1
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03539-0. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2024:S0300-9084(24)00195-0. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
3
|
Zakirova NF, Khomich OA, Smirnova OA, Molle J, Duponchel S, Yanvarev DV, Valuev-Elliston VT, Monnier L, Grigorov B, Ivanova ON, Karpenko IL, Golikov MV, Bovet C, Rindlisbacher B, Khomutov AR, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis C Virus Dysregulates Polyamine and Proline Metabolism and Perturbs the Urea Cycle. Cells 2024; 13:1036. [PMID: 38920664 PMCID: PMC11201506 DOI: 10.3390/cells13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.
Collapse
Affiliation(s)
- Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Olga A. Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Jennifer Molle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Sarah Duponchel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Lea Monnier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Boyan Grigorov
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Barbara Rindlisbacher
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Birke Bartosch
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| |
Collapse
|
4
|
Zhitkevich A, Bayurova E, Avdoshina D, Zakirova N, Frolova G, Chowdhury S, Ivanov A, Gordeychuk I, Palefsky JM, Isaguliants M. HIV-1 Reverse Transcriptase Expression in HPV16-Infected Epidermoid Carcinoma Cells Alters E6 Expression and Cellular Metabolism, and Induces a Hybrid Epithelial/Mesenchymal Cell Phenotype. Viruses 2024; 16:193. [PMID: 38399969 PMCID: PMC10892743 DOI: 10.3390/v16020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The high incidence of epithelial malignancies in HIV-1 infected individuals is associated with co-infection with oncogenic viruses, such as high-risk human papillomaviruses (HR HPVs), mostly HPV16. The molecular mechanisms underlying the HIV-1-associated increase in epithelial malignancies are not fully understood. A collaboration between HIV-1 and HR HPVs in the malignant transformation of epithelial cells has long been anticipated. Here, we delineated the effects of HIV-1 reverse transcriptase on the in vitro and in vivo properties of HPV16-infected cervical cancer cells. A human cervical carcinoma cell line infected with HPV16 (Ca Ski) was made to express HIV-1 reverse transcriptase (RT) by lentiviral transduction. The levels of the mRNA of the E6 isoforms and of the factors characteristic to the epithelial/mesenchymal transition were assessed by real-time RT-PCR. The parameters of glycolysis and mitochondrial respiration were determined using Seahorse technology. RT expressing Ca Ski subclones were assessed for the capacity to form tumors in nude mice. RT expression increased the expression of the E6*I isoform, modulated the expression of E-CADHERIN and VIMENTIN, indicating the presence of a hybrid epithelial/mesenchymal phenotype, enhanced glycolysis, and inhibited mitochondrial respiration. In addition, the expression of RT induced phenotypic alterations impacting cell motility, clonogenic activity, and the capacity of Ca Ski cells to form tumors in nude mice. These findings suggest that HIV-RT, a multifunctional protein, affects HPV16-induced oncogenesis, which is achieved through modulation of the expression of the E6 oncoprotein. These results highlight a complex interplay between HIV antigens and HPV oncoproteins potentiating the malignant transformation of epithelial cells.
Collapse
Affiliation(s)
- Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Natalia Zakirova
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Galina Frolova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Sona Chowdhury
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Alexander Ivanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Joel M. Palefsky
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
6
|
Kalantari L, Ghotbabadi ZR, Gholipour A, Ehymayed HM, Najafiyan B, Amirlou P, Yasamineh S, Gholizadeh O, Emtiazi N. A state-of-the-art review on the NRF2 in Hepatitis virus-associated liver cancer. Cell Commun Signal 2023; 21:318. [PMID: 37946175 PMCID: PMC10633941 DOI: 10.1186/s12964-023-01351-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.
Collapse
Affiliation(s)
- Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Arsalan Gholipour
- Nanotechnology Research Institute, School of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | | - Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Elyamany A, Ghazala R, Fayed O, Hamed Y, El-Shendidi A. Mitochondrial DNA copy number in Hepatitis C virus-related chronic liver disease: impact of direct-acting antiviral therapy. Sci Rep 2023; 13:18330. [PMID: 37884543 PMCID: PMC10603142 DOI: 10.1038/s41598-023-44665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection can regulate the number and dynamics of mitochondria, and is associated with a prominent hepatic mitochondrial injury. Mitochondrial distress conveys oxidative damage which is implicated in liver disease progression. The present study was conducted to assess the change of mitochondrial DNA (mtDNA) copy number in patients with HCV-related chronic liver disease and the impact of direct-acting antiviral (DAA) therapy. Whole blood mtDNA copy number was measured using real-time quantitative polymerase chain reaction at baseline and 12 weeks after the end of therapy in 50 treatment-naïve HCV-infected patients who achieved sustained viral response (SVR) after DAA therapy and 20 healthy controls. Whole blood mtDNA copy number appeared significantly lower in HCV-infected patients before therapy compared to healthy subjects (P < 0.001). Post-treatment, there was significant increase of mtDNA copy number in HCV-infected patients at SVR12 compared to the pre-treatment values (P < 0.001), meanwhile it didn't differ significantly between HCV-infected patients after therapy and healthy subjects (P = 0.059). Whole blood mtDNA copy number correlated inversely to the serum bilirubin in HCV-infected patients (P = 0.013), however it didn't correlate significantly to the serum aminotransferases, viral load or fibrosis-4 score (P > 0.05). In conclusion, chronic HCV infection has been associated with a prominent mitochondrial injury which could mediate a progressive liver disease. The improved mtDNA content after DAA therapy highlights a possible potential of these drugs to alleviate mitochondrial damage in HCV-related liver disease.
Collapse
Affiliation(s)
- Amany Elyamany
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omnia Fayed
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmin Hamed
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Assem El-Shendidi
- Department of Internal Medicine (Hepatology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
8
|
Chethan GE, De UK, Singh MK, Chander V, Raja R, Paul BR, Choudhary OP, Thakur N, Sarma K, Prasad H. Antioxidant supplementation during treatment of outpatient dogs with parvovirus enteritis ameliorates oxidative stress and attenuates intestinal injury: A randomized controlled trial. Vet Anim Sci 2023; 21:100300. [PMID: 37333506 PMCID: PMC10276178 DOI: 10.1016/j.vas.2023.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
A prospective randomized controlled clinical study was conducted to determine whether antioxidant supplementation as an adjunct therapy alters hemogram, oxidative stress, serum intestinal fatty acid binding protein-2 (IFABP-2) level, fecal viral load, clinical score (CS) and survivability in outpatient canine parvovirus enteritis (CPVE) dogs. The dogs with CPVE were randomized to one of the five treatment groups: supportive treatment (ST) alone, ST with N-acetylcysteine (ST+NAC), resveratrol (ST+RES), coenzyme Q10 (ST+CoQ10) or ascorbic acid (ST+AA). The primary outcome measures were reduction of CS and fecal HA titre, and enhancement of survivability. Secondary outcome measures were reduction of oxidative stress indices and IFABP-2 level from day 0 to day 7. The mean CS and HA titre were significantly (P < 0.05) decreased from day 0 to 7 in ST and all antioxidant groups. The supplementations of NAC, RES and AA along with ST markedly (P < 0.05) reduced the concentrations of malondialdehyde, nitric oxide and IFABP-2 on day 7 as compared to ST alone. Additionally, NAC and RES supplementations markedly (P < 0.05) improved the total leukocyte count and neutrophil count in CPVE-affected dogs. NAC and RES could serve as better antioxidants for the amelioration of oxidative stress in CPVE but, the antioxidants did not confer any additional benefits in reduction of CS, fecal HA tire, or survivability when compared with ST alone.
Collapse
Affiliation(s)
- Gollahalli Eregowda Chethan
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Mithilesh Kumar Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Vishal Chander
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, 263138, Uttarakhand, India
| | - Raguvaran Raja
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Neeraj Thakur
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Sciences, RGSC-Banaras Hindu University, Barkachha, Mirzapur, 231001, Uttar Pradesh, India
| | - Kalyan Sarma
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| | - Hridayesh Prasad
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, 796015, Mizoram, India
| |
Collapse
|
9
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
10
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
11
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
12
|
Ivanciuc T, Patrikeev I, Qu Y, Motamedi M, Jones-Hall Y, Casola A, Garofalo RP. Micro-CT Features of Lung Consolidation, Collagen Deposition and Inflammation in Experimental RSV Infection Are Aggravated in the Absence of Nrf2. Viruses 2023; 15:1191. [PMID: 37243277 PMCID: PMC10223011 DOI: 10.3390/v15051191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Severe respiratory syncytial virus (RSV) infections in early life have been linked to the development of chronic airway disease. RSV triggers the production of reactive oxygen species (ROS), which contributes to inflammation and enhanced clinical disease. NF-E2-related factor 2 (Nrf2) is an important redox-responsive protein that helps to protect cells and whole organisms from oxidative stress and injury. The role of Nrf2 in the context of viral-mediated chronic lung injury is not known. Herein, we show that RSV experimental infection of adult Nrf2-deficient BALB/c mice (Nrf2-/-; Nrf2 KO) is characterized by enhanced disease, increased inflammatory cell recruitment to the bronchoalveolar compartment and a more robust upregulation of innate and inflammatory genes and proteins, compared to wild-type Nrf2+/+ competent mice (WT). These events that occur at very early time points lead to increased peak RSV replication in Nrf2 KO compared to WT mice (day 5). To evaluate longitudinal changes in the lung architecture, mice were scanned weekly via high-resolution micro-computed tomography (micro-CT) imaging up to 28 days after initial viral inoculation. Based on micro-CT qualitative 2D imaging and quantitative reconstructed histogram-based analysis of lung volume and density, we found that RSV-infected Nrf2 KO mice developed significantly greater and prolonged fibrosis compared to WT mice. The results of this study underscore the critical role of Nrf2-mediated protection from oxidative injury, not only in the acute pathogenesis of RSV infection but also in the long-term consequences of chronic airway injury.
Collapse
Affiliation(s)
- Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
| | - Igor Patrikeev
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.P.); (M.M.)
| | - Yue Qu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.P.); (M.M.)
- Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA;
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Smirnova OA, Ivanova ON, Mukhtarov F, Valuev-Elliston VT, Fedulov AP, Rubtsov PM, Zakirova NF, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis Delta Virus Antigens Trigger Oxidative Stress, Activate Antioxidant Nrf2/ARE Pathway, and Induce Unfolded Protein Response. Antioxidants (Basel) 2023; 12:antiox12040974. [PMID: 37107349 PMCID: PMC10136299 DOI: 10.3390/antiox12040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Furkat Mukhtarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Artemy P Fedulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Birke Bartosch
- Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69434 Lyon, France
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
14
|
Masalova OV, Lesnova EI, Andreev SM, Shershakova NN, Kozlov VV, Permyakova KY, Demidova NA, Valuev-Elliston VT, Turetskiy EA, Ivanov AV, Nikolaeva TN, Khaitov MR, Pronin AV, Kushch AA. [Adjuvant effect of dispersed fullerene C60 on the immune response to constructs harboring amino acid and nucleotide sequences of hepatitis C virus nonstructural NS5B protein]. Vopr Virusol 2023; 67:516-526. [PMID: 37264841 DOI: 10.36233/0507-4088-149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION A vaccine against hepatitis C has not yet been developed. Recombinant proteins and plasmids encoding hepatitis C virus (HCV) proteins, the components of candidate vaccines, induce a weak immune response and require the use of adjuvants. The aim of the work was to study the adjuvant action of an aqueous solution of fullerene C60 during immunization of mice with HCV recombinant protein NS5B (rNS5B) that is an RNA-dependent RNA polymerase, or with NS5B-encoding pcNS5B plasmid. MATERIALS AND METHODS An aqueous solution of dispersed fullerene (dnC60) was obtained by ultrafiltration. C57BL/6 mice were immunized with rNS5B subcutaneously, pcNS5B intramuscularly mixed with different doses of dnC60 three times, then the humoral and cellular response to HCV was evaluated. RESULTS Mice immunization with rNS5B in a mixture with dnC60 at doses of 250 g/mouse significantly induced humoral response: a dose-dependent increase in IgG1 antibody titers was 720 times higher than in the absence of fullerene. There was no increase in the cellular response to rNS5B when administered with dnC60. The humoral response to DNA immunization was weak in mice of all groups receiving pcNS5B. The cellular response was suppressed when the plasmid was injected in a mixture with dnC60. CONCLUSIONS Dispersed fullerene dnC60 is a promising adjuvant for increasing the immunostimulating activity of weakly immunogenic proteins including surface and other HCV proteins, important for a protective response. Further research is needed to enhance the ability of dnC60 to boost the cellular immune response to the components of the candidate vaccine.
Collapse
Affiliation(s)
- O V Masalova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - E I Lesnova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | | | | | - V V Kozlov
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - K Y Permyakova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education «Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin»
| | - N A Demidova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | | | - E A Turetskiy
- NRC Institute of Immunology FMBA of Russia
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
| | - T N Nikolaeva
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia
- Pirogov Russian National Research Medical University
| | - A V Pronin
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - A A Kushch
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| |
Collapse
|
15
|
Golikov MV, Valuev-Elliston VT, Smirnova OA, Ivanov AV. Physiological Media in Studies of Cell Metabolism. Mol Biol 2022; 56:629-637. [PMID: 36217338 PMCID: PMC9534458 DOI: 10.1134/s0026893322050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017‒2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.
Collapse
Affiliation(s)
- M V Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V T Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Brezgin SA, Kostyusheva AP, Ponomareva NI, Gegechkori VI, Kirdyashkina NP, Ayvasyan SR, Dmitrieva LN, Kokoreva LN, Chulanov VP, Kostyushev DS. HBx Protein Potentiates Hepatitis B Virus Reactivation. Mol Biol 2022. [DOI: 10.1134/s0026893322050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Deng H, Li Y, Li J, Shen W, Chen Q, Weng S, He J, Xu X. Neomycin inhibits Megalocytivirus infection in fish by antagonizing the increase of intracellular reduced glutathione. FISH & SHELLFISH IMMUNOLOGY 2022; 127:148-154. [PMID: 35714896 DOI: 10.1016/j.fsi.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.
Collapse
Affiliation(s)
- Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yeyu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jinling Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Qiankang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
18
|
Devi P, Punga T, Bergqvist A. Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses 2022; 14:v14040761. [PMID: 35458491 PMCID: PMC9031069 DOI: 10.3390/v14040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the primary pathogen responsible for liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been linked to several aspects of HCV pathology, including oncogenesis, immune evasion and stress responses. We and others have previously shown that C expression in various cell lines activates Ca2+ signaling and alters Ca2+ homeostasis. In this study, we identified two distinct C protein regions that are required for the activation of Ca2+/NFAT signaling. In the basic N-terminal domain, which has been implicated in self-association of C, amino acids 1–68 were critical for NFAT activation. Sedimentation analysis of four mutants in this domain revealed that association of the C protein into nucleocapsid-like particles correlated with NFAT-activated transcription. The internal, lipid droplet-targeting domain was not required for NFAT-activated transcription. Finally, the C-terminal ER-targeting domain was required in extenso for the C protein to function. Our results indicate that targeting of HCV C to the ER is necessary but not sufficient for inducing Ca2+/NFAT signaling. Taken together, our data are consistent with a model whereby proteolytic intermediates of C with an intact transmembrane ER-anchor assemble into pore-like structures in the ER membrane.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden;
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
19
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
20
|
Zhou J, Zheng Q, Chen Z. The Nrf2 Pathway in Liver Diseases. Front Cell Dev Biol 2022; 10:826204. [PMID: 35223849 PMCID: PMC8866876 DOI: 10.3389/fcell.2022.826204] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is the leading cause of most liver diseases, such as drug-induced liver injury, viral hepatitis, and alcoholic hepatitis caused by drugs, viruses, and ethanol. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (Keap1-Nrf2) system is a critical defense mechanism of cells and organisms in response to oxidative stress. Accelerating studies have clarified that the Keap1-Nrf2 axis are involved in the prevention and attenuation of liver injury. Nrf2 up-regulation could alleviate drug-induced liver injury in mice. Moreover, many natural Nrf2 activators can regulate lipid metabolism and oxidative stress of liver cells to alleviate fatty liver disease in mice. In virus hepatitis, the increased Nrf2 can inhibit hepatitis C viral replication by up-regulating hemeoxygenase-1. In autoimmune liver diseases, the increased Nrf2 is essential for mice to resist liver injury. In liver cirrhosis, the enhanced Nrf2 reduces the activation of hepatic stellate cells by reducing reactive oxygen species levels to prevent liver fibrosis. Nrf2 plays a dual function in liver cancer progression. At present, a Nrf2 agonist has received clinical approval. Therefore, activating the Nrf2 pathway to induce the expression of cytoprotective genes is a potential option for treating liver diseases. In this review, we comprehensively summarized the relationships between oxidative stress and liver injury, and the critical role of the Nrf2 pathway in multiple liver diseases.
Collapse
|
21
|
Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses. Antioxidants (Basel) 2021; 11:antiox11010097. [PMID: 35052601 PMCID: PMC8772912 DOI: 10.3390/antiox11010097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.
Collapse
|
22
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
23
|
NRF2 in Viral Infection. Antioxidants (Basel) 2021; 10:antiox10091491. [PMID: 34573123 PMCID: PMC8472116 DOI: 10.3390/antiox10091491] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor NRF2 is central to redox homeostasis in animal cells and is a well-known driver of chemoresistance in many types of cancer. Recently, new roles have been ascribed to NRF2 which include regulation of antiviral interferon responses and inflammation. In addition, NRF2 is emerging as an important factor in antiviral immunity through interferon-independent mechanisms. In the review, we give an overview of the scientific progress on the involvement and importance of NRF2 in the context of viral infection.
Collapse
|
24
|
Dragomanova S, Miteva S, Nicoletti F, Mangano K, Fagone P, Pricoco S, Staykov H, Tancheva L. Therapeutic Potential of Alpha-Lipoic Acid in Viral Infections, including COVID-19. Antioxidants (Basel) 2021; 10:1294. [PMID: 34439542 PMCID: PMC8389191 DOI: 10.3390/antiox10081294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria;
| | - Simona Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Salvatore Pricoco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (K.M.); (P.F.); (S.P.)
| | - Hristian Staykov
- Department of Pharmacology and toxicology, Medical University, Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.M.); (L.T.)
| |
Collapse
|
25
|
Ding Y, Li G, Zhou Z, Deng T. Molecular mechanisms underlying hepatitis C virus infection-related diabetes. Metabolism 2021; 121:154802. [PMID: 34090869 DOI: 10.1016/j.metabol.2021.154802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Diabetes is a noncommunicable widespread disease that poses the risk of severe complications in patients, with certain complications being life-threatening. Hepatitis C is an infectious disease that mainly causes liver damage, which is also a profound threat to human health. Hepatitis C virus (HCV) infection has many extrahepatic manifestations, including diabetes. Multiple mechanisms facilitate the strong association between HCV and diabetes. HCV infection can affect the insulin signaling pathway in liver and pancreatic tissue and change the profiles of circulating microRNAs, which may further influence the occurrence and development of diabetes. This review describes how HCV infection causes diabetes and discusses the current research progress with respect to HCV infection-related diabetes.
Collapse
Affiliation(s)
- Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
26
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
27
|
Forcados GE, Muhammad A, Oladipo OO, Makama S, Meseko CA. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants. Front Cell Infect Microbiol 2021; 11:654813. [PMID: 34123871 PMCID: PMC8188981 DOI: 10.3389/fcimb.2021.654813] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a zoonotic disease with devastating economic and public health impacts globally. Being a novel disease, current research is focused on a clearer understanding of the mechanisms involved in its pathogenesis and viable therapeutic strategies. Oxidative stress and inflammation are intertwined processes that play roles in disease progression and response to therapy via interference with multiple signaling pathways. The redox status of a host cell is an important factor in viral entry due to the unique conditions required for the conformational changes that ensure the binding and entry of a virus into the host cell. Upon entry into the airways, viral replication occurs and the innate immune system responds by activating macrophage and dendritic cells which contribute to inflammation. This review examines available literature and proposes mechanisms by which oxidative stress and inflammation could contribute to COVID-19 pathogenesis. Further, certain antioxidants currently undergoing some form of trial in COVID-19 patients and the corresponding required research gaps are highlighted to show how targeting oxidative stress and inflammation could ameliorate COVID-19 severity.
Collapse
Affiliation(s)
| | - Aliyu Muhammad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Sunday Makama
- Biochemistry Division, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - Clement Adebajo Meseko
- Regional Laboratory for Avian Influenza and Other Transboundary Animal Diseases, National Veterinary Research Institute, Vom, Nigeria
| |
Collapse
|
28
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
29
|
Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021; 32:e2240. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are by-products of cellular metabolism and can be either beneficial, at low levels, or deleterious, at high levels, to the cell. It is known that several viral infections can increase oxidative stress, which is mainly facilitated by viral-induced imbalances in the antioxidant defence mechanisms of the cell. While the exact role of ROS in certain viral infections (adenovirus and dengue virus) remains unknown, other viruses can use ROS for enhancement of pathogenesis (SARS coronavirus and rabies virus) or replication (rhinovirus, West Nile virus and vesicular stomatitis virus) or both (hepatitis C virus, human immunodeficiency virus and influenza virus). While several viral proteins (mainly for hepatitis C and human immunodeficiency virus) have been identified to play a role in ROS formation, most mediators of viral ROS modulation are yet to be elucidated. Treatment of viral infections, including hepatitis C virus, human immunodeficiency virus and influenza virus, with ROS inhibitors has shown a decrease in both pathogenesis and viral replication both in vitro and in animal models. Clinical studies indicating the potential for targeting ROS-producing pathways as possible broad-spectrum antiviral targets should be evaluated in randomized controlled trials.
Collapse
Affiliation(s)
- Willem J Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Corinne Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Frans H O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
30
|
Pomacu MM, Trașcă MD, Pădureanu V, Bugă AM, Andrei AM, Stănciulescu EC, Baniță IM, Rădulescu D, Pisoschi CG. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp Ther Med 2021; 21:602. [PMID: 33936259 PMCID: PMC8082585 DOI: 10.3892/etm.2021.10034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the trend of research has been focused on the role of hematological indicators in assessing the activities of various diseases. The aim of the present study was to determine the usefulness of such hematological indicators for assessment of the relationship between inflammation and oxidative stress in order to provide new predictive tools for a non-invasive investigation of disease outcome for liver cirrhosis patients. A total of 35 subjects with compensated or decompensated liver cirrhosis and 10 age-matched healthy volunteers were included in this study. The patients were divided into two groups: Group 1, patients with toxic metabolic cirrhosis due to ethanol consumption; group 2, patients with liver cirrhosis following hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. Using hematological data obtained after the complete counting of peripheral blood cells, the monocyte/lymphocyte (MLR), neutrophil/lymphocyte (NLR) and platelet/lymphocyte (PLR) ratios as well as systemic immune inflammation biomarkers were determined. The erythrocyte sedimentation ratio (ESR), C-reactive protein (CRP), fibrinogen and biochemical parameters related to liver function were also registered. Thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCARB), and total antioxidant capacity (TAC) were also investigated in the peripheral blood samples of healthy subjects and liver cirrhosis patients. The results revealed that NLR, MLR and PLR were significantly increased in group 2. PLR was significantly increased in group 1 compared with that noted in the control group. TBARS and PCARB were increased in patients from group 1 compared to patients from group 2 and the control group. However, no difference in TAC was found between the liver cirrhosis groups and the control. We showed that the pro-inflammatory status of liver cirrhosis patients can be easily appreciated by NLR, MLR but not PLR. However, the increase in these ratios was not significantly associated with a decrease in the antioxidant capacity and an augmentation of oxidative stress markers for the patients diagnosed with cirrhosis included in the two groups of study.
Collapse
Affiliation(s)
- Mihnea Marian Pomacu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,4th Department-Medical Specialties, First Clinic of Internal Medicine, Clinical City Hospital 'Filantropia', University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Diana Trașcă
- 4th Department-Medical Specialties, First Clinic of Internal Medicine, Clinical City Hospital 'Filantropia', University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vlad Pădureanu
- Department of Internal Medicine, County Hospital of Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Bugă
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Marina Andrei
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Ileana Monica Baniță
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dumitru Rădulescu
- Department of General Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | |
Collapse
|
31
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
32
|
Chu JYK, Ou JHJ. Autophagy in HCV Replication and Protein Trafficking. Int J Mol Sci 2021; 22:ijms22031089. [PMID: 33499186 PMCID: PMC7865906 DOI: 10.3390/ijms22031089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic process that is important for maintaining cellular homeostasis. It is also known to possess other functions including protein trafficking and anti-microbial activities. Hepatitis C virus (HCV) is known to co-opt cellular autophagy pathway to promote its own replication. HCV regulates autophagy through multiple mechanisms to control intracellular protein and membrane trafficking to enhance its replication and suppress host innate immune response. In this review, we discuss the current knowledge on the interplay between HCV and autophagy and the crosstalk between HCV-induced autophagy and host innate immune responses.
Collapse
|
33
|
Fu N, Li D, Li W, Zhao W, Zhang S, Liu L, Zhao S, Du J, Kong L, Wang R, Zhang Y, Nan Y. Glutamate-Cysteine Ligase Catalytic Subunit Attenuated Hepatitis C Virus-Related Liver Fibrosis and Suppressed Endoplasmic Reticulum Stress. Front Mol Biosci 2020; 7:199. [PMID: 33015132 PMCID: PMC7461853 DOI: 10.3389/fmolb.2020.00199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The study aimed to clarify the role and molecular mechanism of glutamate-cysteine ligase catalytic subunit (GCLC) in modulating Hepatitis C virus (HCV)-related liver fibrosis. Twenty patients with HCV-related liver fibrosis and 15 healthy controls were enrolled. Differentially expressed plasma mRNAs were detected by digital gene expression profile analysis and validated by qRT-PCR. Hepatic histopathology was observed by H&E and Masson stained liver sections. The mRNA and protein expression of GCLC, endoplasmic reticulum (ER) stress markers, and inflammatory and fibrogenic factors were detected in liver tissues from patients with HCV-related hepatic fibrosis and HCV core protein-expressing LX-2. The GCLC-overexpressing LX-2 were established by transfecting puc19-GCLC plasmid. Then, glutathione and reactive oxygen species (ROS) levels were measured respectively by spectrophotometric diagnostic kit and dihydrodichlorofluorescein diacetate kit. GCLC were dramatically down-regulated in HCV-related fibrotic livers and activated HSCs, which companied with up-regulation of ER stress-related genes, including inositol-requiring 1 (IRE1) and glucose-regulated protein 78 (GRP78). Also, the proinflammatory and profibrogenic gene, including nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNFα), and transforming growth factor 1(TGFβ1), was highly upregulated. Overexpression of GCLC in hepatic stellate cells could suppress α-SMA and collagen I expression, produce hepatic GSH and reduce ROS, and down-regulate IRE1, GRP78, NF-κB, TNF-α, and TGFβ1 expression. GCLC was a negative regulatory factor in the development of HCV-related liver fibrosis and might be a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Dongdong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Wencong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Wen Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Siyu Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Lingdi Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Lingbo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| |
Collapse
|
34
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
35
|
Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Semin Cell Dev Biol 2020; 101:20-35. [PMID: 31386899 PMCID: PMC7007355 DOI: 10.1016/j.semcdb.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism(s) how liver damage during the chronic hepatitis C virus (HCV) infection evolve into cirrhosis and hepatocellular carcinoma (HCC) is unclear. HCV infects hepatocyte, the major cell types in the liver. During infection, large amounts of viral proteins and RNA replication intermediates accumulate in the endoplasmic reticulum (ER) of the infected hepatocyte, which creates a substantial amount of stress response. Infected hepatocyte activates a different type of stress adaptive mechanisms such as unfolded protein response (UPR), antioxidant response (AR), and the integrated stress response (ISR) to promote virus-host cell survival. The hepatic stress is also amplified by another layer of innate and inflammatory response associated with cellular sensing of virus infection through the production of interferon (IFN) and inflammatory cytokines. The interplay between various types of cellular stress signal leads to different forms of cell death such as apoptosis, necrosis, and autophagy depending on the intensity of the stress and nature of the adaptive cellular response. How do the adaptive cellular responses decode such death programs that promote host-microbe survival leading to the establishment of chronic liver disease? In this review, we discuss how the adaptive cellular response through the Nrf2 pathway that promotes virus and cell survival. Furthermore, we provide a glimpse of novel stress-induced Nrf2 mediated compensatory autophagy mechanisms in virus-cell survival that degrade tumor suppressor gene and activation of oncogenic signaling during HCV infection. Based on these facts, we hypothesize that the balance between hepatic stress, inflammation and different types of cell death determines liver disease progression outcomes. We propose that a more nuanced understanding of virus-host interactions under excessive cellular stress may provide an answer to the fundamental questions why some individuals with chronic HCV infection remain at risk of developing cirrhosis, cancer and some do not.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
36
|
Ríos-Ocampo WA, Navas MC, Buist-Homan M, Faber KN, Daemen T, Moshage H. Hepatitis C Virus Proteins Core and NS5A Are Highly Sensitive to Oxidative Stress-Induced Degradation after eIF2α/ATF4 Pathway Activation. Viruses 2020; 12:v12040425. [PMID: 32283772 PMCID: PMC7232227 DOI: 10.3390/v12040425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is accompanied by increased oxidative stress and endoplasmic reticulum stress as a consequence of viral replication, production of viral proteins, and pro-inflammatory signals. To overcome the cellular stress, hepatocytes have developed several adaptive mechanisms like anti-oxidant response, activation of Unfolded Protein Response and autophagy to achieve cell survival. These adaptive mechanisms could both improve or inhibit viral replication, however, little is known in this regard. In this study, we investigate the mechanisms by which hepatocyte-like (Huh7) cells adapt to cellular stress in the context of HCV protein overexpression and oxidative stress. Huh7 cells stably expressing individual HCV (Core, NS3/4A and NS5A) proteins were treated with the superoxide anion donor menadione to induce oxidative stress. Production of reactive oxygen species and activation of caspase 3 were quantified. The activation of the eIF2α/ATF4 pathway and changes in the steady state levels of the autophagy-related proteins LC3 and p62 were determined either by quantitative polymerase chain reaction (qPCR) or Western blotting. Huh7 cells expressing Core or NS5A demonstrated reduced oxidative stress and apoptosis. In addition, phosphorylation of eIF2α and increased ATF4 and CHOP expression was observed with subsequent HCV Core and NS5A protein degradation. In line with these results, in liver biopsies from patients with hepatitis C, the expression of ATF4 and CHOP was confirmed. HCV Core and NS5A protein degradation was reversed by antioxidant treatment or silencing of the autophagy adaptor protein p62. We demonstrated that hepatocyte-like cells expressing HCV proteins and additionally exposed to oxidative stress adapt to cellular stress through eIF2a/ATF4 activation and selective degradation of HCV pro-oxidant proteins Core and NS5A. This selective degradation is dependent on p62 and results in increased resistance to apoptotic cell death induced by oxidative stress. This mechanism may provide a new key for the study of HCV pathology and lead to novel clinically applicable therapeutic interventions.
Collapse
Affiliation(s)
- W. Alfredo Ríos-Ocampo
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
- Correspondence: ; Tel.: +31-50-361-2364 or +31-638-955-716
| | - María-Cristina Navas
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Toos Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| |
Collapse
|
37
|
Ríos-Ocampo WA, Daemen T, Buist-Homan M, Faber KN, Navas MC, Moshage H. Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress. Redox Rep 2020; 24:17-26. [PMID: 30909829 PMCID: PMC6748607 DOI: 10.1080/13510002.2019.1596431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives: The occurrence of oxidative stress and endoplasmic
reticulum (ER) stress in hepatitis C virus (HCV) infection has been demonstrated
and play an important role in liver injury. During viral infection, hepatocytes
must handle not only the replication of the virus, but also inflammatory signals
generating oxidative stress and damage. Although several mechanisms exist to
overcome cellular stress, little attention has been given to the adaptive
response of hepatocytes during exposure to multiple noxious triggers. Methods: In the present study, Huh-7 cells and hepatocytes
expressing HCV Core or NS3/4A proteins, both inducers of oxidative and ER
stress, were additionally challenged with the superoxide anion generator
menadione to mimic external oxidative stress. The production of reactive oxygen
species (ROS) as well as the response to oxidative stress and ER stress were
investigated. Results: We demonstrate that hepatocytes diminish oxidative stress
through a reduction in ROS production, ER-stress markers (HSPA5
[GRP78], sXBP1) and apoptosis (caspase-3 activity) despite
external oxidative stress. Interestingly, the level of the autophagy substrate
protein p62 was downregulated together with HCV Core degradation, suggesting
that hepatocytes can overcome excess oxidative stress through autophagic
degradation of one of the stressors, thereby increasing cell survival. Duscussion: In conclusion, hepatocytes exposed to direct and
indirect oxidative stress inducers are able to cope with cellular stress
associated with viral hepatitis and thus promote cell survival.
Collapse
Affiliation(s)
- W Alfredo Ríos-Ocampo
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,b Department Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,c Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia , Medellin , Colombia
| | - Toos Daemen
- b Department Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Manon Buist-Homan
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Klaas Nico Faber
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - María-Cristina Navas
- c Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia , Medellin , Colombia
| | - Han Moshage
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
38
|
Edwards MR, Liu G, De S, Sourimant J, Pietzsch C, Johnson B, Amarasinghe GK, Leung DW, Bukreyev A, Plemper RK, Aron Z, Bowlin TL, Moir DT, Basler CF. Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infect Dis 2020; 6:489-502. [PMID: 31899866 PMCID: PMC7793009 DOI: 10.1021/acsinfecdis.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Marburg virus (MARV) causes severe disease in humans and is known to activate nuclear factor erythroid 2-related factor 2 (Nrf2), the major transcription factor of the antioxidant response. Canonical activation of Nrf2 involves oxidative or electrophilic stress that prevents Kelch-like ECH-associated protein 1 (Keap1) targeted degradation of Nrf2, leading to Nrf2 stabilization and activation of the antioxidant response. MARV activation of Nrf2 is noncanonical with the MARV VP24 protein (mVP24) interacting with Keap1, freeing Nrf2 from degradation. A high-throughput screening (HTS) assay was developed to identify inhibitors of mVP24-induced Nrf2 activity and used to screen more than 55,000 compounds. Hit compounds were further screened against secondary HTS assays for the inhibition of antioxidant activity induced by additional canonical and noncanonical mechanisms. This pipeline identified 14 compounds that suppress the response, dependent on the inducer, with 50% inhibitory concentrations below 5 μM and selectivity index values greater than 10. Notably, several of the identified compounds specifically inhibit mVP24-induced Nrf2 activity.
Collapse
Affiliation(s)
- Megan R. Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Gai Liu
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Sampriti De
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Colette Pietzsch
- Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, United States
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Alexander Bukreyev
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, United States
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, United States
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Zachary Aron
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Terry L. Bowlin
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Donald T. Moir
- Microbiotix Inc, 1 Innovation Drive, Worcester MA 01605, United States
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
39
|
Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. J Virol 2020; 94:JVI.01684-19. [PMID: 31852783 DOI: 10.1128/jvi.01684-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) dissociates from its inhibitor, Keap1, upon stress signals and subsequently induces an antioxidant response that critically controls the viral life cycle and pathogenesis. Besides intracellular Fc receptor function, tripartite motif 21 (TRIM21) E3 ligase plays an essential role in the p62-Keap1-Nrf2 axis pathway for redox homeostasis. Specifically, TRIM21-mediated p62 ubiquitination abrogates p62 oligomerization and sequestration activity and negatively regulates the Keap1-Nrf2-mediated antioxidant response. A number of viruses target the Nrf2-mediated antioxidant response to generate an optimal environment for their life cycle. Here we report that a nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) interacts with and inhibits TRIM21 to activate the Nrf2 antioxidant signal pathway. Mass spectrometry identified TRIM21 to be a binding protein for NSs. NSs bound to the carboxyl-terminal SPRY subdomain of TRIM21, enhancing p62 stability and oligomerization. This facilitated p62-mediated Keap1 sequestration and ultimately increased Nrf2-mediated transcriptional activation of antioxidant genes, including those for heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and CD36. Mutational analysis found that the NSs-A46 mutant, which no longer interacted with TRIM21, was unable to increase Nrf2-mediated transcriptional activation. Functionally, the NS wild type (WT), but not the NSs-A46 mutant, increased the surface expression of the CD36 scavenger receptor, resulting in an increase in phagocytosis and lipid uptake. A combination of reverse genetics and assays with Ifnar -/- mouse models revealed that while the SFTSV-A46 mutant replicated similarly to wild-type SFTSV (SFTSV-WT), it showed weaker pathogenic activity than SFTSV-WT. These data suggest that the activation of the p62-Keap1-Nrf2 antioxidant response induced by the NSs-TRIM21 interaction contributes to the development of an optimal environment for the SFTSV life cycle and efficient pathogenesis.IMPORTANCE Tick-borne diseases have become a growing threat to public health. SFTSV, listed by the World Health Organization as a prioritized pathogen, is an emerging phlebovirus, and fatality rates among those infected with this virus are high. Infected Haemaphysalis longicornis ticks are the major source of human SFTSV infection. In particular, the recent spread of this tick to over 12 states in the United States has increased the potential for outbreaks of this disease beyond Far East Asia. Due to the lack of therapies and vaccines against SFTSV infection, there is a pressing need to understand SFTSV pathogenesis. As the Nrf2-mediated antioxidant response affects viral life cycles, a number of viruses deregulate Nrf2 pathways. Here we demonstrate that the SFTSV NSs inhibits the TRIM21 function to upregulate the p62-Keap1-Nrf2 antioxidant pathway for efficient viral pathogenesis. This study not only demonstrates the critical role of SFTSV NSs in viral pathogenesis but also suggests potential future therapeutic approaches to treat SFTSV-infected patients.
Collapse
|
40
|
Masalova OV, Lesnova EI, Klimova RR, Momotyuk ED, Kozlov VV, Ivanova AM, Payushina OV, Butorina NN, Zakirova NF, Narovlyansky AN, Pronin AV, Ivanov AV, Kushch AA. Genetically Modified Mouse Mesenchymal Stem Cells Expressing Non-Structural Proteins of Hepatitis C Virus Induce Effective Immune Response. Vaccines (Basel) 2020; 8:E62. [PMID: 32024236 PMCID: PMC7158691 DOI: 10.3390/vaccines8010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the major causes of chronic liver disease and leads to cirrhosis and hepatocarcinoma. Despite extensive research, there is still no vaccine against HCV. In order to induce an immune response in DBA/2J mice against HCV, we obtained modified mouse mesenchymal stem cells (mMSCs) simultaneously expressing five nonstructural HCV proteins (NS3-NS5B). The innate immune response to mMSCs was higher than to DNA immunization, with plasmid encoding the same proteins, and to naïve unmodified MSCs. mMSCs triggered strong phagocytic activity, enhanced lymphocyte proliferation, and production of type I and II interferons. The adaptive immune response to mMSCs was also more pronounced than in the case of DNA immunization, as exemplified by a fourfold stronger stimulation of lymphocyte proliferation in response to HCV, a 2.6-fold higher rate of biosynthesis, and a 30-fold higher rate of secretion of IFN-γ, as well as by a 40-fold stronger production of IgG2a antibodies to viral proteins. The immunostimulatory effect of mMSCs was associated with pronounced IL-6 secretion and reduction in the population of myeloid derived suppressor cells (MDSCs). Thus, this is the first example that suggests the feasibility of using mMSCs for the development of an effective anti-HCV vaccine.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina D. Momotyuk
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alla M. Ivanova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Olga V. Payushina
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
| | - Nina N. Butorina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander N. Narovlyansky
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
41
|
Xian Z, Choi YH, Zheng M, Jiang J, Zhao Y, Wang C, Li J, Li Y, Li L, Piao H, Yan G. Imperatorin alleviates ROS-mediated airway remodeling by targeting the Nrf2/HO-1 signaling pathway. Biosci Biotechnol Biochem 2020; 84:898-910. [PMID: 31900049 DOI: 10.1080/09168451.2019.1710107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we investigated the role and mechanism of imperatorin (IMP) in chronic inflammation and airway remodeling. The levels of TNF-α, IL-1β, IL-6, IL-8, VEGF, α-SMA, and ROS were detected by ELISA, immunohistochemistry (IHC), immunofluorescence, and Western blot. In addition, we evaluated the effect of IMP on MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 signaling pathways. IMP treatment obviously attenuated the production of inflammatory cytokines and inflammatory cells in bronchoalveolar lavage fluid of OVA-induced airway remodeling model. Meanwhile, it significantly inhibited inflammatory cell infiltration, goblet cell hyperplasia, collagen deposition, VEGF production, α-SMA, and ROS expression. Our study has shown that IMP could regulate the signaling pathways including MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 to release the inflammatory responses. IMP might attenuate airway remodeling by the down-regulation of Nrf2/HO-1/ROS/PI3K/Akt, Nrf2/HO-1/ROS/MAPK, and Nrf2/HO-1/ROS/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhemin Xian
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yuzhe Zhao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Chongyang Wang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Junfeng Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yan Li
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| |
Collapse
|
42
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease including metabolic disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease progression by perturbing a range of survival, proliferative, and metabolic pathways within the proinflammatory cellular microenvironment. The recent breakthrough in antiviral therapy using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic hepatic signature, which persists after DAA cure. In this review, we summarize the main signaling pathways deregulated by HCV infection, with potential impact on liver pathogenesis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways are potential targets for novel chemopreventive strategies.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
43
|
HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6016278. [PMID: 31885806 PMCID: PMC6915010 DOI: 10.1155/2019/6016278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of “non-AIDS-defining” malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.
Collapse
|
44
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
45
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019; 11:nu11092101. [PMID: 31487871 PMCID: PMC6769590 DOI: 10.3390/nu11092101] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.
Collapse
Affiliation(s)
- Olivia M Guillin
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France.
| |
Collapse
|
47
|
Hepatitis C Virus RNA-Dependent RNA Polymerase Is Regulated by Cysteine S-Glutathionylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3196140. [PMID: 31687077 PMCID: PMC6800943 DOI: 10.1155/2019/3196140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) triggers massive production of reactive oxygen species (ROS) and affects expression of genes encoding ROS-scavenging enzymes. Multiple lines of evidence show that levels of ROS production contribute to the development of various virus-associated pathologies. However, investigation of HCV redox biology so far remained in the paradigm of oxidative stress, whereas no attention was given to the identification of redox switches among viral proteins. Here, we report that one of such redox switches is the NS5B protein that exhibits RNA-dependent RNA polymerase (RdRp) activity. Treatment of the recombinant protein with reducing agents significantly increases its enzymatic activity. Moreover, we show that the NS5B protein is subjected to S-glutathionylation that affects cysteine residues 89, 140, 170, 223, 274, 521, and either 279 or 295. Substitution of these cysteines except C89 and C223 with serine residues led to the reduction of the RdRp activity of the recombinant protein in a primer-dependent assay. The recombinant protein with a C279S mutation was almost inactive in vitro and could not be activated with reducing agents. In contrast, cysteine substitutions in the NS5B region in the context of a subgenomic replicon displayed opposite effects: most of the mutations enhanced HCV replication. This difference may be explained by the deleterious effect of oxidation of NS5B cysteine residues in liver cells and by the protective role of S-glutathionylation. Based on these data, redox-sensitive posttranslational modifications of HCV NS5B and other proteins merit a more detailed investigation and analysis of their role(s) in the virus life cycle and associated pathogenesis.
Collapse
|
48
|
Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1409582. [PMID: 31531178 PMCID: PMC6720866 DOI: 10.1155/2019/1409582] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress is induced once the balance of generation and neutralization of reactive oxygen species (ROS) is broken in the cell, and it plays crucial roles in a variety of natural and diseased processes. Infections of Flaviviridae viruses trigger oxidative stress, which affects both the cellular metabolism and the life cycle of the viruses. Oxidative stress associated with specific viral proteins, experimental culture systems, and patient infections, as well as its correlations with the viral pathogenesis attracts much research attention. In this review, we primarily focus on hepatitis C virus (HCV), dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) as representatives of Flaviviridae viruses and we summarize the mechanisms involved in the relevance of oxidative stress for virus-associated pathogenesis. We discuss the current understanding of the pathogenic mechanisms of oxidative stress induced by Flaviviridae viruses and highlight the relevance of autophagy and DNA damage in the life cycle of viruses. Understanding the crosstalk between viral infection and oxidative stress-induced molecular events may offer new avenues for antiviral therapeutics.
Collapse
|
49
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
50
|
Hino K, Nishina S, Sasaki K, Hara Y. Mitochondrial damage and iron metabolic dysregulation in hepatitis C virus infection. Free Radic Biol Med 2019; 133:193-199. [PMID: 30268888 DOI: 10.1016/j.freeradbiomed.2018.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis that can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Although HCV infection is expected to decrease due to the high rate of HCV eradication via the rapid dissemination and use of directly acting antivirals, HCV infection remains a leading cause of HCC. Although the mechanisms underlying the HCC development are not fully understood, oxidative stress is present to a greater degree in HCV infection than in other inflammatory liver diseases and has been proposed as a major mechanism of liver injury in patients with chronic hepatitis C. Hepatocellular mitochondrial alterations and iron accumulation are well-known characteristics in patients with chronic hepatitis C and are closely related to oxidative stress, since the mitochondria are the main site of reactive oxygen species generation, and iron produces hydroxy radicals via the Fenton reaction. In addition, phlebotomy is an iron reduction approach that aims to lower serum transaminase levels in patients with chronic hepatitis C. Here, we review and discuss the mechanisms by which HCV induces mitochondrial damage and iron accumulation in the liver and offer new insights concerning how mitochondrial damage and iron accumulation are linked to the development of HCC.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Sohij Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Kyo Sasaki
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| |
Collapse
|