for a number of different pathologies. About 10 years ago we first reported that tetracyclines inhibited the aggregation of prion protein fragments and Alzheimer's β peptides, destabilizing their aggregates and promoting their degradation by proteases. On the basis of these observations, the antiamyloidogenic effects of tetracyclines on a variety of amyloidogenic proteins were studied and confirmed by independent research groups. In this review we comment on the data available on their antiamyloidogenic activity in preclinical and clinical studies. We also put forward that the beneficial effects of these drugs are a result of a peculiar pleiotropic action, comprising their interaction with oligomers and disruption of fibrils, as well as their antioxidant, anti-inflammatory, antiapoptotic, and matrix metalloproteinase inhibitory activities.
Collapse
Affiliation(s)
- Tatiana Stoilova
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milano, Italy
| | | | | | | | | |
Collapse
|
30
|
Hartman K, Brender JR, Monde K, Ono A, Evans M, Popovych N, Chapman MR, Ramamoorthy A. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. PeerJ 2013; 1:e5. [PMID: 23638387 PMCID: PMC3629062 DOI: 10.7717/peerj.5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically increase HIV infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a more general phenomenon than previously supposed.
Collapse
Affiliation(s)
- Kevin Hartman
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Jeffrey R. Brender
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Kazuaki Monde
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Margery L. Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Nataliya Popovych
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| |
Collapse
|
31
|
Tiiman A, Palumaa P, Tõugu V. The missing link in the amyloid cascade of Alzheimer's disease - metal ions. Neurochem Int 2013; 62:367-78. [PMID: 23395747 DOI: 10.1016/j.neuint.2013.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 01/23/2023]
Abstract
Progressive deposition of amyloid beta (Aβ) peptides into amyloid plaques is the pathological hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis pins this deposition as the primary cause of the disease, but the mechanisms that causes this deposition remain elusive. An increasing amount of evidence shows that biometals Zn(II) and Cu(II) can interact with Aβ, thus influencing the fibrillization and toxicity. This review focuses on the role of Zn(II) and Cu(II) in AD, and revisits the amyloid cascade hypothesis demonstrating the possible roles of Zn(II) and Cu(II) in the disease pathogenesis.
Collapse
Affiliation(s)
- Ann Tiiman
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | | | | |
Collapse
|
32
|
Forloni G, Sclip A, Borsello T, Balducci C. The neurodegeneration in Alzheimer disease and the prion protein. Prion 2013; 7:60-5. [PMID: 23324596 DOI: 10.4161/pri.23286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of "prion-like" has been proposed to explain the pathogenic mechanism of the principal neurodegenerative disorders associated with protein misfolding, including Alzheimer disease (AD). Other evidence relates prion protein with AD: the cellular prion protein (PrP(C)) binds β amyloid oligomers, allegedly responsible for the neurodegeneration in AD, mediating their toxic effects. We and others have confirmed the high-affinity binding between β amyloid oligomers and PrP(C), but we were not able to assess the functional consequences of this interaction using behavioral investigations and in vitro tests. This discrepancy rather than being resolved with the classic explanations, differencies in methodological aspects, has been reinforced by new data from different sources. Here we present data obtained with PrP antibody that not interfere with the neurotoxic activity of β amyloid oligomers. Since the potential role of the PrP(C) in the neuronal dysfunction induced by β amyloid oligomers is an important issue, find reasonable explanation of the inconsistent results is needed. Even more important however is the relevance of this interaction in the context of the disease, so as to develop valid therapeutic strategies.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | | | | | |
Collapse
|
33
|
Penke B, Tóth AM, Földi I, Szűcs M, Janáky T. Intraneuronal β-amyloid and its interactions with proteins and subcellular organelles. Electrophoresis 2012; 33:3608-16. [PMID: 23161402 DOI: 10.1002/elps.201200297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/21/2012] [Indexed: 11/09/2022]
Abstract
Amyloidogenic aggregation and misfolding of proteins are linked to neurodegeneration. The mechanism of neurodegeneration in Alzheimer's disease, which gives rise to severe neuronal death and memory loss, is not yet fully understood. The amyloid hypothesis remains the most accepted theory for the pathomechanism of the disease. It was suggested that β-amyloid accumulation may play a key role in initiating the neurodegenerative processes. The recent intracellular β-amyloid (iAβ) hypothesis emphasizes the primary role of iAβ to initiate the disease by interaction with cytoplasmic proteins and cell organelles, thereby triggering apoptosis. Sophisticated methods (proteomics, protein microarray, and super resolution microscopy) have been used for studying iAβ interactions with proteins and membraneous structures. The present review summarizes the studies on the origin of iAβ and the base of its neurotoxicity: interactions with cytosolic proteins and several cell organelles such as endoplasmic reticulum, endosomes, lysosomes, ribosomes, mitochondria, and the microtubular system.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
34
|
Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D'Arrigo C. Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int J Biochem Cell Biol 2012; 44:2085-93. [PMID: 22903022 DOI: 10.1016/j.biocel.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/13/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Among the different species of water-soluble β-peptides (Aβ1-42, Aβ1-40 and N-terminal truncated Aβ-peptides), Aβpy3-42 is thought to play a relevant role in Alzheimer's pathogenesis due to its abundance, resistance to proteolysis, fast aggregation kinetics, dynamic structure and high neurotoxicity. To evaluate the specific structural characteristics and neurotoxicity of Aβpy3-42, we separated different aggregation states of Aβ1-42 and Aβpy3-42 using fast protein liquid chromatography, isolating in both cases three peaks that corresponded to sa (small), ma (medium) and la (large) aggregates. Conformational analysis, by circular dichroism showed a prevailing random coil conformation for sa and ma, and typical β-sheet conformation for la. AFM and TEM show differential structural features between the three aggregates of a given β-peptide and among the aggregate of the two β-peptides. The potential toxic effects of the different aggregates were evaluated using human neuroblastoma SH-SY5Y cells in the MTT reduction, in the xCELLigence System, and in the Annexin V binding experiments. In the case of Aβ1-42 the most toxic aggregate is la, while in the case of Aβpy3-42 both sa and la are equally toxic. Aβ aggregates were found to be internalized in the cells, as estimated by confocal immunofluorescence microscopy, with a higher effect observed for Aβpy3-42, showing a good correlation with the toxic effects. Together these experiments allowed the discrimination of the intermediate states more responsible of oligomer toxicity, providing new insights on the correlation between the aggregation process and the toxicity and confirming the peculiar role in the pathogenesis of Alzheimer disease of Aβpy3-42 peptide.
Collapse
Affiliation(s)
- Denise Galante
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jóźwik A, Landowski J, Bidzan L, Fülop T, Bryl E, Witkowski JM. Beta-amyloid peptides enhance the proliferative response of activated CD4CD28 lymphocytes from Alzheimer disease patients and from healthy elderly. PLoS One 2012; 7:e33276. [PMID: 22428008 PMCID: PMC3299766 DOI: 10.1371/journal.pone.0033276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/12/2012] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance.
Collapse
Affiliation(s)
- Agnieszka Jóźwik
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jerzy Landowski
- Department of Psychiatry and Neurotic Disorders, Medical University of Gdańsk, Gdańsk, Poland
| | - Leszek Bidzan
- Department of Developmental Psychiatry, Psychotic Disorders, and Geriatric Psychiatry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fülop
- Immunology Program, Geriatric Division, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ewa Bryl
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
36
|
Hurtado-Carneiro V, Sanz C, Roncero I, Vazquez P, Blazquez E, Alvarez E. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol Neurobiol 2012; 45:348-61. [PMID: 22311299 DOI: 10.1007/s12035-012-8239-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Complutense University, Ciudad Universitaria, sn, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|