1
|
Hansen CHF, Jozipovic D, Zachariassen LF, Nielsen DS, Hansen AK, Buschard K. Probiotic treatment with viable α-galactosylceramide-producing Bacteroides fragilis reduces diabetes incidence in female nonobese diabetic mice. J Diabetes 2024; 16:e13593. [PMID: 39136533 PMCID: PMC11320754 DOI: 10.1111/1753-0407.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND We aimed to investigate whether alpha-galactosylceramide (α-GalCer)-producing Bacteroides fragilis could induce natural killer T (NKT) cells in nonobese diabetic (NOD) mice and reduce their diabetes incidence. METHODS Five-week-old female NOD mice were treated orally with B. fragilis, and islet pathology and diabetes onset were monitored. Immune responses were analyzed by flow cytometry and multiplex technology. Effects of ultraviolet (UV)-killed α-GalCer-producing B. fragilis and their culture medium on invariant NKT (iNKT) cells were tested ex vivo on murine splenocytes, and the immunosuppressive capacity of splenocytes from B. fragilis-treated NOD mice were tested by adoptive transfer to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. RESULTS B. fragilis reduced the diabetes incidence from 69% to 33% and the percent of islets with insulitis from 40% to 7%, which doubled the serum insulin level compared with the vehicle-treated control mice. Furthermore, the early treatment reduced proinflammatory mediators in the serum, whereas the proportion of CD4+ NKT cell population was increased by 33%. B. fragilis growth media stimulated iNKT cells and anti-inflammatory M2 macrophages ex vivo in contrast to UV-killed bacteria, which had no effect, strongly indicating an α-GalCer-mediated effect. Adoptive transfer of splenocytes from B. fragilis-treated NOD mice induced a similar diabetes incidence as splenocytes from untreated NOD mice. CONCLUSIONS B. fragilis induced iNKT cells and M2 macrophages and reduced type 1 diabetes in NOD mice. The protective effect seemed to be more centered on gut-pancreas interactions rather than a systemic immunosuppression. B. fragilis should be considered for probiotic use in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Camilla H. F. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Line F. Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | - Axel K. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Karsten Buschard
- Department of PathologyThe Bartholin Institute, RigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Buschard K, Josefsen K, Krogvold L, Gerling I, Dahl-Jørgensen K, Pociot F. Influence of sphingolipid enzymes on blood glucose levels, development of diabetes, and involvement of pericytes. Diabetes Metab Res Rev 2024; 40:e3792. [PMID: 38517704 DOI: 10.1002/dmrr.3792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
AIMS Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.
Collapse
Affiliation(s)
- Karsten Buschard
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan Gerling
- Department of Medicine, University of Tennessee, Memphis, Tennessee, USA
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Nishio K, Pasquet L, Camara K, DiSapio J, Hsu KS, Kato S, Bloom A, Richardson SK, Welsh JA, Jiang T, Jones JC, Cardell S, Watarai H, Terabe M, Olkhanud PB, Howell AR, Berzofsky JA. Lysosomal processing of sulfatide analogs alters target NKT cell specificity and immune responses in cancer. J Clin Invest 2023; 134:e165281. [PMID: 38127463 PMCID: PMC10866642 DOI: 10.1172/jci165281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding β-galactosylceramide (βGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.
Collapse
Affiliation(s)
- Kumiko Nishio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kaddy Camara
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Julia DiSapio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Kevin S. Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anja Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | - Joshua A. Welsh
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Tianbo Jiang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jennifer C. Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Akkaya B, Akkaya R, Nazlim A. Magnetic chitosan oligomer-sulfonate-stearic acid triple combination as cisplatin carrier for site-specific targeted on MCF-7 cancer cells: Preparation, characterization and in vitro experiments. Chem Biol Drug Des 2023; 102:692-706. [PMID: 37303090 DOI: 10.1111/cbdd.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new amphiphilic target-specific adsorbent, chitosan oligomer-sulfonate-stearic acid triple combination (S-Cho-SA), and magnetic chitosan oligomer-sulfonate-stearic acid triple combination (M-S-Cho-SA) by oleic acid (OA)-modified Fe3 O4 via hydrophobic interaction are fabricated. By modifying the nanoparticle surfaces and having the ability to magnetically allow the target region, these particles attract attention as important particles used in targeting mechanisms in cancer therapy. With magnetic nanoparticles and an external magnetic field, it is possible to transport therapeutic agents to the target site and keep them in the desired effect zone for a longer period of time. These new adsorbents are characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TG/DTA). After chemical characterization, it is complexed with cisplatin (CDDP). The magnetic adsorbents were loaded with high efficiency (>50%), and the release experiments exhibited that cisplatin is released more at pH 4.5 compared with pH 7.4 at 37°C. It showed better drug release results under a magnetic field for magnetic adsorbents (36% for pH 4.5 and 3.6% for pH 7.4). The biocompatibility of the prepared adsorbents was demonstrated via the XTT assay in MCF-7 cell lines. The results also exhibited that S-Cho-SA and M-S-Cho-SA were biocompatible, and free cisplatin and cisplatin-complexed adsorbents showed an antiproliferative effect. The results showed that these new cisplatin-loaded (M-S-Cho-SA) nanoparticles are good candidates for thermotherapy in cancer treatment in the future, as they can provide selectivity by site-specific targeting and hold onto an alternative magnetic field due to the magnetic nature of the nanoparticles.
Collapse
Affiliation(s)
- Birnur Akkaya
- Cumhuriyet University Science Faculty, Molecular Biology and Genetics Department, Sivas, Turkey
| | - Recep Akkaya
- Cumhuriyet University Medicine Faculty, Biophysic Department, Sivas, Turkey
| | - Arife Nazlim
- Cumhuriyet University Science Faculty, Molecular Biology and Genetics Department, Sivas, Turkey
| |
Collapse
|
5
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
7
|
Insulin Independence in Newly Diagnosed Type 1 Diabetes Patient following Fenofibrate Treatment. Case Rep Med 2020; 2020:6865190. [PMID: 32508930 PMCID: PMC7245672 DOI: 10.1155/2020/6865190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
A 19-year-old girl was diagnosed with type 1 diabetes and showing polydipsia and polyuria. She was double autoantibody-positive and had a diabetes-prone tissue type. She was immediately started on insulin. Fenofibrate treatment (160 mg daily) was initiated seven days after diagnosis. The need for insulin quickly declined, and she took her last dose of insulin 19 days after the first dose of fenofibrate, having regained endogenous control of blood glucose concentrations. She has now been insulin independent for one year and 9 months. Unstimulated C-peptide has increased by 51% (317 to 479 pmol/l), and IA-2 autoantibody level has decreased by 65% (49 to 17 × 103 arbitrary units). Fenofibrate is a widely used drug for reducing triglyceride and cholesterol levels. Fenofibrate reverses and prevents autoimmune diabetes in nonobese diabetic (NOD) mice by increasing the amount of the sphingolipid sulfatide in islets. Sphingolipid metabolism is otherwise abnormal in the islets at diagnosis of type 1 diabetes. In conclusion, we describe a 19-year-old patient with classical newly diagnosed type 1 diabetes, which following fenofibrate treatment has been without insulin for 21 months.
Collapse
|
8
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.
Collapse
|
9
|
Holm LJ, Haupt-Jorgensen M, Giacobini JD, Hasselby JP, Bilgin M, Buschard K. Fenofibrate increases very-long-chain sphingolipids and improves blood glucose homeostasis in NOD mice. Diabetologia 2019; 62:2262-2272. [PMID: 31410530 PMCID: PMC6861358 DOI: 10.1007/s00125-019-04973-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Sphingolipid metabolism regulates beta cell biology and inflammation and is abnormal at the onset of type 1 diabetes. Fenofibrate, a regulator of sphingolipid metabolism, is known to prevent diabetes in NOD mice. Here, we aimed to investigate the effects of fenofibrate on the pancreatic lipidome, pancreas morphology, pancreatic sympathetic nerves and blood glucose homeostasis in NOD mice. METHODS We treated female NOD mice with fenofibrate from 3 weeks of age. The pancreatic lipidome was analysed using MS. Analysis of pancreas and islet volume was performed by stereology. Islet sympathetic nerve fibre volume was evaluated using tyrosine hydroxylase staining. The effect on blood glucose homeostasis was assessed by measuring non-fasting blood glucose from age 12 to 30 weeks. Furthermore, we measured glucose tolerance, fasting insulin and glucagon levels, and insulin tolerance. RESULTS We found that fenofibrate selectively increases the amount of very-long-chain sphingolipids in the pancreas of NOD mice. In addition, we found that fenofibrate causes a remodelling of the pancreatic lipidome with an increased amount of lysoglycerophospholipids. Fenofibrate did not affect islet or pancreas volume, but led to a higher volume of islet sympathetic nerve fibres and tyrosine hydroxylase-positive cells. Fenofibrate-treated NOD mice had a more stable blood glucose, which was associated with reduced non-fasting and increased fasting blood glucose. Furthermore, fenofibrate improved glucose tolerance, reduced fasting glucagon levels and prevented fasting hyperinsulinaemia. CONCLUSIONS/INTERPRETATION These data indicate that fenofibrate alters the pancreatic lipidome to a more anti-inflammatory and anti-apoptotic state. The beneficial effects on islet sympathetic nerve fibres and blood glucose homeostasis indicate that fenofibrate could be used as a therapeutic approach to improve blood glucose homeostasis and prevent diabetes-associated pathologies.
Collapse
Affiliation(s)
- Laurits J Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Haupt-Jorgensen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jano D Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
10
|
Pan H, Zhang G, Nie H, Li S, He S, Yang J. Sulfatide-activated type II NKT cells suppress immunogenic maturation of lung dendritic cells in murine models of asthma. Am J Physiol Lung Cell Mol Physiol 2019; 317:L578-L590. [PMID: 31432714 DOI: 10.1152/ajplung.00256.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our previous study showed that sulfatide-activated type II natural killer T (NKT) cells can prevent allergic airway inflammation in an ovalbumin (OVA)-induced murine model of asthma, but the underlying mechanism is unclear. Recently, sulfatide-activated type II NKT cells were shown to modulate the function of dendritic cells in experimental autoimmune encephalomyelitis and nonobese diabetic mice. Thus, it was hypothesized that sulfatide-activated type II NKT cells may modulate the function of lung dendritic cells (LDCs) in asthmatic mice. Our data showed that, in our mouse models, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells resulted in reduced expression of surface maturation markers and proinflammatory cytokine production of LDCs. LDCs from sulfatide-treated asthmatic mice, in contrast to LDCs from PBS-treated asthmatic mice, significantly reduced allergic airway inflammation in vivo. However, we found no influence of sulfatide-activated type II NKT cells on the phenotypic and functional maturation of bone marrow-derived dendritic cells in vitro. In addition, adoptive transfer of sulfatide-activated type II NKT cells did not influence the phenotypic and functional maturation of LDCs in CD1d-/- mice, which lack both type I and II NKT cells, immunized and challenged with OVA. Our data reveal that sulfatide-activated type II NKT cells can suppress immunogenic maturation of LDCs to reduce allergic airway inflammation in mouse models of asthma, and it is possible that the immunomodulatory effect needs type I NKT cells.
Collapse
Affiliation(s)
- Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guqin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuhua Li
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaojun He
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Marrero I, Maricic I, Feldstein AE, Loomba R, Schnabl B, Rivera-Nieves J, Eckmann L, Kumar V. Complex Network of NKT Cell Subsets Controls Immune Homeostasis in Liver and Gut. Front Immunol 2018; 9:2082. [PMID: 30254647 PMCID: PMC6141878 DOI: 10.3389/fimmu.2018.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022] Open
Abstract
The liver-gut immune axis is enriched in several innate immune cells, including innate-like unconventional and adaptive T cells that are thought to be involved in the maintenance of tolerance to gut-derived antigens and, at the same time, enable effective immunity against microbes. Two subsets of lipid-reactive CD1d-restricted natural killer T (NKT) cells, invariant NKT (iNKT) and type II NKT cells present in both mice and humans. NKT cells play an important role in regulation of inflammation in the liver and gut due to their innate-like properties of rapid secretion of a myriad of pro-inflammatory and anti-inflammatory cytokines and their ability to influence other innate cells as well as adaptive T and B cells. Notably, a bi-directional interactive network between NKT cells and gut commensal microbiota plays a crucial role in this process. Here, we briefly review recent studies related to the cross-regulation of both NKT cell subsets and how their interactions with other immune cells and parenchymal cells, including hepatocytes and enterocytes, control inflammatory diseases in the liver, such as alcoholic and non-alcoholic steatohepatitis, as well as inflammation in the gut. Overwhelming experimental data suggest that while iNKT cells are pathogenic, type II NKT cells are protective in the liver. Since CD1d-dependent pathways are highly conserved from mice to humans, a detailed cellular and molecular understanding of these immune regulatory pathways will have major implications for the development of novel therapeutics against inflammatory diseases of liver and gut.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Igor Maricic
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bernd Schnabl
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jesus Rivera-Nieves
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Vipin Kumar
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Singh AK, Tripathi P, Cardell SL. Type II NKT Cells: An Elusive Population With Immunoregulatory Properties. Front Immunol 2018; 9:1969. [PMID: 30210505 PMCID: PMC6120993 DOI: 10.3389/fimmu.2018.01969] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells are unique unconventional T cells that are reactive to lipid antigens presented on the non-polymorphic major histocompatibility class (MHC) I-like molecule CD1d. They have characteristics of both innate and adaptive immune cells, and have potent immunoregulatory roles in tumor immunity, autoimmunity, and infectious diseases. Based on their T cell receptor (TCR) expression, NKT cells are divided into two subsets, type I NKT cells with an invariant TCRα-chain (Vα24 in humans, Vα14 in mice) and type II NKT cells with diverse TCRs. While type I NKT cells are well-studied, knowledge about type II NKT cells is still limited, and it is to date only possible to identify subsets of this population. However, recent advances have shown that both type I and type II NKT cells play important roles in many inflammatory situations, and can sometimes regulate the functions of each other. Type II NKT cells can be both protective and pathogenic. Here, we review current knowledge on type II NKT cells and their functions in different disease settings and how these cells can influence immunological outcomes.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Novakova L, Singh AK, Axelsson M, Ståhlman M, Adiels M, Malmeström C, Zetterberg H, Borén J, Lycke J, Cardell SL, Blomqvist M. Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J Neurochem 2018; 146:322-332. [DOI: 10.1111/jnc.14452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Lenka Novakova
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Marcus Ståhlman
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Molecular Neuroscience; UCL Institute of Neurology; Queen Square; London UK
- UK Dementia Research Institute at UCL; London UK
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Henrik Zetterberg
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
- Health Metrics Unit; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Susanna L. Cardell
- Department of Microbiology and Immunology; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
14
|
Holm LJ, Krogvold L, Hasselby JP, Kaur S, Claessens LA, Russell MA, Mathews CE, Hanssen KF, Morgan NG, Koeleman BPC, Roep BO, Gerling IC, Pociot F, Dahl-Jørgensen K, Buschard K. Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia 2018; 61:1650-1661. [PMID: 29671030 PMCID: PMC6445476 DOI: 10.1007/s00125-018-4614-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .
Collapse
Affiliation(s)
- Laurits J Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Odontology, University of Oslo, Oslo, Norway
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Laura A Claessens
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical Genetics, University Medical Center, Utrecht, the Netherlands
| | - Mark A Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Clayton E Mathews
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Kristian F Hanssen
- Faculty of Odontology, University of Oslo, Oslo, Norway
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center, Utrecht, the Netherlands
| | - Bart O Roep
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | | | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
15
|
Holm LJ, Haupt-Jorgensen M, Larsen J, Giacobini JD, Bilgin M, Buschard K. L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice. PLoS One 2018; 13:e0194414. [PMID: 29543915 PMCID: PMC5854405 DOI: 10.1371/journal.pone.0194414] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/03/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingolipids are a diverse group of lipids with important roles in beta-cell biology regulating insulin folding and controlling apoptosis. Sphingolipid biosynthesis begins with the condensation of L-serine and palmitoyl-CoA. Here we tested the effect of L-serine supplementation on autoimmune diabetes development and blood glucose homeostasis in female NOD mice. We found that continuous supplementation of L-serine reduces diabetes incidence and insulitis score. In addition, L-serine treated mice had an improved glucose tolerance test, reduced HOMA-IR, and reduced blood glucose levels. L-serine led to a small reduction in body weight accompanied by reduced food and water intake. L-serine had no effect on pancreatic sphingolipids as measured by mass spectrometry. The data thus suggests that L-serine could be used as a therapeutic supplement in the treatment of Type 1 Diabetes and to improve blood glucose homeostasis.
Collapse
Affiliation(s)
- Laurits J. Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | | | - Jesper Larsen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Jano D. Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
Torina A, Guggino G, La Manna MP, Sireci G. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases. Int J Mol Sci 2018; 19:ijms19020440. [PMID: 29389901 PMCID: PMC5855662 DOI: 10.3390/ijms19020440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells) and adaptive immunity (CD4⁺,CD8⁺, and double negative T cells) should be important to design potential immunotherapies for infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Torina
- Experimental Zooprophylactic Institute of Sicily, Via Marinuzzi 3, 90100 Palermo, Italy.
| | - Giuliana Guggino
- Biomedical Department of Internal and Specialized Medicine, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90100 Palermo, Italy.
| | - Marco Pio La Manna
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| | - Guido Sireci
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
17
|
Dhodapkar MV, Kumar V. Type II NKT Cells and Their Emerging Role in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:1015-1021. [PMID: 28115591 DOI: 10.4049/jimmunol.1601399] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
NKT cells recognize lipid Ags presented by a class I MHC-like molecule CD1d, a member of the CD1 family. Although most initial studies on NKT cells focused on a subset with semi-invariant TCR termed invariant NKT cells, the majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self-lipid ligands, and share some properties with both invariant NKT and conventional T cells. An emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. An improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Section of Hematology, Department of Medicine, Yale School of Medicine, Yale University, New Haven CT 06510; .,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven CT 06510.,Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06510; and
| | - Vipin Kumar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
18
|
Moyano AL, Li G, Boullerne AI, Feinstein DL, Hartman E, Skias D, Balavanov R, Breemen RB, Bongarzone ER, Månsson J, Givogri MI. Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients. J Neurosci Res 2016; 94:1579-1587. [DOI: 10.1002/jnr.23899] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Guannan Li
- Department of Medical Chemistry and Pharmacognosy, College of PharmacyUniversity of Illinois at ChicagoChicago Illinois
| | - Anne I. Boullerne
- Department of Anesthesiology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Douglas L. Feinstein
- Department of Anesthesiology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
- Department of Veterans AffairsJesse Brown VA Medical CenterChicago Illinois
| | - Elizabeth Hartman
- Center for Neurosciences, Orthopedics and Spine, PC in Dakota Dunes South Dakota
| | - Demetrios Skias
- Neurology and Rehabilitation MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Roumen Balavanov
- Department of NeurologyRush University Medical CenterChicago Illinois
| | - Richard B. Breemen
- Department of Medical Chemistry and Pharmacognosy, College of PharmacyUniversity of Illinois at ChicagoChicago Illinois
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Jan‐Eric Månsson
- Institute of Clinical ChemistrySahlgrenska Academy, University of GothenburgGothenburg Sweden
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| |
Collapse
|
19
|
Dasgupta S, Kumar V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 2016; 68:665-76. [PMID: 27405300 PMCID: PMC6334657 DOI: 10.1007/s00251-016-0930-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
20
|
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13:337-46. [PMID: 26972772 PMCID: PMC4856801 DOI: 10.1038/cmi.2015.115] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Idania Marrero
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2016; 38:484-95. [PMID: 27013448 PMCID: PMC6138260 DOI: 10.1016/j.bj.2015.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
- Celine Tard
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Ophelie Rouxel
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Agnes Lehuen
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
22
|
Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 2016; 15:726-35. [PMID: 26971464 DOI: 10.1016/j.autrev.2016.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 01/13/2023]
Abstract
One of the most common human autoimmune diseases, alopecia areata (AA), is characterized by sudden, often persisting and psychologically devastating hair loss. Animal models have helped greatly to elucidate critical cellular and molecular immune pathways in AA. The two most prominent ones are inbred C3H/HeJ mice which develop an AA-like hair phenotype spontaneously or after experimental induction, and healthy human scalp skin xenotransplanted onto SCID mice, in which a phenocopy of human AA is induced by injecting IL-2-stimulated PBMCs enriched for CD56+/NKG2D+ cells intradermally. The current review critically examines the pros and cons of the available AA animal models and how they have shaped our understanding of AA pathobiology, and the development of new therapeutic strategies. AA is thought to arise when the hair follicle's (HF) natural immune privilege (IP) collapses, inducing ectopic MHC class I expression in the HF epithelium and autoantigen presentation to autoreactive CD8+ T cells. In common with other autoimmune diseases, upregulation of IFN-γ and IL-15 is critically implicated in AA pathogenesis, as are NKG2D and its ligands, MICA, and ULBP3. The C3H/HeJ mouse model was used to identify key immune cell and molecular principles in murine AA, and proof-of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via the JAK pathway. Instead, the humanized mouse model of AA has been used to demonstrate the previously hypothesized key role of CD8+ T cells and NKG2D+ cells in AA pathogenesis and to discover human-specific pharmacologic targets like the potassium channel Kv1.3, and to show that the PDE4 inhibitor, apremilast, inhibits AA development in human skin. As such, AA provides a model disease, in which to contemplate general challenges, opportunities, and limitations one faces when selecting appropriate animal models in preclinical research for human autoimmune diseases.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Flieman Medical Center, PO Box 9649, Haifa, Israel.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amos Etzioni
- Ruth Children Hospital, Haifa, Israel; Rappaport Medical School, Technion, Haifa, Israel
| | - Herman Waldmann
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ralf Paus
- Centre for Dermatology Research, Inst. of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Macho-Fernandez E, Brigl M. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Front Immunol 2015; 6:362. [PMID: 26284062 PMCID: PMC4517383 DOI: 10.3389/fimmu.2015.00362] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Brigl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Wang HP, He ZG. Treatment with incomplete Freund's adjuvant and Listeria monocytogenes delays diabetes via an interleukin-17-secretion-independent pathway. Exp Ther Med 2015; 9:1934-1938. [PMID: 26136917 DOI: 10.3892/etm.2015.2328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/12/2014] [Indexed: 11/06/2022] Open
Abstract
Non-obese diabetes (NOD) mice are widely used as an animal model in studies of type I diabetes (TID). Treatment with complete Freund's adjuvant (CFA) in pro-diabetic NOD mice is known to inhibit disease progression by activating CD1d-specific natural killer (NK) T cells and inducing interleukin (IL)-17 secretion in innate immune cells. The aim of the present study was to examine the effect of incomplete Freund's adjuvant (IFA) and L. monocytogenes treatment on the development of TID in NOD mice. This combined treatment of IFA and L. monocytogenes, a microbe that infects the liver and is primarily combatted by NK and cytotoxic T lymphocytes, was applied to mimic CFA treatment in pro-diabetic NOD mice. The combined IFA + L. monocytogenes treatment effectively delayed TID development in the NOD mice. In contrast to CFA, the IFA + L. monocytogenes treatment did not induce T cells or innate immune cells to secrete IL-17. However, increased levels of regulatory T cells were detected. Furthermore, IFA + L. monocytogenes mice exhibited higher levels of IgG2a, although no notable T helper 1 cell response was observed when compared with the CFA or IFA control treated mice. Therefore, combined IFA + L. monocytogenes treatment was shown to delay TID development in NOD mice via a novel mechanism, which was independent from the secretion of IL-17 by CFA-activated NKT cells.
Collapse
Affiliation(s)
- Hai-Ping Wang
- Department of Pharmacy, East Hospital of Tongji University, Shanghai 200120, P.R. China
| | - Zhi-Gao He
- Department of Pharmacy, East Hospital of Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
25
|
Marrero I, Ware R, Kumar V. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front Immunol 2015; 6:316. [PMID: 26136748 PMCID: PMC4470258 DOI: 10.3389/fimmu.2015.00316] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Randle Ware
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
26
|
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
| | | | - Agnes Lehuen
- Laboratory "Immunology of Diabetes" U1016 INSERM Institut Cochin; CNRS UMR8104; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité; DHU Authors, Hôpital Cochin, 75014, Paris, France
| |
Collapse
|
27
|
Maricic I, Sheng H, Marrero I, Seki E, Kisseleva T, Chaturvedi S, Molle N, Mathews KS, Gao B, Kumar V. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology 2015; 61:1357-69. [PMID: 25477000 PMCID: PMC4376634 DOI: 10.1002/hep.27632] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/26/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Innate immune mechanisms leading to liver injury subsequent to chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD). We found that after chronic plus binge feeding of Lieber-DeCarli liquid diet in male C57BL/6 mice, type I, but not type II, NKT cells are activated, leading to recruitment of inflammatory Gr-1(high) CD11b(+) cells into the liver. A central finding is that liver injury after alcohol feeding is dependent upon type I NKT cells. Thus, liver injury is significantly inhibited in Jα18(-/-) mice deficient in type I NKT cells as well as after their inactivation by sulfatide-mediated activation of type II NKT cells. Furthermore, we have identified a novel pathway involving all-trans retinoic acid (ATRA) and its receptor (RARγ) signaling that inhibits type I NKT cells and, consequently, ALD. A semiquantitative polymerase chain reaction analysis of hepatic gene expression of some of the key proinflammatory molecules shared in human disease indicated that their up-regulation in ALD is dependent upon type I NKT cells. CONCLUSIONS Type I, but not type II, NKT cells become activated after alcohol feeding. Type I NKT cell-induced inflammation and neutrophil recruitment results in liver tissue damage whereas type II NKT cells protect from injury in ALD. Inhibition of type I NKT cells by retinoids or by sulfatide prevents ALD. Given that the CD1d pathway is highly conserved between mice and humans, NKT cell subsets might be targeted for potential therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Huiming Sheng
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Idania Marrero
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Ehikiro Seki
- Division of Gastroenterology, Department of Medicine, UCSD, La Jolla, CA 92037, USA
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, UCSD, La Jolla, CA 92037, USA
| | - Som Chaturvedi
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Natasha Molle
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | - Bin Gao
- NIH, Bathesda, MD 20892, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| |
Collapse
|
28
|
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 2014; 142:321-36. [PMID: 24428389 DOI: 10.1111/imm.12247] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | | |
Collapse
|
29
|
Maricic I, Girardi E, Zajonc DM, Kumar V. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:4580-9. [PMID: 25261475 DOI: 10.4049/jimmunol.1400699] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
30
|
Maricic I, Halder R, Bischof F, Kumar V. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1035-46. [PMID: 24973441 DOI: 10.4049/jimmunol.1302898] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Ramesh Halder
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Felix Bischof
- Department of Neurology, University of Tubingen, Tubingen D-72076, Germany
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
31
|
Rhost S, Lofbom L, Mansson JE, Lehuen A, Blomqvist M, Cardell SL. Administration of sulfatide to ameliorate type I diabetes in non-obese diabetic mice. Scand J Immunol 2014; 79:260-6. [PMID: 24795987 DOI: 10.1111/sji.12157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The endogenous glycosphingolipid sulfatide is a ligand for CD1d-restricted type II natural killer T (NKT) lymphocytes. Through the action of these cells,sulfatide treatment has been shown to modulate the immune response in mouse models for autoimmune diseases, infections and tumour immunity. Sulfatide exists naturally in different organs including the pancreas, where sulfatide colocalizes with insulin within the Langerhans islet b-cells, targets for the immune destruction in type 1 diabetes (T1D). Human T1D patients, but not patients with type 2 diabetes nor healthy individuals, have autoantibodies against sulfatide in serum, suggesting that sulfatide induces an immune response in the natural course of T1D in humans. Here, we investigate sulfatide as an autoantigen and a modulator of autoimmune disease in the murine model forT1D, the non-obese diabetic (NOD) mice. We demonstrate that aged NOD mice displayed serum autoantibody reactivity to sulfatide; however, this reactivity did not correlate with onset of T1D. Repeated administration of sulfatide did not result in an increase in serum reactivity to sulfatide. Moreover, a multidose sulfatide treatment of female NOD mice initiated at an early (5 weeks of age),intermediate (8 weeks of age) or late (12 weeks of age) phase of T1D progression did not influence the incidence of disease. Thus, we demonstrate that a fraction of NOD mice develop autoantibody reactivity to sulfatide; however, we fail to demonstrate that sulfatide treatment reduces the incidence of T1D in this mouse strain.
Collapse
|
32
|
Terabe M, Berzofsky JA. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 2014; 63:199-213. [PMID: 24384834 DOI: 10.1007/s00262-013-1509-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022]
Abstract
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 41-Room D702, 41 Medlars Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
33
|
Bodin J, Bølling AK, Becher R, Kuper F, Løvik M, Nygaard UC. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 2013; 137:311-23. [PMID: 24189131 DOI: 10.1093/toxsci/kft242] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.
Collapse
Affiliation(s)
- Johanna Bodin
- * Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
34
|
Grant CW, Moran-Paul CM, Duclos SK, Guberski DL, Arreaza-Rubín G, Spain LM. Testing agents for prevention or reversal of type 1 diabetes in rodents. PLoS One 2013; 8:e72989. [PMID: 24023664 PMCID: PMC3758263 DOI: 10.1371/journal.pone.0072989] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/23/2013] [Indexed: 01/29/2023] Open
Abstract
We report the results of an independent laboratory's tests of novel agents to prevent or reverse type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse, BioBreeding diabetes prone (BBDP) rat, and multiple autoimmune disease prone (MAD) rat models. Methods were developed to better mimic human clinical trials, including: prescreening, randomization, blinding, and improved glycemic care of the animals. Agents were suggested by the research community in an open call for proposals, and selected for testing by an NIDDK appointed independent review panel. Agents selected for testing to prevent diabetes at later stages of progression in a rodent model were a STAT4 antagonist (DT22669), alpha1 anti-trypsin (Aralast NP), celastrol (a natural product with anti-inflammatory properties), and a Macrophage Inflammatory Factor inhibitor (ISO-092). Agents tested for reversal of established T1D in rodent models were: alpha1 anti-trypsin (Aralast NP), tolerogenic peptides (Tregitopes), and a long-acting formulation of GLP-1 (PGC-GLP-1). None of these agents were seen to prevent or reverse type 1 diabetes, while the positive control interventions were effective: anti-CD3 treatment provided disease reversal in the NOD mouse, dexamethasone prevented T1D induction in the MAD rat, and cyclosporin prevented T1D in the BBDP rat. For some tested agents, details of previous formulation, delivery, or dosing, as well as laboratory procedure, availability of reagents and experimental design, could have impacted our ability to confirm prior reports of efficacy in preclinical animal models. In addition, the testing protocols utilized here provided detection of effects in a range commonly used in placebo controlled clinical trials (for example, 50% effect size), and thus may have been underpowered to observe more limited effects. That said, we believe the results compiled here, showing good control and repeatability, confirm the feasibility of screening diverse test agents in an independent laboratory.
Collapse
Affiliation(s)
- Christian W. Grant
- Biomedical Research Models (BRM), Inc., Worcester and Springfield, Massachusetts, United States of America
| | - Catherine M. Moran-Paul
- Biomedical Research Models (BRM), Inc., Worcester and Springfield, Massachusetts, United States of America
| | - Shane K. Duclos
- Biomedical Research Models (BRM), Inc., Worcester and Springfield, Massachusetts, United States of America
| | - Dennis L. Guberski
- Biomedical Research Models (BRM), Inc., Worcester and Springfield, Massachusetts, United States of America
| | - Guillermo Arreaza-Rubín
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Lisa M. Spain
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|
36
|
Moyano AL, Pituch K, Li G, van Breemen R, Mansson JE, Givogri MI. Levels of plasma sulfatides C18 : 0 and C24 : 1 correlate with disease status in relapsing-remitting multiple sclerosis. J Neurochem 2013; 127:600-4. [DOI: 10.1111/jnc.12341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Ana L Moyano
- Department of Anatomy and Cell Biology; College of Medicine; University of Illinois at Chicago; Chicago Illinois USA
| | - Katarzyna Pituch
- Department of Anatomy and Cell Biology; College of Medicine; University of Illinois at Chicago; Chicago Illinois USA
| | - Guanan Li
- Department of Medical Chemistry and Pharmacognosy; College of Pharmacy; University of Illinois at Chicago; Chicago Illinois USA
| | - Richard van Breemen
- Department of Medical Chemistry and Pharmacognosy; College of Pharmacy; University of Illinois at Chicago; Chicago Illinois USA
| | - Jan E Mansson
- Institute of Neuroscience and Physiology; The Sahlgrenska Academy, University of Gothenburg; Mölndal Sweden
| | - Maria I Givogri
- Department of Anatomy and Cell Biology; College of Medicine; University of Illinois at Chicago; Chicago Illinois USA
| |
Collapse
|
37
|
Pham MN, Kolb H, Battelino T, Ludvigsson J, Pozzilli P, Zivehe F, Roden M, Mandrup-Poulsen T, Schloot NC. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes. Diabetologia 2013; 56:1356-63. [PMID: 23494449 DOI: 10.1007/s00125-013-2883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/14/2013] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes. METHODS The beta cell function of 118 patients with type 1 diabetes of duration of 0.75-4.97 years was tested using a standardised liquid mixed meal test (MMT). Serum samples obtained at -5 to 120 min were analysed by multiplex bead-based technology for proinflammatory (IL-6, TNF-α), anti-inflammatory (IL-1 receptor antagonist [IL-1RA]) and regulatory (IL-10, TGF-β1-3) cytokines, and by standard procedures for C-peptide. Differences in beta cell function between patient groups were assessed using stepwise multiple regression analysis adjusting for sex, age, duration of diabetes, BMI, HbA1c and fasting blood glucose. RESULTS High fasting systemic concentrations of the proinflammatory cytokines IL-6 and TNF-α were associated with increased fasting and stimulated C-peptide concentrations even after adjustment for confounders (p < 0.03). Interestingly, increased concentrations of anti-inflammatory/regulatory IL-1RA, IL-10, TGF-β1 and TGF-β2 were associated with lower fasting and stimulated C-peptide levels (p < 0.04), losing significance on adjustment for anthropometric variables. During the MMT, circulating concentrations of IL-6 and TNF-α increased (p < 0.001) while those of IL-10 and TGF-β1 decreased (p < 0.02) and IL-1RA and TGF-β2 remained unchanged. CONCLUSIONS/INTERPRETATION The association between better preserved beta cell function in longer term type 1 diabetes and increased systemic proinflammatory cytokines and decreased anti-inflammatory and regulatory cytokines is suggestive of ongoing inflammatory disease activity that might be perpetuated by the remaining beta cells. These findings should be considered when designing immune intervention studies aimed at patients with longer term type 1 diabetes and residual beta cell function.
Collapse
Affiliation(s)
- M N Pham
- Institute for Clinical Diabetology at the German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Haghighi S, Lekman A, Nilsson S, Blomqvist M, Andersen O. Increased CSF sulfatide levels and serum glycosphingolipid antibody levels in healthy siblings of multiple sclerosis patients. J Neurol Sci 2013; 326:35-9. [DOI: 10.1016/j.jns.2013.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 01/21/2023]
|
39
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
40
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
41
|
Buschard K, Månsson JE, Roep BO, Nikolic T. Self-glycolipids modulate dendritic cells changing the cytokine profiles of committed autoreactive T cells. PLoS One 2012; 7:e52639. [PMID: 23285123 PMCID: PMC3527583 DOI: 10.1371/journal.pone.0052639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/19/2012] [Indexed: 12/17/2022] Open
Abstract
The impact of glycolipids of non-mammalian origin on autoimmune inflammation has become widely recognized. Here we report that the naturally occurring mammalian glycolipids, sulfatide and β-GalCer, affect the differentiation and the quality of antigen presentation by monocyte-derived dendritic cells (DCs). In response to sulfatide and β-GalCer, monocytes develop into immature DCs with higher expression of HLA-DR and CD86 but lower expression of CD80, CD40 and CD1a and lower production of IL-12 compared to non-modulated DCs. Self-glycolipid-modulated DCs responded to lipopolysaccharide (LPS) by changing phenotype but preserved low IL-12 production. Sulfatide, in particular, reduced the capacity of DCs to stimulate autoreactive Glutamic Acid Decarboxylase (GAD65) - specific T cell response and promoted IL-10 production by the GAD65-specific clone. Since sulfatide and β-GalCer induced toll-like receptor (TLR)-mediated signaling, we hypothesize that self-glycolipids deliver a (tolerogenic) polarizing signal to differentiating DCs, facilitating the maintenance of self-tolerance under proinflammatory conditions.
Collapse
|
42
|
Viale R, Ware R, Maricic I, Chaturvedi V, Kumar V. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation. ACTA ACUST UNITED AC 2012; 8:287-296. [PMID: 25288922 DOI: 10.2174/157339512804806224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans. While most type I NKT cells can recognize αGalCer and express a semi-invariant T cell receptor (TCR), a major population of type II NKT cells reactive to sulfatide utilizes an oligoclonal TCR. Furthermore TCR recognition features of NKT subsets are also distinctive with almost parallel as opposed to perpendicular footprints on the CD1d molecules for the type I and type II NKT cells respectively. Here we present a view based upon the recent studies in different clinical and experimental settings that while type I NKT cells are more often pathogenic, they may also be regulatory. On the other hand, sulfatide-reactive type II NKT cells mostly play an inhibitory role in the control of autoimmune and inflammatory diseases. Since the activity and cytokine secretion profiles of NKT cell subsets can be modulated differently by lipid ligands or their analogs, novel immunotherapeutic strategies are being developed for their differential activation for potential intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Rachael Viale
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Randle Ware
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Varun Chaturvedi
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| |
Collapse
|
43
|
Rhost S, Sedimbi S, Kadri N, Cardell SL. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol 2012; 76:246-55. [PMID: 22724893 DOI: 10.1111/j.1365-3083.2012.02750.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer T (NKT) lymphocytes are αβ T cells activated by lipid-based ligands presented on the non-polymorphic CD1d-molecule. Type I NKT cells that carry an invariant Vα14 (in the mouse) or Vα24 (in humans) T cell receptor α-chain rearrangement have received significant attention for their involvement in a diversity of immune reactions. Their sister population, CD1d-restricted type II NKT cells, has been more difficult to study because of the lack of molecular markers that specify these cells. In the last few years, however, significant progress has been made, demonstrating that type II NKT cells have unique functions in immune responses to tumours and infections, in autoimmunity, obesity and graft-versus-host disease. Type II NKT cells appear more frequent than type I NKT cells in humans and accumulate in certain diseases such as ulcerative colitis, hepatitis and multiple myeloma. Recently, novel type II NKT cell ligands have been identified, and it is becoming clear that the type II NKT cell population may be oligoclonal. Here, we review the recent progress in the study of type II NKT cells, supporting the view that type II NKT cells may be attractive targets for immunotherapy.
Collapse
Affiliation(s)
- S Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
44
|
Girardi E, Maricic I, Wang J, Mac TT, Iyer P, Kumar V, Zajonc DM. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol 2012; 13:851-6. [PMID: 22820602 PMCID: PMC3442777 DOI: 10.1038/ni.2371] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/30/2012] [Indexed: 12/14/2022]
Abstract
Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Autoantigens/immunology
- Crystallization
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Mice
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Sulfoglycosphingolipids/immunology
- Surface Plasmon Resonance
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|