1
|
Mekhora C, Lamport DJ, Spencer JPE. An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals. Neurochem Int 2024; 181:105900. [PMID: 39522696 DOI: 10.1016/j.neuint.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Inflammation has been associated with cognitive decline, whether in the peripheral or central nervous systems. The primary mechanism involves the response of microglia, an immune cell in the brain, which generates pro-inflammatory mediators such as cytokines, chemokines, and adhesion molecules. The excessive production of pro-inflammatory mediators may accelerate the damage to neurons, contributing to the development of neurodegenerative diseases such as Alzheimer's disease, mild cognitive impairment, and vascular dementia, as well as a general decline in cognitive function. Various studies have supported the correlation between elevated pro-inflammatory mediators and a decline in cognitive function, particularly in aging and age-related neurodegenerative diseases. Moreover, this association has also been observed in other inflammatory-related conditions, including post-operative cognitive impairment, diabetes, stroke, obesity, and cancer. However, the interaction between inflammatory processes and cognitive function in humans remains unclear and varies according to different health conditions. Therefore, this review aims to consolidate and evaluate the available evidence from original studies as well as meta-analyses in order to provide a greater understanding of the inflammatory process in connection with cognitive function in humans. Furthermore, relevant biological cellular processes, putative inflammatory biomarkers, and the role of nutraceuticals on the interaction between cognitive performance and inflammatory status are outlined.
Collapse
Affiliation(s)
- Chusana Mekhora
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK.
| | - Daniel J Lamport
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading, Berkshire, RG6 6AL, UK
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK.
| |
Collapse
|
2
|
Selman A, Dai J, Driskill J, Reddy AP, Reddy PH. Depression and obesity: Focus on factors and mechanistic links. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167561. [PMID: 39505048 DOI: 10.1016/j.bbadis.2024.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Major depressive disorder (MDD) is defined as mood disorder causing a persistent loss of interest and despair for two weeks or greater, with related symptoms. Depression can interfere with daily life and can cause those affected to not work, study, eat, sleep, and enjoy previously enjoyed hobbies and life events as they did previously. If untreated, it can become a serious health condition. Depression is multifactorial with a variety of factors influencing the condition. These factors include: (1) poor diet and exercise, (2) socioeconomic status, (3) gender, (4) biological clocks, (5) genetics and epigenetics, and (6) personal stressors. Treatment of depressive disorders is thus also multifactorial and utilizes the following therapies: (1) diet and exercise, (2) bright light therapy, (3) cognitive behavioral therapy, and (4) pharmaceutical therapy. Obesity is defined as body mass index over 30 and above, is believed to be causally linked to MDD through both psychological and molecular means. Atypical depression, a common form of MDD, is most strongly correlated with a high proclivity for obesity. Obesity and depression have a bidirectional relationship, a patient experiencing either condition singularly is more likely to develop the other due to the neural links between the two, including emotional lability, physical health of the brain, hormones, cytokine secretion, appetite, diet and feeding habits, inflammatory state. In individuals consuming a high fat diet (HFD) commonly ingested by those with obesity, the gut-microbiome is altered leading to systemic inflammation and the dysregulation of mood and the HPA axis impacting their neural health. The purpose of this paper is to examine the interplay of potential molecular, psychological, societal, and environmental causal factors of depressive disorders and how obesity perpetuates depression. A secondary aim of this paper is to examine current interventions that may help improve those affected by both conditions.
Collapse
Affiliation(s)
- Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jean Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jackson Driskill
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Potokiri A, Omeiza NA, Ajayi AM, Adeleke PA, Alagbonsi AI, Iwalewa EO. Yeast supplementation potentiates fluoxetine's anti-depressant effect in mice via modulation of oxido-inflammatory, CREB, and MAPK signaling pathways. Curr Res Physiol 2024; 7:100132. [PMID: 39483857 PMCID: PMC11526068 DOI: 10.1016/j.crphys.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction The therapeutic potential of yeast in the management of depression is unknown. Thus, we evaluated the modulatory effect of nutritional yeast supplementation on antidepressant activity of fluoxetine in mice models of depressive-like behaviors (DLB). Methods A total of 112 mice were divided into 16 groups (n = 7 each) for a 3-stage study. Stage I (non-DLB study) had groups Ia (10 mL/kg vehicle), Ib (20 mg/kg fluoxetine), Ic - If (2% yeast diet for all, but Id - If additionally received 5 mg/kg, 10 mg/kg, and 20 mg/kg fluoxetine respectively). Stage II (lipopolysaccharide [LPS] model of DLB) had groups IIa - IIb (10 mL/kg vehicle), IIc (20 mg/kg fluoxetine), IId (yeast) and IIe (yeast + 20 mg/kg fluoxetine). After these treatments for 24 days, animals in IIb - IIe received 0.83 mg/kg of LPS on the 25th day. Except for group IIIa (10 mL/kg vehicle), animals in other groups of stage III (unpredictable chronic mild stress [UCMS] model) were exposed to UCMS for 24 days along with 10 mL/kg vehicle (IIIb), 20 mg/kg fluoxetine (IIIc), yeast (IIId), or yeast + fluoxetine (IIIe). Results Yeast and fluoxetine attenuated LPS- and UCMS-induced immobility, derangement of oxido-inflammatory (TNF-α, IL-6, NO, MDA, SOD, GSH, CAT, and AChE) and CREB/MAPK pathways. While fluoxetine had more potent effect than yeast when used separately, pre-treatment of mice with their combination had more pronounced effect than either of them. Conclusion Yeast supplementation improves the antidepressant activity of fluoxetine in mice by modulating oxido-inflammatory, CREB, and MAPK pathways.
Collapse
Affiliation(s)
- Augustina Potokiri
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Noah A. Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abayomi M. Ajayi
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul A. Adeleke
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abdullateef I. Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Ezekiel O. Iwalewa
- Department of Pharmacology and Therapeutics, Neuropharmacology and Toxicology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Alvarez GM, Jolink TA, West TN, Cardenas MN, Feldman MJ, Cohen JR, Muscatell KA. Differential effects of social versus monetary incentives on inhibitory control under acute inflammation. Brain Behav Immun 2024; 123:950-964. [PMID: 39293694 DOI: 10.1016/j.bbi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
While the impact of chronic, low-grade inflammation on cognitive functioning is documented in the context of neurodegenerative disease, less is known about the association between acute increases in inflammation and cognitive functioning in daily life. This study investigated how changes in interleukin-6 (IL-6) levels were associated with performance on an inhibitory control task, the go/no-go task. We further examined whether the opportunity to earn different incentive types (social or monetary) and magnitudes (high or low) was associated with differential performance on the task, depending on IL-6 levels. Using a within-participant design, individuals completed an incentivized go/no-go task before and after receiving the annual influenza vaccine. Multilevel logistic regressions were performed on the trial-level data (Nobs = 30,528). For no-go trials, we did not find significant associations in IL-6 reactivity and changes in trial accuracy between sessions. For go trials, we found significant differences in the associations between IL-6 reactivity and changes in accuracy as a function of the incentive condition. Notably, greater IL-6 reactivity was consistently associated with fewer omission errors (i.e., greater accuracy on go trials) on high-magnitude social incentives (i.e., viewing a picture of a close-other) when compared to both low-magnitude social and high-magnitude monetary incentives. Together, these results suggest that mild fluctuations in inflammation might alter the valuation of an incentive, and possibly a shift toward devoting greater attentional resources when a large social incentive is on the line. Overall, this study sheds light on how everyday, low-grade fluctuations in inflammation may influence cognitive abilities essential for daily life and effective inhibitory control.
Collapse
Affiliation(s)
- Gabriella M Alvarez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| | - Tatum A Jolink
- Department of Psychology, University of Michigan, Ann Arbor, MI USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Taylor N West
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Megan N Cardenas
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mallory J Feldman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Jessica R Cohen
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Keely A Muscatell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
6
|
Keck J, Honekamp C, Gebhardt K, Nolte S, Linka M, de Haas B, Munzert J, Krüger K, Krüger B. Exercise-induced inflammation alters the perception and visual exploration of emotional interactions. Brain Behav Immun Health 2024; 39:100806. [PMID: 38974339 PMCID: PMC11225855 DOI: 10.1016/j.bbih.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction The study aimed to investigate whether an exercise-induced pro-inflammatory response alters the perception as well as visual exploration of emotional body language in social interactions. Methods In a within-subject design, 19 male, healthy adults aged between 19 and 33 years performed a downhill run for 45 min at 70% of their VO2max on a treadmill to induce maximal myokine blood elevations, leading to a pro-inflammatory status. Two control conditions were selected: a control run with no decline and a rest condition without physical exercise. Blood samples were taken before (T0), directly after (T1), 3 h after (T3), and 24 h after (T24) each exercise for analyzing the inflammatory response. 3 h after exercise, participants observed point-light displays (PLDs) of human interactions portraying four emotions (happiness, affection, sadness, and anger). Participants categorized the emotional content, assessed the emotional intensity of the stimuli, and indicated their confidence in their ratings. Eye movements during the entire paradigm and self-reported current mood were also recorded. Results The downhill exercise condition resulted in significant elevations of measured cytokines (IL6, CRP, MCP-1) and markers for muscle damage (Myoglobin) compared to the control running condition, indicating a pro-inflammatory state after the downhill run. Emotion recognition rates decreased significantly after the downhill run, whereas no such effect was observed after control running. Participants' sensitivity to emotion-specific cues also declined. However, the downhill run had no effect on the perceived emotional intensity or the subjective confidence in the given ratings. Visual scanning behavior was affected after the downhill run, with participants fixating more on sad stimuli, in contrast to the control conditions, where participants exhibited more fixations while observing happy stimuli. Conclusion Our study demonstrates that inflammation, induced through a downhill running model, impairs perception and emotional recognition abilities. Specifically, inflammation leads to decreased recognition rates of emotional content of social interactions, attributable to diminished discrimination capabilities across all emotional categories. Additionally, we observed alterations in visual exploration behavior. This confirms that inflammation significantly affects an individual's responsiveness to social and affective stimuli.
Collapse
Affiliation(s)
- Johannes Keck
- Neuromotor Behavior Lab, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Phillips University of Marburg and Justus-Liebig-University Giessen, Germany
| | - Celine Honekamp
- Sensorimotor Control and Learning, Centre for Cognitive Science, Technical University of Darmstadt, Germany
| | - Kristina Gebhardt
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcel Linka
- Department of Experimental Psychology, Justus-Liebig-University Giessen, Germany
| | - Benjamin de Haas
- Department of Experimental Psychology, Justus-Liebig-University Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Phillips University of Marburg and Justus-Liebig-University Giessen, Germany
| | - Jörn Munzert
- Neuromotor Behavior Lab, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Phillips University of Marburg and Justus-Liebig-University Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Britta Krüger
- Neuromotor Behavior Lab, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
8
|
Danka MN, Steptoe A, Iob E. Physical activity, low-grade inflammation, and psychological responses to the COVID-19 pandemic among older adults in England. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305797. [PMID: 38699297 PMCID: PMC11065037 DOI: 10.1101/2024.04.14.24305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mental health responses to the COVID-19 pandemic have been widely studied, but less is known about the potentially protective role of physical activity (PA) and the impact of low-grade inflammation. Using a sample of older adults from England, this study tested (1) if pre-pandemic PA and its changes during the pandemic were associated with mental health responses; (2) if older adults with low-grade inflammation experienced greater increases in depression and anxiety, compared to pre-pandemic levels; (3) if PA attenuated the association between inflammation and depression/anxiety. The study used data from the English Longitudinal Study of Ageing, a cohort study following a national sample aged 50+. Information on mental health and PA were collected before the pandemic (2016/17 and 2018/19) and during November and December 2020. Inflammation was ascertained using pre-pandemic C-reactive protein (CRP). Analyses were adjusted for sociodemographic and health-related factors and pre-pandemic mental health. Increasing PA from before to during the pandemic was linked to reduced odds of depression (OR = 0.955, 95%CI [0.937, 0.974]) and anxiety (OR = 0.954, 95%CI [0.927; 0.982]). Higher pre-pandemic PA was associated with reduced odds of depression (OR = 0.964, 95%CI [0.948, 0.981]) and anxiety (OR = 0.976, 95%CI [0.953, 1.000]), whereas elevated CRP was associated with 1.343 times higher odds of depression (95%CI [1.100, 1.641]). PA did not attenuate the inflammation-depression association. The findings suggest that PA may contribute to psychological resilience among older adults, independently of inflammation. Further research is needed to explore the psychobiological pathways underlying this protective mechanism.
Collapse
Affiliation(s)
- Martin N. Danka
- Centre for Longitudinal Studies, University College London, UK
- Department of Behavioural Science and Health, University College London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, University College London, UK
| |
Collapse
|
9
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
10
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
11
|
Liu X, Li Y, Gu M, Xu T, Wang C, Chang P. Radiation enteropathy-related depression: A neglectable course of disease by gut bacterial dysbiosis. Cancer Med 2024; 13:e6865. [PMID: 38457257 PMCID: PMC10923036 DOI: 10.1002/cam4.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024] Open
Abstract
Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xinliang Liu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Li
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Meichen Gu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Tiankai Xu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Pengyu Chang
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
12
|
Renna ME, Madison AA, Peng J, Rosie Shrout M, Lustberg M, Ramaswamy B, Wesolowski R, VanDeusen JB, Williams NO, Sardesai SD, Noonan AM, Reinbolt RE, Stover DG, Cherian M, Malarkey WB, Andridge R, Kiecolt-Glaser JK. Worry and Mindfulness Differentially Impact Symptom Burden Following Treatment Among Breast Cancer Survivors: Findings From a Randomized Crossover Trial. Ann Behav Med 2023; 57:888-898. [PMID: 37335884 PMCID: PMC10498820 DOI: 10.1093/abm/kaad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Breast cancer survivors often experience many somatic and cognitive side effects resulting from their cancer diagnosis and treatment, including higher rates of pain, fatigue, and memory/concentration problems. Emotion regulation offers opportunities to either enhance or dampen physical health. PURPOSE In a secondary analysis of a double-blind randomized controlled trial (RCT) using a typhoid vaccine to assess factors associated with breast cancer survivors' inflammatory responses, we assessed how two specific aspects of emotion regulation, mindfulness, and worry, corresponded to acute changes in focus problems, memory problems, and fatigue along with performance on pain sensitivity and cognitive tasks across two visits among breast cancer survivors. METHODS Breast cancer survivors (N = 149) completed two 8.5-hr visits at a clinical research center. Survivors were randomized to either the vaccine/saline placebo or a placebo/vaccine sequence. Worry and mindfulness questionnaires provided data on trait-level emotion regulation abilities. Fatigue, memory problems, and focus difficulties were assessed via Likert scales six times-once before the injections and then every 90 min for 7.5 hr thereafter. Women also completed a pain sensitivity task and several cognitive tasks at each visit. RESULTS Findings from this study showed that breast cancer survivors who worried more and were less mindful experienced subjective memory problems, focus problems, and cold pain sensitivity across two visits and irrespective of injection type. Lower mindfulness also corresponded to higher subjective fatigue and hot pain sensitivity and objective ratings. Emotion regulation skills did not predict objective pain sensitivity or cognitive problems. CONCLUSION Results from this study highlight the benefits of adaptive emotion regulation in helping mitigate symptoms associated with breast cancer survivorship.
Collapse
Affiliation(s)
- Megan E Renna
- School of Psychology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Juan Peng
- Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marcella Rosie Shrout
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Maryam Lustberg
- Yale Cancer Hospital, Yale School of Medicine, New Haven, CT, USA
| | | | - Robert Wesolowski
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jeffrey B VanDeusen
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nicole O Williams
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sagar D Sardesai
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anne M Noonan
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Raquel E Reinbolt
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel G Stover
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mathew Cherian
- James Cancer Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - William B Malarkey
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rebecca Andridge
- Department of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
13
|
De Marco R, Barritt AW, Cercignani M, Cabbai G, Colasanti A, Harrison NA. Inflammation-induced reorientation of reward versus punishment sensitivity is attenuated by minocycline. Brain Behav Immun 2023; 111:320-327. [PMID: 37105388 DOI: 10.1016/j.bbi.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Inflammation rapidly reorients motivational state, mood is impaired, pleasurable activities avoided and sensitivity to negative stimuli enhanced. When sustained, this can precipitate major depressive episodes. In humans, this has been linked to opposing actions of inflammation on striatal/insula reward/punishment learning signals while in rodents, motivational impairments can be attenuated with minocycline, implicating a mechanistic role for microglia. Here we investigated whether minocycline also inhibits the reorienting effects of lipopolysaccharide (LPS) on reward/punishment sensitivity in humans. Methods Using a crossover design, fifteen healthy volunteers underwent two experimental sessions in which they each received LPS (1 ng/kg) and placebo. Half (N = 8) received minocycline (100 mg bd) and half (N = 7) an identical looking placebo for 3½ days before each session. Six hours post-injection participants completed a probabilistic instrumental learning task in which they had to learn to select high probability reward (win £1) and avoid high probability punishment (lose £1) stimuli to maximise their gains and minimize losses. Physiological and sickness responses were sampled hourly and blood sampled at baseline, 3 and 6 h post-injection. Results LPS induced robust peripheral physiological: temperature, heart rate and immune: differential white cell, IL-6, TNF-α, IL-8, IL-10 responses (all condition × time interactions: p < 0.005), none were significantly modulated by minocycline (p > 0.1). LPS also biased behavior, enhancing punishment compared with reward sensitivity (F(1,13) = 6.10, p = 0.028). Minocycline significantly attenuated this inflammation-induced shift in reward versus punishment sensitivity (F(1,13) = 4.28, p = 0.033). Conclusions These data replicate the previous finding that systemic inflammation rapidly impairs sensitivity to rewards versus punishments in humans and extend this by implicating activated microglia in this acute motivational reorientation with implications for the development of microglial-targeted immune-modulatory therapies in depression.
Collapse
Affiliation(s)
- Riccardo De Marco
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK.
| | - Andrew W Barritt
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Giulia Cabbai
- School of Psychology, University of Sussex, Brighton, UK
| | | | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
15
|
Yin R, Zhang K, Li Y, Tang Z, Zheng R, Ma Y, Chen Z, Lei N, Xiong L, Guo P, Li G, Xie Y. Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation. Front Immunol 2023; 14:1181973. [PMID: 37359525 PMCID: PMC10285697 DOI: 10.3389/fimmu.2023.1181973] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Depression is a complex and biologically heterogeneous disorder. Recent studies have shown that central nervous system (CNS) inflammation plays a key role in the development of depression. Lipopolysaccharide (LPS)-induced depression-like model in mice is commonly used to studying the mechanisms of inflammation-associated depression and the therapeutic effects of drugs. Numerous LPS-induced depression-like models in mice exist and differ widely in animal characteristics and methodological parameters. Here, we systematically reviewed studies on PubMed from January 2017 to July 2022 and performed cardinal of 170 studies and meta-analyses of 61 studies to support finding suitable animal models for future experimental studies on inflammation-associated depression. Mouse strains, LPS administration, and behavioral outcomes of these models have been assessed. In the meta-analysis, forced swimming test (FST) was used to evaluate the effect size of different mouse strains and LPS doses. The results revealed large effect sizes in ICR and Swiss mice, but less heterogeneity in C57BL/6 mice. For LPS intraperitoneal dose, the difference did not affect behavioral outcomes in C57BL/6 mice. However, in ICR mice, the most significant effect on behavioral outcomes was observed after the injection of 0.5 mg/kg LPS. Our results suggests that mice strains and LPS administration play a key role in the evaluation of behavioral outcomes in such models.
Collapse
Affiliation(s)
- Run Yin
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Kailing Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yue Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Zonghan Chen
- Academic Affairs Department, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
| | - Yuhuan Xie
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Tognetti A, Williams MN, Lybert N, Lekander M, Axelsson J, Olsson MJ. Humans can detect axillary odor cues of an acute respiratory infection in others. Evol Med Public Health 2023; 11:219-228. [PMID: 37426329 PMCID: PMC10324639 DOI: 10.1093/emph/eoad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background and objectives Body odor conveys information about health status to conspecifics and influences approach-avoidance behaviors in animals. Experiments that induce sickness in otherwise healthy individuals suggest that humans too can detect sensory cues to infection in others. Here, we investigated whether individuals could detect through smell a naturally occurring acute respiratory infection in others and whether sickness severity, measured via body temperature and sickness symptoms, was associated with the accuracy of detection. Methodology Body odor samples were collected from 20 donors, once while healthy and once while sick with an acute respiratory infection. Using a double-blind, two-alternative forced-choice method, 80 raters were instructed to identify the sick body odor from paired sick and healthy samples (i.e. 20 pairs). Results Sickness detection was significantly above chance, although the magnitude of the effect was low (56.7%). Raters' sex and disgust sensitivity were not associated with the accuracy of sickness detection. However, we find some indication that greater change in donor body temperature, but not sickness symptoms, between sick and healthy conditions improved sickness detection accuracy. Conclusion and implications Our findings suggest that humans can detect individuals with an acute respiratory infection through smell, albeit only slightly better than chance. Humans, similar to other animals, are likely able to use sickness odor cues to guide adaptive behaviors that decrease the risk of contagion, such as social avoidance. Further studies should determine how well humans can detect specific infections through body odor, such as Covid-19, and how multisensory cues to infection are used simultaneously.
Collapse
Affiliation(s)
- Arnaud Tognetti
- Corresponding author. Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 77, Stockholm, Sweden; E-mail:
| | | | - Nathalie Lybert
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
- Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
18
|
Cai H, Zhang R, Zhao C, Wang Y, Tu X, Duan W. Associations of depression score with metabolic dysfunction-associated fatty liver disease and liver fibrosis. J Affect Disord 2023; 334:332-336. [PMID: 37142003 DOI: 10.1016/j.jad.2023.04.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/18/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Growing evidence suggests a link between depression and nonalcoholic fatty liver disease (NAFLD). Recently, a change from NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. The aim of this study was to determine whether depression scores are associated with newly defined MAFLD as well as liver fibrosis in the US general population. METHODS This cross-sectional study utilized data from the 2017-March 2020 cycle of the National Health and Nutrition Examination Survey in the US. The depression score was assessed with the Patient Health Questionnaire-9 (PHQ-9). Transient elastography was utilized to evaluate hepatic steatosis and fibrosis with controlled attenuation parameters and liver stiffness measurements, respectively. All the analyses accounted for the complex design parameters and sampling weights of the survey. RESULTS A total of 3263 eligible subjects aged 20 years and older were included. The estimated prevalence of mild and major depression was 17.0 % (95 % confidence interval [CI]: 14.8-19.3 %) and 7.1 % (6.1-8.1 %), respectively. For every one-unit increase in depression score, a subject was 1.05 (1.02-1.08) times more likely to have MAFLD. Compared to the minimal depression group, those with mild depression had an odds ratio (OR) of 1.54 (1.06-2.25) for MAFLD. The depression score was not associated with clinically significant liver fibrosis. CONCLUSION The depression score measured by PHQ-9 was independently associated with MAFLD among US adults. LIMITATIONS Causal relationship is not available due to the cross-sectional nature of the survey design.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuanhao Zhao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China; Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoming Tu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| | - Weiwei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China; Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Lin P, Li D, Shi Y, Li Q, Guo X, Dong K, Chen Q, Lou X, Li Z, Li P, Jin W, Chen S, Sun Y, Sun J, Cheng X. Dysbiosis of the Gut Microbiota and Kynurenine (Kyn) Pathway Activity as Potential Biomarkers in Patients with Major Depressive Disorder. Nutrients 2023; 15:nu15071752. [PMID: 37049591 PMCID: PMC10096701 DOI: 10.3390/nu15071752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
With increasing attention paid to the concept of the microbiota-gut-brain axis, mounting evidence reveals that the gut microbiota is involved in a variety of neurological and psychiatric diseases. However, gut microbiota changes in major depressive disorder (MDD) patients and their association with disease mechanisms remain undefined. Fifty MDD patients and sixty healthy controls were recruited from the Shanghai Healthy Mental Center, China. Fecal samples were collected, and the compositional characteristics of the intestinal flora were determined in MDD patients by MiSeq sequencing. Venous blood was collected for the detection of plasma indoleamine-2,3-dioxygenase (Ido), kynurenine (Kyn) and tryptophan (Trp) levels. Stool samples of bacterial 16S sequencing was carried out. A total of 2,705,809 optimized sequences were obtained, with an average of 54,116 per sample. More unique OTUs were observed at the family, genus and species levels in the control group compared with the MDD cases. Further analysis showed significant changes in the α- and β-diversities and relative abundance levels of gut microbial entities in MDD patients, as well as elevated amounts of Ido and Kyn indicating Kyn pathway activation, KEGG bacterial 16S function prediction analysis shows a variety of amino acids and metabolic (including Ido, Trp and Kyn) changes in the body of patients with MDD. These may result in increased neurotoxic metabolites and reduced generation of serotonin in the disease process. These changed factors may potentially be utilized as biomarkers for MDD in the future, playing more important roles in the disease course.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yun Shi
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qingtian Li
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ke Dong
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weifeng Jin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shuzi Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Sun
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
| | - Jing Sun
- Institute for Integrated Intelligence and Systems, School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD 4215, Australia
- School of Computer Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
21
|
Barichello T, Giridharan VV, Catalão CHR, Ritter C, Dal-Pizzol F. Neurochemical effects of sepsis on the brain. Clin Sci (Lond) 2023; 137:401-414. [PMID: 36942500 PMCID: PMC11315270 DOI: 10.1042/cs20220549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response to eliminate an infection. After the host immune response is activated, a complex, dynamic, and time-dependent process is triggered. This process promotes the production of inflammatory mediators, including acute-phase proteins, complement system proteins, cytokines, chemokines, and antimicrobial peptides, which are required to initiate an inflammatory environment for eliminating the invading pathogen. The physiological response of this sepsis-induced systemic inflammation can affect blood-brain barrier (BBB) function; subsequently, endothelial cells produce inflammatory mediators, including cytokines, chemokines, and matrix metalloproteinases (MMPs) that degrade tight junction (TJ) proteins and decrease BBB function. The resulting BBB permeability allows peripheral immune cells from the bloodstream to enter the brain, which then release a range of inflammatory mediators and activate glial cells. The activated microglia and astrocytes release reactive oxygen species (ROS), cytokines, chemokines, and neurochemicals, initiate mitochondrial dysfunction and neuronal damage, and exacerbate the inflammatory milieu in the brain. These changes trigger sepsis-associated encephalopathy (SAE), which has the potential to increase cognitive deterioration and susceptibility to cognitive decline later in life.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
| | - Carlos Henrique R Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Cristiane Ritter
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
22
|
Does Better Diet Quality Offset the Association between Depression and Metabolic Syndrome? Nutrients 2023; 15:nu15041060. [PMID: 36839420 PMCID: PMC9962849 DOI: 10.3390/nu15041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Several studies have shown that depression increases the risk of metabolic syndrome (MetS), which is often exacerbated by the fact that both exist concurrently. People with depression are more likely to have unhealthy eating habits, which can eventually trigger the development of MetS. This study was to investigate whether diet quality modifies the association between depression and MetS in a total of 13,539 Korean adults aged 19 to 80 from 2014, 2016 and 2018 Korean National Health and Nutrition Examination Surveys. Depression was assessed by the Patient Health Questionnaire-9 (PHQ-9) and subjects were divided into subgroups according to the PHQ-9 scores: normal (<5), mild (5-9), and moderate-to-severe (≥10) groups. Diet quality was measured by the Korean Healthy Eating Index (KHEI). A complex sample multiple logistic regression stratified by tertiles of KHEI scores was used to explore whether diet quality modifies an association between depression severity and metabolic syndrome. Depression severity was positively associated with the risk of MetS (p trend = 0.006) after adjustment for potential confounders. Only the lowest diet quality, moderately-to-severely depressed group, showed a higher risk of MetS (OR: 1.72, 95% CI: 1.24-2.40) compared to the normal group. Our results suggest that healthy diet quality could offset the positive relationship between depression and MetS in the general Korean adult population. Encouraging a healthy diet regime can improve not only physical health but also the mental state of the general public.
Collapse
|
23
|
Inflammation shapes neural processing of interoceptive fear predictors during extinction learning in healthy humans. Brain Behav Immun 2023; 108:328-339. [PMID: 36535608 DOI: 10.1016/j.bbi.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation could impact on the formation and persistence of interoceptive fear and hypervigilance, with relevance to psychiatric disorders and chronic pain. To systematically analyze effects of inflammation on fear learning and extinction, we performed two complementary randomized, double-blind, placebo-controlled functional magnetic resonance imaging (fMRI) studies combining experimental endotoxemia as a translational model of acute systemic inflammation with a two-day multiple-threat fear conditioning paradigm involving interoceptive and exteroceptive unconditioned stimuli (US). Healthy volunteers (N = 95) were randomized to receive intravenous injections of either endotoxin (lipopolysaccharide, LPS; 0.4 ng/kg) or placebo prior to fear acquisition (study 1) or extinction training (study2). Treatment effects on behavioral and neural responses to conditioned stimuli (CS) predicting interoceptive or exteroceptive threat were assessed during fear learning and extinction phases, along with US valence ratings. Despite robust inflammatory and emotional responses triggered by LPS, no direct effects of inflammation on US ratings or on the formation or extinction of conditioned fear, as assessed with CS valence ratings, were observed. However, in the group treated with LPS prior to acquisition (i.e., study 1), we found enhanced neural responses to the interoceptive but not the exteroceptive CS in key regions of the central fear circuitry during extinction learning. After extinction, this group further showed enhanced negative valence ratings selectively for the interoceptive US during unexpected US re-exposure when compared to the placebo group. Together, inflammation during fear acquisition may promote the establishment of a more robust neural signature of the interoceptive fear memory trace, which may contribute to altered interoceptive pain perception. The fear extinction circuitry engaged during interoceptive fear memory processing may be particularly vulnerable to inflammation, with transdiagnostic implications for gut-brain mechanisms underlying disturbed interoception in psychiatric conditions and chronic visceral pain.
Collapse
|
24
|
Dietary Fats and Depressive Symptoms in Italian Adults. Nutrients 2023; 15:nu15030675. [PMID: 36771380 PMCID: PMC9919703 DOI: 10.3390/nu15030675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Depression represents one of the major causes of disability worldwide, with an important socioeconomic cost. Although many risk factors have been considered in its pathogenesis, nutrition seems to play a determinant role in its prevention. With regard to individual macronutrients, dietary fats and especially n-3 polyunsaturated fatty acids (n-3 PUFA) are the most studied. However, previous data about other dietary fatty acids, such as n-6 PUFA, are conflicting, and little is known about saturated fatty acids (SFA), especially when considering carbon chain length. Thus, we investigated whether single types and subtypes of dietary fats are related to depressive symptoms in Italian individuals living in the Mediterranean area. METHODS Dietary and socio-demographic data of 1572 individuals were analyzed. Food frequency questionnaires (FFQs) were used to determine the consumption of total dietary fat and each specific class of dietary fat, such as SFA, monounsaturated fatty acid (MUFA), and PUFA. The intake of fatty acids was also assessed according to the carbon-chain length of each single class. The Center for Epidemiologic Studies Depression Scale (CES-D) was used as a screening tool for depressive symptoms. RESULTS After adjustment for potential confounding factors, a significant inverse association between low/moderate levels of PUFA intake and depressive symptoms (Q2 vs. Q1, odds ratio (OR) = 0.60, 95% CI: 0.44, 0.84) was found. On the other hand, moderate saturated fat consumption was associated with depressive symptoms (Q3 vs. Q1, OR = 1.44, 95% CI: 1.02, 2.04). However, when considering carbon chain length, individuals with a lower to moderate intake of short-chain saturated fatty acids (SCSFA) and medium-chain saturated fatty acids (MCSFA) were less likely to have depressive symptoms (Q3 vs. Q1, OR = 0.48, 95% CI: 0.31, 0.75), while moderate intake of arachidic acid (C20:0) was directly associated with depressive symptoms (Q3 vs. Q1, OR = 1.87, 95% CI: 1.26, 2.77). Among single MUFAs, higher myristoleic acid (C14:1) intake was directly associated with depressive symptoms (Q4 vs. Q1, OR = 1.71, 95% CI: 1.12, 2.61), while moderate intake of erucic acid (C22:1) was associated with lower odds of having depressive symptoms (Q3 vs. Q1, OR = 0.54, 95% CI: 0.33, 0.86). When considering individual PUFAs, individuals with moderate and higher intakes of arachidonic acid (C20:4) were less likely to have depressive symptoms (OR = 0.64, 95% CI: 0.45, 0.91; OR = 0.59, 95% CI: 0.38, 0.91, respectively). Similarly, higher eicosapentaenoic acid (C20:5) intake was inversely associated with depressive symptoms (Q4 vs. Q1, OR = 0.35, 95% CI: 0.12, 0.98), while a significant association for docosahexaenoic acid (C22:6) was retrieved only for low intakes (Q2 vs. Q1, OR = 0.33, 95% CI: 0.12, 0.88). CONCLUSIONS Dietary fat intake may be associated with depressive symptoms, underlying the importance of distinguishing between different fat types. This study confirms the pivotal role of PUFAs and reopens the debate on the role of saturated fatty acids, suggesting plausible effects of moderate intakes of short-chain fatty acids.
Collapse
|
25
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
26
|
Vasilyeva EF. [The regulatory role of gut microbiota in inflammation in depression and anxiety]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:33-39. [PMID: 37994886 DOI: 10.17116/jnevro202312311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Numerous studies have identified the important role of the gut microbiota in maintaining of the CNS normal functioning and in the pathogenesis of mental disorders as one of the systems regulating the bidirectional communication between the gut and the brain. The microbiota has been found to be involved in the modulation of inflammation as well as in the development and function of the immune and nervous systems. It is assumed that in multicellular organisms, the nervous and immune systems have evolved together with the microbiota, being in interaction with it, in order to optimize the body's ability to adapt to a wide range of environmental stresses in order to maintain the constancy of its homeostasis. Normally, microbes live in stable communities, while under conditions of even mild or chronic social stress, significant shifts in the composition of the microbiota occur, which lead to the development of dysbiosis associated with changes in microbiota metabolites, which can lead to the formation of physiology and behavior characteristic of stress and depression. Microbes influence the activation of peripheral immune cells that regulate the response to neuroinflammation, brain damage, autoimmune responses, and neurogenesis. The review provides a brief overview of the normal gut microbiota, describes the factors influencing the state of the microbiota, and also discusses recent discoveries concerning the regulatory effect of the gut microbiota on CNS functions, the immune system, and inflammation in the pathogenesis of depression and anxiety.
Collapse
|
27
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
28
|
Jackson NA, Jabbi MM. Integrating biobehavioral information to predict mood disorder suicide risk. Brain Behav Immun Health 2022; 24:100495. [PMID: 35990401 PMCID: PMC9388879 DOI: 10.1016/j.bbih.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The will to live and the ability to maintain one's well-being are crucial for survival. Yet, almost a million people die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a significant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.
Collapse
Affiliation(s)
- Nicholas A. Jackson
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Institute for Neuroscience, The University of Texas at Austin, USA
| | - Mbemba M. Jabbi
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Mulva Clinics for the Neurosciences
- Institute for Neuroscience, The University of Texas at Austin, USA
- Department of Psychology, The University of Texas at Austin, USA
- Center for Learning and Memory, The University of Texas at Austin, USA
| |
Collapse
|
29
|
Nicoloro-SantaBarbara JM, Carroll JE, Minissian M, Kilpatrick SJ, Cole S, Merz CNB, Accortt EE. Immune transcriptional profiles in mothers with clinically elevated depression and anxiety symptoms several years post-delivery. Am J Reprod Immunol 2022; 88:e13619. [PMID: 36098215 DOI: 10.1111/aji.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Most research on maternal mental health focuses on the perinatal period and does not extend beyond 12 months postpartum. However, emerging evidence suggests that for some women (30%-50%), psychological symptoms may persist beyond the first year postpartum or even emerge later increasing the risk of chronic mood and anxiety symptoms. Despite the high prevalence rates and devastating maternal-child consequences, studies examining maternal depression, anxiety, and post-traumatic stress disorder (PTSD) beyond the first year postpartum are rare and our understanding of the underlying biological mechanisms is incomplete. Inflammatory processes are thought to be involved in the pathophysiology of depression, anxiety, & PTSD outside of the postpartum period. Therefore, the purpose of the current investigation was to examine the relationship between depression, anxiety, and PTSD two to three years post-delivery, and transcriptional control pathways relevant to inflammatory and antiviral processes. METHODS Women over 18 years of age enrolled in ongoing research studies at Cedars Sinai Medical Center who were 2-3 years postpartum were invited to participate in the current study. Women (N = 33) reported on their levels of depression, anxiety, and PTSD and provided a blood sample approximately 2-3 years post-delivery. Bioinformatic analyses of differential gene expression (DGEs) to infer transcription factor activity were used. Gene expression was assayed by RNA sequencing and TELiS bioinformatics analysis of transcription factor-binding motifs in the promoters of differentially expressed genes. RESULTS DGE analyses revealed that women with clinically elevated symptoms of depression, anxiety and PTSD (n = 16) showed upregulation of genes activated by transcription control pathways associated with inflammation (NF-Κ B, p = 0.004; JUN, p = 0.02), including ꞵ-adrenergic responsive CREB (p = 0.01) and reduced activation of genes associated with the antiviral response (IRFs, p = 0.02) and the glucocorticoid signaling pathway (GR, p = 0.02) compared to women without clinical symptoms (n = 17). CONCLUSIONS This is one of the first investigations into the immune signaling pathways involved in depression, anxiety, and PTSD two to three years post-delivery. The results of this study suggest that clinically elevated symptoms of depression, anxiety, and PTSD two to three years post-delivery are associated with a gene expression profile characterized by upregulated expression of pro-inflammatory genes and downregulated expression of antiviral genes. The data also point to two potential stress responsive pathways linking symptoms to increased inflammatory signaling in immune cells: sympathetic nervous system mediated ꞵ-adrenergic signaling and reduced hypothalamic pituitary adrenal axis activity. Together, these findings highlight the need for investigations into maternal mental health beyond the first year postpartum. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Judith E Carroll
- Department of Psychiatry & Behavioral Sciences, and Medicine, Cousins Center for Psychoneuroimmunology, UCLA, Los Angeles, California, USA
| | - Margo Minissian
- Geri & Richard Brawerman Nursing Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sarah J Kilpatrick
- Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Steve Cole
- Department of Psychiatry & Behavioral Sciences, and Medicine, Cousins Center for Psychoneuroimmunology, UCLA, Los Angeles, California, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, California, USA
| | - Eynav E Accortt
- Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
30
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
31
|
Madison AA, Kiecolt-Glaser JK. Are sick people really more impulsive?: Investigating inflammation-driven impulsivity. Psychoneuroendocrinology 2022; 141:105763. [PMID: 35429698 PMCID: PMC10103332 DOI: 10.1016/j.psyneuen.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
In both animals and humans, inflammatory stimuli - especially infections and endotoxin injections - cause "sickness behaviors," including lethargy, malaise, and low mood. An emerging line of research asserts that inflammation may provoke present-focused decision making and impulsivity. The current article assesses that claim in the context of the broader literature - including preclinical models and clinical interventions. This literature presents three challenges to purported inflammation-impulsivity link that have not been addressed to date: (1) the nebulous and imprecise definition of impulsivity; (2) reverse causality; and (3) a lack of causal evidence. These challenges point to ways in which future research designs can improve upon the extant literature to further explore the ostensible relationship between inflammation and impulsivity.
Collapse
Affiliation(s)
- Annelise A Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Psychology, The Ohio State University, USA.
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, USA; Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, USA
| |
Collapse
|
32
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
34
|
COVID-19, Oxidative Stress, and Neuroinflammation in the Depression Route. J Mol Neurosci 2022; 72:1166-1181. [PMID: 35322375 PMCID: PMC8942178 DOI: 10.1007/s12031-022-02004-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic–pituitary–adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.
Collapse
|
35
|
Färber N, Manuel J, May M, Foadi N, Beissner F. The Central Inflammatory Network: A Hypothalamic fMRI Study of Experimental Endotoxemia in Humans. Neuroimmunomodulation 2022; 29:231-247. [PMID: 34610606 PMCID: PMC9254315 DOI: 10.1159/000519061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Inflammation is a mechanism of the immune system that is part of the reaction to pathogens or injury. The central nervous system closely regulates inflammation via neuroendocrine or direct neuroimmune mechanisms, but our current knowledge of the underlying circuitry is limited. Therefore, we aimed to identify hypothalamic centres involved in sensing or modulating inflammation and to study their association with known large-scale brain networks. METHODS Using high-resolution functional magnetic resonance imaging (fMRI), we recorded brain activity in healthy male subjects undergoing experimental inflammation from intravenous endotoxin. Four fMRI runs covered key phases of the developing inflammation: pre-inflammatory baseline, onset of endotoxemia, onset of pro-inflammatory cytokinemia, and peak of pro-inflammatory cytokinemia. Using masked independent component analysis, we identified functionally homogeneous subregions of the hypothalamus, which were further tested for changes in functional connectivity during inflammation and for temporal correlation with tumour necrosis factor and adrenocorticotropic hormone serum levels. We then studied the connection of these inflammation-associated hypothalamic subregions with known large-scale brain networks. RESULTS Our results show that there are at least 6 hypothalamic subregions associated with inflammation in humans including the paraventricular nucleus, supraoptic nucleus, dorsomedial hypothalamus, bed nucleus of the stria terminalis, lateral hypothalamic area, and supramammillary nucleus. They are functionally embedded in at least 3 different large-scale brain networks, namely a medial frontoparietal network, an occipital-pericentral network, and a midcingulo-insular network. CONCLUSION Measuring how the hypothalamus detects or modulates systemic inflammation is a first step to understand central nervous immunomodulation.
Collapse
Affiliation(s)
- Natalia Färber
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- *Natalia Färber,
| | - Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Marcus May
- CRC Core Facility, Hannover Medical School, Hanover, Germany
| | - Nilufar Foadi
- Clinic for Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hanover, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
- **Florian Beissner,
| |
Collapse
|
36
|
Feng L, Zhou N, Li Z, Fu D, Guo Y, Gao X, Liu X. Co-occurrence of gut microbiota dysbiosis and bile acid metabolism alteration is associated with psychological disorders in Crohn's disease. FASEB J 2021; 36:e22100. [PMID: 34939244 DOI: 10.1096/fj.202101088rrr] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
This study aims to elucidate the relationships between gut microbiota, bile acid metabolism, and psychological comorbidity in Crohn's disease (CD). We profiled the fecal microbiota composition and quantified the bile acid pool of 39 CD patients and 14 healthy controls using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry, respectively. Significant reductions in the secondary bile acids, LCA and DCA, were found in both the feces and serum samples of CD patients, while the concentration of 7-DHCA was particularly higher in the serum of CD patients with psychological disorders. The fecal levels of HDCA and 12-DHCA of the CD patients were inversely correlated with their Self-Rated Depression Scale (SDS) scores, whereas the serum level of 7-DHCA was positively correlated with the SDS scores. In addition, the fecal levels of TDCA, TLCA, and TβMCA showed a positive correlation with the Self-Rated Anxiety Scale (SAS) scores. The fecal microbiota biodiversity was particularly declined in CD patients with psychological disorders. An enrichment of Ruminococcus gnavus in CD patients may cause psychological disorders by affecting the microbiota-gut-brain axis via its ability to degrade the gut barrier, regulate the tryptophan-kynurenine metabolism, and modulate bile acid metabolism. In addition, the overabundant Enterobacteriaceae and Lachnospiraceae in CD patients may contribute to psychological comorbidity via dysregulating their bile acids metabolism. Taken together, changes in the gut microbiota composition may cooperate with alterations in the bile acid metabolism that are involved in the development of psychological disorders in CD.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Nan Zhou
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zichun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongni Fu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuefeng Gao
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China.,Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Inflammation, depressive symptoms, and emotion perception in adolescence. J Affect Disord 2021; 295:717-723. [PMID: 34517245 PMCID: PMC8551069 DOI: 10.1016/j.jad.2021.08.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/06/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Individuals with depression often demonstrate an altered peripheral inflammatory profile, as well as emotion perception difficulties. However, correlations of inflammation with overall depression severity are inconsistent and inflammation may only contribute to specific symptoms. Moreover, measurement of the association between inflammation and emotion perception is sparse in adolescence, despite representing a formative window of emotional development and high-risk period for depression onset. METHODS Serum interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β were measured in 34 adolescents aged 12-17 with DSM-IV depressive disorders (DEP) and 29 healthy controls (HC). Participants were evaluated using the Children's Depression Rating Scale-Revised (CDRS-R) and symptom subscales were extracted based on factor analysis. Participants also completed a performance-based measure of emotion perception, the Facial Emotion Perception Test (FEPT), which assesses the accuracy of categorizing angry, fearful, sad, happy, and neutral facial emotions. RESULTS IL-6 and TNF-α correlated with reported depressed mood and somatic symptoms, respectively, but not total CDRS-R score, anhedonia or observed mood, across both DEP and HC. DEP demonstrated lower accuracy for identifying angry facial expressions. Higher IL-6 was inversely related to accuracy and discrimination of angry and neutral faces across all participants. IL-1β was associated with reduced discrimination of fearful faces. CONCLUSIONS Inflammatory markers were sensitive to affective and somatic symptoms of depression and processing of emotional threat in adolescents. In particular, IL-6 was elevated in depressed adolescents and therefore may represent a specific target for modulating depressive symptoms and emotion processing.
Collapse
|
38
|
Abstract
BACKGROUND "Cytokine storm" has been used to implicate increased cytokine levels in the pathogenesis of serious clinical conditions. Similarities with Severe Acute Respiratory Syndrome Coronoavirus-2 (SARS CoV-2) and the 2012 Middle Eastern Respiratory Syndrome led early investigators to suspect a "cytokine storm" resulting in an unregulated inflammatory response associated with the significant morbidity and mortality induced by SARS CoV-2. The threshold of blood cytokines necessary to qualify as a "cytokine storm" has yet to be defined. METHODS A literature review was conducted to identify cytokine levels released during 11 assorted clinical conditions or diseases. Weighted averages for various cytokines were calculated by multiplying the number of patients in the paper by the average concentration of each cytokine. Correlation between cytokine levels for individual conditions or diseases were assessed using Pearson correlation coefficient. RESULTS The literature was reviewed to determine blood levels of cytokines in a wide variety of clinical conditions. These conditions ranged from exercise and autoimmune disease to septic shock and therapy with chimeric antigen receptor T cells. The most frequently measured cytokine was IL-6 which ranged from 24,123 pg/mL in septic shock to 11 pg/mL after exercise. In patients with severe SARS CoV-2 infections, blood levels of IL-6 were only 43 pg/mL, nearly three magnitudes lower than IL-6 levels in patients with septic shock. The clinical presentations of these different diseases do not correlate with blood levels of cytokines. Additionally, there is poor correlation between the concentrations of different cytokines among the different diseases. Specifically, blood levels of IL-6 did not correlate with levels of IL-8, IL-10, or TNF. Septic shock had the highest concentrations of cytokines, yet multiple cytokine inhibitors have failed to demonstrate improved outcomes in multiple clinical trials. Patients with autoimmune diseases have very low blood levels of cytokines (rheumatoid arthritis, IL-6 = 34 pg/mL; Crohn's disease, IL-6 = 5 pg/mL), yet respond dramatically to cytokine inhibitors. CONCLUSION The misleading term "cytokine storm" implies increased blood levels of cytokines are responsible for a grave clinical condition. Not all inflammatory conditions resulting in worsened disease states are correlated with significantly elevated cytokine levels, despite an association with the term "cytokine storm". "Cytokine storm" should be removed from the medical lexicon since it does not reflect the mediators driving the disease nor does it predict which diseases will respond to cytokine inhibitors.
Collapse
Affiliation(s)
- Allan E Stolarski
- Department of Surgery, Boston Medical Center, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University, Boston, Massachusetts
| | - Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University, Boston, Massachusetts
| | - Qiuyang Zhang
- Department of Pathology and Laboratory Medicine, Boston University, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
39
|
Fousekis FS, Katsanos AH, Kourtis G, Saridi M, Albani E, Katsanos KH, Christodoulou DK. Inflammatory Bowel Disease and Patients With Mental Disorders: What Do We Know? J Clin Med Res 2021; 13:466-473. [PMID: 34691320 PMCID: PMC8510650 DOI: 10.14740/jocmr4593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multisystemic disease with a wide range of extraintestinal manifestations in both ulcerative colitis and Crohn’s disease, while increasing evidence supports the interaction between gut and central nervous system, described as “gut-brain axis”. According to epidemiological studies, it seems that patients with IBD present more frequently with impaired mental status compared to the general population, leading to diagnostic and management problems in this group of patients. The association between IBD and mental disorders, such as dementia and autism spectrum disorders, has not been fully clarified; genetic factors and the gut-brain axis seem to be involved. The purpose of this review is to present and analyze the epidemiological data about this issue, describe the possible pathogenetic mechanisms and discuss some considerations about the management of patients with IBD and impaired mental status.
Collapse
Affiliation(s)
- Fotios S Fousekis
- Department of Gastroenterology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | | | - Konstantinos H Katsanos
- Department of Gastroenterology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
40
|
Parrott JM, Porter GA, Redus L, O'Connor JC. Brain derived neurotrophic factor deficiency exacerbates inflammation-induced anhedonia in mice. Psychoneuroendocrinology 2021; 134:105404. [PMID: 34601342 PMCID: PMC8934305 DOI: 10.1016/j.psyneuen.2021.105404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the pathology of major depression and influences the inflammatory response. Prolonged immune system activation can cause depression symptoms, and individuals with low BDNF expression may be vulnerable to inflammation-induced depression. We tested the hypothesis that BDNF deficient mice are vulnerable to the induction of depressive-like behavior following peripheral immune challenge. BDNF heterozygous (BDNF+/-) or wild-type (BDNF+/+) littermate mice were injected intraperitoneally (i.p.) with endotoxin (lipopolysaccharide, LPS) to trigger an acute pro-inflammatory response. After resolution of the acute sickness response, central expression of inflammatory genes, kynurenine metabolites, and depressive-like behaviors across multiple dimensions (symptoms) were measured. BDNF+/- mice displayed an exaggerated neuroinflammatory response following peripheral immune challenge. Pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were overexpressed in BDNF+/- mice relative to BDNF+/+ littermate control mice. While behavioral despair and anxiety-like behavior was not different between genotypes, LPS-induced anhedonia-like behavior was significantly more pronounced in BDNF+/- mice relative to BDNF+/+ mice. The kynurenine pathway mediates the many depressive-like behavioral effects of peripheral LPS, and similar to pro-inflammatory cytokine gene expression, indoleamine 2,3-dioxygenase (IDO) expression and kynurenine metabolism was exaggerated in BDNF+/- mice. Genetic BDNF deficiency results in a dysregulated neuroinflammatory and metabolic response to peripheral immune challenge and in a specific vulnerability to the development of inflammation-induced anhedonia.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Grace A Porter
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Laney Redus
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Jason C O'Connor
- Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229-4404, United States; Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Mood Disorders Translational Research Core, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
41
|
La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e3. [PMID: 39296317 PMCID: PMC11406392 DOI: 10.1017/gmb.2021.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 09/21/2024]
Abstract
Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Juruena MF, Gadelrab R, Cleare AJ, Young AH. Epigenetics: A missing link between early life stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110231. [PMID: 33383101 DOI: 10.1016/j.pnpbp.2020.110231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
Research has suggested a relationship between early life stress, and depression in particular longer episodes of depression with treatment resistant outcomes. However, the underlying mechanisms for this association remain poorly understood. Molecular studies indicate that, in general, the hereditary character of psychiatric disorders are polygenic, multifactorial and highly complex, with innumerable low-effect genetic variants interacting with each other. In addition, the importance of the environment and its interaction with genes has pointed to a fundamental role of epigenetic mechanisms in psychiatric disorders, such as methylation of deoxyribonucleic acid (DNA), alterations, histone actions and regulation of gene expression by non-coding ribonucleic acids (RNAs). This article provides an overview of the interplay of epigenetics, the HPA axis, early life stress and the development of depression. Advances in our knowledge of epigenetics in the context of early life stress and depression provide a new understanding of the genetic influence on psychopathology and could lead to the identification of new targets for clinical intervention.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK.
| | | | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| |
Collapse
|
43
|
Turner JA, Padgett C, McDonald S, Ahuja KD, Francis HM, Lim CK, Honan CA. Innate immunity impacts social-cognitive functioning in people with multiple sclerosis and healthy individuals: Implications for IL-1ra and urinary immune markers. Brain Behav Immun Health 2021; 14:100254. [PMID: 34589763 PMCID: PMC8474509 DOI: 10.1016/j.bbih.2021.100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Abstract
Social-cognitive difficulties can negatively impact interpersonal communication, shared social experience, and meaningful relationships. This pilot investigation examined the relationship between social-cognitive functioning and inflammatory markers in people with multiple sclerosis (MS) and demographically-matched healthy individuals. Additionally, we compared the immune marker profile in serum and urine-matched samples. Social cognitive functioning was objectively assessed using The Awareness of Social Inference Test - Short (TASIT-S) and subjectively assessed using self-reports of abilities in emotion recognition, emotional empathy, and cognitive theory of mind. In people with MS and healthy individuals, there were moderate-to-large negative relationships between pro-inflammatory biomarkers (serum IL-1β, IL-17, TNF-α, IP-10, MIP-1α, and urine IP-10, MIP-1β) of the innate immune system and social-cognitive functioning. In MS, a higher serum concentration of the anti-inflammatory marker IL-1ra was associated with better social-cognitive functioning (i.e., self-reported emotional empathy and TASIT-S sarcasm detection performance). However, there were mixed findings for anti-inflammatory serum markers IL-4 and IL-10. Overall, our findings indicate a relationship between pro-inflammatory cytokines and social-cognitive abilities. Future studies may provide greater insight into biologically-derived inflammatory processes, sickness behaviour, and their connection with social cognition.
Collapse
Affiliation(s)
- Jason A. Turner
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Christine Padgett
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Kiran D.K. Ahuja
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | | | - Chai K. Lim
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Cynthia A. Honan
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| |
Collapse
|
44
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
45
|
Tognetti A, Sarolidou G, Lasselin J, Lekander M, Olsson MJ, Lundström JN. Acute Systemic Experimental Inflammation Does Not Reduce Human Odor Identification Performance. Chem Senses 2021; 46:6128388. [PMID: 33537776 PMCID: PMC8015794 DOI: 10.1093/chemse/bjab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Olfactory dysfunction is a common symptom of various diseases, but the underlying pathophysiology has not been fully understood. Evidence from both animal and human studies suggests that local inflammation of the olfactory epithelium is linked to olfactory dysfunction. However, whether systemic inflammation causes olfactory dysfunction is yet to be determined. In the present behavioral study, we set out to test whether acute systemic inflammation impairs olfactory identification performance by inducing a transient and controlled state of systemic inflammation using an experimental endotoxemia model. We treated young healthy participants (N = 20) with a relatively high dose (2.0 ng/kg) of lipopolysaccharide (LPS) and a placebo treatment in a double-blind within-subject design, and assessed participants’ ability to identify odors using the MONEX-40, a reliable method for experimental assessment of odor identification ability in healthy and young individuals. Our results show that olfactory identification performance was not affected by the acute systemic inflammation triggered by the injection of LPS. Moreover, odor identification performance following the LPS injection was not associated with levels of circulating proinflammatory cytokines (interleukin-6, interleukin-8, and tumor necrosis factor-α). Because experimental LPS-induced systemic inflammation does not affect olfactory identification performance, our findings suggest that chronic, rather than transient, systemic inflammation is a more likely mechanism to explore in order to explain the olfactory deficits observed in inflammatory diseases.
Collapse
Affiliation(s)
- Arnaud Tognetti
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Sarolidou
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lasselin
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats J Olsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden.,Monell Chemical Senses Center, Philadelphia, PA, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
From "Leaky Gut" to Impaired Glia-Neuron Communication in Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:129-155. [PMID: 33834399 DOI: 10.1007/978-981-33-6044-0_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the last three decades, the robust scientific data emerged, demonstrating that the immune-inflammatory response is a fundamental component of the pathophysiology of major depressive disorder (MDD). Psychological stress and various inflammatory comorbidities contribute to such immune activation. Still, this is not uncommon that patients with depression do not have defined inflammatory comorbidities, and alternative mechanisms of immune activation need to take place. The gastrointestinal (GI) tract, along with gut-associated lymphoid tissue (GALT), constitutes the largest lymphatic organ in the human body and forms the biggest surface of contact with the external environment. It is also the most significant source of bacterial and food-derived antigenic material. There is a broad range of reciprocal interactions between the GI tract, intestinal microbiota, increased intestinal permeability, activation of immune-inflammatory response, and the CNS that has crucial implications in brain function and mental health. This intercommunication takes place within the microbiota-gut-immune-glia (MGIG) axis, and glial cells are the main orchestrator of this communication. A broad range of factors, including psychological stress, inflammation, dysbiosis, may compromise the permeability of this barrier. This leads to excessive bacterial translocation and the excessive influx of food-derived antigenic material that contributes to activation of the immune-inflammatory response and depressive psychopathology. This chapter summarizes the role of increased intestinal permeability in MDD and mechanisms of how the "leaky gut" may contribute to immune-inflammatory response in this disorder.
Collapse
|
47
|
Konsman JP. So Many Faces, Phases, and Facets, Sickness Behavior Beyond Disciplines. Front Psychiatry 2021; 12:630331. [PMID: 33716828 PMCID: PMC7947683 DOI: 10.3389/fpsyt.2021.630331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
Animals, including human beings, modify their behavior when they fall sick. Interestingly, sociology, biology, and psychology have at different times in their history developed constructs of illness or sickness behavior. The aims of the present paper are to consider sickness behavior in animals and humans and to evaluate to what extent the notions of sickness behavior would allow for interdisciplinary research. After distinguishing disease, illness, and sickness, the case will be made that illness behavior and sickness behavior can be considered heuristically as synonyms given the existence of some fluidity between the notion of illness and sickness. Based on this, different faces, phases, and facets of sickness behavior will be presented before addressing the question of how integration of constructs of sickness behaviors would be possible across biology, medicine, psychology, and sociology. It is concluded that interdisciplinary research on sickness behavior between biology, psychology, and sociology is possible and called for with regard to constructs, methods, and explanations, while keeping in mind differences in perspectives, for example between acute and chronic sickness behavior.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- Aquitaine Institute for Integrative and Cognitive Neuroscience (INCIA) UMR CNRS 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
48
|
Lasselin J, Lekander M, Benson S, Schedlowski M, Engler H. Sick for science: experimental endotoxemia as a translational tool to develop and test new therapies for inflammation-associated depression. Mol Psychiatry 2021; 26:3672-3683. [PMID: 32873895 PMCID: PMC8550942 DOI: 10.1038/s41380-020-00869-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
Depression is one of the global leading causes of disability, but treatments remain limited and classical antidepressants were found to be ineffective in a substantial proportion of patients. Thus, novel effective therapies for the treatment of depression are urgently needed. Given the emerging role of inflammation in the etiology and pathophysiology of affective disorders, we herein illustrate how experimental endotoxemia, a translational model of systemic inflammation, could be used as a tool to develop and test new therapeutic options against depression. Our concept is based on the striking overlap of inflammatory, neural, and affective characteristics in patients with inflammation-associated depression and in endotoxin-challenged healthy subjects. Experimental administration of endotoxin in healthy volunteers is safe, well-tolerated, and without known long-term health risks. It offers a highly standardized translational approach to characterize potential targets of therapies against inflammation-associated depression, as well as to identify characteristics of patients that would benefit from these interventions, and, therefore, could contribute to improve personalization of treatment and to increase the overall rate of responders.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Stress Research Institute, Stockholm University, 10691, Stockholm, Sweden. .,Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden.
| | - Mats Lekander
- grid.10548.380000 0004 1936 9377Stress Research Institute, Stockholm University, 10691 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Sven Benson
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Manfred Schedlowski
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden
| | - Harald Engler
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
49
|
Giuffrè M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M, Di Bella S, Antonello RM, Luzzati R, Crocè LS. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J Clin Med 2020; 9:E3705. [PMID: 33218203 PMCID: PMC7699249 DOI: 10.3390/jcm9113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen-host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Giuseppina Campisciano
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | | | | | - Manola Comar
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberta Maria Antonello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberto Luzzati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| |
Collapse
|
50
|
Jia X, Gao Z, Hu H. Microglia in depression: current perspectives. SCIENCE CHINA-LIFE SCIENCES 2020; 64:911-925. [PMID: 33068286 DOI: 10.1007/s11427-020-1815-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disease that involves malfunctions of different cell types in the brain. Accumulating studies started to reveal that microglia, the primary resident immune cells, play an important role in the development and progression of depression. Microglia respond to stress-triggered neuroinflammation, and through the release of proinflammatory cytokines and their metabolic products, microglia may modulate the function of neurons and astrocytes to regulate depression. In this review, we focused on the role of microglia in the etiology of depression. We discussed the dynamic states of microglia; the correlative and causal evidence of microglial abnormalities in depression; possible mechanisms of how microglia sense depression-related stress and modulate depression state; and how antidepressive therapies affect microglia. Understanding the role of microglia in depression may shed light on developing new treatment strategies to fight against this devastating mental illness.
Collapse
Affiliation(s)
- Xiaoning Jia
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310012, China
| | - Zhihua Gao
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310012, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, 310058, China. .,Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310012, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, 310058, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, 510530, China. .,Research Units of Brain Mechanisms Underlying Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|