1
|
Galindo CL, Nguyen VT, Hill B, Easterday E, Cleator JH, Sawyer DB. Neuregulin (NRG-1β) Is Pro-Myogenic and Anti-Cachectic in Respiratory Muscles of Post-Myocardial Infarcted Swine. BIOLOGY 2022; 11:682. [PMID: 35625411 PMCID: PMC9137990 DOI: 10.3390/biology11050682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Neuregulin-1β (NRG-1β) is a growth and differentiation factor with pleiotropic systemic effects. Because NRG-1β has therapeutic potential for heart failure and has known growth effects in skeletal muscle, we hypothesized that it might affect heart failure-associated cachexia, a severe co-morbidity characterized by a loss of muscle mass. We therefore assessed NRG-1β's effect on intercostal skeletal muscle gene expression in a swine model of heart failure using recombinant glial growth factor 2 (USAN-cimaglermin alfa), a version of NRG-1β that has been tested in humans with systolic heart failure. Animals received one of two intravenous doses (0.67 or 2 mg/kg) of NRG-1β bi-weekly for 4 weeks, beginning one week after infarct. Based on paired-end RNA sequencing, NRG-1β treatment altered the intercostal muscle gene expression of 581 transcripts, including genes required for myofiber growth, maintenance and survival, such as MYH3, MYHC, MYL6B, KY and HES1. Importantly, NRG-1β altered the directionality of at least 85 genes associated with cachexia, including myostatin, which negatively regulates myoblast differentiation by down-regulating MyoD expression. Consistent with this, MyoD was increased in NRG-1β-treated animals. In vitro experiments with myoblast cell lines confirmed that NRG-1β induces ERBB-dependent differentiation. These findings suggest a NRG-1β-mediated anti-atrophic, anti-cachexia effect that may provide additional benefits to this potential therapy in heart failure.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Van Thuan Nguyen
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Braxton Hill
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - Ethan Easterday
- Department of Biology, Ogden College of Science & Engineering, Western Kentucky University, Bowling Green, KY 42101, USA; (V.T.N.); (B.H.); (E.E.)
| | - John H. Cleator
- Centennial Heart at Skyline, 3443 Dickerson Pike, Suite 430, Nashville, TN 37207, USA;
| | - Douglas B. Sawyer
- Department of Cardiac Services, Maine Medical Center, Scarborough, ME 04074, USA
| |
Collapse
|
2
|
Atay A, Dilek ON. Is omentectomy necessary in the treatment of benign or malignant abdominal pathologies? A systematic review. World J Gastrointest Surg 2021; 13:1497-1508. [PMID: 34950436 PMCID: PMC8649556 DOI: 10.4240/wjgs.v13.i11.1497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The omentum is an organ that is easily sacrificed during abdominal surgery. The scope of omentectomy and whether a routine omentectomy should be performed are still unknown.
AIM To review the literature in order to determine the physiological functions of the omentum and the roles it plays in pathological events in order to reveal the necessity for removal and preservation of the omentum.
METHODS A clinical review of the English language literature based on the MEDLINE (PubMed) database was conducted using the keywords: “abdomen”, “gastrointestinal”, “tumor”, “inflammation”, “omental flap”, “metastasis”, “omentum”, and “omentectomy”. In addition, reports were also identified by systematically reviewing all references in retrieved papers.
RESULTS The omentum functions as a natural barrier in areas where pathological processes occur in the abdominal cavity. The omentum limits and controls inflammatory and infectious pathologies that occur in the abdomen. It also aids in treatment due to its cellular functions including lymphatic drainage and phagocytosis. It shows similar behavior in tumors, but it cannot cope with increasing tumor burden. The stage of the disease changes due to the tumor mass it tries to control. Therefore, it is considered an indicator of poor prognosis. Due to this feature, the omentum is one of the first organs to be sacrificed during surgical procedures. However, there are many unknowns regarding the role and efficacy of the omentum in cancer.
CONCLUSION The omentum is a unique organ that limits and controls inflammatory processes, foreign masses, and lesions that develop in the abdominal cavity. Omental flaps can be used in all anatomical areas, including the thorax, abdomen, pelvis, and extremities. The omentum is an organ that deserves the title of the abdominal policeman. It is generally accepted that the omentum should be removed in cases where there is tumor invasion. However, the positive or negative contribution of omental resection in the treatment of abdominal pathologies should be questioned.
Collapse
Affiliation(s)
- Arif Atay
- Department of Surgery, İzmir Katip Celebi University School of Medicine, Atatürk Education and Research Hospital, İzmir 35150, Turkey
| | - Osman Nuri Dilek
- Department of Surgery, İzmir Katip Celebi University School of Medicine, Atatürk Education and Research Hospital, İzmir 35150, Turkey
| |
Collapse
|
3
|
Hajri T, Ewing D, Talishinskiy T, Amianda E, Eid S, Schmidt H. Depletion of Omega-3 Fatty Acids in RBCs and Changes of Inflammation Markers in Patients With Morbid Obesity Undergoing Gastric Bypass. J Nutr 2021; 151:2689-2696. [PMID: 34113966 DOI: 10.1093/jn/nxab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bariatric surgery is considered the most effective treatment for severe obesity. Despite this wide success, bariatric surgery is associated with increased risks of nutritional deficiencies. OBJECTIVES To examine whether Roux-en-Y-gastric bypass (RYGB) alters essential fatty acid (FA) status and inflammation markers. METHODS Subjects with obesity (n = 28; BMI > 40 kg/m2; mean age 48 years) were studied before and 1 year after RYGB. We collected blood samples before and 12 months after RYGB, and analyzed FA in RBCs and peripheral blood mononuclear cells (PBMC), and measured inflammation parameters in plasma. The proportion of total n-3 FAs was the primary outcome, while parameters related to other FAs and inflammation factors were the secondary parameters. In addition, PBMCs from 15 of the participants were cultured alone or with 100 and 200 μM DHA, and the production of IL-6, IL-1β, PGE2, and prostaglandin F2-alpha (PGF2α) was assayed after endotoxin (LPS) stimulation. RESULTS RYGB induced a significant reduction of BMI (-30%) and improvement of insulin resistance (-49%). While the proportion of arachidonic acid was 15% higher after RYGB, the proportions of total and individual n-3 FAs were 50%-75% lower (P < 0.01). Consequently, the RBC omega-3 index and n-3:n-6 fatty acid ratio were 45% and 50% lower after surgery, respectively. In isolated PBMCs, LPS induced the production of IL-6, IL-1β, PGE2, and PGF2α in both pre- and post-RYGB cells, but the effects were 34%-65% higher (P < 0.05) after RYGB. This effect was abrogated by DHA supplementation. CONCLUSIONS This study presents evidence that RBC and PBMC n-3 FAs are severely reduced in patients with obesity after RYGB. DHA supplementation in PBMC moderates the production of inflammation markers, suggesting that n-3 FA supplementation would merit a trial in bariatric patients.
Collapse
Affiliation(s)
- Tahar Hajri
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Douglas Ewing
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Erica Amianda
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sebastian Eid
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Hans Schmidt
- Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
4
|
Vion J, Sramkova V, Montastier E, Marquès MA, Caspar-Bauguil S, Duparc T, Martinez LO, Bourlier V, Harant I, Larrouy D, Moussaoui N, Bonnel S, Vindis C, Dray C, Valet P, Saulnier-Blache JS, Schanstra JP, Thalamas C, Viguerie N, Moro C, Langin D. Metabolic and cardiovascular adaptations to an 8-wk lifestyle weight loss intervention in younger and older obese men. Am J Physiol Endocrinol Metab 2021; 321:E325-E337. [PMID: 34250814 DOI: 10.1152/ajpendo.00109.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.
Collapse
Affiliation(s)
- Julie Vion
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Veronika Sramkova
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Marie-Adeline Marquès
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Thibaut Duparc
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Isabelle Harant
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Dominique Larrouy
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Nabila Moussaoui
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Sophie Bonnel
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Cécile Vindis
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Cédric Dray
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Philippe Valet
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Joost P Schanstra
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
| | - Claire Thalamas
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC Team MetaDiab, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, UMR 1297, F-CRIN/FORCE Network, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic, Paul Sabatier University, Toulouse, France
- Departments of Nutrition and Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
- Institut Universitaire de France, IUF, Paris, France
| |
Collapse
|
5
|
Xue H, Huang L, Tu J, Ding L, Huang W. Bile acids and metabolic surgery. LIVER RESEARCH 2021; 5:164-170. [PMID: 39957846 PMCID: PMC11791848 DOI: 10.1016/j.livres.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 05/05/2021] [Indexed: 02/16/2023]
Abstract
The epidemic of obesity and its co-mortalities has reached an alarming level worldwide. Currently, metabolic surgeries, especially the Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are the most effective and sustainable treatments for obesity, type 2 diabetes, non-alcoholic steatohepatitis, as well as other metabolic diseases. However, the invasive nature of the surgeries limits their broad applications to the general public. Therefore, developing alternative non-invasive approaches to mimic metabolic surgery is an important direction of the field. Recent studies have identified several potential metabolic surgery-induced downstream endocrine mediators, among which bile acids are key candidate signaling molecules. Bile acids are profoundly altered by metabolic surgery, which contributes to the metabolic effects of the surgery. In this review, we focus on the most recent studies on the roles of bile acids and bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor 5 in mediating the metabolic effects of metabolic surgery. We conclude that targeting bile acid pathways may be a promising pharmacological approach to mimic the beneficial effects of metabolic surgery.
Collapse
Affiliation(s)
- Hui Xue
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Huang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
6
|
Van de Velde F, Ouwens DM, Batens AH, Van Nieuwenhove Y, Lapauw B. Divergent dynamics in systemic and tissue-specific metabolic and inflammatory responses during weight loss in subjects with obesity. Cytokine 2021; 144:155587. [PMID: 34052657 DOI: 10.1016/j.cyto.2021.155587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
AIM Dysfunction of adipose and muscle tissue associates with obesity-related co-morbidities such as insulin resistance (IR) and inflammation. This study investigates changes in systemic and tissue-specific markers of IR and inflammation after gastric bypass surgery (GBS) in subjects with obesity. METHODS Prospective study, twenty subjects with obesity (50 ± 10 years, 14 men). Prior to, and six months and one year after GBS, subcutaneous abdominal adipose tissue (SAT), skeletal muscle and fasting serum samples were collected. Serum levels of C-reactive protein (CRP), glucose and insulin were determined using standard laboratory assays and serum IL-6, IL-10 and TNF-α levels were determined using ELISA. Tissue mRNA expression of inflammation and insulin/glucose metabolism markers were analyzed using qPCR. RESULTS After GBS, HOMA-IR, CRP and IL-6 serum levels decreased. In SAT, expression of bone morphogenetic protein 4 (BMP4), IL-6, IL-10 and MCP1 decreased and GLUT4 increased (all p < 0.05). In muscle, expression of BMP4, GLUT4 and IL-6 decreased and of MCP1 and IRS-1 increased (all p < 0.05). CONCLUSION Systemic improvements in inflammation and IR after GBS are only partially mirrored by corresponding changes in adipokine and myokine expression patterns. As changes in expression of other markers of inflammation and insulin/glucose metabolism appear less consistent and even divergent between tissues, the inflammatory and IR status at systemic level cannot be extrapolated to the situation in metabolically active tissues.
Collapse
Affiliation(s)
| | - D Margriet Ouwens
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium; Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | | | - Yves Van Nieuwenhove
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Liu DF, Ma ZY, Zhang CS, Lin Q, Li MW, Su KZ, Li YR, Wang HD, Zang Q, Dong J. The effects of bariatric surgery on dyslipidemia and insulin resistance in overweight patients with or without type 2 diabetes: a systematic review and network meta-analysis. Surg Obes Relat Dis 2021; 17:1655-1672. [PMID: 34229937 DOI: 10.1016/j.soard.2021.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/29/2022]
Abstract
Obesity has become an epidemic in several regions globally; it may lead to cardiovascular diseases, diabetes, and dyslipidemia. Despite many therapies, all bariatric procedures fail in some patients. There is a lack of literature comparing treatment effects on specific metabolic indexes. PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched for relevant articles. GeMTC and R software were used to perform a network meta-analysis, draw forest plots, investigate the possibility of statistical heterogeneity, generate I2 statistics, rank probabilities, and evaluate relative effects of surgical procedures. All analyses were based on a Bayesian consistency model. We included 35 randomized controlled trials, comprising 2198 individuals and 13 interventions. For patients with high insulin resistance, single-anastomosis (mini-) gastric bypass (SAGB) and sleeve gastrectomy (SG) may be effective options, with mean differences (95% confidence intervals [CIs]) of -4.45 (-9.04 to -.34) and -4.23 (-6.74 to -2.22), respectively, compared with control groups. For patients with severe dyslipidemia, in addition to SAGB and SG, duodenal switch (DS) may be an effective surgery, with mean differences (95% CIs) of -.97 (-1.39 to -.55), -1.98 (-3.76 to -.19), .53 (.04 to 1.04), and -.94 (-1.66 to -.16) compared with control groups in terms of triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) concentrations, respectively. In adult overweight patients with or without diabetes, SAGB and SG are most effective at ameliorating insulin resistance. SAGB, Roux-en-Y gastric bypass + omentectomy, and DS are useful for reducing triglycerides, total cholesterol, and LDL-C. SG + omentectomy elevates HDL-C concentrations best. Adjustable gastric band and biliopancreatic diversion may not control insulin resistance or dyslipidemia well.
Collapse
Affiliation(s)
- De-Feng Liu
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zheng-Ye Ma
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Cai-Shun Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Qian Lin
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Man-Wen Li
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Kai-Zhen Su
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Yan-Run Li
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Hai-Dan Wang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Qing Zang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China; Physiology Department, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Barberio MD, Dohm GL, Pories WJ, Gadaleta NA, Houmard JA, Nadler EP, Hubal MJ. Type 2 Diabetes Modifies Skeletal Muscle Gene Expression Response to Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2021; 12:728593. [PMID: 34690929 PMCID: PMC8526857 DOI: 10.3389/fendo.2021.728593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) is an effective treatment for type 2 diabetes mellitus (T2DM) that can result in remission of clinical symptoms, yet mechanisms for improved skeletal muscle health are poorly understood. We sought to define the impact of existing T2DM on RYGB-induced muscle transcriptome changes. METHODS Vastus lateralis biopsy transcriptomes were generated pre- and 1-year post-RYGB in black adult females with (T2D; n = 5, age = 51 ± 6 years, BMI = 53.0 ± 5.8 kg/m2) and without (CON; n = 7, 43 ± 6 years, 51.0 ± 9.2 kg/m2) T2DM. Insulin, glucose, and HOMA-IR were measured in blood at the same time points. ANCOVA detected differentially expressed genes (p < 0.01, fold change < |1.2|), which were used to identify enriched biological pathways. RESULTS Pre-RYGB, 95 probes were downregulated with T2D including subunits of mitochondrial complex I. Post-RYGB, the T2D group had normalized gene expression when compared to their non-diabetic counterparts with only three probes remaining significantly different. In the T2D, we identified 52 probes upregulated from pre- to post-RYGB, including NDFUB7 and NDFUA1. CONCLUSION Black females with T2DM show extensive downregulation of genes across aerobic metabolism pathways prior to RYGB, which resolves 1 year post-RYGB and is related to improvements in clinical markers. These data support efficacy of RYGB for improving skeletal muscle health, especially in patients with T2DM.
Collapse
Affiliation(s)
- Matthew D. Barberio
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - G. Lynis Dohm
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Walter J. Pories
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Natalie A. Gadaleta
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Joseph A. Houmard
- Human Performance Laboratory, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, United States
| | - Evan P. Nadler
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC, United States
| | - Monica J. Hubal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Monica J. Hubal,
| |
Collapse
|
9
|
Turner DC, Gorski PP, Maasar MF, Seaborne RA, Baumert P, Brown AD, Kitchen MO, Erskine RM, Dos-Remedios I, Voisin S, Eynon N, Sultanov RI, Borisov OV, Larin AK, Semenova EA, Popov DV, Generozov EV, Stewart CE, Drust B, Owens DJ, Ahmetov II, Sharples AP. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Sci Rep 2020; 10:15360. [PMID: 32958812 PMCID: PMC7506549 DOI: 10.1038/s41598-020-72730-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72 h, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6–8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes.
Collapse
Affiliation(s)
- D C Turner
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - P P Gorski
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - M F Maasar
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - R A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - P Baumert
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - A D Brown
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - M O Kitchen
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK
| | - R M Erskine
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - I Dos-Remedios
- Orthopedics Department, University Hospitals of the North Midlands, Keele University, Staffordshire, UK
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, Australia
| | - R I Sultanov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - A K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - D V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - E V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - C E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - B Drust
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - D J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - I I Ahmetov
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia. .,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - A P Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), Oslo, Norway. .,Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. .,Institute for Science and Technology in Medicine (ISTM), School of Pharmacy & Bioengineering, Keele University, Staffordshire, UK.
| |
Collapse
|
10
|
Effect of Bariatric Surgery on Serum Inflammatory Factors of Obese Patients: a Systematic Review and Meta-Analysis. Obes Surg 2020; 29:2631-2647. [PMID: 31093862 DOI: 10.1007/s11695-019-03926-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is one of the main causes of inflammation. Previous studies have reported inconclusive results regarding the effect of bariatric surgery on inflammatory markers. This systematic review and meta-analysis is aimed at describing the effect of bariatric surgery on C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). PubMed/Medline and Scopus were systematically searched for all eligible studies from inception to June 2018. Results are expressed as weighted mean difference (MD) with 95% confidence intervals (CI) using a random effects model. Overall, 116 studies which evaluated serum CRP, IL-6, and TNF-α after bariatric surgery were included. Pooled effect size showed significant reduction in serum CRP (- 5.30 mg/l, 95% CI - 5.46, - 5.15, P < 0.001), IL-6 (- 0.58 pg/ml, 95% CI - 0.64, - 0.53, P < 0.001), and TNF-α (- 0.20 pg/ml, 95% CI - 0.39, - 0.02, P = 0.031) with significant heterogeneity across studies (> 95% for all factors). Bariatric surgery significantly lowered inflammatory factors; however, baseline BMI, follow-up duration and type of surgery could impact the extent of observed effects.
Collapse
|
11
|
Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun 2019; 10:4179. [PMID: 31519890 PMCID: PMC6744497 DOI: 10.1038/s41467-019-12081-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Surgical weight-loss interventions improve insulin sensitivity via incompletely understood mechanisms. Here the authors assess skeletal muscle epigenetic changes in individuals with obesity following metabolic surgery and compare them with data from individuals without obesity.
Collapse
|
12
|
Wang Y, Chen J, Wu XT. Improvement in reduction of body mass index and no effect of lipid profile in bariatric surgery with omentectomy. Surg Obes Relat Dis 2019; 16:354-360. [PMID: 31451385 DOI: 10.1016/j.soard.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Chen
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiao-Ting Wu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Grannell A, De Vito G, Murphy JC, le Roux CW. The influence of skeletal muscle on appetite regulation. Expert Rev Endocrinol Metab 2019; 14:267-282. [PMID: 31106601 DOI: 10.1080/17446651.2019.1618185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Fat-free mass, of which skeletal muscle is amajor component, correlates positively with energy intake at energy balance. This is due to the effects of metabolically active tissue on energy expenditure which in itself appears to signal to the brain adrive to eat to ensure cellular energy homeostasis. The mechanisms responsible for this drive to eat are unknown but are likely to be related to energy utilization. Here muscle imparts an indirect influence on hunger. The drive to eat is also enhanced after muscle loss secondary to intentional weight loss. The evidence suggests loss of both fat mass and skeletal muscle mass directly influences the trajectory and magnitude of weight regain highlighting their potential role in long-termappetite control. The mechanisms responsible for the potential direct drive to eat stemming from muscle loss are unknown. AREAS COVERED The literature pertaining to muscle and appetite at energy balance and after weight loss was examined. Aliterature search was conducted to identify studies related to appetite, muscle, exercise, and weight loss. EXPERT OPINION Understanding the mechanisms which link energy expenditure and muscle loss to hunger has the potential to positively impact both the prevention and the treatment of obesity.
Collapse
Affiliation(s)
- Andrew Grannell
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Giuseppe De Vito
- c School of Public Health, Physiotherapy and Sports Science , University College Dublin , Dublin , Ireland
| | - John C Murphy
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Carel W le Roux
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
| |
Collapse
|
14
|
Courcoulas AP, Stefater MA, Shirley E, Gourash WF, Stylopoulos N. The Feasibility of Examining the Effects of Gastric Bypass Surgery on Intestinal Metabolism: Prospective, Longitudinal Mechanistic Clinical Trial. JMIR Res Protoc 2019; 8:e12459. [PMID: 30679147 PMCID: PMC6483060 DOI: 10.2196/12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023] Open
Abstract
Background Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), is the best treatment for severe obesity and its complications including type 2 diabetes mellitus (T2DM). Understanding the mechanisms responsible for the beneficial metabolic effects will help to engineer ways to improve the procedure or produce these effects without surgery. Objective The aim is to present data on recruitment and feasibility of a translational study designed to collect intestinal samples before and after bariatric surgery. The goal of biobanking is to allow future studies to test the hypothesis that the mechanism of action of RYGB involves specific changes in the postsurgical short- and long-term metabolism and morphology of the jejunum (Roux limb). Specifically, to test whether the intestine enhances its metabolism and activity after RYGB and increases its fuel utilization, we designed a prospective, longitudinal study, which involved the recruitment of candidates for RYGB with and without T2DM. We describe the tissue bank that we have generated, and our experience, hoping to further facilitate the performance of longitudinal mechanistic studies in human patients undergoing bariatric surgery and especially those involving post-RYGB intestinal biology. Methods We conducted a trial to characterize the effects of RYGB on intestinal metabolism. Intestinal tissue samples were collected from the jejunum at surgery, 1, 6, and 12 months postoperatively for the analysis of intestinal gene expression and metabolomic and morphologic changes. The target number of patients who completed at least the 6-month follow-up was 26, and we included a 20% attrition rate, increasing the total number to 32. Results To enroll 26 patients, we had to approach 79 potential participants. A total of 37 agreed to participate and started the study; 33, 30, and 26 active participants completed their 1-month, 6-month, and 12-month studies, respectively. Three participants withdrew, and 30 participants are still active. Altruism and interest in research were the most common reasons for participation. Important factors for feasibility and successful retention included (1) large volume case flow, (2) inclusion and exclusion criteria broad enough to capture a large segment of the patient population but narrow enough to ensure the completion of study aims and protection of safety concerns, (3) accurate assessment of willingness and motivation to participate in a study, (4) seamless integration of the recruitment process into normal clinical flow, (5) financial reimbursement and nonfinancial rewards and gestures of appreciation, and (6) nonburdensome follow-up visits and measures and reasonable time allotted. Conclusions Human translational studies of the intestinal mechanisms of metabolic and weight changes after bariatric surgery are important and feasible. A tissue bank with unique samples has been established that could be used by investigators in many research fields, further enabling mechanistic studies on the effects of bariatric surgery. Trial Registration ClinicalTrials.gov NCT02710370; https://clinicaltrials.gov/ct2/show/NCT02710370 (Archived by WebCite at http://www.webcitation.org/75HrQT8Dl)
Collapse
Affiliation(s)
| | | | - Eleanor Shirley
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - William F Gourash
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | |
Collapse
|
15
|
Lee Y, Pędziwiatr M, Major P, Brar K, Doumouras AG, Hong D. The effect of omentectomy added to bariatric surgery on metabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. Surg Obes Relat Dis 2018; 14:1766-1782. [PMID: 30228082 DOI: 10.1016/j.soard.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excess visceral adipose tissue has been identified as an important risk factor for obesity-related co-morbidities. Conflicting information exists on whether omentectomy added to bariatric surgery is beneficial to metabolic variables. OBJECTIVE To evaluate the impact of omentectomy added to bariatric surgery on metabolic outcomes SETTING: University Hospital, Canada. METHODS MEDLINE, EMBASE, and PubMed were searched up to May 2018. Studies were eligible for inclusion if they were randomized controlled trials comparing omentectomy added to bariatric surgery with bariatric surgery alone. Primary outcome measures were absolute change in metabolic variables (body mass index, insulin, glucose, cholesterol, lipoproteins, and triglycerides); secondary outcomes were changes in adipocytokines. Pooled mean differences (mean deviation; MD) were calculated using random effects meta-analyses, and heterogeneity was quantified using the I2 statistic. RESULTS Ten trials involving a total of 366 patients met the inclusion criteria with a median follow-up time of 1 year after surgery. Adding omentectomy to bariatric surgery demonstrated a minimal but statistically significant decrease in body mass index compared with bariatric surgery alone (MD 1.29, 95% confidence interval .35-2.23, P = .007, I2 = 0%, 10 trials). Conversely, patients who underwent bariatric surgery alone had significant increases in high-density lipoprotein (MD -2.12, 95% confidence interval -4.13 to -.11, P = .04, I2 = 0%, 6 trials). Other metabolic outcomes and adipocytokines showed no significant difference between procedures. CONCLUSION The addition of omentectomy to bariatric surgery results in minimal reduction of body mass index. Considering no overall improvement in metabolic outcomes and the time and effort required, the therapeutic use of omentectomy added to bariatric surgery is not warranted.
Collapse
Affiliation(s)
- Yung Lee
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University, Krakow, Poland; Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Krakow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University, Krakow, Poland; Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Krakow, Poland
| | - Karanbir Brar
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristithes G Doumouras
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Dennis Hong
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Garruti G, Di Ciaula A, Wang HH, Wang DQH, Portincasa P. Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Ann Hepatol 2017; 16:s68-s82. [PMID: 29080342 DOI: 10.5604/01.3001.0010.5499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Obesity is rapidly increasing and has reached epidemic features worldwide. It´s linked to insulin resistance, systemic low-grade inflammation and common pathogenic pathways with a number of comorbidities (including cancer), leading to high mortality rates. Besides change of lifestyles (diet and physical exercise) and pharmacological therapy, bariatric surgery is able to rapidly improve several metabolic and morphologic features associated with excessive fat storage, and currently represents an in vivo model to study the pathogenic mechanisms underlying obesity and obesity-related complications. Studies on obese subjects undergoing bariatric surgery find that the effects of surgery are not simply secondary to gastric mechanical restriction and malabsorption which induce body weight loss. In fact, some surgical procedures positively modify key pathways involving the intestine, bile acids, receptor signaling, gut microbiota, hormones and thermogenesis, leading to systemic metabolic changes. Furthermore, bariatric surgery represents a suitable model to evaluate the gene-environment interaction and some epigenetic mechanisms linking obesity and insulin resistance to metabolic diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | | | - Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| |
Collapse
|
17
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Meza-Perez S, Randall TD. Immunological Functions of the Omentum. Trends Immunol 2017; 38:526-536. [PMID: 28579319 PMCID: PMC5812451 DOI: 10.1016/j.it.2017.03.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
The omentum is a visceral adipose tissue with unique immune functions. Although it is primarily an adipose tissue, the omentum also contains lymphoid aggregates, called milky spots (MSs), that contribute to peritoneal immunity by collecting antigens, particulates, and pathogens from the peritoneal cavity and, depending on the stimuli, promoting a variety of immune responses, including inflammation, tolerance, or even fibrosis. Reciprocal interactions between cells in the MS and adipocytes regulate their immune and metabolic functions. Importantly, the omentum collects metastasizing tumor cells and supports tumor growth by immunological and metabolic mechanisms. Here we summarize our current knowledge about the development, organization, and function of the omentum in peritoneal immunity.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Campbell LE, Langlais PR, Day SE, Coletta RL, Benjamin TR, De Filippis EA, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Identification of Novel Changes in Human Skeletal Muscle Proteome After Roux-en-Y Gastric Bypass Surgery. Diabetes 2016; 65:2724-31. [PMID: 27207528 PMCID: PMC5001187 DOI: 10.2337/db16-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms of metabolic improvements after Roux-en-Y gastric bypass (RYGB) surgery are not entirely clear. Therefore, the aim of our study was to investigate the role of obesity and RYGB on the human skeletal muscle proteome. Basal muscle biopsies were obtained from seven obese (BMI >40 kg/m(2)) female subjects (45.1 ± 3.6 years) pre- and 3 months post-RYGB, and euglycemic-hyperinsulinemic clamps were used to assess insulin sensitivity. Four age-matched (48.5 ± 4.7 years) lean (BMI <25 kg/m(2)) females served as control subjects. We performed quantitative mass spectrometry and microarray analyses on protein and RNA isolated from the muscle biopsies. Significant improvements in fasting plasma glucose (104.2 ± 7.8 vs. 86.7 ± 3.1 mg/dL) and BMI (42.1 ± 2.2 vs. 35.3 ± 1.8 kg/m(2)) were demonstrated in the pre- versus post-RYGB, both P < 0.05. Proteomic analysis identified 2,877 quantifiable proteins. Of these, 395 proteins were significantly altered in obesity before surgery, and 280 proteins differed significantly post-RYGB. Post-RYGB, 49 proteins were returned to normal levels after surgery. KEGG pathway analysis revealed a decreased abundance in ribosomal and oxidative phosphorylation proteins in obesity, and a normalization of ribosomal proteins post-RYGB. The transcriptomic data confirmed the normalization of the ribosomal proteins. Our results provide evidence that obesity and RYGB have a dynamic effect on the skeletal muscle proteome.
Collapse
Affiliation(s)
| | | | - Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Richard L Coletta
- School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | | | | | - Lawrence J Mandarino
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | - Dawn K Coletta
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
20
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
21
|
Börnigen D, Tyekucheva S, Wang X, Rider JR, Lee GS, Mucci LA, Sweeney C, Huttenhower C. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Comput Biol 2016; 12:e1004820. [PMID: 27078000 PMCID: PMC4831844 DOI: 10.1371/journal.pcbi.1004820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies. In molecular research in cancer it remains challenging to uncover biomolecular mechanisms in cancer-related pathways from high-throughput genomic data, including the Nuclear-factor-kappa-B (NFκB) pathway. Despite close scrutiny and a deep understanding of many of the NFκB pathway members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. In this study, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for 8 genes in this pathway and new mechanistic interactions between these genes and 10 known pathway members. We combined 651 gene expression datasets with 1.4M interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in 112 interactions in the fully reconstructed NFκB pathway. This method is generalizable, and this new information about the NFκB pathway will allow us to further understand prostate cancer.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Xiaodong Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Gwo-Shu Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
22
|
Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early Increases in Bile Acids Post Roux-en-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids. J Clin Endocrinol Metab 2015; 100. [PMID: 26196952 PMCID: PMC4570157 DOI: 10.1210/jc.2015-2467] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and resolution of diabetes. Over the last decade, it has become well accepted that this resolution of diabetes occurs before significant weight loss; however, the mechanisms behind this effect remain unknown and could represent novel therapeutic targets for obesity and diabetes. Bile acids have been identified as putative mediators of these weight loss-independent effects. OBJECTIVE To identify the longitudinal changes in bile acids after RYGB, which may provide mechanistic insight into the weight loss-independent effects of RYGB. DESIGN Observational study before/after intervention. SETTING Academic medical center. PATIENTS/PARTICIPANTS Samples were collected from morbidly obese patients (n = 21) before and after RYGB. INTERVENTION RYGB. MAIN OUTCOME MEASURES Seventeen individual bile acid species were measured preoperatively and at 1, 6, 12, and 24 months postoperatively. Anthropometric, hormonal, and hyperinsulinemic-euglycemic clamp data were also examined to identify physiological parameters associated with bile acid changes. RESULTS Fasting total plasma bile acids increased after RYGB; however, increases were bimodal and were observed only at 1 (P < .05) and 24 months (P < .01). One-month increases were secondary to surges in ursodeoxycholic acid and its glycine and taurine conjugates, bacterially derived bile acids with putative insulin-sensitizing effects. Increases at 24 months were due to gradual rises in primary unconjugated bile acids as well as deoxycholic acid and its glycine conjugate. Plasma bile acid changes were not significantly associated with any anthropometric or hormonal measures, although hepatic insulin sensitivity was significantly improved at 1 month. CONCLUSIONS Overall findings suggest that bacterially derived bile acids may mediate the early improvements at 1 month after RYGB. Future studies should examine the changes in specific bile acid chemical species after bariatric procedures and bile acid-specific signaling changes.
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Charles Robb Flynn
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Steven Cai
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yi Xiao
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Robyn A Tamboli
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Naji N Abumrad
- Department of Surgery (V.L.A., C.R.F., R.A.T., N.N.A.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Rosalind Franklin University (S.C.), North Chicago, Illinois 60064; and Department of Biochemistry (Y.X.), Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
23
|
Neff KJ, O'Donohoe PK, le Roux CW. Anti-inflammatory effects of gastric bypass surgery and their association with improvement in metabolic profile. Expert Rev Endocrinol Metab 2015; 10:435-446. [PMID: 30293493 DOI: 10.1586/17446651.2015.1054808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is associated with chronic inflammation and metabolic disease. Bariatric surgery offers a treatment that can effectively reduce weight and improve the metabolic function. However, the effect of bariatric surgery on chronic inflammation in obesity is under-investigated. In this expert review, the authors outline the effect of Roux-en-Y gastric bypass, the most commonly performed bariatric surgery in current practice, on the markers of inflammation. They include a discussion of the relationship between inflammation and weight loss after surgery, the interaction between these markers and metabolic disease, and the effect on adipose tissue inflammation. They also briefly explore the role of glucagon-like-peptide 1 in remediating inflammation and the changes in gut microbiota after Roux-en-Y gastric bypass, and how they may be important in inflammation.
Collapse
Affiliation(s)
- Karl J Neff
- a 1 Diabetic Complication Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Patrick K O'Donohoe
- a 1 Diabetic Complication Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- a 1 Diabetic Complication Research Centre, UCD Conway Institute, University College Dublin, Dublin, Ireland
- b 2 Metabolic Medicine Research Unit, Imperial College London, Charing Cross Hospital, London, UK
| |
Collapse
|
24
|
Abstract
A clustering of metabolic abnormalities such as dyslipidemia, hypertension, and diabetes mellitus, all of which are major risk factors for cardiovascular disease (CVD), occurs more often than by chance. Numerous epidemiological studies, as well as basic researches, have revealed that visceral fat accumulation is closely involved in this risk clustering. This morbid condition is now well recognized as the metabolic syndrome. The concept of the metabolic syndrome, i.e., the involvement of visceral adiposity in the clustering of CVD risk factors, implies that an effective CVD risk reduction will be accomplished by an intervention to reduce visceral fat deposits. The primary strategy of the intervention is lifestyle modification, which can be put into practice in healthcare fields, without necessity of medical treatment. Now that CVD is a leading global health burden, the metabolic syndrome attracts increasing attention in the world. To take global action against the syndrome, several working groups developed its internationally unified diagnostic criteria. Most recently, the International Diabetes Federation (IDF) and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) jointly proposed the criteria, although some cautions will be needed in their practical use. In this review, we mainly focus on the findings observed in clinical and epidemiological studies, to discuss a practical strategy of the management of the metabolic syndrome in healthcare fields.
Collapse
Affiliation(s)
- Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
25
|
Tilg H, Moschen AR. Mechanisms behind the link between obesity and gastrointestinal cancers. Best Pract Res Clin Gastroenterol 2014; 28:599-610. [PMID: 25194178 DOI: 10.1016/j.bpg.2014.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/27/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Obesity and obesity-related disorders such as non-alcoholic fatty liver disease (NAFLD), metabolic syndrome and type 2 diabetes exhibit an increased risk of developing various gastrointestinal cancers. These malignancies include mainly esophageal, gastric, colorectal, pancreatic and hepatocellular carcinoma. Whereas underlying pathomechanisms remain unclear, chronic inflammation accompanying obesity has evolved in the last years as a crucial contributing factor. Obesity is also commonly characterized by inflammation in the organ where those cancers appear. Various pathways might participate involving rather diverse components such as innate immunity, (adipo)-cytokines such as adiponectin or leptin, insulin, insulin-like growth factors, the gut's microbiota and others. An imbalance in these systems could substantially contribute to chronic inflammation and subsequent cancer development. Future studies have to elucidate in more detail underlying mechanisms in the development of obesity-related carcinogensis and potential therapeutic strategies besides weight loss.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Austria.
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Austria
| |
Collapse
|
26
|
Li CH, Wu DF, Ding H, Zhao Y, Zhou KY, Xu DF. Berberine Hydrochloride Impact on Physiological Processes and Modulation of Twist Levels in Nasopharyngeal Carcinoma CNE-1 Cells. Asian Pac J Cancer Prev 2014; 15:1851-7. [DOI: 10.7314/apjcp.2014.15.4.1851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Hampton M, Melvin RG, Andrews MT. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS One 2013; 8:e85157. [PMID: 24386461 PMCID: PMC3875542 DOI: 10.1371/journal.pone.0085157] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/23/2013] [Indexed: 11/18/2022] Open
Abstract
We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state.
Collapse
Affiliation(s)
- Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Richard G. Melvin
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Matthew T. Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| |
Collapse
|
28
|
Karastergiou K, Fried SK. Multiple adipose depots increase cardiovascular risk via local and systemic effects. Curr Atheroscler Rep 2013; 15:361. [PMID: 23982264 PMCID: PMC3997174 DOI: 10.1007/s11883-013-0361-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue modifies the development of cardiovascular disease in a complex manner: obesity is a major risk factor, especially when accompanied by a central fat distribution. For that reason the characteristics of visceral adipose tissue have attracted most of the research interest thus far, and measurement of waist circumference is now recommended for everyday clinical practice. However, the direct, causative role of visceral fat in cardiometabolic disease remains to be established. Epidemiological and clinical studies show that accumulation of fat subcutaneously, in the gluteofemoral area, is protective against cardiovascular disease, but the exact molecular mechanisms remain unclear. In the last few years, imaging has allowed the study of smaller fat depots that may interact locally with important tissues: epicardial fat with the myocardium, perivascular fat with the vessel wall and the developing atherosclerotic plaque, and renal sinus fat with the renal artery. Unraveling the heterogeneous fat distribution and metabolic phenotypes in human obesity will facilitate optimal assessment of cardiovascular risk in overweight and obese individuals.
Collapse
Affiliation(s)
- Kalypso Karastergiou
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University, School of Medicine, 650 Albany St., EBRC-810, Boston, MA 02118, United States. Tel.: +1 617 638 7123; fax: +1 617 638 7124;
| | - Susan K. Fried
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University, School of Medicine, 650 Albany St., EBRC-810, Boston, MA 02118, United States
| |
Collapse
|
29
|
Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. BIOCHEMISTRY (MOSCOW) 2013; 78:638-50. [DOI: 10.1134/s0006297913060096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|