1
|
Moore AR, Zheng H, Ganesan A, Hasin-Brumshtein Y, Maddali MV, Levitt JE, van der Poll T, Scicluna BP, Giamarellos-Bourboulis EJ, Kotsaki A, Martin-Loeches I, Garduno A, Rothman RE, Sevransky J, Wright DW, Atreya MR, Moldawer LL, Efron PA, Marcela K, Karvunidis T, Giannini HM, Meyer NJ, Sweeney TE, Rogers AJ, Khatri P. International multi-cohort analysis identifies novel framework for quantifying immune dysregulation in critical illness: results of the SUBSPACE consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623298. [PMID: 39605502 PMCID: PMC11601436 DOI: 10.1101/2024.11.12.623298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Progress in the management of critical care syndromes such as sepsis, Acute Respiratory Distress Syndrome (ARDS), and trauma has slowed over the last two decades, limited by the inherent heterogeneity within syndromic illnesses. Numerous immune endotypes have been proposed in sepsis and critical care, however the overlap of the endotypes is unclear, limiting clinical translation. The SUBSPACE consortium is an international consortium that aims to advance precision medicine through the sharing of transcriptomic data. By evaluating the overlap of existing immune endotypes in sepsis across over 6,000 samples, we developed cell-type specific signatures to quantify dysregulation in these immune compartments. Myeloid and lymphoid dysregulation were associated with disease severity and mortality across all cohorts. This dysregulation was not only observed in sepsis but also in ARDS, trauma, and burn patients, indicating a conserved mechanism across various critical illness syndromes. Moreover, analysis of randomized controlled trial data revealed that myeloid and lymphoid dysregulation is linked to differential mortality in patients treated with anakinra or corticosteroids, underscoring its prognostic and therapeutic significance. In conclusion, this novel immunology-based framework for quantifying cellular compartment dysregulation offers a valuable tool for prognosis and therapeutic decision-making in critical illness.
Collapse
Affiliation(s)
- Andrew R Moore
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | | | - Manoj V Maddali
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Joseph E Levitt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | | | | | - Antigone Kotsaki
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Alexis Garduno
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
| | - Richard E. Rothman
- Department of Emergency Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - David W Wright
- Department of Emergency Medicine, Emory University, Atlanta, GA
| | - Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, OH
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Kralovcova Marcela
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Karvunidis
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Heather M. Giannini
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | | | - Angela J Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
2
|
Kerns S, Owen KA, Schwalbe D, Grammer AC, Lipsky PE. Examination of the shared genetic architecture between multiple sclerosis and systemic lupus erythematosus facilitates discovery of novel lupus risk loci. Hum Genet 2024; 143:703-719. [PMID: 38609570 DOI: 10.1007/s00439-024-02672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.
Collapse
Affiliation(s)
- Sophia Kerns
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA.
- The RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Katherine A Owen
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Dana Schwalbe
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
3
|
Leventhal EL, Daamen AR, Grammer AC, Lipsky PE. An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients. iScience 2023; 26:108042. [PMID: 37860757 PMCID: PMC10582499 DOI: 10.1016/j.isci.2023.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene expression data. However, phenotype prediction using ML has often relied on identifying important genes without a systems biology context. To address this, we created an interpretable ML approach based on blood transcriptomics to predict phenotype in systemic lupus erythematosus (SLE), a heterogeneous autoimmune disease. We employed a sequential grouped feature importance algorithm to assess the performance of gene sets, including immune and metabolic pathways and cell types, known to be abnormal in SLE in predicting disease activity and organ involvement. Gene sets related to interferon, tumor necrosis factor, the mitoribosome, and T cell activation were the best predictors of phenotype with excellent performance. These results suggest potential relationships between the molecular pathways identified in each model and manifestations of SLE. This ML approach to phenotype prediction can be applied to other diseases and tissues.
Collapse
Affiliation(s)
- Emily L. Leventhal
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| |
Collapse
|
4
|
Habgood-Coote D, Wilson C, Shimizu C, Barendregt AM, Philipsen R, Galassini R, Calle IR, Workman L, Agyeman PKA, Ferwerda G, Anderson ST, van den Berg JM, Emonts M, Carrol ED, Fink CG, de Groot R, Hibberd ML, Kanegaye J, Nicol MP, Paulus S, Pollard AJ, Salas A, Secka F, Schlapbach LJ, Tremoulet AH, Walther M, Zenz W, Van der Flier M, Zar HJ, Kuijpers T, Burns JC, Martinón-Torres F, Wright VJ, Coin LJM, Cunnington AJ, Herberg JA, Levin M, Kaforou M. Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature. MED 2023; 4:635-654.e5. [PMID: 37597512 DOI: 10.1016/j.medj.2023.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.
Collapse
Affiliation(s)
- Dominic Habgood-Coote
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Clare Wilson
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Chisato Shimizu
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Anouk M Barendregt
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ria Philipsen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Rachel Galassini
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Irene Rivero Calle
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Lesley Workman
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gerben Ferwerda
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Suzanne T Anderson
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke Emonts
- Great North Children's Hospital, Department of Paediatric Immunology, Infectious Diseases & Allergy and NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Colin G Fink
- Micropathology Ltd Research and Diagnosis, Coventry, UK; University of Warwick, Coventry, UK
| | - Ronald de Groot
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - John Kanegaye
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mark P Nicol
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Stéphane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Antonio Salas
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
| | - Fatou Secka
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Luregn J Schlapbach
- Pediatric and Neonatal Intensive Care Unit, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, and Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Walther
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Werner Zenz
- University Clinic of Paediatrics and Adolescent Medicine, Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Michiel Van der Flier
- Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Paediatric Infectious Diseases and Immunology Amalia Children's Hospital, Radboudumc, Nijmegen, the Netherlands
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner Laboratory of Amsterdam UMC (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Federico Martinón-Torres
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Jethro A Herberg
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
5
|
Hachem AA, Filkins LM, Kidane YH, Raj P, Tareen NG, Arana CA, Muthukrishnan G, Copley LA. Staphylococcus aureus isolates from children with clinically differentiated osteomyelitis exhibit distinct transcriptomic signatures. PLoS One 2023; 18:e0288758. [PMID: 37561761 PMCID: PMC10414669 DOI: 10.1371/journal.pone.0288758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
There is substantial genomic heterogeneity among Staphylococcus aureus isolates of children with acute hematogenous osteomyelitis (AHO) but transcriptional behavior of clinically differentiated strains has not been previously described. This study evaluates transcriptional activity of S. aureus isolates of children with AHO that may regulate metabolism, biosynthesis, or virulence during bacterial growth and pathogenesis. In vitro growth kinetics were compared between three S. aureus clinical isolates from children with AHO who had mild, moderate, and severe illness. Total RNA sequencing was performed for each isolate at six separate time points throughout the logarithmic phase of growth. The NASA RNA-Sequencing Consensus Pipeline was used to identify differentially expressed genes allowing for 54 comparisons between the three isolates during growth. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were used to evaluate transcriptional variation in metabolism, biosynthesis pathways and virulence potential of the isolates. The S. aureus isolates demonstrated differing growth kinetics under standardized conditions with the mild isolate having higher optical densities with earlier and higher peak rates of growth than that of the other isolates (p<0.001). Enrichment pathway analysis established distinct transcriptional signatures according to both sampling time and clinical severity. Moderate and severe isolates demonstrated pathways of bacterial invasion, S. aureus infection, quorum sensing and two component systems. In comparison, the mild strain favored biosynthesis and metabolism. These findings suggest that transcriptional regulation during the growth of S. aureus may impact the pathogenetic mechanisms involved in the progression of severity of illness in childhood osteomyelitis. The clinical isolates studied demonstrated a tradeoff between growth and virulence. Further investigation is needed to evaluate these transcriptional pathways in an animal model or during active clinical infections of children with AHO.
Collapse
Affiliation(s)
- Ahmad A. Hachem
- Department of Pediatrics, University of Florida College of Medicine –Jacksonville, Jacksonville, FL, United States of America
| | - Laura M. Filkins
- Department of Microbiology, University of Texas Southwestern, Children’s Health System of Texas, Dallas, TX, United States of America
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, United States of America
| | - Prithvi Raj
- Microbiome Research Laboratory, University of Texas Southwestern, Dallas, TX, United States of America
| | - Naureen G. Tareen
- Department of Pediatric Orthopaedic Surgery, Children’s Health System of Texas, Dallas, TX, United States of America
| | - Carlos A. Arana
- Genomics Core, University of Texas Southwestern, Dallas, TX, United States of America
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Lawson A. Copley
- Department of Pediatric Orthopaedic Surgery, Children’s Health System of Texas, Dallas, TX, United States of America
- Department of Pediatric Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, United States of America
| |
Collapse
|
6
|
Wang X, VanValkenberg A, Odom-Mabey AR, Ellner JJ, Hochberg NS, Salgame P, Patil P, Johnson WE. Comparison of gene set scoring methods for reproducible evaluation of multiple tuberculosis gene signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.520627. [PMID: 36711818 PMCID: PMC9882404 DOI: 10.1101/2023.01.19.520627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale Many blood-based transcriptional gene signatures for tuberculosis (TB) have been developed with potential use to diagnose disease, predict risk of progression from infection to disease, and monitor TB treatment outcomes. However, an unresolved issue is whether gene set enrichment analysis (GSEA) of the signature transcripts alone is sufficient for prediction and differentiation, or whether it is necessary to use the original statistical model created when the signature was derived. Intra-method comparison is complicated by the unavailability of original training data, missing details about the original trained model, and inadequate publicly-available software tools or source code implementing models. To facilitate these signatures' replicability and appropriate utilization in TB research, comprehensive comparisons between gene set scoring methods with cross-data validation of original model implementations are needed. Objectives We compared the performance of 19 TB gene signatures across 24 transcriptomic datasets using both re-rebuilt original models and gene set scoring methods to evaluate whether gene set scoring is a reasonable proxy to the performance of the original trained model. We have provided an open-access software implementation of the original models for all 19 signatures for future use. Methods We considered existing gene set scoring and machine learning methods, including ssGSEA, GSVA, PLAGE, Singscore, and Zscore, as alternative approaches to profile gene signature performance. The sample-size-weighted mean area under the curve (AUC) value was computed to measure each signature's performance across datasets. Correlation analysis and Wilcoxon paired tests were used to analyze the performance of enrichment methods with the original models. Measurement and Main Results For many signatures, the predictions from gene set scoring methods were highly correlated and statistically equivalent to the results given by the original diagnostic models. PLAGE outperformed all other gene scoring methods. In some cases, PLAGE outperformed the original models when considering signatures' weighted mean AUC values and the AUC results within individual studies. Conclusion Gene set enrichment scoring of existing blood-based biomarker gene sets can distinguish patients with active TB disease from latent TB infection and other clinical conditions with equivalent or improved accuracy compared to the original methods and models. These data justify using gene set scoring methods of published TB gene signatures for predicting TB risk and treatment outcomes, especially when original models are difficult to apply or implement.
Collapse
Affiliation(s)
- Xutao Wang
- Department of Biostatistics, Boston University, Boston, MA, USA
- Division of Computational Biomedicine and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Arthur VanValkenberg
- Division of Computational Biomedicine and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Aubrey R. Odom-Mabey
- Division of Computational Biomedicine and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Jerrold J. Ellner
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Natasha S. Hochberg
- Boston Medical Center, Boston, MA, USA
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Prasad Patil
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - W. Evan Johnson
- Division of Infectious Disease, Center for Data Science, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
7
|
Rao AM, Popper SJ, Gupta S, Davong V, Vaidya K, Chanthongthip A, Dittrich S, Robinson MT, Vongsouvath M, Mayxay M, Nawtaisong P, Karmacharya B, Thair SA, Bogoch I, Sweeney TE, Newton PN, Andrews JR, Relman DA, Khatri P. A robust host-response-based signature distinguishes bacterial and viral infections across diverse global populations. Cell Rep Med 2022; 3:100842. [PMID: 36543117 PMCID: PMC9797950 DOI: 10.1016/j.xcrm.2022.100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
Limited sensitivity and specificity of current diagnostics lead to the erroneous prescription of antibiotics. Host-response-based diagnostics could address these challenges. However, using 4,200 samples across 69 blood transcriptome datasets from 20 countries from patients with bacterial or viral infections representing a broad spectrum of biological, clinical, and technical heterogeneity, we show current host-response-based gene signatures have lower accuracy to distinguish intracellular bacterial infections from viral infections than extracellular bacterial infections. Using these 69 datasets, we identify an 8-gene signature to distinguish intracellular or extracellular bacterial infections from viral infections with an area under the receiver operating characteristic curve (AUROC) > 0.91 (85.9% specificity and 90.2% sensitivity). In prospective cohorts from Nepal and Laos, the 8-gene classifier distinguished bacterial infections from viral infections with an AUROC of 0.94 (87.9% specificity and 91% sensitivity). The 8-gene signature meets the target product profile proposed by the World Health Organization and others for distinguishing bacterial and viral infections.
Collapse
Affiliation(s)
- Aditya M. Rao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Immunology Graduate Program, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen J. Popper
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sanjana Gupta
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Krista Vaidya
- Dhulikhel Hospital, Kathmandu University Hospital, Kavrepalanchok, Nepal
| | - Anisone Chanthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
| | - Pruksa Nawtaisong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Biraj Karmacharya
- Dhulikhel Hospital, Kathmandu University Hospital, Kavrepalanchok, Nepal
| | - Simone A. Thair
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Isaac Bogoch
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David A. Relman
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA,Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building, Room 1553, Stanford, CA, USA,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA,Corresponding author
| |
Collapse
|
8
|
Beesetty P, Si Y, Li Z, Yang C, Zhao F, Chong AS, Montgomery CP. Tissue specificity drives protective immunity against Staphylococcus aureus infection. Front Immunol 2022; 13:795792. [PMID: 35983063 PMCID: PMC9380724 DOI: 10.3389/fimmu.2022.795792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Infections caused by Staphylococcus aureus range from mild to severe and frequently recur. Emerging evidence suggests that the site and severity of infection drive the potency of elicited immune responses and susceptibility to recurrent infection. In this study, we used tractable mouse models of S. aureus skin infection (SSTI) and pneumonia to determine the relative magnitude of elicited protective immunity. Surprisingly, despite both SSTI and pneumonia eliciting antibody and local effector T cell responses, only SSTI elicited protective antibody and memory T cell responses and subsequent protection against secondary SSTI and pneumonia. The failure of pneumonia to elicit protective immunity was attributed to an inability of S. aureus pneumonia to elicit toxin-specific antibodies that confer protection during secondary infection and was associated with a failure to expand antigen-specific memory T cells. Taken together, these findings emphasize the importance of understanding protective immunity in the context of the tissue-specificity.
Collapse
Affiliation(s)
- Pavani Beesetty
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youhui Si
- Department of Surgery, the University of Chicago, Chicago, IL, United States
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Fan Zhao
- Department of Surgery, the University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, the University of Chicago, Chicago, IL, United States
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- *Correspondence: Christopher P. Montgomery,
| |
Collapse
|
9
|
Zwack EE, Chen Z, Devlin JC, Li Z, Zheng X, Weinstock A, Lacey KA, Fisher EA, Fenyö D, Ruggles KV, Loke P, Torres VJ. Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils. Proc Natl Acad Sci U S A 2022; 119:e2123017119. [PMID: 35881802 PMCID: PMC9351360 DOI: 10.1073/pnas.2123017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.
Collapse
Affiliation(s)
- Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ze Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Zhi Li
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ada Weinstock
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Edward A. Fisher
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department for Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
10
|
Kalesinskas L, Gupta S, Khatri P. Increasing reproducibility, robustness, and generalizability of biomarker selection from meta-analysis using Bayesian methodology. PLoS Comput Biol 2022; 18:e1010260. [PMID: 35759523 PMCID: PMC9269905 DOI: 10.1371/journal.pcbi.1010260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/08/2022] [Accepted: 05/29/2022] [Indexed: 01/07/2023] Open
Abstract
A major limitation of gene expression biomarker studies is that they are not reproducible as they simply do not generalize to larger, real-world, heterogeneous populations. Frequentist multi-cohort gene expression meta-analysis has been frequently used as a solution to this problem to identify biomarkers that are truly differentially expressed. However, the frequentist meta-analysis framework has its limitations-it needs at least 4-5 datasets with hundreds of samples, is prone to confounding from outliers and relies on multiple-hypothesis corrected p-values. To address these shortcomings, we have created a Bayesian meta-analysis framework for the analysis of gene expression data. Using real-world data from three different diseases, we show that the Bayesian method is more robust to outliers, creates more informative estimates of between-study heterogeneity, reduces the number of false positive and false negative biomarkers and selects more generalizable biomarkers with less data. We have compared the Bayesian framework to a previously published frequentist framework and have developed a publicly available R package for use.
Collapse
Affiliation(s)
- Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, United States of America
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Sanjana Gupta
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chen P, Liu Y, Lin X, Yu B, Chen B, Lin F. The Underlying Molecular Basis and Mechanisms of Venous Thrombosis in Patients with Osteomyelitis: A Data-Driven Analysis. Genet Res (Camb) 2022; 2022:5672384. [PMID: 35711689 PMCID: PMC9192329 DOI: 10.1155/2022/5672384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Osteomyelitis (OM) is one of the most risky and challenging diseases. Emerging evidence indicates OM is a risk factor for increasing incidence of venous thromboembolism (VTE) development. However, the mechanisms have not been intensively investigated. Methods The OM-related dataset GSE30119 and VTE-related datasets GSE19151 and GSE48000 were downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) (OMGs1 and VTEGs1, respectively). Functional enrichment analyses of Gene Ontology (GO) terms were performed. VTEGs2 and OMGs2 sharing the common GO biological process (GO-BP) ontology between OMGs1 and VTEGs1 were detected. The TRRUST database was used to identify the upstream transcription factors (TFs) that regulate VTEGs2 and OMGs2. The protein-protein interaction (PPI) network between VTEGs2 and OMGs2 was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and then visualized in Cytoscape. Topological properties of the PPI network were calculated by NetworkAnalyzer. The Molecular Complex Detection (MCODE) plugin was utilized to perform module analysis and choose the hub modules of the PPI network. Results A total of 587 OMGs1 and 382 VTEGs1 were identified from the related dataset, respectively. GO-BP terms of OMGs1 and shared DGEs1 were mainly enriched in the neutrophil-related immune response process, and the shared GO-BP terms of OMGs1 and VTEGs1 seemed to be focused on cell activation, immune, defense, and inflammatory response to stress or biotic stimulus. 230 VTEGs2, 333 OMGs2, and 13 shared DEGs2 were detected. 3 TF-target gene pairs (SP1-LSP1, SPI1-FCGR1A, and STAT1-FCGR1A) were identified. The PPI network contained 1611 interactions among 467 nodes. The top 10 hub proteins were TP53, IL4, MPO, ELANE, FOS, CD86, HP, SOCS3, ICAM1, and SNRPG. Several core nodes (such as MPO, ELANE, and CAMP) were essential components of the neutrophil extracellular traps (NETs) network. Conclusion This is the first data-mining study to explore shared signatures between OM and VTE by the integrated bioinformatic approach, which can help uncover potential biomarkers and therapeutic targets of OM-related VTE.
Collapse
Affiliation(s)
- Peisheng Chen
- Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou 350007, China
- Department of Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350007, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou 350007, China
| | - Yinhuan Liu
- Department of Laboratory Medicine, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Xiaofeng Lin
- Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou 350007, China
- Department of Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350007, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou 350007, China
| | - Fengfei Lin
- Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou 350007, China
- Department of Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350007, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou 350007, China
| |
Collapse
|
12
|
Nicolas A, Deplanche M, Commere PH, Diot A, Genthon C, Marques da Silva W, Azevedo V, Germon P, Jamme H, Guédon E, Le Loir Y, Laurent F, Bierne H, Berkova N. Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Front Cell Infect Microbiol 2022; 12:854242. [PMID: 35531332 PMCID: PMC9067450 DOI: 10.3389/fcimb.2022.854242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Aurélie Nicolas
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Martine Deplanche
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Pierre-Henri Commere
- Cytometry and Biomarkers Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Clemence Genthon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan, France
| | - Wanderson Marques da Silva
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Germon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université François Rabelais, Infectiologie et Santé Publique (ISP), Tours, France
| | - Hélène Jamme
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Maisons-Alfort, France
| | - Eric Guédon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Yves Le Loir
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Fréderic Laurent
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Hélène Bierne
- Université Paris-Saclay, Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nadia Berkova
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- *Correspondence: Nadia Berkova,
| |
Collapse
|
13
|
Li JX, Cao XJ, Huang YY, Li YP, Yu ZY, Lin M, Li QY, Chen JC, Guo XG. Investigation of hub gene associated with the infection of Staphylococcus aureus via weighted gene co-expression network analysis. BMC Microbiol 2021; 21:329. [PMID: 34852788 PMCID: PMC8633612 DOI: 10.1186/s12866-021-02392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Staphylococcus aureus is a gram-positive bacterium that causes serious infection. With the increasing resistance of bacteria to current antibiotics, it is necessary to learn more about the molecular mechanism and cellular pathways involved in the Staphylococcus aureus infection. Methods We downloaded the GSE33341 dataset from the GEO database and applied the weighted gene co-expression network analysis (WGCNA), from which we obtained some critical modules. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were applied to illustrate the biological functions of genes in these modules. We constructed the protein-protein interaction (PPI) network by Cytoscape and selected five candidate hub genes. Five potential hub genes were validated in GSE30119 by GraphPad Prism 8.0. The diagnostic values of these genes were calculated and present in the ROC curve based on the GSE13670 dataset. Their gene functions were analyzed by Gene Set Enrichment Analysis (GSEA). Results A co-expression network was built with 5000 genes divided into 11 modules. The genes in green and turquoise modules demonstrated a high correlation. According to the KEGG and GO analyses, genes in the green module were closely related to ubiquitination and autophagy. Subsequently, we picked out the top five hub genes in the green module. And UBB was determined as the hub gene in the GSE30119 dataset. The expression level of UBB, ASB, and MKRN1 could significantly differentiate between Staphylococcus aureus infection and healthy controls based on the ROC curve. The GSEA analysis indicated that lower expression levels of UBB were associated with the P53 signal pathway. Conclusions We identified some hub genes and significant signal enrichment pathways in Staphylococcus aureus infection via bioinformatics analysis, which may facilitate the development of potential clinical therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02392-y.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Yi Huang
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Ping Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zi-Yuan Yu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Min Lin
- Department of Traditional Chinese and Western Clinical Medicine, The Traditional Chinese and Western Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Ying Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Chun Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
14
|
Mucaki EJ, Shirley BC, Rogan PK. Improved radiation expression profiling in blood by sequential application of sensitive and specific gene signatures. Int J Radiat Biol 2021; 98:924-941. [PMID: 34699300 DOI: 10.1080/09553002.2021.1998709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Combinations of expressed genes can discriminate radiation-exposed from normal control blood samples by machine learning (ML) based signatures (with 8-20% misclassification rates). These signatures can quantify therapeutically relevant as well as accidental radiation exposures. The prodromal symptoms of acute radiation syndrome (ARS) overlap those present in influenza and dengue fever infections. Surprisingly, these human radiation signatures misclassified gene expression profiles of virally infected samples as false positive exposures. The present study investigates these and other confounders, and then mitigates their impact on signature accuracy. METHODS This study investigated recall by previous and novel radiation signatures independently derived from multiple Gene Expression Omnibus datasets on common and rare non-neoplastic blood disorders and blood-borne infections (thromboembolism, S. aureus bacteremia, malaria, sickle cell disease, polycythemia vera, and aplastic anemia). Normalized expression levels of signature genes are used as input to ML-based classifiers to predict radiation exposure in other hematological conditions. RESULTS Except for aplastic anemia, these blood-borne disorders modify the normal baseline expression values of genes present in radiation signatures, leading to false-positive misclassification of radiation exposures in 8-54% of individuals. Shared changes, predominantly in DNA damage response and apoptosis-related gene transcripts in radiation and confounding hematological conditions, compromise the utility of these signatures for radiation assessment. These confounding conditions (sickle cell disease, thrombosis, S. aureus bacteremia, malaria) induce neutrophil extracellular traps, initiated by chromatin decondensation, DNA damage response and fragmentation followed by programmed cell death or extrusion of DNA fragments. Riboviral infections (e.g. influenza or dengue fever) have been proposed to bind and deplete host RNA binding proteins, inducing R-loops in chromatin. R-loops that collide with incoming replication forks can result in incompletely repaired DNA damage, inducing apoptosis and releasing mature virus. To mitigate the effects of confounders, we evaluated predicted radiation-positive samples with novel gene expression signatures derived from radiation-responsive transcripts encoding secreted blood plasma proteins whose expression levels are unperturbed by these conditions. CONCLUSIONS This approach identifies and eliminates misclassified samples with underlying hematological or infectious conditions, leaving only samples with true radiation exposures. Diagnostic accuracy is significantly improved by selecting genes that maximize both sensitivity and specificity in the appropriate tissue using combinations of the best signatures for each of these classes of signatures.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, Canada.,CytoGnomix Inc., London, Canada
| |
Collapse
|
15
|
Keane C, Coalter M, Martin-Loeches I. Immune System Disequilibrium-Neutrophils, Their Extracellular Traps, and COVID-19-Induced Sepsis. Front Med (Lausanne) 2021; 8:711397. [PMID: 34485339 PMCID: PMC8416266 DOI: 10.3389/fmed.2021.711397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Equilibrium within the immune system can often determine the fate of its host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Immune dysregulation remains one of the main pathophysiological components of SARS-CoV-2-associated organ injury, with over-activation of the innate immune system, and induced apoptosis of adaptive immune cells. Here, we provide an overview of the innate immune system, both in general and relating to COVID-19. We specifically discuss "NETosis," the process of neutrophil release of their extracellular traps, which may be a more recently described form of cell death that is different from apoptosis, and how this may propagate organ dysfunction in COVID-19. We complete this review by discussing Stem Cell Therapies in COVID-19 and emerging COVID-19 phenotypes, which may allow for more targeted therapy in the future. Finally, we consider the array of potential therapeutic targets in COVID-19, and associated therapeutics.
Collapse
Affiliation(s)
- Colm Keane
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| | - Matthew Coalter
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Erwin EA, Jaramillo LM, Smith B, Kruszewski PG, Kahwash B, Grayson MH, Mejias A, Ramilo O. Sex Differences in Blood Transcriptional Profiles and Clinical Phenotypes in Pediatric Patients with Eosinophilic Esophagitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3350-3358.e8. [PMID: 34265446 DOI: 10.1016/j.jaip.2021.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an increasingly recognized, chronic inflammatory disease. Recent reports suggest clinical differences between males and females. OBJECTIVE To define the relevant molecular pathways that could be related to clinical phenotypes in children with EoE. METHODS We performed blood RNA expression analysis in children with newly diagnosed EoE and matched, healthy controls, and applied bioinformatics tools to define EoE host immune biosignatures. Questionnaires and medical records were used to characterize symptoms, esophagogastroduodenoscopy results, and treatment response. RESULTS Forty-one subjects (aged 2-17 years) were enrolled; the cohort consisted of 27 males and 14 females. Patients were randomly divided into a discovery cohort (21 EoE patients and 12 controls) that identified 544 significant differentially expressed transcripts (P ≤ .01; 1.25-fold change). Those 544 transcripts correctly classified most EoE patients in the validation cohort (n = 20) from healthy controls. Global transcriptional perturbation relative to healthy controls, Molecular Distance to Health scores were greater in EoE patients than controls (P = .003). When we analyzed subjects based on age and sex, males 13 years of age and older were more likely to have food impactions (P = .033) and to have higher endoscopic severity scores (P = .036). Separate group comparisons according to sex identified 294 differentially expressed transcripts in males and 643 transcripts in female EoE patients. Of those, 37 genes were shared and similarly expressed irrespective of sex. CONCLUSIONS Whole blood transcriptional analysis represents a promising noninvasive tool to assess activity of the immune/inflammatory response in children with EoE. Male and female EoE patients showed robust differences in gene expression suggesting distinct pathogenic endotypes.
Collapse
Affiliation(s)
- Elizabeth A Erwin
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, Ohio.
| | - Lisa M Jaramillo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Bennett Smith
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Patrice G Kruszewski
- Division of Gastroenterology, Hepatology and Nutrition, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Ga
| | - Basil Kahwash
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, Ohio
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, Ohio; Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, Ohio
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
17
|
Rinchai D, Roelands J, Toufiq M, Hendrickx W, Altman MC, Bedognetti D, Chaussabel D. BloodGen3Module: Blood transcriptional module repertoire analysis and visualization using R. Bioinformatics 2021; 37:2382-2389. [PMID: 33624743 PMCID: PMC8388021 DOI: 10.1093/bioinformatics/btab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/14/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022] Open
Abstract
Motivation We previously described the construction and characterization of fixed reusable blood transcriptional module repertoires. More recently we released a third iteration (‘BloodGen3’ module repertoire) that comprises 382 functionally annotated modules and encompasses 14 168 transcripts. Custom bioinformatic tools are needed to support downstream analysis, visualization and interpretation relying on such fixed module repertoires. Results We have developed and describe here an R package, BloodGen3Module. The functions of our package permit group comparison analyses to be performed at the module-level, and to display the results as annotated fingerprint grid plots. A parallel workflow for computing module repertoire changes for individual samples rather than groups of samples is also available; these results are displayed as fingerprint heatmaps. An illustrative case is used to demonstrate the steps involved in generating blood transcriptome repertoire fingerprints of septic patients. Taken together, this resource could facilitate the analysis and interpretation of changes in blood transcript abundance observed across a wide range of pathological and physiological states. Availability and implementation The BloodGen3Module package and documentation are freely available from Github: https://github.com/Drinchai/BloodGen3Module. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA.,Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
18
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
19
|
Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J, Walters L, Punaro M, Rossi RJ, Chung CH, Huynh RP, Singh P, Flynn WF, Tabanor-Gayle JA, Kuchipudi N, Mejias A, Collet MA, Lucido AL, Palucka K, Robson P, Lakshminarayanan S, Ramilo O, Wright T, Pascual V, Banchereau JF. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol 2020; 21:1094-1106. [PMID: 32747814 PMCID: PMC7442743 DOI: 10.1038/s41590-020-0743-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) display a complex blood transcriptome whose cellular origin is poorly resolved. Using single-cell RNA sequencing, we profiled ~276,000 peripheral blood mononuclear cells from 33 children with SLE with different degrees of disease activity and 11 matched controls. Increased expression of interferon-stimulated genes (ISGs) distinguished cells from children with SLE from healthy control cells. The high ISG expression signature (ISGhi) derived from a small number of transcriptionally defined subpopulations within major cell types, including monocytes, CD4+ and CD8+ T cells, natural killer cells, conventional and plasmacytoid dendritic cells, B cells and especially plasma cells. Expansion of unique subpopulations enriched in ISGs and/or in monogenic lupus-associated genes classified patients with the highest disease activity. Profiling of ~82,000 single peripheral blood mononuclear cells from adults with SLE confirmed the expansion of similar subpopulations in patients with the highest disease activity. This study lays the groundwork for resolving the origin of the SLE transcriptional signatures and the disease heterogeneity towards precision medicine applications.
Collapse
Affiliation(s)
| | - Seunghee Hong
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guo Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Marilynn Punaro
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Rossi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Cheng-Han Chung
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Richie P Huynh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Prashant Singh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joy-Ann Tabanor-Gayle
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Navya Kuchipudi
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Asuncion Mejias
- Division of Pediatric Infectious Diseases, Nationwide Children's Hospital and the Ohio State University School of Medicine, Columbus, OH, USA
| | - Magalie A Collet
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Anna Lisa Lucido
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics and Department of Genetics & Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Octavio Ramilo
- Division of Pediatric Infectious Diseases, Nationwide Children's Hospital and the Ohio State University School of Medicine, Columbus, OH, USA
| | - Tracey Wright
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | | |
Collapse
|
20
|
Toufiq M, Roelands J, Alfaki M, Syed Ahamed Kabeer B, Saadaoui M, Lakshmanan AP, Bangarusamy DK, Murugesan S, Bedognetti D, Hendrickx W, Al Khodor S, Terranegra A, Rinchai D, Chaussabel D, Garand M. Annexin A3 in sepsis: novel perspectives from an exploration of public transcriptome data. Immunology 2020; 161:291-302. [PMID: 32682335 PMCID: PMC7692248 DOI: 10.1111/imm.13239] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
According to publicly available transcriptome datasets, the abundance of Annexin A3 (ANXA3) is robustly increased during the course of sepsis; however, no studies have examined the biological significance or clinical relevance of ANXA3 in this pathology. Here we explored this interpretation gap and identified possible directions for future research. Based on reference transcriptome datasets, we found that ANXA3 expression is restricted to neutrophils, is upregulated in vitro after exposure to plasma obtained from septic patients, and is associated with adverse clinical outcomes. Secondly, an increase in ANXA3 transcript abundance was also observed in vivo, in the blood of septic patients in multiple independent studies. ANXA3 is known to mediate calcium-dependent granules-phagosome fusion in support of microbicidal activity in neutrophils. More recent work has also shown that ANXA3 enhances proliferation and survival of tumour cells via a Caspase-3-dependent mechanism. And this same molecule is also known to play a critical role in regulation of apoptotic events in neutrophils. Thus, we posit that during sepsis ANXA3 might either play a beneficial role, by facilitating microbial clearance and resolution of the infection; or a detrimental role, by prolonging neutrophil survival, which is known to contribute to sepsis-mediated organ damage.
Collapse
|
21
|
Israelsson E, Chaussabel D, Fischer RSB, Moore HC, Robinson DA, Dunkle JW, Essigmann HT, Record S, Brown EL. Characterization of peripheral blood mononuclear cells gene expression profiles of pediatric Staphylococcus aureus persistent and non-carriers using a targeted assay. Microbes Infect 2020; 22:540-549. [PMID: 32758644 DOI: 10.1016/j.micinf.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/25/2020] [Indexed: 11/28/2022]
Abstract
Defects in innate immunity affect many different physiologic systems and several studies of patients with primary immunodeficiency disorders demonstrated the importance of innate immune system components in disease prevention or colonization of bacterial pathogens. To assess the role of the innate immune system on nasal colonization with Staphylococcus aureus, innate immune responses in pediatric S. aureus nasal persistent carriers (n = 14) and non-carriers (n = 15) were profiled by analyzing co-clustered gene sets (modules). We stimulated previously frozen peripheral blood mononuclear cells (PBMCs) from these subjects with i) a panel of TLR ligands, ii) live S. aureus (either a mixture of strains or stimulation with respective carriage isolates), or iii) heat-killed S. aureus. We found no difference in responses between carriers and non-carriers when PBMCs were stimulated with a panel of TLR ligands. However, PBMC gene expression profiles differed between persistent and non-S. aureus carriers following stimulation with either live or dead S. aureus. These observations suggest that individuals susceptible to persistent carriage with S. aureus may possess differences in their live/dead bacteria recognition pathway and that innate pathway signaling is different between persistent and non-carriers of S. aureus.
Collapse
Affiliation(s)
- Elisabeth Israelsson
- Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Rebecca S B Fischer
- Texas A&M Health Science Center School of Public Health, Department of Epidemiology and Biostatistics, College Station, TX, USA
| | - Heather C Moore
- Baylor College of Medicine, Complex Care Clinic, Texas Children's Hospital, Houston, TX, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jesse W Dunkle
- Icahn School of Medicine, Mount Sinai Hospital, Institute for Advanced Medicine, New York, NY, USA
| | - Heather T Essigmann
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Sharron Record
- Texas Children's Hospital, Department of Pediatrics, TX, USA
| | - Eric L Brown
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
22
|
Creary S, Shrestha CL, Kotha K, Minta A, Fitch J, Jaramillo L, Zhang S, Pinto S, Thompson R, Ramilo O, White P, Mejias A, Kopp BT. Baseline and Disease-Induced Transcriptional Profiles in Children with Sickle Cell Disease. Sci Rep 2020; 10:9013. [PMID: 32487996 PMCID: PMC7265336 DOI: 10.1038/s41598-020-65822-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Acute chest syndrome (ACS) is a significant cause of morbidity and mortality in sickle cell disease (SCD), but preventive, diagnostic, and therapeutic options are limited. Further, ACS and acute vasoccclusive pain crises (VOC) have overlapping features, which causes diagnostic dilemmas. We explored changes in gene expression profiles among patients with SCD hospitalized for VOC and ACS episodes to better understand ACS disease pathogenesis. Whole blood RNA-Seq was performed for 20 samples from children with SCD at baseline and during a hospitalization for either an ACS (n = 10) or a VOC episode (n = 10). Respiratory viruses were identified from nasopharyngeal swabs. Functional gene analyses were performed using modular repertoires, IPA, Gene Ontology, and NetworkAnalyst 3.0. The VOC group had a numerically higher percentage of female, older, and hemoglobin SS participants compared to the ACS group. Viruses were detected in 50% of ACS cases and 20% of VOC cases. We identified 3004 transcripts that were differentially expressed during ACS episodes, and 1802 transcripts during VOC episodes. Top canonical pathways during ACS episodes were related to interferon signaling, neuro-inflammation, pattern recognition receptors, and macrophages. Top canonical pathways in patients with VOC included IL-10 signaling, iNOS signaling, IL-6 signaling, and B cell signaling. Several genes related to antimicrobial function were down-regulated during ACS compared to VOC. Gene enrichment nodal interactions demonstrated significantly altered pathways during ACS and VOC. A complex network of changes in innate and adaptive immune gene expression were identified during both ACS and VOC episodes. These results provide unique insights into changes during acute events in children with SCD.
Collapse
Affiliation(s)
- Susan Creary
- Center for Innovation in Pediatric Practice, The Abigail Wexner Research Institute, Columbus, OH, USA
- Division of Hematology and Oncology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - Kavitha Kotha
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abena Minta
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - James Fitch
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - Lisa Jaramillo
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - Swaroop Pinto
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Columbus, OH, USA
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute, Columbus, OH, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Columbus, OH, USA
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute, Columbus, OH, USA.
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
23
|
Petzke MM, Volyanskyy K, Mao Y, Arevalo B, Zohn R, Quituisaca J, Wormser GP, Dimitrova N, Schwartz I. Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution. mBio 2020; 11:e00047-20. [PMID: 32184234 PMCID: PMC7078463 DOI: 10.1128/mbio.00047-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy.IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.
Collapse
Affiliation(s)
- Mary M Petzke
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | | | - Yong Mao
- Phillips Research North America, Valhalla, New York, USA
| | - Byron Arevalo
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Raphael Zohn
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Johanna Quituisaca
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| | | | - Ira Schwartz
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
24
|
Gomez JL, Himes BE, Kaminski N. Molecular Diagnostics in Pulmonary Infections. PRECISION IN PULMONARY, CRITICAL CARE, AND SLEEP MEDICINE 2020. [PMCID: PMC7121992 DOI: 10.1007/978-3-030-31507-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Infection of the lung parenchyma, or pneumonia, accounts for over four million deaths per year worldwide (Ferkol and Schraufnagel, Ann Am Thorac Soc 11:404–406, 2014). The condition is common, but also over-diagnosed, in part due to relatively poor laboratory and radiographic diagnostics. Indeed, we continue to rely on antiquated tools such as sputum culture and chest X-ray – the former of which lacks speed and sensitivity, and the latter specificity (Albaum et al. Chest 110:343–50, 1996). The resulting presumptive diagnoses of pneumonia lead to excessive use of empiric broad spectrum antibiotics; indeed, by some estimates, 30–70% of antibiotic prescriptions for lower respiratory tract infection are inappropriate (Kraus, PLoS One 12(3): e0174584, 2017). This approach begets microbial resistance, exposes patients to medication side effects, and puts patients at risk of potentially life-threatening complications including Clostridium difficile colitis. To improve diagnostic certainty in patients with suspected pneumonia, we must begin to consider and implement emerging technologies for efficient and accurate characterization of host responses to infection and identification of pathogens. In this chapter, we will discuss precision diagnostics already in common practice and those poised to be, and how these tools may ultimately enable personalization in the diagnosis of pneumonia.
Collapse
Affiliation(s)
- Jose L. Gomez
- Assistant Professor Pulmonary, Critical Care and Sleep Medicine Section, Department of Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Blanca E. Himes
- Assistant Professor of Informatics, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Naftali Kaminski
- Boehringer-Ingelheim Endowed, Professor of Internal Medicine, Chief of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
25
|
Cooper AM, Shope AJ, Javid M, Parsa A, Chinoy MA, Parvizi J. Musculoskeletal Infection in Pediatrics: Assessment of the 2018 International Consensus Meeting on Musculoskeletal Infection. J Bone Joint Surg Am 2019; 101:e133. [PMID: 31567692 DOI: 10.2106/jbjs.19.00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Second International Consensus Meeting (ICM) on Musculoskeletal Infection was held in July 2018 in Philadelphia, Pennsylvania. This meeting involved contributions from an international multidisciplinary consortium of experts from orthopaedic surgery, infectious disease, pharmacology, rheumatology, microbiology, and others. Through strict delegate engagement in a comprehensive 13-step consensus process based on the Delphi technique, evidence-based consensus guidelines on musculoskeletal infection were developed. The 2018 ICM produced updates to recommendations from the inaugural ICM that was held in 2013, which primarily focused on periprosthetic infection of the hip and the knee, and added new guidelines with the expansion to encompass all subspecialties of orthopaedic surgery. The following proceedings from the pediatrics section are an overview of the ICM consensus recommendations on the prevention, diagnosis, and treatment of pediatric musculoskeletal infection.
Collapse
Affiliation(s)
- Alexus M Cooper
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Alexander J Shope
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Mahzad Javid
- Department of Orthopedic Surgery, Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Parsa
- Hip Preservation Surgery Division, Department of Orthopedic Surgery, Massachusetts General Hospital at Harvard Medical School, Boston, Massachusetts.,Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, Collins CT, Makrides M, Gibson RA, Rogers GB, Lynn DJ. Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems 2019; 4:e00484-19. [PMID: 31662429 PMCID: PMC6819732 DOI: 10.1128/msystems.00484-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically.IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Damian P Drew
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Chloe Douglas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lex E X Leong
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Max Moldovan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miriam Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Naomi Fink
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Irmeli Penttila
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
27
|
Roelands J, Garand M, Hinchcliff E, Ma Y, Shah P, Toufiq M, Alfaki M, Hendrickx W, Boughorbel S, Rinchai D, Jazaeri A, Bedognetti D, Chaussabel D. Long-Chain Acyl-CoA Synthetase 1 Role in Sepsis and Immunity: Perspectives From a Parallel Review of Public Transcriptome Datasets and of the Literature. Front Immunol 2019; 10:2410. [PMID: 31681299 PMCID: PMC6813721 DOI: 10.3389/fimmu.2019.02410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
A potential role for the long-chain acyl-CoA synthetase family member 1 (ACSL1) in the immunobiology of sepsis was explored during a hands-on training workshop. Participants first assessed the robustness of the potential gap in biomedical knowledge identified via an initial screen of public transcriptome data and of the literature associated with ACSL1. Increase in ACSL1 transcript abundance during sepsis was confirmed in several independent datasets. Querying the ACSL1 literature also confirmed the absence of reports associating ACSL1 with sepsis. Inferences drawn from both the literature (via indirect associations) and public transcriptome data (via correlation) point to the likely participation of ACSL1 and ACSL4, another family member, in inflammasome activation in neutrophils during sepsis. Furthermore, available clinical data indicate that levels of ACSL1 and ACSL4 induction was significantly higher in fatal cases of sepsis. This denotes potential translational relevance and is consistent with involvement in pathways driving potentially deleterious systemic inflammation. Finally, while ACSL1 expression was induced in blood in vitro by a wide range of pathogen-derived factors as well as TNF, induction of ACSL4 appeared restricted to flagellated bacteria and pathogen-derived TLR5 agonists and IFNG. Taken together, this joint review of public literature and omics data records points to two members of the acyl-CoA synthetase family potentially playing a role in inflammasome activation in neutrophils. Translational relevance of these observations in the context of sepsis and other inflammatory conditions remain to be investigated.
Collapse
Affiliation(s)
- Jessica Roelands
- Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Parin Shah
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | | | | | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | |
Collapse
|
28
|
Kopp BT, Fitch J, Jaramillo L, Shrestha CL, Robledo-Avila F, Zhang S, Palacios S, Woodley F, Hayes D, Partida-Sanchez S, Ramilo O, White P, Mejias A. Whole-blood transcriptomic responses to lumacaftor/ivacaftor therapy in cystic fibrosis. J Cyst Fibros 2019; 19:245-254. [PMID: 31474496 DOI: 10.1016/j.jcf.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) remains without a definitive cure. Novel therapeutics targeting the causative defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are in clinical use. Lumacaftor/ivacaftor is a CFTR modulator approved for patients homozygous for the CFTR variant p.Phe508del, but there are wide variations in treatment responses preventing prediction of patient responses. We aimed to determine changes in gene expression related to treatment initiation and response. METHODS Whole-blood transcriptomics was performed using RNA-Seq in 20 patients with CF pre- and 6 months post-lumacaftor/ivacaftor (drug) initiation and 20 non-CF healthy controls. Correlation of gene expression with clinical variables was performed by stratification via clinical responses. RESULTS We identified 491 genes that were differentially expressed in CF patients (pre-drug) compared with non-CF controls and 36 genes when comparing pre-drug to post-drug profiles. Both pre- and post-drug CF profiles were associated with marked overexpression of inflammation-related genes and apoptosis genes, and significant under-expression of T cell and NK cell-related genes compared to non-CF. CF patients post-drug demonstrated normalized protein synthesis expression, and decreased expression of cell-death genes compared to pre-drug profiles, irrespective of clinical response. However, CF clinical responders demonstrated changes in eIF2 signaling, oxidative phosphorylation, IL-17 signaling, and mitochondrial function compared to non-responders. Top overexpressed genes (MMP9 and SOCS3) that decreased post-drug were validated by qRT-PCR. Functional assays demonstrated that CF monocytes normalized calcium (increases MMP9 expression) concentrations post-drug. CONCLUSIONS Transcriptomics revealed differentially regulated pathways in CF patients at baseline compared to non-CF, and in clinical responders to lumacaftor/ivacaftor.
Collapse
Affiliation(s)
- Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA.
| | - James Fitch
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa Jaramillo
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sabrina Palacios
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Fred Woodley
- Division of Gastroenterology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Octavio Ramilo
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
29
|
Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One 2019; 14:e0221016. [PMID: 31415630 PMCID: PMC6695114 DOI: 10.1371/journal.pone.0221016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a recently identified, web-like, extracellular structure composed of decondensed nuclear DNA and associated antimicrobial granules. NETs are extruded into the extracellular environment via the reactive oxygen species (ROS)-dependent cell death pathway participating in inflammation and autoimmune diseases. Transketolase (TKT) is a thiamine pyrophosphate (vitamin B1)-dependent enzyme that links the pentose phosphate pathway with the glycolytic pathway by feeding excess sugar phosphates into the main carbohydrate metabolic pathways to generate biosynthetic reducing capacity in the form of NADPH as a substrate for ROS generation. In this work, TKT was selected as a lead candidate from 24 NET-associated proteins obtained by literature screening and knowledge gap assessment. Consequently, we determined whether TKT influenced NET formation in vitro. We firstly established that the release of ROS-dependent NETs was significantly decreased after purified human PMNs were pretreated with oxythiamine, a TKT inhibitor, and in a concentration dependent manner. As a cofactor for TKT reaction, we evaluated the release of NET formation either in vitamin B1 treatment or in combined use of oxythiamine and vitamin B1, and found that those treatments also exerted a significant suppressive effect on the amount of NET-DNA and ROS production. The regulation of TKT by oxythiamine and/or vitamin B1 may therefore be associated with response to the modulation of NET formation by preventing generation of excessive NETs in inflammatory diseases.
Collapse
|
30
|
G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci (Lond) 2019; 133:1297-1308. [PMID: 31175224 DOI: 10.1042/cs20181001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment. The present study aimed to elucidate how S. aureus infection in bone might induce bone loss. The C57BL/6 mice were injected with S. aureus (106 CFU/ml, 100 μl) or with the same amount of vehicle (control) via the tail vein. Microcomputed tomography (microCT) analysis showed bone loss progressing from week 1 to week 5 after infection, accompanied by a decreased number of osteocalcin-positive stained osteoblasts and the suppressed mRNA expression of Runx2 and osteocalcin. Transcriptome profiles of GSE30119 were downloaded and analyzed to determine the differences in expression of inflammatory factors between patients with S. aureus infected osteomyelitis and healthy controls, the data showed significantly higher mRNA expression of granulocyte colony-stimulating factor (G-CSF) in the whole blood from patients with S. aureus infection. Enzyme-linked immunosorbent assay (ELISA) analysis confirmed an increased level of G-CSF in the bone marrow and serum from S. aureus infected mice, which might have been due to the increased amount of F4/80+ macrophages. Interestingly, G-CSF neutralizing antibody treatment significantly rescued the bone loss after S. aureus infection, as evidenced by its roles in improving BV/TV and preserving osteocalcin- and osterix-positive stained cells. Importantly, we found that G-CSF level was significantly up-regulated in the serum from osteomyelitis patients infected by S. aureus Together, S. aureus infection might suppress the function of osteoblastic cells and induce progressive bone loss by up-regulating the level G-CSF, suggesting a therapeutic potential for G-CSF neutralization in combating bone loss in S. aureus osteomyelitis.
Collapse
|
31
|
Ye Q, Shao WX, Wang QQ, Mao JH. An imbalance of T cell subgroups exists in children with sepsis. Microbes Infect 2019; 21:386-392. [PMID: 31009807 DOI: 10.1016/j.micinf.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/23/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
The purpose of this study is to explore the role of different T cell subgroups in the pathogenesis of sepsis in children. Flow cytometry was used to detect the changes in the activation status and the number of T cell subgroups in the peripheral blood of children with sepsis; healthy children were selected as the control group. Compared with healthy children, the number of CD4+ T cells in the peripheral blood of children with sepsis did not change significantly (Z = 1.945, P = 0.052); though the ratio decreased and the median level dropped from 34.6% to 30.7% (Z = 2.257, P = 0.024). However, the number of CD8+ T cells in the blood of children with sepsis increased, and the median level also increased from 0.2 × 109/L to 0.4 × 109/L (Z = -2.404, P = 0.016). In addition, CD3+CD8+HLA-DR + cell level significantly increased, and the median level increased from 4.2% to 24.3% (Z = -5.370, P = 0.000). There was a large heterogeneity in the hospitalization time of sepsis in clinical patients. Compared to patients with a mean hospital stay of 6 days, patients with a median hospital stay of 13 days had a lower CD3+CD4+CD25 + cells percentage, while the percentage of CD3+CD8+HLA-DR+ was higher, resulting in a more apparent increase of CD3+ CD8+HLA-DR+/CD3+CD4+CD25+. Therefore, the failure of CD4+ T cell activation and proliferation, and the excessive activation and proliferation of CD8+ T cells play an important role in the pathogenesis of sepsis. The increase of CD3+CD8+HLA-DR+/CD3+CD4+CD25 + ratio was associated with the extended course of sepsis.
Collapse
Affiliation(s)
- Qing Ye
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wen-Xia Shao
- Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Qing-Qing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Hua Mao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
32
|
Abstract
BACKGROUND Children with osteomyelitis are at risk for deep venous thrombosis (DVT). This study evaluates the characteristics of DVT among children to differentiate between those with and without osteomyelitis. METHODS Children with DVT of any cause were studied between 2008 and 2016. Children with DVT and osteomyelitis were compared with those with DVT without osteomyelitis. Another comparison cohort included children with osteomyelitis but without DVT. Comorbidities, severity of illness (SOI), and clinical course were compared between cohorts. RESULTS DVT was identified in 224 children, a prevalence of 2.5 per 10,000 children. Among those with DVT, 28 (12.1%) had osteomyelitis. The DVT rate among 466 children with osteomyelitis was 6.0%. Children with osteomyelitis and DVT had greater SOI (9.1 vs. 2.7), bacteremia rate (82.1% vs. 38.4%), methicillin-resistant Staphylococcus aureus rate (89.3% vs. 21.2%), surgeries per child (2.1 vs. 0.7), and intensive care unit admission rate (67.9% vs. 5.9%) than that of children without DVT (P<0.00001). Of 196 children who had DVT without osteomyelitis, 166 (84.7%) had comorbidities including defined hypercoagulability (27 or 13.8%). Children with DVT due to osteomyelitis were without comorbidities or hypercoagulability (P<0.00001). The rate of pulmonary embolism was similar for children with DVT with or without osteomyelitis (3/28, or 10.7% vs. 18/196, or 9.2%). CONCLUSIONS Children with DVT and osteomyelitis differ substantially from other children with DVT by the absence of comorbidities or post-thrombotic syndrome. They also differ from children with osteomyelitis without DVT by higher SOI, methicillin-resistant S. aureus rate, and occurrence of intensive care. Awareness of for the characteristics of DVT among children with osteomyelitis will reduce delay to diagnostic ultrasound and improve anticoagulation management which must be carefully coordinated given the high rate of surgery of these children. LEVEL OF EVIDENCE Level II-prognostic, retrospective cohort comparison.
Collapse
|
33
|
Esposito S, Rinaldi VE, Argentiero A, Farinelli E, Cofini M, D'Alonzo R, Mencacci A, Principi N. Approach to Neonates and Young Infants with Fever without a Source Who Are at Risk for Severe Bacterial Infection. Mediators Inflamm 2018; 2018:4869329. [PMID: 30581369 PMCID: PMC6287153 DOI: 10.1155/2018/4869329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Among neonates and infants <3 months of age with fever without a source (FWS), 5% to 15% of cases are patients with fever caused by a serious bacterial infection (SBI). To favour the differentiation between low- and high-risk infants, several algorithms based on analytical and clinical parameters have been developed. The aim of this review is to describe the management of young infants with FWS and to discuss the impact of recent knowledge regarding FWS management on clinical practice. MATERIALS AND METHODS PubMed was used to search for all of the studies published over the last 35 years using the keywords: "fever without source" or "fever of unknown origin" or "meningitis" or "sepsis" or "urinary tract infection" and "neonate" or "newborn" or "infant <90 days of life" or "infant <3 months". RESULTS AND DISCUSSION The selection of neonates and young infants who are <3 months old with FWS who are at risk for SBI remains a problem without a definitive solution. The old Rochester criteria remain effective for identifying young infants between 29 and 60 days old who do not have severe bacterial infections (SBIs). However, the addition of laboratory tests such as C-reactive protein (CRP) and procalcitonin (PCT) can significantly improve the identification of children with SBI. The approach in evaluating neonates is significantly more complicated, as their risk of SBIs, including bacteremia and meningitis, remains relevant and none of the suggested approaches can reduce the risk of dramatic mistakes. In both groups, the best antibiotic must be carefully selected considering the clinical findings, the laboratory data, the changing epidemiology, and increasing antibiotic resistance of the most common infectious bacteria.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Victoria Elisa Rinaldi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Alberto Argentiero
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Edoardo Farinelli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Antonella Mencacci
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
34
|
Lindfors E, van Dam JCJ, Lam CMC, Zondervan NA, Martins dos Santos VAP, Suarez-Diez M. SyNDI: synchronous network data integration framework. BMC Bioinformatics 2018; 19:403. [PMID: 30400817 PMCID: PMC6219086 DOI: 10.1186/s12859-018-2426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. RESULTS In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. CONCLUSIONS Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.
Collapse
Affiliation(s)
- Erno Lindfors
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
| | - Jesse C. J. van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Niels A. Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A. P. Martins dos Santos
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
35
|
Wallihan RG, Suárez NM, Cohen DM, Marcon M, Moore-Clingenpeel M, Mejias A, Ramilo O. Molecular Distance to Health Transcriptional Score and Disease Severity in Children Hospitalized With Community-Acquired Pneumonia. Front Cell Infect Microbiol 2018; 8:382. [PMID: 30425971 PMCID: PMC6218690 DOI: 10.3389/fcimb.2018.00382] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Community-acquired pneumonia (CAP) is a leading cause of hospitalization and mortality in children. Diagnosis remains challenging and there are no reliable tools to objectively risk stratify patients or predict clinical outcomes. Molecular distance to health (MDTH) is a genomic score that measures the global perturbation of the transcriptional profile and may help classify patients by disease severity. We evaluated the value of MDTH to assess disease severity in children hospitalized with CAP. Methods: Children hospitalized with CAP and matched healthy controls were enrolled in a prospective observational study. Blood samples were obtained for transcriptome analyses within 24 h of hospitalization. MDTH scores were calculated to assess disease severity and correlated with laboratory markers, such as white blood cell count, c-reactive protein (CRP), and procalcitonin (PCT), and clinical outcomes, including duration of fever and duration of hospitalization (LOS). Univariate and multivariable logistic regression were applied to assess factors associated with LOS and duration of fever after hospitalization. Results: Among children hospitalized with CAP (n = 152), pyogenic bacteria (PB) were detected in 16 (11%), Mycoplasma pneumoniae was detected in 41 (28%), respiratory viruses (RV) alone were detected in 78 (51%), and no pathogen was detected in 17 (11%) children. Statistical group comparisons identified 6,726 genes differentially expressed in patients with CAP vs. healthy controls (n = 39). Children with confirmed PB had higher MDTH scores than those with RV (p < 0.05) or M. pneumoniae (p < 0.01) detected alone. CRP (r = 0.39, p < 0.0001), PCT (r = 0.39, p < 0.0001), and MDTHs (r = 0.24, p < 0.01) correlated with duration of fever, while only MDTHs correlated with LOS (r = 0.33, p < 0.0001). Unadjusted analyses showed that both higher CRP and MDTHs were associated with longer LOS (OR 1.04 [1–1.07] and 1.12 [1.04–1.20], respectively), however, only MDTH remained significant when adjusting for other covariates (aOR 1.11 [1.01–1.22]). Conclusions: In children hospitalized with CAP MDTH score measured within 24 h of admission was independently associated with longer duration of hospitalization, regardless of the pathogen detected. This suggests that transcriptional biomarkers may represent a promising approach to assess disease severity in children with CAP.
Collapse
Affiliation(s)
- Rebecca G Wallihan
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, United States
| | - Nicolás M Suárez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Daniel M Cohen
- Division of Emergency Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mario Marcon
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Melissa Moore-Clingenpeel
- Biostatistics Core, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Asuncion Mejias
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, United States.,Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Octavio Ramilo
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, United States.,Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
36
|
Ma J, Chen C, Liu Y, Damarla M, Vonakis BM, Guan X, Gao L. Altered expression of TIAM1 in endotoxin-challenged airway epithelial cells and rodent septic models. J Thorac Dis 2018; 10:3187-3195. [PMID: 30069314 PMCID: PMC6051800 DOI: 10.21037/jtd.2018.05.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND In sepsis, reorganization of the actin cytoskeleton in the epithelium during inflammation will lead to a breakdown of epithelial barrier integrity, and contribute to the pathogenesis of sepsis, but the exact changes of various components regulating the actin cytoskeleton pathway remain unclear. METHODS We used lipopolysaccharide (LPS) challenged primary epithelial cells cultured at the air-liquid interface (ALI) to mimic epithelial barrier dysfunction during sepsis. Then we detected differential expression of T-lymphoma invasion and metastasis 1 (TIAM1) gene in lung epithelial cells and septic models. RESULTS LPS induced barrier dysfunction in human tracheobronchial epithelial cells (HTBEs) as measured by statistically significant changes in ionic and macromolecular permeability. We observed differential expression of TIAM1 gene. The protein expression of TIAM1 was decreased after LPS challenge, in human bronchial epithelial cells. Furthermore, the expression levels of both TIAM1 mRNA and protein were decreased in lungs of septic rodent models. CONCLUSIONS Given that expression levels of TIAM1 have been associated with mortality among sepsis patients, our findings have the potential for the development of diagnostic and treatment strategies relevant for patient management.
Collapse
Affiliation(s)
- Jie Ma
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuanxi Chen
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yongjun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Becky M. Vonakis
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Gao
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Jaggi P, Mejias A, Xu Z, Yin H, Moore-Clingenpeel M, Smith B, Burns JC, Tremoulet AH, Jordan-Villegas A, Chaussabel D, Texter K, Pascual V, Ramilo O. Whole blood transcriptional profiles as a prognostic tool in complete and incomplete Kawasaki Disease. PLoS One 2018; 13:e0197858. [PMID: 29813106 PMCID: PMC5973615 DOI: 10.1371/journal.pone.0197858] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Early identification of children with Kawasaki Disease (KD) is key for timely initiation of intravenous immunoglobulin (IVIG) therapy. However, the diagnosis of the disease remains challenging, especially in children with an incomplete presentation (inKD). Moreover, we currently lack objective tools for identification of non-response (NR) to IVIG. Methods Children with KD were enrolled and samples obtained before IVIG treatment and sequentially at 24 h and 4–6 weeks post-IVIG in a subset of patients. We also enrolled children with other febrile illnesses [adenovirus (AdV); group A streptococcus (GAS)] and healthy controls (HC) for comparative analyses. Blood transcriptional profiles were analyzed to define: a) the cKD and inKD biosignature, b) compare the KD signature with other febrile illnesses and, c) identify biomarkers predictive of clinical outcomes. Results We identified a cKD biosignature (n = 39; HC, n = 16) that was validated in two additional cohorts of children with cKD (n = 37; HC, n = 20) and inKD (n = 13; HC, n = 8) and was characterized by overexpression of inflammation, platelets, apoptosis and neutrophil genes, and underexpression of T and NK cell genes. Classifier genes discriminated KD from adenovirus with higher sensitivity and specificity (92% and 100%, respectively) than for GAS (75% and 87%, respectively). We identified a genomic score (MDTH) that was higher at baseline in IVIG-NR [median 12,290 vs. 5,572 in responders, p = 0.009] and independently predicted IVIG-NR. Conclusion A reproducible biosignature from KD patients was identified, and was similar in children with cKD and inKD. A genomic score allowed early identification of children at higher risk for non-response to IVIG.
Collapse
Affiliation(s)
- Preeti Jaggi
- Division of Pediatric Infectious Disease, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Asuncion Mejias
- Division of Pediatric Infectious Disease, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Zhaohui Xu
- Baylor Institute for Immunology Research, Dallas, TX, United States of America
| | - Han Yin
- Center for Biostatistics, The Research Institute at Nationwide Children’s Hospital Columbus, OH, United States of America
| | - Melissa Moore-Clingenpeel
- Center for Biostatistics, The Research Institute at Nationwide Children’s Hospital Columbus, OH, United States of America
| | - Bennett Smith
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego and Rady Children’s Hospital, San Diego, CA, United States of America
| | - Adriana H. Tremoulet
- Department of Pediatrics, University of California San Diego and Rady Children’s Hospital, San Diego, CA, United States of America
| | - Alejandro Jordan-Villegas
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | | | - Karen Texter
- Division of Pediatric Cardiology, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Virginia Pascual
- Drukier Institute for Children’s Health, and Weill Cornell Medicine, New York City, NY, United States of America
| | - Octavio Ramilo
- Division of Pediatric Infectious Disease, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chen P, Yao Z, Deng G, Hou Y, Chen S, Hu Y, Yu B. Differentially Expressed Genes in Osteomyelitis Induced by Staphylococcus aureus Infection. Front Microbiol 2018; 9:1093. [PMID: 29887852 PMCID: PMC5982613 DOI: 10.3389/fmicb.2018.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Osteomyelitis (OM) is a complicated and serious disease and its underlying molecular signatures of disease initiation and progression remain unclear. Staphylococcus aureus (S. aureus) is the most common causative agent of OM. Previous study of Banchereau et al. has established a link between whole blood transcription profiles and clinical manifestations in patients infected with S. aureus. However, the differentially expressed genes (DEGs) in OM induced by S. aureus infection have not been intensively investigated. In this study, we downloaded the gene expression profile dataset GSE30119 from Gene Expression Omnibus, and performed bioinformatic analysis to identify DEGs in S. aureus infection induced OM from the transcriptional level. The study consisted of 143 whole blood samples, including 44 healthy controls, 42 OM-free, and 57 OM infection patients. A total of 209 S. aureus infection-related genes (SARGs) and 377 OM-related genes (OMRGs) were identified. The SARGs were primarily involved in the immune response by GO functional and pathway enrichment analysis. Several proteins adhere to neutrophil extracellular traps may be critical for the immune response to the process of S. aureus infection. By contrast, the OMRGs differ from the SARGs. The OMRGs were enriched in transmembrane signaling receptor and calcium channel activity, cilium morphogenesis, chromatin silencing, even multicellular organism development. Several key proteins, including PHLPP2 and EGF, were hub nodes in protein–protein interaction network of the OMRGs. In addition, alcoholism, systemic lupus erythematosus and proteoglycans in cancer were the top pathways influenced by the OMRGs associated with OM. Thus, this study has further explored the DEGs and their biological functions associated with S. aureus infection and OM, comparing with the previous study, and may light the further insight into the underlying molecular mechanisms and the potential critical biomarkers in OM development.
Collapse
Affiliation(s)
- Peisheng Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ganming Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Herman P, Stein A, Gibbs K, Korsunsky I, Gregersen P, Bloom O. Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression. J Neurotrauma 2018; 35:1819-1829. [PMID: 29310515 PMCID: PMC6033303 DOI: 10.1089/neu.2017.5519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections are the leading cause of death for individuals with traumatic spinal cord injury (SCI). Along with increased infection rates, inflammation is often also observed in persons with chronic SCI. Together, immunological changes post-SCI are also poised to impede neurological recovery and mediate common medical consequences of SCI, including atherogenesis and neuropathic pain. The molecular mechanisms contributing to increased infection susceptibility and inflammation in persons living with SCI are poorly understood. Here, we used tools of functional genomics to perform a pilot study to compare whole-blood gene expression in individuals with chronic SCI (≥1 year from initial injury; N = 31) and uninjured individuals (N = 26). We identified 1815 differentially expressed genes in all SCI participants and 2226 differentially expressed genes in persons with SCI rostral to thoracic level 5, compared to uninjured participants. This included marked downregulation of natural killer cell genes and upregulation of the proinflammatory Toll-like receptor signaling pathway. These data provide novel mechanistic insights into the causes underlying the symptoms of immune dysfunction in individuals living with SCI.
Collapse
Affiliation(s)
- Paige Herman
- 1 The Feinstein Institute for Medical Research , Northwell Health
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Katie Gibbs
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Ilya Korsunsky
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research
| | - Peter Gregersen
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research.,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| | - Ona Bloom
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell .,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| |
Collapse
|
40
|
Rodriguez-Fernandez R, Tapia LI, Yang CF, Torres JP, Chavez-Bueno S, Garcia C, Jaramillo LM, Moore-Clingenpeel M, Jafri HS, Peeples ME, Piedra PA, Ramilo O, Mejias A. Respiratory Syncytial Virus Genotypes, Host Immune Profiles, and Disease Severity in Young Children Hospitalized With Bronchiolitis. J Infect Dis 2017; 217:24-34. [PMID: 29045741 PMCID: PMC5853407 DOI: 10.1093/infdis/jix543] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Data on how respiratory syncytial virus (RSV) genotypes influence disease severity and host immune responses is limited. Here, we characterized the genetic variability of RSV during 5 seasons, and evaluated the role of RSV subtypes, genotypes, and viral loads in disease severity and host transcriptional profiles. Methods A prospective, observational study was carried out, including a convenience sample of healthy infants hospitalized with RSV bronchiolitis. Nasopharyngeal samples for viral load quantitation, typing, and genotyping, and blood samples for transcriptome analyses were obtained within 24 hours of hospitalization. Multivariate models were constructed to identify virologic and clinical variables predictive of clinical outcomes. Results We enrolled 253 infants (median age 2.1 [25%-75% interquartile range] months). RSV A infections predominated over RSV B and showed greater genotype variability. RSV A/GA2, A/GA5, and RSV B/BA were the most common genotypes identified. Compared to GA2 or BA, infants with GA5 infections had higher viral loads. GA5 infections were associated with longer hospital stay, and with less activation of interferon and increased overexpression of neutrophil genes. Conclusions RSV A infections were more frequent than RSV B, and displayed greater variability. GA5 infections were associated with enhanced disease severity and distinct host immune responses.
Collapse
Affiliation(s)
- Rosa Rodriguez-Fernandez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Lorena I Tapia
- Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics and Virology Program, Facultad de Medicina, Universidad de Chile, Santiago
| | - Chin-Fen Yang
- Department of Research, Medimmune LLC, Mountain View, California
- Enimmune Corporation, Taiwan
| | - Juan Pablo Torres
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas
- Department of Pediatrics and Virology Program, Facultad de Medicina, Universidad de Chile, Santiago
| | - Susana Chavez-Bueno
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas
- Children’s Mercy Hospital, Kansas City, Missouri
| | - Carla Garcia
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas
- PID Associates, Carrollton, Texas
| | - Lisa M Jaramillo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | | | - Hasan S Jafri
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas
- Medimmune /AztraZeneca
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
41
|
Ryan T, Coakley JD, Martin-Loeches I. Defects in innate and adaptive immunity in patients with sepsis and health care associated infection. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:447. [PMID: 29264364 DOI: 10.21037/atm.2017.09.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent advances in sepsis therapy exclusively involve improvements in supportive care, while sepsis mortality rates remain disturbingly high at 30%. These persistently high sepsis mortality rates arise from the absence of sepsis specific therapies. However with improvements in supportive care, patients with septic shock commonly partially recover from the infection that precipitated their initial illness, yet they frequently succumb to subsequent health care associated infections. Remarkably today the pathophysiology of sepsis in humans, a common disease in western society, remains largely a conundrum. Conventionally sepsis was regarded as primarily a disorder of inflammation. More recently the importance of immune compromise in the pathophysiology of sepsis and health care associated infection has now become more widely accepted. Accordingly a review of the human evidence for this novel sepsis paradigm is timely. Septic patients appear to exhibit a complex and long-lasting immune deficiency state, involving lymphocytes of both the innate and adaptive immune responses that have been linked with mortality and the occurrence of health care associated infection. Such is the pervasive nature of immune compromise in sepsis that ultimately immune modulation will play a crucial role in sepsis therapies of the future.
Collapse
Affiliation(s)
- Thomas Ryan
- Department of Intensive Care, St James's Hospital Dublin, Dublin, Ireland
| | - John D Coakley
- Department of Intensive Care, St James's Hospital Dublin, Dublin, Ireland
| | | |
Collapse
|
42
|
Zhao Y, Forst CV, Sayegh CE, Wang IM, Yang X, Zhang B. Molecular and genetic inflammation networks in major human diseases. MOLECULAR BIOSYSTEMS 2017; 12:2318-41. [PMID: 27303926 DOI: 10.1039/c6mb00240d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervention.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| | - Camil E Sayegh
- Vertex Pharmaceuticals (Canada) Incorporated, 275 Armand-Frappier, Laval, Quebec H7V 4A7, Canada
| | - I-Ming Wang
- Informatics and Analysis, Merck Research Laboratories, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90025, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA. and Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, NY 10029, USA
| |
Collapse
|
43
|
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), results in a range of clinical presentations in humans. Most infections manifest as a clinically asymptomatic, contained state that is termed latent TB infection (LTBI); a smaller subset of infected individuals present with symptomatic, active TB. Within these two seemingly binary states, there is a spectrum of host outcomes that have varying symptoms, microbiologies, immune responses and pathologies. Recently, it has become apparent that there is diversity of infection even within a single individual. A good understanding of the heterogeneity that is intrinsic to TB - at both the population level and the individual level - is crucial to inform the development of intervention strategies that account for and target the unique, complex and independent nature of the local host-pathogen interactions that occur in this infection. In this Review, we draw on model systems and human data to discuss multiple facets of TB biology and their relationship to the overall heterogeneity observed in the human disease.
Collapse
|
44
|
A Four-Biomarker Blood Signature Discriminates Systemic Inflammation Due to Viral Infection Versus Other Etiologies. Sci Rep 2017; 7:2914. [PMID: 28588308 PMCID: PMC5460227 DOI: 10.1038/s41598-017-02325-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
The innate immune system of humans and other mammals responds to pathogen-associated molecular patterns (PAMPs) that are conserved across broad classes of infectious agents such as bacteria and viruses. We hypothesized that a blood-based transcriptional signature could be discovered indicating a host systemic response to viral infection. Previous work identified host transcriptional signatures to individual viruses including influenza, respiratory syncytial virus and dengue, but the generality of these signatures across all viral infection types has not been established. Based on 44 publicly available datasets and two clinical studies of our own design, we discovered and validated a four-gene expression signature in whole blood, indicative of a general host systemic response to many types of viral infection. The signature’s genes are: Interferon Stimulated Gene 15 (ISG15), Interleukin 16 (IL16), 2′,5′-Oligoadenylate Synthetase Like (OASL), and Adhesion G Protein Coupled Receptor E5 (ADGRE5). In each of 13 validation datasets encompassing human, macaque, chimpanzee, pig, mouse, rat and all seven Baltimore virus classification groups, the signature provides statistically significant (p < 0.05) discrimination between viral and non-viral conditions. The signature may have clinical utility for differentiating host systemic inflammation (SI) due to viral versus bacterial or non-infectious causes.
Collapse
|
45
|
Gideon HP, Skinner JA, Baldwin N, Flynn JL, Lin PL. Early Whole Blood Transcriptional Signatures Are Associated with Severity of Lung Inflammation in Cynomolgus Macaques with Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4817-4828. [PMID: 27837110 DOI: 10.4049/jimmunol.1601138] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023]
Abstract
Whole blood transcriptional profiling offers great diagnostic and prognostic potential. Although studies identified signatures for pulmonary tuberculosis (TB) and transcripts that predict the risk for developing active TB in humans, the early transcriptional changes immediately following Mycobacterium tuberculosis infection have not been evaluated. We evaluated the gene expression changes in the cynomolgus macaque model of TB, which recapitulates all clinical aspects of human M. tuberculosis infection, using a human microarray and analytics platform. We performed genome-wide blood transcriptional analysis on 38 macaques at 11 postinfection time points during the first 6 mo of M. tuberculosis infection. Of 6371 differentially expressed transcripts between preinfection and postinfection, the greatest change in transcriptional activity occurred 20-56 d postinfection, during which fluctuation of innate and adaptive immune response-related transcripts was observed. Modest transcriptional differences between active TB and latent infection were observed over the time course with substantial overlap. The pattern of module activity previously published for human active TB was similar in macaques with active disease. Blood transcript activity was highly correlated with lung inflammation (lung [18F]fluorodeoxyglucose [FDG] avidity) measured by positron emission tomography and computed tomography at early time points postinfection. The differential signatures between animals with high and low lung FDG were stronger than between clinical outcomes. Analysis of preinfection signatures of macaques revealed that IFN signatures could influence eventual clinical outcomes and lung FDG avidity, even before infection. Our data support that transcriptional changes in the macaque model are translatable to human M. tuberculosis infection and offer important insights into early events of M. tuberculosis infection.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Jason A Skinner
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Nicole Baldwin
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|
46
|
Mahajan P, Kuppermann N, Mejias A, Suarez N, Chaussabel D, Casper TC, Smith B, Alpern ER, Anders J, Atabaki SM, Bennett JE, Blumberg S, Bonsu B, Borgialli D, Brayer A, Browne L, Cohen DM, Crain EF, Cruz AT, Dayan PS, Gattu R, Greenberg R, Hoyle JD, Jaffe DM, Levine DA, Lillis K, Linakis JG, Muenzer J, Nigrovic LE, Powell EC, Rogers AJ, Roosevelt G, Ruddy RM, Saunders M, Tunik MG, Tzimenatos L, Vitale M, Dean JM, Ramilo O. Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger. JAMA 2016; 316:846-57. [PMID: 27552618 PMCID: PMC5122927 DOI: 10.1001/jama.2016.9207] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Young febrile infants are at substantial risk of serious bacterial infections; however, the current culture-based diagnosis has limitations. Analysis of host expression patterns ("RNA biosignatures") in response to infections may provide an alternative diagnostic approach. OBJECTIVE To assess whether RNA biosignatures can distinguish febrile infants aged 60 days or younger with and without serious bacterial infections. DESIGN, SETTING, AND PARTICIPANTS Prospective observational study involving a convenience sample of febrile infants 60 days or younger evaluated for fever (temperature >38° C) in 22 emergency departments from December 2008 to December 2010 who underwent laboratory evaluations including blood cultures. A random sample of infants with and without bacterial infections was selected for RNA biosignature analysis. Afebrile healthy infants served as controls. Blood samples were collected for cultures and RNA biosignatures. Bioinformatics tools were applied to define RNA biosignatures to classify febrile infants by infection type. EXPOSURE RNA biosignatures compared with cultures for discriminating febrile infants with and without bacterial infections and infants with bacteremia from those without bacterial infections. MAIN OUTCOMES AND MEASURES Bacterial infection confirmed by culture. Performance of RNA biosignatures was compared with routine laboratory screening tests and Yale Observation Scale (YOS) scores. RESULTS Of 1883 febrile infants (median age, 37 days; 55.7% boys), RNA biosignatures were measured in 279 randomly selected infants (89 with bacterial infections-including 32 with bacteremia and 15 with urinary tract infections-and 190 without bacterial infections), and 19 afebrile healthy infants. Sixty-six classifier genes were identified that distinguished infants with and without bacterial infections in the test set with 87% (95% CI, 73%-95%) sensitivity and 89% (95% CI, 81%-93%) specificity. Ten classifier genes distinguished infants with bacteremia from those without bacterial infections in the test set with 94% (95% CI, 70%-100%) sensitivity and 95% (95% CI, 88%-98%) specificity. The incremental C statistic for the RNA biosignatures over the YOS score was 0.37 (95% CI, 0.30-0.43). CONCLUSIONS AND RELEVANCE In this preliminary study, RNA biosignatures were defined to distinguish febrile infants aged 60 days or younger with vs without bacterial infections. Further research with larger populations is needed to refine and validate the estimates of test accuracy and to assess the clinical utility of RNA biosignatures in practice.
Collapse
Affiliation(s)
- Prashant Mahajan
- Division of Emergency Medicine, Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Nathan Kuppermann
- Departments of Emergency Medicine and Pediatrics, University of California, Davis, School of Medicine, Sacramento
| | - Asuncion Mejias
- Division of Pediatric Infectious Diseases and Center for Vaccines and Immunity, Nationwide Children's Hospital and The Ohio State University, Columbus
| | - Nicolas Suarez
- Division of Pediatric Infectious Diseases and Center for Vaccines and Immunity, Nationwide Children's Hospital and The Ohio State University, Columbus
| | - Damien Chaussabel
- Benaroya Research Institute, Virginia Mason and Sidra Medical and Research Center, Seattle, Washington, and Doha, Qatar
| | | | - Bennett Smith
- Division of Pediatric Infectious Diseases and Center for Vaccines and Immunity, Nationwide Children's Hospital and The Ohio State University, Columbus
| | - Elizabeth R Alpern
- Division of Emergency Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania7Now at Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer Anders
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Shireen M Atabaki
- Division of Emergency Medicine, Department of Pediatrics, Children's National Medical Center, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Jonathan E Bennett
- Division of Pediatric Emergency Medicine, Alfred I. DuPont Hospital for Children, Nemours Children's Health System, Wilmington, Delaware
| | - Stephen Blumberg
- Department of Pediatrics, Jacobi Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Bema Bonsu
- Section of Emergency Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Dominic Borgialli
- Department of Emergency Medicine, Hurley Medical Center and University of Michigan, Flint
| | - Anne Brayer
- Departments of Emergency Medicine and Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Lorin Browne
- Departments of Pediatrics and Emergency Medicine, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee
| | - Daniel M Cohen
- Section of Emergency Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus
| | - Ellen F Crain
- Division of Pediatric Emergency Medicine, Alfred I. DuPont Hospital for Children, Nemours Children's Health System, Wilmington, Delaware
| | - Andrea T Cruz
- Sections of Emergency Medicine and Infectious Diseases, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston
| | - Peter S Dayan
- Division of Emergency Medicine, Department of Pediatrics, Columbia University College of Physicians & Surgeons, New York, New York
| | - Rajender Gattu
- Division of Emergency Medicine, Department of Pediatrics, University of Maryland Medical Center, Baltimore
| | - Richard Greenberg
- Department of Pediatrics, Primary Children's Medical Center, University of Utah, Salt Lake City
| | - John D Hoyle
- Department of Emergency Medicine, Helen DeVos Children's Hospital of Spectrum Health, Grand Rapids, Michigan22Now with the Departments of Emergency Medicine and Pediatrics, Western Michigan University Homer Stryker, MD, School of Medicine, Kalamazoo
| | - David M Jaffe
- Department of Pediatrics, St Louis Children's Hospital, Washington University, St Louis, Missouri24Now with the Division of Pediatric Emergency Medicine, University of California San Francisco School of Medicine
| | - Deborah A Levine
- Department of Pediatrics, Bellevue Hospital New York University Langone Center, New York
| | - Kathleen Lillis
- Department of Pediatrics, Women and Children's Hospital of Buffalo, State University of New York at Buffalo
| | - James G Linakis
- Department of Emergency Medicine and Pediatrics, Hasbro Children's Hospital and Brown University, Providence, Rhode Island
| | - Jared Muenzer
- Department of Pediatrics, Bellevue Hospital New York University Langone Center, New York28Now with the Department of Emergency Medicine, Phoenix Children's Hospital, Phoenix, Arizona
| | - Lise E Nigrovic
- Department of Pediatrics, Boston Children's Hospital, Harvard University, Boston, Massachusetts
| | - Elizabeth C Powell
- Division of Emergency Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alexander J Rogers
- Departments of Emergency Medicine and Pediatrics, University of Michigan, Ann Arbor
| | - Genie Roosevelt
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado-Denver, Aurora
| | - Richard M Ruddy
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary Saunders
- Department of Pediatrics, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee35Now with Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora
| | - Michael G Tunik
- Department of Pediatrics, Bellevue Hospital, New York University Langone Medical Center, New York
| | - Leah Tzimenatos
- Department of Emergency Medicine, University of California, Davis School of Medicine, Sacramento
| | - Melissa Vitale
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City
| | - Octavio Ramilo
- Division of Pediatric Infectious Diseases and Center for Vaccines and Immunity, Nationwide Children's Hospital and The Ohio State University, Columbus
| | | |
Collapse
|
47
|
Blohmke CJ, Darton TC, Jones C, Suarez NM, Waddington CS, Angus B, Zhou L, Hill J, Clare S, Kane L, Mukhopadhyay S, Schreiber F, Duque-Correa MA, Wright JC, Roumeliotis TI, Yu L, Choudhary JS, Mejias A, Ramilo O, Shanyinde M, Sztein MB, Kingsley RA, Lockhart S, Levine MM, Lynn DJ, Dougan G, Pollard AJ. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 2016; 213:1061-77. [PMID: 27217537 PMCID: PMC4886356 DOI: 10.1084/jem.20151025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/08/2016] [Indexed: 12/30/2022] Open
Abstract
Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever.
Collapse
Affiliation(s)
- Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Nicolas M. Suarez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, OX1 2JD, England, UK
| | - Liqing Zhou
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Jennifer Hill
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Simon Clare
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Leanne Kane
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Subhankar Mukhopadhyay
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Fernanda Schreiber
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Maria A. Duque-Correa
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - James C. Wright
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | | | - Lu Yu
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Jyoti S. Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Milensu Shanyinde
- Nuffield Department of Primary Care Health Sciences, University of Oxford, OX1 2JD, England, UK
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert A. Kingsley
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Stephen Lockhart
- Emergent Product Development UK, Emergent BioSolutions, Wokingham RG41 5TU, England, UK
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - David J. Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia,School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Gordon Dougan
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| |
Collapse
|
48
|
Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0146. [PMID: 25964458 DOI: 10.1098/rstb.2014.0146] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccination has been tremendously successful saving lives and preventing infections. However, the development of vaccines against global pandemics such as HIV, malaria and tuberculosis has been obstructed by several challenges. A major challenge is the lack of knowledge about the correlates and mechanisms of protective immunity. Recent advances in the application of systems biological approaches to analyse immune responses to vaccination in humans are beginning to yield new insights about mechanisms of vaccine immunity, and to define molecular signatures, induced rapidly after vaccination, that correlate with and predict vaccine induced immunity. Here, we review these advances and discuss the potential of this systems vaccinology approach in defining novel correlates of protection in clinical trials, and in infection-induced 'experimental challenge models' in humans.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
49
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
50
|
Tsalik EL, Henao R, Nichols M, Burke T, Ko ER, McClain MT, Hudson LL, Mazur A, Freeman DH, Veldman T, Langley RJ, Quackenbush EB, Glickman SW, Cairns CB, Jaehne AK, Rivers EP, Otero RM, Zaas AK, Kingsmore SF, Lucas J, Fowler VG, Carin L, Ginsburg GS, Woods CW. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 2016; 8:322ra11. [PMID: 26791949 PMCID: PMC4905578 DOI: 10.1126/scitranslmed.aad6873] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.
Collapse
Affiliation(s)
- Ephraim L Tsalik
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Emergency Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC 27705
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
| | - Ricardo Henao
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708
| | - Marshall Nichols
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Thomas Burke
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Emily R Ko
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Duke Regional Hospital, Department of Medicine, Duke University, Durham, NC 27710
| | - Micah T McClain
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
- Section for Infectious Diseases, Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC 27705
| | - Lori L Hudson
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Anna Mazur
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Debra H Freeman
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
| | - Tim Veldman
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Raymond J Langley
- Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Eugenia B Quackenbush
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Seth W Glickman
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Charles B Cairns
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Department of Emergency Medicine, University of Arizona Health Sciences Center, Tucson, AZ 85724
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, MI 48202
| | - Emanuel P Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, MI 48202
| | - Ronny M Otero
- Department of Emergency Medicine, Henry Ford Hospital, Wayne State University, Detroit, MI 48202
| | - Aimee K Zaas
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
| | - Stephen F Kingsmore
- Rady Pediatric Genomic and Systems Medicine Institute, Rady Children's Hospital, San Diego, CA 92123
| | - Joseph Lucas
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Vance G Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
| | - Lawrence Carin
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27708
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
| | - Christopher W Woods
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC 27710
- Section for Infectious Diseases, Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC 27705
| |
Collapse
|