1
|
Liu H, Chen M. Morphology and Chemical Messenger Regulation of Echinoderm Muscles. BIOLOGY 2023; 12:1349. [PMID: 37887059 PMCID: PMC10603993 DOI: 10.3390/biology12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The muscular systems of echinoderms play important roles in various physiological and behavioral processes, including feeding, reproduction, movement, respiration, and excretion. Like vertebrates, echinoderm muscle systems can be subdivided into two major divisions, somatic and visceral musculature. The former usually has a myoepithelial organization, while the latter contains muscle bundles formed by the aggregation of myocytes. Neurons and their processes are also detected between these myoepithelial cells and myocytes, which are capable of releasing a variety of neurotransmitters and neuropeptides to regulate muscle activity. Although many studies have reported the pharmacological effects of these chemical messengers on various muscles of echinoderms, there has been limited research on their receptors and their signaling pathways. The muscle physiology of echinoderms is similar to that of chordates, both of which have the deuterostome mode of development. Studies of muscle regulation in echinoderms can provide new insights into the evolution of myoregulatory systems in deuterostomes.
Collapse
Affiliation(s)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
2
|
Viel T, Cocca M, Manfra L, Caramiello D, Libralato G, Zupo V, Costantini M. Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122129. [PMID: 37429489 DOI: 10.1016/j.envpol.2023.122129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Plastic pollution is a remarkable environmental issue. In fact, plastic is widespread in the lifetime and serious environmental problems are caused by the improper management of plastic end of life, being plastic litter detected in any environment. Efforts are put to implement the development of sustainable and circular materials. In this scenario, biodegradable polymers, BPs, are promising materials if correctly applied and managed at the end of life to minimize environmental problems. However, a lack of data on BPs fate and toxicity on marine organisms, limits their applicability. In this research, the impact of microplastics obtained from BPs, BMPs, were analyzed on Paracentrotus lividus. Microplastics were produced from five biodegradable polyesters at laboratory scale by milling the pristine polymers, under cryogenic conditions. Morphological analysis of P. lividus embryos exposed to polycaprolactone (PCL), polyhydroxy butyrate (PHB) and polylactic acid (PLA) showed their delay and malformations, which at molecular level are due to variation in expression levels of eighty-seven genes involved in various cellular processes, such as skeletogenesis, differentiation and development, stress, and detoxification response. Exposure to poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) microplastics showed no detectable effects on P. lividus embryos. These findings contribute with important data on the effect of BPs on the physiology of marine invertebrates.
Collapse
Affiliation(s)
- Thomas Viel
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy.
| | - Loredana Manfra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121, Naples, Italy
| | - Giovanni Libralato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via F. Buonocore, 42, 80077, Ischia, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy
| |
Collapse
|
3
|
Seo HJ, Rhim WK, Baek SW, Kim JY, Kim DS, Han DK. Endogenous stimulus-responsive nitric oxide releasing bioactive liposome for a multilayered drug-eluting balloon. Biomater Sci 2023; 11:916-930. [PMID: 36533852 DOI: 10.1039/d2bm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-eluting balloon (DEB) system has been widely utilized for percutaneous coronary intervention (PCI), treating atherosclerosis to overcome the limitations of cardiovascular stents. With the anti-proliferative drug, everolimus (EVL), nitric oxide (NO) plays a key bioregulator role to facilitate the angiogenesis of endothelial cells (ECs) and inhibit the cell proliferation of smooth muscle cells (SMCs) in the lesions of cardiovascular diseases. Due to the very short lifetime and limited exposure area of NO in the body, the continuous release and efficient delivery of NO must be carefully considered. In this respect, a liposome-containing disulfide bonding group was introduced as a delivery vehicle of EVL and NO with the continuous release of NO via successive reaction cycles with GSH and SNAP in the blood vessel without the need for exogenous stimulations. With a multilayer coating platform consisting of a polyvinylpyrrolidone (PVP)/EVL-laden liposome with NO (EVL-NO-Lipo)/PVP, we precluded the loss of the EVL-encapsulated liposome with NO release during the transition time and maximized the transfer rate from the surface of DEB to the tissues. The sustained release of NO was monitored using a nitric oxide analyzer (NOA), and the synergistic bioactivities of EVL and NO were proved in EC and SMC with angiogenesis and cell proliferation-related assays. From the results of hemocompatibility and ex vivo studies, the feasibility was provided for future in vivo applications of the multilayer-coated DEB system.
Collapse
Affiliation(s)
- Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
4
|
Varrella S, Danovaro R, Corinaldesi C. Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120212. [PMID: 36152716 DOI: 10.1016/j.envpol.2022.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the "new generation" organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the "old generation" organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on "new generation" UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
5
|
Gene Expression Detects the Factors Influencing the Reproductive Success and the Survival Rates of Paracentrotus lividus Offspring. Int J Mol Sci 2022; 23:ijms232112790. [DOI: 10.3390/ijms232112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.
Collapse
|
6
|
Locascio A, Vassalli QA, Castellano I, Palumbo A. Novel Insights on Nitric Oxide Synthase and NO Signaling in Ascidian Metamorphosis. Int J Mol Sci 2022; 23:ijms23073505. [PMID: 35408864 PMCID: PMC8999111 DOI: 10.3390/ijms23073505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a pivotal signaling molecule involved in a wide range of physiological and pathological processes. We investigated NOS/NO localization patterns during the different stages of larval development in the ascidia Ciona robusta and evidenced a specific and temporally controlled pattern. NOS/NO expression starts in the most anterior sensory structures of the early larva and progressively moves towards the caudal portion as larval development and metamorphosis proceeds. We here highlight the pattern of NOS/NO expression in the central and peripheral nervous system of Ciona larvae which precisely follows the progression of neural signals of the central pattern generator necessary for the control of the movements of the larva towards the substrate. This highly dynamic localization profile perfectly matches with the central role played by NO from the first phase of settlement induction to the next control of swimming behavior, adhesion to substrate and progressive tissue resorption and reorganization of metamorphosis itself.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| | - Quirino Attilio Vassalli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: (A.L.); (A.P.)
| |
Collapse
|
7
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
8
|
Albarano L, Zupo V, Caramiello D, Toscanesi M, Trifuoggi M, Guida M, Libralato G, Costantini M. Sub-Chronic Effects of Slight PAH- and PCB-Contaminated Mesocosms in Paracentrotus lividus Lmk: A Multi-Endpoint Approach and De Novo Transcriptomic. Int J Mol Sci 2021; 22:ijms22136674. [PMID: 34206685 PMCID: PMC8268688 DOI: 10.3390/ijms22136674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Sediment pollution is a major issue in coastal areas, potentially endangering human health and the marine environments. We investigated the short-term sublethal effects of sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on the sea urchin Paracentrotus lividus for two months. Spiking occurred at concentrations below threshold limit values permitted by the law (TLVPAHs = 900 µg/L, TLVPCBs = 8 µg/L, Legislative Italian Decree 173/2016). A multi-endpoint approach was adopted, considering both adults (mortality, bioaccumulation and gonadal index) and embryos (embryotoxicity, genotoxicity and de novo transcriptome assembly). The slight concentrations of PAHs and PCBs added to the mesocosms were observed to readily compartmentalize in adults, resulting below the detection limits just one week after their addition. Reconstructed sediment and seawater, as negative controls, did not affect sea urchins. PAH- and PCB-spiked mesocosms were observed to impair P. lividus at various endpoints, including bioaccumulation and embryo development (mainly PAHs) and genotoxicity (PAHs and PCBs). In particular, genotoxicity tests revealed that PAHs and PCBs affected the development of P. lividus embryos deriving from exposed adults. Negative effects were also detected by generating a de novo transcriptome assembly and its annotation, as well as by real-time qPCR performed to identify genes differentially expressed in adults exposed to the two contaminants. The effects on sea urchins (both adults and embryos) at background concentrations of PAHs and PCBs below TLV suggest a need for further investigations on the impact of slight concentrations of such contaminants on marine biota.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Maria Toscanesi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Correspondence:
| |
Collapse
|
9
|
Murano C, Donnarumma V, Corsi I, Casotti R, Palumbo A. Impact of Microbial Colonization of Polystyrene Microbeads on the Toxicological Responses in the Sea Urchin Paracentrotus lividus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7990-8000. [PMID: 34018718 DOI: 10.1021/acs.est.1c00618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sea urchin Paracentrotus lividus (P. lividus) was exposed to either virgin or biofilm-covered polystyrene microbeads (micro-PS, 45 μm) in order to test the effect of microbial colonization on the uptake, biodistribution, and immune response. The biofilm was dominated by bacteria, as detected by scanning electron microscopy and 16S rRNA sequencing. A higher internalization rate of colonized micro-PS inside sea urchins compared to virgin ones was detected, suggesting a role of the plastisphere in the interaction. Colonized and virgin micro-PS showed the same biodistribution pattern by accumulating mainly in the digestive system with higher levels and faster egestion rates for the colonized. However, a significant increase of catalase and total antioxidant activity was observed only in the digestive system of colonized micro-PS-exposed individuals. Colonized micro-PS also induced a significant decrease in the number of coelomocytes with a significant increase in vibratile cells, compared to control and virgin micro-PS-exposed animals. Moreover, a general time-dependent increase in the red/white amoebocytes ratio and reactive oxygen species and a decrease in nitrogen ones were observed upon exposure to both colonized and virgin micro-PS. Overall, micro-PS colonization clearly affected the uptake and toxicological responses of the Mediterranean sea urchin P. lividus in comparison to virgin micro-PS.
Collapse
Affiliation(s)
- Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Vincenzo Donnarumma
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| |
Collapse
|
10
|
Glaviano F, Ruocco N, Somma E, De Rosa G, Campani V, Ametrano P, Caramiello D, Costantini M, Zupo V. Two Benthic Diatoms, Nanofrustulum shiloi and Striatella unipunctata, Encapsulated in Alginate Beads, Influence the Reproductive Efficiency of Paracentrotus lividus by Modulating the Gene Expression. Mar Drugs 2021; 19:md19040230. [PMID: 33920652 PMCID: PMC8074093 DOI: 10.3390/md19040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
| | - Emanuele Somma
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Pasquale Ametrano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Davide Caramiello
- Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| |
Collapse
|
11
|
Iachini T, Ruggiero G. Can I put myself in your shoes? Sharing peripersonal space reveals the simulation of the action possibilities of others. Exp Brain Res 2021; 239:1035-1045. [PMID: 33523239 DOI: 10.1007/s00221-021-06040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
The representation of the reachable space near the body or peripersonal space (PPS) plays an important role in action with objects and interaction with other people. Here we explored whether the representation of other people's PPS involves a simulation of their action possibility depending on the distance between the observer's body and the other person. We hypothesized that a simulation of action possibilities of others should be activated when they share the PPS of observers. In two experiments using Immersive Virtual Reality, the avatars were shown with their arms free or blocked (motor interference) at a reachable (i.e., Near/shared PPS) or not-reachable (i.e., Far/not-shared PPS) distance by the participants. Participants had to locate a glass in relation to the midline of the avatar's body, i.e., assuming the perspective of the avatar. To directly compare the representation of one's own and others' PPS, in Experiment 1 participants had to locate the glass in relation to themselves with their arms free or blocked. The glass was always within the PPS of either participants or avatars. The results showed that the localization of the glass from the avatar's perspective was slower with the blocked than free arm only when the avatar was in the near shared PPS, similar to the localization from one's own first-person perspective. Instead, there was no effect of motor interference in the far, not-shared PPS. This suggests that the representation of other people's PPS can involve motor simulation mechanisms when we share a common peripersonal area.
Collapse
Affiliation(s)
- Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy.
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania L. Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| |
Collapse
|
12
|
Quetglas-Llabrés MM, Tejada S, Capó X, Langley E, Sureda A, Box A. Antioxidant response of the sea urchin Paracentrotus lividus to pollution and the invasive algae Lophocladia lallemandii. CHEMOSPHERE 2020; 261:127773. [PMID: 32736247 DOI: 10.1016/j.chemosphere.2020.127773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/04/2023]
Abstract
Pollution derived from human activities and the arrival of invasive species are common worldwide and affect coastal marine ecosystems negatively, and more especially in a semi-closed sea such as the Mediterranean Sea. The aim of the study was to evaluate oxidative stress biomarkers in the gonadal tissue of the sea urchin Paracentrotus lividus (Lamarck, 1816) sampled in different areas of Sant Antoni de Portmany (Ibiza Island, Spain) with different anthropic activities, and in an area deeply covered by the invasive red algae Lophocladia lallemandii. The densities of P. lividus were higher in the area with the greatest anthropogenic influence, while the area invaded by L. lallemandii showed the lowest density. A significant increase in the activities of the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) and the phase II detoxifying enzyme glutathione S-transferase (GST) was found in the most impacted area by the human activity. Moreover, malondialdehyde (MDA) and nitrite levels were also increased in the most impacted area. Similarly, the presence of L. lallemandii induced oxidative stress in P. lividus evidenced by a significant increase in all analysed biomarkers. In conclusion, changes in oxidative stress biomarkers are a good proxy to evaluate the impacts induced by anthropogenic activities and by the presence of invasive algae to P. lividus.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain
| | - Silvia Tejada
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain; Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Xavier Capó
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015, Palma de Mallorca, Spain
| | - Eli Langley
- CREM, Aquari Cap Blanc. Ctra. Cala Gració. Sant Antoni de Portmany, E-07820, Ibiza, Balearic Islands, Spain
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain.
| | - Antonio Box
- Consell Insular d'Eivissa, Dep. Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal. Av. Espanya nº49, E-07800 Ibiza, Balearic Islands, Spain.
| |
Collapse
|
13
|
Galasso C, Celentano S, Costantini M, D’Aniello S, Ianora A, Sansone C, Romano G. Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. Int J Mol Sci 2020; 21:ijms21155201. [PMID: 32708040 PMCID: PMC7439121 DOI: 10.3390/ijms21155201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process. These results give first insight on death mechanisms of P. lividus death mechanisms, also providing additional information for the use of this marine organism as a useful in vitro model for the study of cell death signalling pathways activated in response to chemical compounds.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Susanna Celentano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| |
Collapse
|
14
|
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar Drugs 2020; 18:md18070342. [PMID: 32629777 PMCID: PMC7401250 DOI: 10.3390/md18070342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.
Collapse
|
15
|
Nasuno R, Shino S, Yoshikawa Y, Yoshioka N, Sato Y, Kamiya K, Takagi H. Detection system of the intracellular nitric oxide in yeast by HPLC with a fluorescence detector. Anal Biochem 2020; 598:113707. [DOI: 10.1016/j.ab.2020.113707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
|
16
|
Ruocco N, Bertocci I, Munari M, Musco L, Caramiello D, Danovaro R, Zupo V, Costantini M. Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: The case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). MARINE ENVIRONMENTAL RESEARCH 2020; 154:104865. [PMID: 32056706 DOI: 10.1016/j.marenvres.2019.104865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Marine sediments store complex mixtures of compounds, including heavy metals, organotins and a large array of other contaminants. Sediment quality monitoring, characterization and management are priorities, due to potential impacts of the above compounds on coastal waters and their biota, especially in cases of pollutants released during dredging activities. Harbours and marinas, as well as estuaries and bays, where limited exchanges of water occurr, the accumulation of toxic compounds poses major concerns for human and environmental health. Here we report the effects of highly contaminated sediments from the site of national interest Bagnoli-Coroglio (Tyrrhenian Sea, Western Mediterranean) on the sea urchin Paracentrotus lividus, considered a good model for ecotoxicological studies. Adult sea urchins were reared one month in aquaria in the presence of contaminated sediment that was experimentally subject to different patterns of re-suspension events (mimicking the effect of natural storms occurring in the field), crossed with O2 enrichment versus natural gas exchanges in the water. The development of embryos deriving from adult urchins exposed to such experimental conditions was followed until the pluteus stage, checking the power of contaminated sediment to induce morphological malformations and its eventual buffering by high oxygenation. Real-Time qPCR analysis revealed that the expression of several genes (among the fifty analyzed, involved in different functional processes) was targeted by contaminated sediments more than those exposed in oxygen-enriched condition. Our findings have biological and ecological relevance in terms of assessing the actual impact on local organisms of chronic environmental contamination by heavy metals and polycyclic aromatic hydrocarbons affecting the Bagnoli-Coroglio area, and of exploring enhanced sediment and water oxygenation as a promising tool to mitigate the effects of contamination in future environmental restoration actions.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Iacopo Bertocci
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Luigi Musco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
17
|
Esposito R, Ruocco N, Albarano L, Ianora A, Manfra L, Libralato G, Costantini M. Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:ijms21030719. [PMID: 31979078 PMCID: PMC7036778 DOI: 10.3390/ijms21030719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Correspondence: ; Tel.: +39-081-5833-3285
| |
Collapse
|
18
|
Morroni L, Sartori D, Costantini M, Genovesi L, Magliocco T, Ruocco N, Buttino I. First molecular evidence of the toxicogenetic effects of copper on sea urchin Paracentrotus lividus embryo development. WATER RESEARCH 2019; 160:415-423. [PMID: 31163317 DOI: 10.1016/j.watres.2019.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Bioassays with sea urchin embryos are widely used to define the environmental quality of marine waters. Anomalies during embryogenesis are generally considered as end-points, whereas a toxigenomic approach, despite it is wide use in other species, is yet in its infancy. In the present study we evaluated toxigenic effects induced by copper on the sea urchin Paracentrotus lividus embryo, combining morphological observations with gene expression analysis. Many anthropogenic activities release copper in the marine environment, with harmful effects on aquatic organisms. In the present study P. lidivus embryos were exposed to different concentrations of copper (24, 36, 48 μg/L) and the activation of fifty specific marker genes, involved in different biological processes (stress, skeletogenesis, development/differentiation, detoxification) was investigated at early blastula, late gastrula and pluteus stage. At blastula stage no morphological anomalies were found, with early down-regulation of genes involved in development/differentiation and a moderate up-regulation of some detoxification genes. At gastrula stage a slight increase in developmental anomalies (up to 19% of malformed embryos) was followed by an increased number of targeted genes belonging to the same two classes, relative to the blastula stage. At pluteus stage morphological anomalies increased in a dose dependent manner. All the analyzed genes were strongly up-regulated, stress and skeletogenic genes showing a "late response" and almost all genes were targeted by copper at all the concentrations tested. The present study represents the first molecular report on the potential negative effect of copper on P. lividus embryos in the environment. Gene expression analysis should be considered as a promising tool for future environmental biomonitoring programs.
Collapse
Affiliation(s)
- Lorenzo Morroni
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Lorenzo Genovesi
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Thomas Magliocco
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
19
|
Ruocco N, Cavaccini V, Caramiello D, Ianora A, Fontana A, Zupo V, Costantini M. Noxious effects of the benthic diatoms Cocconeis scutellum and Diploneis sp. on sea urchin development: Morphological and de novo transcriptomic analysis. HARMFUL ALGAE 2019; 86:64-73. [PMID: 31358278 DOI: 10.1016/j.hal.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Diatoms are often the dominating group of benthic microalgae living on different types of bottom substrates. Their effects on invertebrate consumers is not well-documented. We here investigate the effects of feeding on another two benthic diatoms, Cocconeis scutellum and Diploneis sp., isolated from leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Our results indicate a noxious effect on sea urchin embryos spawned from adults fed on Diploneis sp., with an increasing number of malformed embryos with respect to those spawned from adults fed on Ulva rigida (used as a feeding control). In contrast C. scutellum did not induce any morphological effect on embryos, similar to control non-diatom diets. Moreover, de novo obtained transcriptome indicated that oxidation-reduction process, translation, proton and electron transmembrane transport, ATP/RNA/GTP/heme/calcium and metal ion binding, NADH dehydrogenase activity, cytochrome c oxidase were affected by feeding of sea urchins on Diploneis sp. Our findings have considerable ecological significance considering that diatom biomass ingested by the sea urchin in these experiments is within the range of cell densities characterizing P. oceanica leaves where sea urchins live and spawn.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy; Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Vincenzo Cavaccini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
20
|
Zupo V, Mutalipassi M, Ruocco N, Glaviano F, Pollio A, Langellotti AL, Romano G, Costantini M. Distribution of Toxigenic Halomicronema spp. in Adjacent Environments on the Island of Ischia: Comparison of Strains from Thermal Waters and Free Living in Posidonia Oceanica Meadows. Toxins (Basel) 2019; 11:toxins11020099. [PMID: 30747108 PMCID: PMC6409854 DOI: 10.3390/toxins11020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
Organisms adaptable to extreme conditions share the ability to establish protective biofilms or secrete defence toxins. The extracellular substances that are secreted may contain monosaccharides and other toxic compounds, but environmental conditions influence biofilm characteristics. Microorganisms that are present in the same environment achieve similar compositions, regardless of their phylogenetic relationships. Alternatively, cyanobacteria phylogenetically related may live in different environments, but we ignore if their physiological answers may be similar. To test this hypothesis, two strains of cyanobacteria that were both ascribed to the genus Halomicronema were isolated. H. metazoicum was isolated in marine waters off the island of Ischia (Bay of Naples, Italy), free living on leaves of Posidonia oceanica. Halomicronema sp. was isolated in adjacent thermal waters. Thus, two congeneric species adapted to different environments but diffused in the same area were polyphasically characterized by microscopy, molecular, and toxicity analyses. A variable pattern of toxicity was exhibited, in accordance with the constraints imposed by the host environments. Cyanobacteria adapted to extreme environments of thermal waters face a few competitors and exhibit a low toxicity; in contrast, congeneric strains that have adapted to stable and complex environments as seagrass meadows compete with several organisms for space and resources, and they produce toxic compounds that are constitutively secreted in the surrounding waters.
Collapse
Affiliation(s)
- Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Francesca Glaviano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy.
| | - Antonio Luca Langellotti
- CAISIAL, Aquaculture division, University of Naples Federico II. Via Università, 80055 Portici (NA), Italy.
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
21
|
Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9:517. [PMID: 30679744 PMCID: PMC6345956 DOI: 10.1038/s41598-018-37546-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs.
Collapse
|
22
|
Fernández-Boo S, Pedrosa-Oliveira MH, Afonso A, Arenas F, Rocha F, Valente LMP, Costas B. Annual assessment of the sea urchin (Paracentrotus lividus) humoral innate immune status: Tales from the north Portuguese coast. MARINE ENVIRONMENTAL RESEARCH 2018; 141:128-137. [PMID: 30139531 DOI: 10.1016/j.marenvres.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Innate immune status of the sea urchin Paracentrotus lividus population from two different rocky shore beaches in the northern Portuguese coast was evaluated for a period of one year. Although some ecological studies regarding the effect of toxics on the immune parameters of the sea urchin were made in Portuguese waters, there is a current lack of knowledge concerning their immune status all over the year. In perspective of a changing ecosystem in these waters due to global warming and colonization of new species, it is important to assess the status of the major species living in the area. In this way, immune parameters such as total protein content, nitric oxide concentration, haemolytic activity, protease activity, lysozyme concentration and bactericidal activity were evaluated in the perivisceral coelomic fluid, and were correlated with the gonadal index of the population and water parameters. Also, the spawning period can upset some immune status parameters, and others such as haemolytic activity and bactericidal activity against Vibrio anguillarum, showed a clear correlation with the gonad maturation status. The knowledge of the basal immune status of the species could serve as ecological indicator of some stress agent or contaminant into the field; also, coelomic fluid is suggested as good quality marker to assess the immune status of sea urchins.
Collapse
Affiliation(s)
- S Fernández-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - M H Pedrosa-Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - A Afonso
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - F Arenas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - F Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L M P Valente
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
23
|
Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D'Aniello S, Romano G, Palumbo A, Albalat R, Cañestro C. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun Biol 2018; 1:121. [PMID: 30272001 PMCID: PMC6123688 DOI: 10.1038/s42003-018-0127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.
Collapse
Affiliation(s)
- Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alba Almazán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Ruocco N, Zupo V, Caramiello D, Glaviano F, Polese G, Albarano L, Costantini M. Experimental evaluation of the feeding rate, growth and fertility of the sea urchins Paracentrotus lividus. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1504125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Napoli, Italy
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Pozzuoli, Naples, Italy
| | - Valerio Zupo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesca Glaviano
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Napoli, Italy
| | - Luisa Albarano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
25
|
Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: morphological, metabolomic and de novo transcriptomic analysis. Sci Rep 2018; 8:5622. [PMID: 29618786 PMCID: PMC5884808 DOI: 10.1038/s41598-018-24023-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Diatoms are unicellular algae playing a key role as photosynthetic organisms in the world's ocean food webs. The chemical ecology of planktonic diatoms is well documented, but few studies have reported on the effects of benthic diatoms on their consumers, also due to difficulties in the collection, quantification and massive culturing of benthic species. Here for the first time we investigate the effects of feeding on two abundantly occurring benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium, isolated from the leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Adult P. lividus were fed for one month on diets of either one of the two diatoms and on the green alga Ulva rigida, used as a feeding control. By combining morphological, metabolomic and de novo transcriptomic approaches, we demonstrate toxigenic effect on embryos generated by females fed with these benthic diatoms. Furthermore, chemical analysis reveal the presence of polyunsaturated aldehydes only for N. shiloi, and a high production of other oxylipins (cytotoxic compounds on their grazers and on cancer cell lines) for both diatoms, including some additional peaks not correlated to the canonic oxylipins commonly observed in planktonic diatoms. These findings open new perspectives in the study of diatom secondary metabolites influencing their grazers.
Collapse
|
26
|
Ruocco N, Maria Fedele A, Costantini S, Romano G, Ianora A, Costantini M. New inter-correlated genes targeted by diatom-derived polyunsaturated aldehydes in the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:355-362. [PMID: 28437727 DOI: 10.1016/j.ecoenv.2017.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
The marine environment is continually subjected to the action of stressors (including natural toxins), which represent a constant danger for benthic communities. In the present work using network analysis we identified ten genes on the basis of associated functions (FOXA, FoxG, GFI-1, nodal, JNK, OneCut/Hnf6, TAK1, tcf4, TCF7, VEGF) in the sea urchin Paracentrotus lividus, having key roles in different processes, such as embryonic development and asymmetry, cell fate specification, cell differentiation and morphogenesis, and skeletogenesis. These genes are correlated with three HUB genes, Foxo, Jun and HIF1A. Real Time qPCR revealed that during sea urchin embryonic development the expression levels of these genes were modulated by three diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal. Our findings show how changes in gene expression levels may be used as an early indicator of stressful conditions in the marine environment. The identification of key genes and the molecular pathways in which they are involved represents a fundamental tool in understanding how marine organisms try to afford protection against toxicants, to avoid deleterious consequences and irreversible damages. The genes identified in this work as targets for PUAs can be considered as possible biomarkers to detect exposure to different environmental pollutants.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - Anna Maria Fedele
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Susan Costantini
- Unità di Farmacologia Sperimentale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80131 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
27
|
Oral R, Pagano G, Siciliano A, Gravina M, Palumbo A, Castellano I, Migliaccio O, Thomas PJ, Guida M, Tommasi F, Trifuoggi M. Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins. ENVIRONMENTAL RESEARCH 2017; 154:240-246. [PMID: 28107742 DOI: 10.1016/j.envres.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Heavy rare earth elements (HREEs) have been scarcely studied for their toxicity, in spite of their applications in several technologies. Thus HREEs require timely investigations for their adverse health effects. METHODS Paracentrotus lividus and Arbacia lixula embryos and sperm were exposed to trichloride salts of five HREEs (Dy, Ho, Er, Yb and Lu) and to Ce(III) as a light REE (LREE) reference to evaluate: 1) developmental defects (% DD) in HREE-exposed larvae or in the offspring of HREE-exposed sperm; 2) mitotic anomalies; 3) fertilization success; and 4) reactive oxygen species (ROS) formation, and nitric oxide (NO) and malondialdehyde (MDA) levels. Nominal HREE concentrations were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS HREEs induced concentration-related DD increases in P. lividus and A. lixula larvae, ranging from no significant DD increase at 10-7M HREEs up to ≅100% DD at 10-5M HREE. Larvae exposed to 10-5M Ce(III) resulted in less severe DD rates compared to HREEs. Decreased mitotic activity and increased aberration rates were found in HREE-exposed P. lividus embryos. Significant increases in ROS formation and NO levels were found both in HREE-exposed and in Ce(III) embryos, whereas only Ce(III), but not HREEs resulted in significant increase in MDA levels. Sperm exposure to HREEs (10-5-10-4M) resulted in a concentration-related decrease in fertilization success along with increase in offspring damage. These effects were significantly enhanced for Dy(III), Ho(III), Er(III) and Yb(III), compared to Lu(III) and to Ce(III). CONCLUSION HREE-associated toxicity affected embryogenesis, fertilization, cytogenetic and redox endpoints showing different toxicities of tested HREEs.
Collapse
Affiliation(s)
- Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Giovanni Pagano
- "Federico II" University of Naples, Department of Chemical Sciences, I-80126 Naples, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Antonietta Siciliano
- "Federico II" University of Naples, Department of Biology, I-80126 Naples, Italy
| | - Maria Gravina
- "Federico II" University of Naples, Department of Biology, I-80126 Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario, Canada K1A 0H3
| | - Marco Guida
- "Federico II" University of Naples, Department of Biology, I-80126 Naples, Italy
| | | | - Marco Trifuoggi
- "Federico II" University of Naples, Department of Chemical Sciences, I-80126 Naples, Italy
| |
Collapse
|
28
|
Romero A, Novoa B, Figueras A. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:29-38. [PMID: 27113124 DOI: 10.1016/j.dci.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.
Collapse
Affiliation(s)
- A Romero
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - B Novoa
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - A Figueras
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
29
|
Chi C, Giri SS, Jun JW, Kim HJ, Yun S, Kim SG, Park SC. Marine Toxin Okadaic Acid Affects the Immune Function of Bay Scallop (Argopecten irradians). Molecules 2016; 21:E1108. [PMID: 27563864 PMCID: PMC6272952 DOI: 10.3390/molecules21091108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Okadaic acid (OA) is produced by dinoflagellates during harmful algal blooms and is a diarrhetic shellfish poisoning toxin. This toxin is particularly problematic for bivalves that are cultured for human consumption. This study aimed to reveal the effects of exposure to OA on the immune responses of bay scallop, Argopecten irradians. Various immunological parameters were assessed (total hemocyte counts (THC), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), lactate dehydrogenase (LDH), and nitric oxide (NO) in the hemolymph of scallops at 3, 6, 12, 24, and 48 h post-exposure (hpe) to different concentrations of OA (50, 100, and 500 nM). Moreover, the expression of immune-system-related genes (CLT-6, FREP, HSP90, MT, and Cu/ZnSOD) was also measured. Results showed that ROS, MDA, and NO levels and LDH activity were enhanced after exposure to different concentrations of OA; however, both THC and GSH decreased between 24-48 hpe. The expression of immune-system-related genes was also assessed at different time points during the exposure period. Overall, our results suggest that exposure to OA had negative effects on immune system function, increased oxygenic stress, and disrupted metabolism of bay scallops.
Collapse
Affiliation(s)
- Cheng Chi
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Jin Woo Jun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea.
| |
Collapse
|
30
|
Ruocco N, Varrella S, Romano G, Ianora A, Bentley MG, Somma D, Leonardi A, Mellone S, Zuppa A, Costantini M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:128-140. [PMID: 27130972 DOI: 10.1016/j.aquatox.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, C227 Christchurch House, Bournemouth University, Talbot Campus, Poole, UK
| | - Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli, Italy
| | - Antonio Zuppa
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
31
|
Migliaccio O, Castellano I, Di Cioccio D, Tedeschi G, Negri A, Cirino P, Romano G, Zingone A, Palumbo A. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms. Sci Rep 2016; 6:26086. [PMID: 27192939 PMCID: PMC4872146 DOI: 10.1038/srep26086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.
Collapse
Affiliation(s)
| | | | | | | | - Armando Negri
- D.I.P.A.V. - Section of Biochemistry, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Pagano G, Guida M, Siciliano A, Oral R, Koçbaş F, Palumbo A, Castellano I, Migliaccio O, Thomas PJ, Trifuoggi M. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. ENVIRONMENTAL RESEARCH 2016; 147:453-460. [PMID: 26970899 DOI: 10.1016/j.envres.2016.02.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. METHODS Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. RESULTS REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. CONCLUSION REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies.
Collapse
Affiliation(s)
- Giovanni Pagano
- "Federico II" University of Naples, Environmental Hygiene, I-80126 Naples, Italy.
| | - Marco Guida
- "Federico II" University of Naples, Environmental Hygiene, I-80126 Naples, Italy
| | - Antonietta Siciliano
- "Federico II" University of Naples, Environmental Hygiene, I-80126 Naples, Italy
| | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Fatma Koçbaş
- Celal Bayar University, Faculty of Arts and Sciences, Department of Biology, TR-45140 Yunusemre, Manisa, Turkey
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | - Philippe J Thomas
- Environment Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario, Canada K1A 0H3
| | - Marco Trifuoggi
- "Federico II" University of Naples, Department of Chemical Sciences, I-80126 Naples, Italy
| |
Collapse
|
33
|
Lauritano C, Romano G, Roncalli V, Amoresano A, Fontanarosa C, Bastianini M, Braga F, Carotenuto Y, Ianora A. New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. HARMFUL ALGAE 2016; 55:221-229. [PMID: 28073535 DOI: 10.1016/j.hal.2016.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 05/16/2023]
Abstract
Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy to higher trophic levels. However, these unicellular organisms produce secondary metabolites deriving from the oxidation of fatty acids, collectively termed oxylipins, with negative effects on predators, such as copepods, that feed on them (e.g. reduction in survival, egg production and hatching success) and, indirectly, on higher trophic levels. Here, a multidisciplinary study (oxylipin measurements, copepod fitness, gene expression analyses, chlorophyll distribution, phytoplankton composition, physico-chemical characteristics) was carried out at the end of the spring diatom bloom in April 2011 in the Northern Adriatic Sea (Mediterranean Sea) in order to deeply investigate copepod-diatom interactions, chemical communication and response pathways. The results show that the transect with the lowest phytoplankton abundance had the lowest copepod egg production and hatching success, but the highest oxylipin concentrations. In addition, copepods in both the analyzed transects showed increased expression levels of key stress-related genes (e.g. heat-shock proteins, catalase, glutathione S-transferase, aldehyde dehydrogenase) compared to control laboratory conditions where copepods were fed with the dinoflagellate Prorocentrum minimum which does not produce any oxylipins. New oxylipins that have never been reported before for microalgae are described for the first time, giving new insights into the complex nature of plant-animal signaling and communication pathways at sea. This is also the first study providing insights on the copepod response during a diatom bloom at the molecular level.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Monte Sant'Angelo, 80126 Napoli, Italy
| | - Carolina Fontanarosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Monte Sant'Angelo, 80126 Napoli, Italy
| | - Mauro Bastianini
- Istituto di Scienze Marine CNR, Castello 2737/f, I30122 Venice, Italy
| | - Federica Braga
- Istituto di Scienze Marine CNR, Castello 2737/f, I30122 Venice, Italy
| | | | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
34
|
Varrella S, Romano G, Ruocco N, Ianora A, Bentley MG, Costantini M. First Morphological and Molecular Evidence of the Negative Impact of Diatom-Derived Hydroxyacids on the Sea Urchin Paracentrotus lividus. Toxicol Sci 2016; 151:419-33. [PMID: 26984781 PMCID: PMC4880139 DOI: 10.1093/toxsci/kfw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxylipins (including polyunsaturated aldehydes [PUAs], hydoxyacids, and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date, very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of 2 hydroxyacids, 5- and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared with PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis, and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the 2 HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, upregulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting 24 genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs, but rather these other chemicals are derived from the oxidation of fatty acids.
Collapse
Affiliation(s)
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy
| | - Nadia Ruocco
- *Department of Biology and Evolution of Marine Organisms
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, Bournemouth University, Dorset, BH12 5BB, United Kingdom
| | | |
Collapse
|
35
|
Varrella S, Romano G, Costantini S, Ruocco N, Ianora A, Bentley MG, Costantini M. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins. PLoS One 2016; 11:e0149734. [PMID: 26914213 PMCID: PMC4767821 DOI: 10.1371/journal.pone.0149734] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/04/2016] [Indexed: 01/17/2023] Open
Abstract
Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori “Fondazione G. Pascale,” IRCCS, Napoli, Italy
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Matt G. Bentley
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, United Kingdom
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail:
| |
Collapse
|
36
|
Buttino I, Hwang JS, Romano G, Sun CK, Liu TM, Pellegrini D, Gaion A, Sartori D. Detection of malformations in sea urchin plutei exposed to mercuric chloride using different fluorescent techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:72-80. [PMID: 26254716 DOI: 10.1016/j.ecoenv.2015.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei.
Collapse
Affiliation(s)
- Isabella Buttino
- Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA_ STS-Livorno, Piazzale dei marmi 12, 57123, Italy.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chi-Kuang Sun
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ming Liu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - David Pellegrini
- Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA_ STS-Livorno, Piazzale dei marmi 12, 57123, Italy
| | - Andrea Gaion
- Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA_ STS-Livorno, Piazzale dei marmi 12, 57123, Italy
| | - Davide Sartori
- Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA_ STS-Livorno, Piazzale dei marmi 12, 57123, Italy; CAISIAL, Academic Centre for Innovation and Development in the Food Industry, 80055 Portici (Na), Italy
| |
Collapse
|
37
|
Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Effects of short-term exposure of mature oocytes to sodium nitroprusside on in vitro embryo production and gene expression in bovine. Theriogenology 2015; 84:1431-7. [DOI: 10.1016/j.theriogenology.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 12/13/2022]
|
38
|
Castellano I, Ercolesi E, Romano G, Ianora A, Palumbo A. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling. Open Biol 2015; 5:140182. [PMID: 25788553 PMCID: PMC4389792 DOI: 10.1098/rsob.140182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage.
Collapse
Affiliation(s)
| | - Elena Ercolesi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
39
|
Migliaccio O, Castellano I, Cirino P, Romano G, Palumbo A. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus. PLoS One 2015; 10:e0131815. [PMID: 26125595 PMCID: PMC4488381 DOI: 10.1371/journal.pone.0131815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 02/02/2023] Open
Abstract
Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Paola Cirino
- Marine Resources for Research Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
40
|
Lavrentyev PJ, Franzè G, Pierson JJ, Stoecker DK. The effect of dissolved polyunsaturated aldehydes on microzooplankton growth rates in the Chesapeake Bay and Atlantic coastal waters. Mar Drugs 2015; 13:2834-56. [PMID: 25955757 PMCID: PMC4446608 DOI: 10.3390/md13052834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 02/04/2023] Open
Abstract
Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.
Collapse
Affiliation(s)
| | | | - James J Pierson
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA.
| | - Diane K Stoecker
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA.
| |
Collapse
|
41
|
Migliaccio O, Castellano I, Romano G, Palumbo A. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:125-134. [PMID: 25181703 DOI: 10.1016/j.aquatox.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by l-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Immacolata Castellano
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
42
|
Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12302-11. [PMID: 25260196 DOI: 10.1021/es502569w] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.
Collapse
Affiliation(s)
- C Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena , 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): the involvement of reactive oxygen species and nitric oxide. Mar Drugs 2014; 12:4165-87. [PMID: 25026265 PMCID: PMC4113821 DOI: 10.3390/md12074165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (PUA), a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA). Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control) with OCTA concentrations twice the EC50 for growth at 24 h (20 μM). The synthesis of carotenoids belonging to the xanthophyll cycle (XC) was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT) produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA), while PT (non-PUA producing species) perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities.
Collapse
|
44
|
Varrella S, Romano G, Ianora A, Bentley MG, Ruocco N, Costantini M. Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar Drugs 2014; 12:2089-113. [PMID: 24714125 PMCID: PMC4012444 DOI: 10.3390/md12042089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022] Open
Abstract
Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.
Collapse
Affiliation(s)
- Stefano Varrella
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Matt G Bentley
- Dove Marine Laboratory, School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK.
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| |
Collapse
|
45
|
Carotenuto Y, Dattolo E, Lauritano C, Pisano F, Sanges R, Miralto A, Procaccini G, Ianora A. Insights into the transcriptome of the marine copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. HARMFUL ALGAE 2014; 31:153-162. [PMID: 28040104 DOI: 10.1016/j.hal.2013.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 06/06/2023]
Abstract
Diatoms dominate productive regions in the oceans and have traditionally been regarded as sustaining the marine food chain to top consumers and fisheries. However, many of these unicellular algae produce cytotoxic oxylipins that impair reproductive and developmental processes in their main grazers, crustacean copepods. The molecular mode of action of diatoms and diatom oxylipins on copepods is still unclear. In the present study we generated two Expressed Sequence Tags (ESTs) libraries of the copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi and the cryptophyte Rhodomonas baltica as a control, using suppression subtractive hybridization (SSH). Our aim was to investigate differences in the transcriptome between females fed toxic and non-toxic food and identify differentially expressed genes and biological processes targeted by this diatom. We produced 947 high quality ESTs from both libraries, 475 of which were functionally annotated and deposited in GenBank. Clustering and assembling of ESTs resulted in 376 unique transcripts, 200 of which were functionally annotated. Functional enirchment analysis between the two SSH libraries showed that ESTs belonging to biological processes such as response to stimuli, signal transduction, and protein folding were significantly over-expressed in the S. marinoi-fed C. helgolandicus compared to R. baltica-fed C. helgolandicus library. These findings were confirmed by RT-qPCR analysis. In summary, 2 days of feeding on S. marinoi activated a generalized Cellular Stress Response (CSR) in C. helgolandicus, by over-expressing genes of molecular chaperones and signal transduction pathways that protect the copepod from the immediate effects of the diatom diet. Our results provide insights into the response of copepods to a harmful diatom diet at the transcriptome level, supporting the hypothesis that diatom oxylipins elicit a stress response in the receiving organism. They also increase the genomic resources for this copepod species, whose importance could become ever more relevant for pelagic ecosystem functioning in European waters due to global warming.
Collapse
Affiliation(s)
| | | | | | - Fabio Pisano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Antonio Miralto
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | | | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
46
|
Barros MP, Hollnagel HC, Glavina AB, Soares CO, Ganini D, Dagenais-Bellefeuille S, Morse D, Colepicolo P. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:195-202. [PMID: 24036534 DOI: 10.1016/j.aquatox.2013.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO4(2-)), although MoO4(2-) uptake is thought to compete with uptake of the much more abundant sulfate anion (SO4(2-), approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO4(2-) and SO4(2-) concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO4(2-) concentrations (from 0 to 200 μM) and three different SO4(2-) concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase), indexes of oxidative modifications in proteins (carbonyl content) and lipids (thiobarbituric acid-reactive substances, TBARS), the activities of the molybdenum-dependent enzymes xanthine oxidase and nitrate reductase, expression of key protein components of dinoflagellate photosynthesis (peridinin-chlorophyll a protein and ribulose-1,5-biphosphate carboxylase/oxidase) and growth curves. We find evidence for Mo toxicity at relatively high [MoO4(2-)]:[SO4(2-)] ratios. We also find evidence for extensive redox adaptations at Mo levels well below lethal levels.
Collapse
Affiliation(s)
- M P Barros
- Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lauritano C, Carotenuto Y, Miralto A, Procaccini G, Ianora A. Copepod population-specific response to a toxic diatom diet. PLoS One 2012; 7:e47262. [PMID: 23056617 PMCID: PMC3466246 DOI: 10.1371/journal.pone.0047262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/11/2012] [Indexed: 12/23/2022] Open
Abstract
Diatoms are key phytoplankton organisms and one of the main primary producers in aquatic ecosystems. However, many diatom species produce a series of secondary metabolites, collectively termed oxylipins, that disrupt development in the offspring of grazers, such as copepods, that feed on these unicellular algae. We hypothesized that different populations of copepods may deal differently with the same oxylipin-producing diatom diet. Here we provide comparative studies of expression level analyses of selected genes of interest for three Calanus helgolandicus populations (North Sea, Atlantic Ocean and Mediterranean Sea) exposed to the same strain of the oxylipin-producing diatom Skeletonema marinoi using as control algae the flagellate Rhodomonas baltica. Expression levels of detoxification enzymes and stress proteins (e.g. glutathione S-transferase, glutathione synthase, superoxide dismutase, catalase, aldehyde dehydrogenases and heat shock proteins) and proteins involved in apoptosis regulation and cell cycle progression were analyzed in copepods after both 24 and 48 hours of feeding on the diatom or on a control diet. Strong differences occurred among copepod populations, with the Mediterranean population of C. helgolandicus being more susceptible to the toxic diet compared to the others. This study opens new perspectives for understanding copepod population-specific responses to diatom toxins and may help in underpinning the cellular mechanisms underlying copepod toxicity during diatom blooms.
Collapse
|
48
|
Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis. Nitric Oxide 2012; 27:18-24. [PMID: 22498777 DOI: 10.1016/j.niox.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 02/08/2023]
Abstract
Developmental processes in the ascidian Ciona intestinalis depend on a complex interplay of events including, during metamorphosis, a caspase-dependent apoptosis which is regulated by the nitric oxide (NO)-cGMP signaling pathway. Herein we disclose an alternate NO-mediated signaling pathway during Ciona development which appears to be critically dependent on local redox control. Evidence in support of this conclusion includes: (a) inhibitors of NO synthase (NOS) and scavengers of NO-derived nitrating agents markedly decrease the rate of Ciona metamorphosis; (b) an NO donor or peroxynitrite caused an opposite effect; (c) increased protein nitration is observed at larva stage. Integrated proteomic and immunochemical methodologies identified nitrated tyrosine residues in ERK and snail. Overall, these results point to protein nitration as a hitherto overlooked NO-dependent regulatory mechanism in Ciona which is specifically triggered by elevated ROS production during developmental processes.
Collapse
|
49
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
50
|
Mattiello T, Costantini M, Di Matteo B, Livigni S, Andouche A, Bonnaud L, Palumbo A. The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis. Dev Dyn 2012; 241:390-402. [PMID: 22275228 DOI: 10.1002/dvdy.23722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is implied in many important biological processes in all metazoans from porifera to chordates. In the cuttlefish Sepia officinalis NO plays a key role in the defense system and neurotransmission. RESULTS Here, we detected for the first time NO, NO synthase (NOS) and transcript levels during the development of S. officinalis. The spatial pattern of NO and NOS is very dynamic, it begins during organogenesis in ganglia and epithelial tissues, as well as in sensory cells. At later stages, NO and NOS appear in organs and/or structures, including Hoyle organ, gills and suckers. Temporal expression of NOS, followed by real-time PCR, changes during development reaching the maximum level of expression at stage 26. CONCLUSIONS Overall these data suggest the involvement of NO during cuttlefish development in different fundamental processes, such as differentiation of neural and nonneural structures, ciliary beating, sensory cell maintaining, and organ functioning.
Collapse
Affiliation(s)
- Teresa Mattiello
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|