1
|
Davies I, Adriaenssens AE, Scott WR, Carling D, Murphy KG, Minnion JS, Bloom SR, Jones B, Tan TMM. Chronic GIPR agonism results in pancreatic islet GIPR functional desensitisation. Mol Metab 2025; 92:102094. [PMID: 39788289 DOI: 10.1016/j.molmet.2025.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure. METHODS A long-acting GIPR agonist, GIP108, was used to probe the effect of sustained agonist exposure on cAMP responses in dispersed pancreatic islets using live cell imaging, with rechallenge cAMP responses after prior agonist treatment used to quantify functional desensitisation. Receptor internalisation and β-arrestin-2 activation were investigated in vitro using imaging-based assays. Pancreatic mouse GIPR desensitisation was assessed in vivo via intraperitoneal glucose tolerance testing. RESULTS GIP108 treatment led to weight loss and improved glucose homeostasis in mice. Prolonged exposure to GIPR agonists produced homologous functional GIPR desensitisation in isolated islets. GIP108 pre-treatment in vivo also reduced the subsequent anti-hyperglycaemic response to GIP re-challenge. GIPR showed minimal agonist-induced internalisation or β-arrestin-2 activation. CONCLUSIONS Although GIP108 chronic treatment improved glucose tolerance, it also resulted in partial desensitisation of the pancreatic islet GIPR. This suggests that ligands with reduced desensitisation tendency might lead to improved in vivo efficacy. Understanding whether pancreatic GIPR desensitisation affects the long-term benefits of GIPR agonists in humans is vital to design effective metabolic pharmacotherapies.
Collapse
Affiliation(s)
- Iona Davies
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom
| | - Alice E Adriaenssens
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - William R Scott
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - David Carling
- MRC Laboratory of Medical Sciences, London, United Kingdom
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom
| | - James S Minnion
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom.
| | - Tricia M-M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
2
|
Kim MK, Kim HS. An Overview of Existing and Emerging Weight-Loss Drugs to Target Obesity-Related Complications: Insights from Clinical Trials. Biomol Ther (Seoul) 2025; 33:5-17. [PMID: 39696983 PMCID: PMC11704407 DOI: 10.4062/biomolther.2024.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Obesity requires treatment as it is associated with health problems such as type 2 diabetes, hypertension, dyslipidemia, cardiovascular diseases, and some cancers, which increase mortality rates. Achieving sufficient weight loss to reduce obesity-related diseases requires a variety of interventions, including comprehensive lifestyle modification of diet and exercise, change in behavior, anti-obesity medications, and surgery. To date, anti-obesity agents with various mechanisms of action have been developed, and mostly reduce energy intake, resulting in weight loss of about 5% to 10% compared to baseline. Recently developed drugs and those currently under development have been shown to reduce body weight by more than 10% and are expected to reduce obesity-related complications. This article summarizes existing and emerging anti-obesity medications, with a particular focus on those evaluated in clinical trials.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Department of Internal Medicine, Keimyung University, School of Medicine, Dongsan Hospital, Daegu 42601, Republic of Korea
- Center of Bariatric and Metabolic Surgery, Keimyung University, Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Hye Soon Kim
- Department of Internal Medicine, Keimyung University, School of Medicine, Dongsan Hospital, Daegu 42601, Republic of Korea
- Center of Bariatric and Metabolic Surgery, Keimyung University, Dongsan Hospital, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2024. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Jensen MH, Sanni SJ, Riber D, Holst JJ, Rosenkilde MM, Sparre-Ulrich AH. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol Metab 2024; 88:102006. [PMID: 39128651 PMCID: PMC11382121 DOI: 10.1016/j.molmet.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1 (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 h half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction compared to placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) compared to placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Samra J Sanni
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Ditte Riber
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
5
|
Mullur N, Morissette A, Morrow NM, Mulvihill EE. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J Endocrinol 2024; 263:e240046. [PMID: 39145614 PMCID: PMC11466209 DOI: 10.1530/joe-24-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Collapse
Affiliation(s)
- Neerav Mullur
- The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Nadya M Morrow
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers (Basel) 2024; 16:3275. [PMID: 39409896 PMCID: PMC11475810 DOI: 10.3390/cancers16193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Diets geared to reduce cancer risk in overweight and obese individuals focus on (1) caloric restriction (every day, some days, or most hours of each day); (2) changes in macronutrient intake; or (3) a combination of the prior two strategies. Diets generally fail because of nonadherence or due to limited sustained weight loss. This is in contrast to a diet supplemented with a weight loss medication, so long as the participant continues the medication or after bariatric surgery, in which adherence tends to be much higher. Among individuals who regain weight after surgery, weight loss medications are proving beneficial in maintaining weight loss. Both maximum and sustained weight loss are essential for all forms of effective metabolic improvement, including cancer risk reduction. The focus of this report is to assess the state of research on the consequence of pharmacotherapy use on weight loss and proposed weight loss-independent effects on subsequent cancer risk reduction, including the potential role of medication use in conjunction with metabolic (bariatric) surgery (MBS). Finally, we present Notices of Funding Opportunities (NOFOs) by the National Cancer Institute (NCI) to better understand the mechanism(s) that are driving the efficacy of pharmacotherapy in cancer risk reduction.
Collapse
Affiliation(s)
- Edward R. Sauter
- Divisions of Cancer Prevention, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Tanya Agurs-Collins
- Cancer Control and Population Sciences, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA;
| |
Collapse
|
7
|
De Fano M, Malara M, Vermigli C, Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci 2024; 25:8650. [PMID: 39201336 PMCID: PMC11354636 DOI: 10.3390/ijms25168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Complex Structure of Endocrinology and Metabolism, Department of Medicine, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, 06081 Perugia, Italy; (M.M.); (C.V.); (G.M.)
| | | | | | | |
Collapse
|
8
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1431292. [PMID: 39114288 PMCID: PMC11304055 DOI: 10.3389/fendo.2024.1431292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are two incretins that bind to their respective receptors and activate the downstream signaling in various tissues and organs. Both GIP and GLP-1 play roles in regulating food intake by stimulating neurons in the brain's satiety center. They also stimulate insulin secretion in pancreatic β-cells, but their effects on glucagon production in pancreatic α-cells differ, with GIP having a glucagonotropic effect during hypoglycemia and GLP-1 exhibiting glucagonostatic effect during hyperglycemia. Additionally, GIP directly stimulates lipogenesis, while GLP-1 indirectly promotes lipolysis, collectively maintaining healthy adipocytes, reducing ectopic fat distribution, and increasing the production and secretion of adiponectin from adipocytes. Together, these two incretins contribute to metabolic homeostasis, preventing both hyperglycemia and hypoglycemia, mitigating dyslipidemia, and reducing the risk of cardiovascular diseases in individuals with type 2 diabetes and obesity. Several GLP-1 and dual GIP/GLP-1 receptor agonists have been developed to harness these pharmacological effects in the treatment of type 2 diabetes, with some demonstrating robust effectiveness in weight management and prevention of cardiovascular diseases. Elucidating the underlying cellular and molecular mechanisms could potentially usher in the development of new generations of incretin mimetics with enhanced efficacy and fewer adverse effects. The treatment guidelines are evolving based on clinical trial outcomes, shaping the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD, United States
| |
Collapse
|
10
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
11
|
Corrao S, Pollicino C, Maggio D, Torres A, Argano C. Tirzepatide against obesity and insulin-resistance: pathophysiological aspects and clinical evidence. Front Endocrinol (Lausanne) 2024; 15:1402583. [PMID: 38978621 PMCID: PMC11228148 DOI: 10.3389/fendo.2024.1402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Obesity is a chronic, multifactorial disease in which accumulated excess body fat has a negative impact on health. Obesity continues to rise among the general population, resulting in an epidemic that shows no significant signs of decline. It is directly involved in development of cardiometabolic diseases, ischemic coronary heart disease peripheral arterial disease, heart failure, and arterial hypertension, producing global morbidity and mortality. Mainly, abdominal obesity represents a crucial factor for cardiovascular illness and also the most frequent component of metabolic syndrome. Recent evidence showed that Tirzepatide (TZP), a new drug including both Glucagon Like Peptide 1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP) receptor agonism, is effective in subjects with type 2 diabetes (T2D), lowering body weight, fat mass and glycated hemoglobin (HbA1c) also in obese or overweight adults without T2D. This review discusses the pathophysiological mechanisms and clinical aspects of TZP in treating obesity.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties. Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Pollicino
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Dalila Maggio
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Alessandra Torres
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
12
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
13
|
Kagdi S, Lyons SA, Beaudry JL. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue. J Endocrinol 2024; 261:e230361. [PMID: 38579777 PMCID: PMC11103678 DOI: 10.1530/joe-23-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.
Collapse
Affiliation(s)
- Samrin Kagdi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sulayman A Lyons
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Novikoff A, Müller TD. Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. Physiology (Bethesda) 2024; 39:142-156. [PMID: 38353610 PMCID: PMC11368522 DOI: 10.1152/physiol.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
15
|
Avgerinos I, Kakotrichi P, Karagiannis T, Bekiari E, Tsapas A. The preclinical discovery and clinical evaluation of tirzepatide for the treatment of type 2 diabetes. Expert Opin Drug Discov 2024; 19:511-522. [PMID: 38654653 DOI: 10.1080/17460441.2024.2324918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Despite numerous antidiabetic medications available for the treatment of type 2 diabetes, a substantial percentage of patients fail to achieve optimal glycemic control. Furthermore, the escalating obesity pandemic underscores the urgent need for effective relevant pharmacotherapies. Tirzepatide, a novel dual GIP and GLP-1 receptor agonist, offers a promising therapeutic option. AREAS COVERED This review describes the discovery and clinical development of tirzepatide. Based on data from pivotal in vivo and in vitro studies, the authors present the pharmacodynamic profile of tirzepatide. Furthermore, they summarize data from the clinical trial programs that assessed the efficacy and safety of tirzepatide for the treatment of type 2 diabetes or obesity in a broad spectrum of patients, and discuss its therapeutic potential. EXPERT OPINION Tirzepatide effectively reduces glucose levels and body weight in patients with type 2 diabetes and/or obesity, with a generally safe profile. Based on data from phase 3 clinical trials, several agencies have approved its use for the treatment of type 2 diabetes and obesity. Clinicians should be aware of possible adverse events, mainly mild-to-moderate gastrointestinal side effects. Overall, tirzepatide represents a promising treatment option for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Ioannis Avgerinos
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Kakotrichi
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Karagiannis
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Bekiari
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
- Harris Manchester College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
17
|
Xia X, Lin Q, Zhou Z, Chen Y. An imbalanced GLP-1R/GIPR co-agonist peptide with a site-specific N-terminal PEGylation to maximize metabolic benefits. iScience 2024; 27:109377. [PMID: 38510128 PMCID: PMC10951637 DOI: 10.1016/j.isci.2024.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Glycemic and body weight control gained from GLP-1R agonists remains an unmet need for diabetes and obesity treatment, leading to the development of GLP-1R/GIPR co-agonists. An imbalance in GLP-1R/GIPR agonism may extensively maximize the glucose- and weight-lowering effects. Hence, we prepared a potent and imbalanced GLP-1R/GIPR co-agonist, and refined its action time through a site-specific N-terminal PEGylation strategy. The pharmacological efficacy of these resulting long-acting co-agonists was interrogated both in vitro and in vivo. The results showed that peptide 1 possessed potent and imbalanced receptor-stimulating potency favoring GIP activity, but its hypoglycemic action was disrupted probably resulting from its short half-life. After PEGylation to improve the pharmacokinetics, the pharmacological effects were amplified compared to native peptide 1. Among the resulting derivatives, D-5K exhibited significant glycemic, HbA1c, body-weight, and food-intake control, outperforming GLP-1R mono-agonists. Based on its excellent pharmacological profiles, D-5K may hold the great therapeutic potential for diabetes and obesity treatment.
Collapse
Affiliation(s)
- Xuan Xia
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Kim WJ. [Current State of Pharmacotherapy in Obesity]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 83:94-101. [PMID: 38522852 DOI: 10.4166/kjg.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
The prevalence of obesity with various complications is increasing rapidly in Korea. Although lifestyle modification is fundamental in obesity treatment, more effective treatment tools are required. Many advances in obesity treatment have been reported recently, including lifestyle modifications and pharmacological, endoscopic, and surgical treatments. Drugs with proven long-term efficacy and safety are preferred because management for obesity treatment is a long-term process. Currently, four medications are available for long-term use in Korea: Orlistat, Naltrexone/bupuropion NR, Phentermine/topiramate capsule, and Liraglutide. Recently, semaglutide and tirzepatide have been attracting attention because of their effectiveness and convenience, but they are not yet available in Korea. In addition, there are limitations such as the yo-yo effect when discontinuing the drug, long-term safety, and cost. Patients and medical staff must be aware of the advantages and side effects of each medication to ensure the successful treatment of obesity.
Collapse
Affiliation(s)
- Won Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Korea
| |
Collapse
|
19
|
Lv X, Wang H, Chen C, Zhao Y, Li K, Wang Y, Wang L, Fu S, Liu J. The Effect of Tirzepatide on Weight, Lipid Metabolism and Blood Pressure in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab Syndr Obes 2024; 17:701-714. [PMID: 38371390 PMCID: PMC10873148 DOI: 10.2147/dmso.s443396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Aim To explore the effects of Tirzepatide (TZP), a new hypoglycemic drug, on weight, blood lipids and blood pressure in overweight/obese patients with type 2 diabetes mellitus (T2DM). Methods Relevant studies investigating the influence of TZP therapy on weight, lipid profiles and blood pressure in overweight/obese T2DM patients were selected from the PubMed, Embase, Web of Science and Cochrane databases from establishment until November 2022. A systematic review and meta-analysis were conducted to evaluate the effect of TZP on weight, blood lipids and blood pressure in overweight/obese patients with T2DM. Results Eight randomized controlled trials (RCTs), comprising 7491 patients with T2DM, were included in the meta-analysis. Results showed that compared with the glucagon-like peptide-1 receptor agonist (GLP-1RA), insulin, and placebo groups, body weight, triglycerides (TG), very low-density lipoprotein cholesterol (VLDL-C), total cholesterol (TC), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), and glycosylated hemoglobin (HbA1c) levels were significantly decreased in the TZP-treated groups, while high-density lipoprotein cholesterol (HDL-C) levels increased. With the gradual increase of TZP doses, the proportions of T2DM patients with weight loss >5% gradually increased. The 10 mg and 15 mg TZP doses had a stronger effect on the levels of TG, VLDL-C, and HDL-C. Moreover, the reduction in SBP levels in the 15 mg TZP-treated group was more pronounced than those in the 10 mg and 5 mg TZP-treated groups [MD=-2.07, 95% CI (-2.52, -1.63) and MD=-3.14, 95% CI (-4.42, -1.87)]. Compared with GLP-1RA, insulin, and placebo groups, the proportions of patients with HbA1c<7% in 10mg and 15mg TZP-treated groups were significantly higher than in the 5mg TZP-treated group [OR=1.53, 95% CI (1.25, 1.8)], OR=1.7, 95% CI (1.15, 2.50)].There was no significant difference regarding the risk of adverse reactions.
Collapse
Affiliation(s)
- Xiaoyu Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hui Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Chongyang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yangting Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Kai Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yawen Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Liting Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
20
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
21
|
Zhou Q, Lei X, Fu S, Liu P, Long C, Wang Y, Li Z, Xie Q, Chen Q. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2023; 15:222. [PMID: 37904255 PMCID: PMC10614386 DOI: 10.1186/s13098-023-01198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are the main incretin hormones, and be responsible for the insulinotropic incretin effect. The addition of a GIP agonist to a GLP-1agonist has been hypothesized to significantly potentiate the weight-losing and glycemia control effect, which might offer a new therapeutic option in the treatment of type 2 diabetes. The current meta-analysis aims to synthesize evidence of primary efficacy and safety outcomes through clinically randomized controlled trials to evaluate integrated potency and signaling properties. METHOD We conducted comprehensive literature searches in Cochrane Library, Web of Science, Embase and PubMed for relevant literatures investigating the efficacy and/or safety of Tirzepatide published in the English as of May 30, 2023 was retrieved. We synthesized results using standardized mean differences (SMDs) and 95% confidence intervals (95 CIs) for continuous outcomes, and odds ratios (ORs) along with 95 Cis for dichotomous outcomes. All analyses were done using Revman version 5.3, STATA version 15.1 and the statistical package 'meta'. RESULTS Participants treated with weekly Tirzepatide achieved HbA1c and body weight target values significantly lower than any other comparator without clinically significant increase in the incidence of hypoglycemic events, serious and all-cause fatal adverse events. However, gastrointestinal adverse events and decreased appetite events were reported more frequently with Tirzepatide treatment than with placebo/controls. CONCLUSION The Tirzepatide, a dual GIP/GLP-1 receptor co-agonist, for diabetes therapy has opened a new era on personalized glycemia control and weight loss in a safe manner with broad and promising clinical implications.
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Yanmei Wang
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, China
| | - Zinan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- Sichuan Integrative Medicine Hospital, chengdu, China
| | - Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
22
|
Kubota M, Yamamoto K, Yoshiyama S. Effect on Hemoglobin A1c (HbA1c) and Body Weight After Discontinuation of Tirzepatide, a Novel Glucose-Dependent Insulinotropic Peptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist: A Single-Center Case Series Study. Cureus 2023; 15:e46490. [PMID: 37800161 PMCID: PMC10550307 DOI: 10.7759/cureus.46490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction The purpose of this study was to examine changes in blood glucose levels and body weight after discontinuation of tirzepatide, a novel long-acting dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA). Methods Nine subjects (five males, four females, age 54.3±5.4 years, body mass index 33.5±3.3 kg/m2) participating with type 2 diabetes in the SURPASS J-mono study were included. Subjects were randomized to tirzepatide 5 mg, 10 mg, 15 mg, or a dulaglutide 0.75 mg group. Fifty-two weeks after randomization, study drug administration was discontinued. To investigate progress after the end of administration, changes in hemoglobin A1c (HbA1c) and body weight were further examined two, four, and six months after discontinuation of the study drug. Results After fifty-two weeks, all tirzepatide groups had improved HbA1c and body weight compared with the dulaglutide group. At two, four, and six months after the end of study drug administration, re-elevation of HbA1c was observed in all groups. Furthermore, in the tirzepatide groups, dose-dependent weight regain was observed from an early stage. Conclusions Compared to dulaglutide, tirzepatide exhibited excellent blood-glucose-improving and weight-reducing effects. However, exacerbation of blood glucose and rebound of weight gain occurred relatively early after administration was ended. For type 2 diabetes patients who need weight loss and are prescribed tirzepatide, these findings suggest a necessity for continuous prescription or careful follow-up when stopping.
Collapse
Affiliation(s)
- Mitsunobu Kubota
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| | - Kazuki Yamamoto
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| | - Sayo Yoshiyama
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| |
Collapse
|
23
|
Tschöp M, Nogueiras R, Ahrén B. Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy. Diabetologia 2023; 66:1796-1808. [PMID: 37209227 PMCID: PMC10474213 DOI: 10.1007/s00125-023-05929-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/22/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are established pharmaceutical therapies for the treatment of type 2 diabetes and obesity. They mimic the action of GLP-1 to reduce glucose levels through stimulation of insulin secretion and inhibition of glucagon secretion. They also reduce body weight by inducing satiety through central actions. The GLP-1 receptor agonists used clinically are based on exendin-4 and native GLP-1 and are available as formulations for daily or weekly s.c. or oral administration. GLP-1 receptor agonism is also achieved by inhibitors of dipeptidyl peptidase-4 (DPP-4), which prevent the inactivation of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), thereby prolonging their raised levels after meal ingestion. Other developments in GLP-1 receptor agonism include the formation of small orally available agonists and compounds with the potential to pharmaceutically stimulate GLP-1 secretion from the gut. In addition, GLP-1/glucagon and GLP-1/GIP dual receptor agonists and GLP-1/GIP/glucagon triple receptor agonists have shown the potential to reduce blood glucose levels and body weight through their effects on islets and peripheral tissues, improving beta cell function and stimulating energy expenditure. This review summarises developments in gut hormone-based therapies and presents the future outlook for their use in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany
| | - Ruben Nogueiras
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
24
|
Cho YK, La Lee Y, Jung CH. The Cardiovascular Effect of Tirzepatide: A Glucagon-Like Peptide-1 and Glucose-Dependent Insulinotropic Polypeptide Dual Agonist. J Lipid Atheroscler 2023; 12:213-222. [PMID: 37800107 PMCID: PMC10548186 DOI: 10.12997/jla.2023.12.3.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 10/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists have been used extensively in the clinic and have an established safety profile in cardiovascular disease settings. For the treatment of peptide-secreting enteroendocrine cells, most research has focused on developing peptide multi-agonists as most of these cells are multihormonal. Among the various peptides secreted by enteroendocrine cells, the combination of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) is an attractive strategy for treating type 2 diabetes mellitus (T2DM) because both of these hormones have glucose-lowering actions. Tirzepatide, a synthetic peptide composed of 39 amino acids, functions as a dual receptor agonist of both the GIP and GLP-1 receptors. This unique mechanism of action has earned tirzepatide the nickname "twincretin." Tirzepatide's dual agonist activity may be the mechanism by which tirzepatide significantly reduces glycated hemoglobin levels and body weight in patients with T2DM as observed in phase 3 clinical trials. Besides its glucose-lowering and anti-obesity effects, tirzepatide has been reported to have potential cardiovascular benefits. In this review, we discuss the cardiovascular effects of tirzepatide based on the available preclinical and clinical data.
Collapse
Affiliation(s)
- Yun Kyung Cho
- Department of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Yoo La Lee
- Asan Institute of Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Novograd J, Mullally JA, Frishman WH. Tirzepatide for Weight Loss: Can Medical Therapy "Outweigh" Bariatric Surgery? Cardiol Rev 2023; 31:278-283. [PMID: 36688833 DOI: 10.1097/crd.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The worldwide prevalence of obesity has been increasing progressively over the past few decades and is predicted to continue to rise in coming years. Unfortunately, this epidemic is also affecting increasing rates of children and adolescents, posing a serious global health concern. Increased adiposity is associated with various comorbidities and increased mortality risk. Conversely, weight loss and chronic weight management are associated with improvements in overall morbidity and mortality. The pathophysiology of obesity is multifactorial with complex interactions between genetic and environmental factors. The foundation of most weight loss plans is lifestyle modification including dietary change and exercise. However, lifestyle modification alone is often insufficient to achieve clinically meaningful weight loss due to physiological mechanisms that limit weight reduction and promote weight regain. Therefore, research has focused on adjunctive pharmacotherapy to enable patients to achieve greater weight loss and improved chronic weight maintenance compared to lifestyle modification alone. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin hormone analogs that have proven effective for the management of type 2 diabetes mellitus as well as obesity and overweight. Tirzepatide is a novel "twincretin" that functions as a dual glucose-dependent insulinotropic polypeptide and GLP-1 RA. Tirzepatide was recently approved by the Food and Drug Administration for the management of type 2 diabetes. Similar to previously approved GLP-1RAs, weight loss is a common side effect of tirzepatide which prompted research focused on its use as a primary weight loss therapy. Although this drug has not yet been approved as an antiobesity medication, there are several phase 3 clinical trials that have demonstrated superior weight loss efficacy compared with previously approved medications. This review article will discuss the discovery and mechanism of tirzepatide, as well as the completed and ongoing trials that may lead to its approval as an adjunctive pharmacotherapy for weight loss.
Collapse
|
26
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
27
|
Spezani R, Marinho TS, Macedo Cardoso LE, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet remodeling in cotadutide-treated obese mice. Life Sci 2023; 327:121858. [PMID: 37315839 DOI: 10.1016/j.lfs.2023.121858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) cause morphofunctional alterations in pancreatic islet alpha and beta cells. Therefore, we hypothesize that the new GLP-1/Glucagon receptor dual agonist cotadutide may benefit islet cell arrangement and function. Twelve-week-old C57BL/6 male mice were fed a control diet (C, 10 % kJ fat) or a high-fat diet (HF, 50 % kJ fat) for ten weeks. Then, the animals were divided into four groups for an additional 30 days and daily treated with subcutaneous cotadutide (30 nmol/kg) or vehicle: C, CC (control+cotadutide), HF, and HFC (high-fat+cotadutide). Cotadutide led to weight loss and reduced insulin resistance in the HFC group, increasing insulin receptor substrate 1 and solute carrier family 2 gene expressions in isolated islets. Also, cotadutide enhanced transcriptional factors related to islet cell transdifferentiation, decreasing aristaless-related homeobox and increasing the paired box 4 and 6, pancreatic and duodenal homeobox 1, v-maf musculoaponeurotic fibrosarcoma oncogene family protein A, neurogenin 3, and neurogenic differentiation 1. In addition, cotadutide improved the proliferating cell nuclear antigen, NK6 homeobox 1, B cell leukemia/lymphoma 2, but lessening caspase 3. Furthermore, cotadutide mitigated the endoplasmic reticulum (ER) stress-responsive genes, reducing transcription factor 4, DNA-damage-inducible transcript 3, and growth arrest and DNA-damage-inducible 45. In conclusion, our data demonstrated significant beneficial actions of cotadutide in DIO mice, such as weight loss, glycemic control, and insulin resistance improvement. In addition, cotadutide counteracted the pathological adaptive cellular arrangement of the pancreatic islet in obese mice, improving the markers of the transdifferentiating pathway, proliferation, apoptosis, and ER stress.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Macedo Cardoso
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat Metab 2023:10.1038/s42255-023-00812-z. [PMID: 37308724 DOI: 10.1038/s42255-023-00812-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
The discovery and development of so-called gut hormone co-agonists as a new class of drugs for the treatment of diabetes and obesity is considered a transformative breakthrough in the field. Combining action profiles of multiple gastrointestinal hormones within a single molecule, these novel therapeutics achieve synergistic metabolic benefits. The first such compound, reported in 2009, was based on balanced co-agonism at glucagon and glucagon-like peptide-1 (GLP-1) receptors. Today, several classes of gut hormone co-agonists are in development and advancing through clinical trials, including dual GLP-1-glucose-dependent insulinotropic polypeptide (GIP) co-agonists (first described in 2013), and triple GIP-GLP-1-glucagon co-agonists (initially designed in 2015). The GLP-1-GIP co-agonist tirzepatide was approved in 2022 by the US Food and Drug Administration for the treatment of type 2 diabetes, providing superior HbA1c reductions compared to basal insulin or selective GLP-1 receptor agonists. Tirzepatide also achieved unprecedented weight loss of up to 22.5%-similar to results achieved with some types of bariatric surgery-in non-diabetic individuals with obesity. In this Perspective, we summarize the discovery, development, mechanisms of action and clinical efficacy of the different types of gut hormone co-agonists, and discuss potential challenges, limitations and future developments.
Collapse
Affiliation(s)
- Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galicia Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, St. Josef-Hospital, Katholisches Klinikum Bochum, Ruhr University of Bochum, Bochum, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany.
| |
Collapse
|
29
|
Várkonyi TT, Pósa A, Pávó N, Pavo I. Perspectives on weight control in diabetes - Tirzepatide. Diabetes Res Clin Pract 2023:110770. [PMID: 37279858 DOI: 10.1016/j.diabres.2023.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Tirzepatide, a once-weekly glucose-dependent insulinotropic polypeptide (GIP)/glucagon-like peptide-1 (GLP-1) receptor agonist (GIP/GLP-1 RA) improves glycemic control. Besides improvement of glycemic control, tirzepatide treatment is associated with significantly more weight loss as compared to potent selective GLP-1 receptor agonists as well as other beneficial changes in cardio-metabolic parameters, such as reduced fat mass, blood pressure, improved insulin sensitivity, lipoprotein concentrations, and circulating metabolic profile in individuals with type 2 diabetes (T2D). Some of these changes are partially associated with weight reduction. We review here the putative mechanisms of GIP receptor agonism contributing to GLP-1 receptor agonism-induced weight loss and respective findings with GIP/GLP-1 RAs, including tirzepatide in T2D preclinical models and clinical studies. Subsequently, we summarize the clinical data on weight loss and related non-glycemic metabolic changes of tirzepatide in T2D. These findings suggest that the robust weight loss and associated changes are important contributors to the clinical profile of tirzepatide for the treatment of T2D diabetes and serve as the basis for further investigations including clinical outcomes.
Collapse
Affiliation(s)
- Tamas T Várkonyi
- Department of Internal Medicine, University of Szeged, Kálvária sgt. 57, H-6725 Szeged, Hungary.
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64-66, H-6720 Szeged, Hungary.
| | - Noémi Pávó
- Department of Internal Medicine II, Clinical Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Erdberger Lände 26/A, A-1030 Vienna, Austria.
| |
Collapse
|
30
|
Davies I, Tan TMM. Design of novel therapeutics targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. Expert Opin Drug Discov 2023; 18:659-669. [PMID: 37154171 DOI: 10.1080/17460441.2023.2203911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION With obesity rates growing globally, there is a paramount need for new obesity pharmacotherapies to tackle this pandemic. AREAS COVERED This review focuses on the design of therapeutics that target the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. The authors highlight the paradoxical observation that both GIPR agonism and antagonism appear to provide metabolic benefits when combined with glucagon-like peptide-1 receptor (GLP-1 R) agonism. The therapeutic potential of compounds that target the GIPR alongside the GLP-1 R and the glucagon receptor are discussed, and the impressive clinical findings of such compounds are reviewed. EXPERT OPINION In this area, the translation of pre-clinical findings to clinical studies appears to be particularly difficult. Well-designed physiological studies in man are required to answer the paradox highlighted above, and to support the safe future development of a combination of GLP-1 R/GIPR targeting therapies.
Collapse
Affiliation(s)
- Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
31
|
Jamaluddin A, Gorvin CM. RISING STARS: Targeting G protein-coupled receptors to regulate energy homeostasis. J Mol Endocrinol 2023; 70:e230014. [PMID: 36943057 PMCID: PMC10160555 DOI: 10.1530/jme-23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
G protein-coupled receptors (GPCRs) have a critical role in energy homeostasis, contributing to food intake, energy expenditure and glycaemic control. Dysregulation of energy expenditure can lead to metabolic syndrome (abdominal obesity, elevated plasma triglyceride, LDL cholesterol and glucose, and high blood pressure), which is associated with an increased risk of developing obesity, diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications. As the prevalence of these chronic diseases continues to rise worldwide, there is an increased need to understand the molecular mechanisms by which energy expenditure is regulated to facilitate the development of effective therapeutic strategies to treat and prevent these conditions. In recent years, drugs targeting GPCRs have been the focus of efforts to improve treatments for type-2 diabetes and obesity, with GLP-1R agonists a particular success. In this review, we focus on nine GPCRs with roles in energy homeostasis that are current and emerging targets to treat obesity and diabetes. We discuss findings from pre-clinical models and clinical trials of drugs targeting these receptors and challenges that must be overcome before these drugs can be routinely used in clinics. We also describe new insights into how these receptors signal, including how accessory proteins, biased signalling, and complex spatial signalling could provide unique opportunities to develop more efficacious therapies with fewer side effects. Finally, we describe how combined therapies, in which multiple GPCRs are targeted, may improve clinical outcomes and reduce off-target effects.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
32
|
Morais T, Seabra AL, Patrício BG, Carrageta DF, Guimarães M, Nora M, Oliveira PF, Alves MG, Monteiro MP. Dysglycemia Shapes Visceral Adipose Tissue's Response to GIP, GLP-1 and Glucagon in Individuals with Obesity. Metabolites 2023; 13:metabo13050587. [PMID: 37233628 DOI: 10.3390/metabo13050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Visceral adipose tissue (VAT) metabolic fingerprints differ according to body mass index (BMI) and glycemic status. Glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon are gut-associated hormones that play an important role in regulating energy and glucose homeostasis, although their metabolic actions in VAT are still poorly characterized. Our aim was to assess whether GLP-1, GIP and glucagon influence the VAT metabolite profile. To achieve this goal, VAT harvested during elective surgical procedures from individuals (N = 19) with different BMIs and glycemic statuses was stimulated with GLP-1, GIP or glucagon, and culture media was analyzed using proton nuclear magnetic resonance. In the VAT of individuals with obesity and prediabetes, GLP-1 shifted its metabolic profile by increasing alanine and lactate production while also decreasing isoleucine consumption, whereas GIP and glucagon decreased lactate and alanine production and increased pyruvate consumption. In summary, GLP-1, GIP and glucagon were shown to distinctively modulate the VAT metabolic profile depending on the subject's BMI and glycemic status. In VAT from patients with obesity and prediabetes, these hormones induced metabolic shifts toward gluconeogenesis suppression and oxidative phosphorylation enhancement, suggesting an overall improvement in AT mitochondrial function.
Collapse
Affiliation(s)
- Tiago Morais
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Alexandre L Seabra
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Bárbara G Patrício
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - David F Carrageta
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Marta Guimarães
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Mário Nora
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, 4520-220 Santa Maria da Feira, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Mariana P Monteiro
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
33
|
Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol 2023; 19:201-216. [PMID: 36509857 DOI: 10.1038/s41574-022-00783-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
35
|
Geisler CE, Antonellis MP, Trumbauer W, Martin JA, Coskun T, Samms RJ, Hayes MR. Tirzepatide suppresses palatable food intake by selectively reducing preference for fat in rodents. Diabetes Obes Metab 2023; 25:56-67. [PMID: 36054312 PMCID: PMC10362946 DOI: 10.1111/dom.14843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
AIM To investigate the role of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists alone or combined with glucagon-like peptide-1 receptor (GLP-1R) agonists to regulate palatable food intake and the role of specific macronutrients in these preferences. METHODS To understand this regulation, we treated mice and rats on several choice diet paradigms of chow and a palatable food option with individual or dual GIPR and GLP-1R agonists. RESULTS In mice, the dual agonist tirzepatide suppressed total caloric intake, while promoting the intake of chow over a high fat/sucrose diet. Surprisingly, GIPR agonism alone did not alter food choice. The food intake shift observed with tirzepatide in wild-type mice was completely absent in GLP-1R knockout mice, suggesting that GIPR signalling does not regulate food preference. Tirzepatide also selectively suppressed the intake of palatable food but not chow in a rat two-diet choice model. This suppression was specific to lipids, as GLP-1R agonist and dual agonist treatment in rats on a choice paradigm assessing individual palatable macronutrients robustly inhibited the intake of Crisco (lipid) without decreasing the intake of a sucrose (carbohydrate) solution. CONCLUSIONS Decreasing preference for high-caloric, high-fat foods is a powerful action of GLP-1R and dual GIPR/GLP-1R agonist therapeutics, which may contribute to the weight loss success of these drugs.
Collapse
Affiliation(s)
| | - Meghan P. Antonellis
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | | | - Jennifer A. Martin
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | - Tamer Coskun
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | - Ricardo J. Samms
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company
| | | |
Collapse
|
36
|
Zaffina I, Pelle MC, Armentaro G, Giofrè F, Cassano V, Sciacqua A, Arturi F. Effect of dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist on weight loss in subjects with obesity. Front Endocrinol (Lausanne) 2023; 14:1095753. [PMID: 36909312 PMCID: PMC9992880 DOI: 10.3389/fendo.2023.1095753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The occurrence of obesity is an increasing issue worldwide, especially in industrialized countries. Weight loss is important both to treat obesity and to prevent the development of complications. Currently, several drugs are used to treat obesity, but their efficacy is modest. Thus, new anti-obesity treatments are needed. Recently, there has been increased interest in the development of incretins that combine body-weight-lowering and glucose-lowering effects. Therefore, a new drug that simultaneously coactivates both the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R) has been developed. Tirzepatide, the first in this class, improves glycemic control by increasing insulin sensitivity and lipid metabolism as well as by reducing body weight. Combining the activation of the two receptors, greater improvement of β-cell function offers more effective treatment of diabetes and obesity with fewer adverse effects than selective GLP-1R agonists. In the present review, we discuss the progress in the use of GIPR and GLP-1R coagonists and review literature from in vitro studies, animal studies, and human trials, highlighting the synergistic mechanisms of tirzepatide.
Collapse
Affiliation(s)
- Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Armentaro
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Velia Cassano
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Geriatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Graecia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Franco Arturi,
| |
Collapse
|
37
|
Heimbürger SMN, Hoe B, Nielsen CN, Bergman NC, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Overgaard J, Størling J, Vilsbøll T, Dejgaard TF, Havelund JF, Gorshkov V, Kjeldsen F, Færgeman NJ, Madsen MR, Christensen MB, Knop FK. GIP Affects Hepatic Fat and Brown Adipose Tissue Thermogenesis but Not White Adipose Tissue Transcriptome in Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:3261-3274. [PMID: 36111559 DOI: 10.1210/clinem/dgac542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid β-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and β-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.
Collapse
Affiliation(s)
- Sebastian Møller Nguyen Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Translational Pharmacology, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chris Neumann Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Chidekel Bergman
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Julie Overgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Fremming Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Permana H, Yanto TA, Hariyanto TI. Efficacy and safety of tirzepatide as novel treatment for type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. Diabetes Metab Syndr 2022; 16:102640. [PMID: 36274410 DOI: 10.1016/j.dsx.2022.102640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS This study aims to explore the efficacy and safety of tirzepatide for patients with type 2 diabetes (T2D). METHODS Using specific keywords, we comprehensively go through the potential articles on Europe PMC, Scopus, PubMed, and ClinicalTrials.gov sources until July 12th, 2022. We collected all clinical trials that compare tirzepatide 5, 10, or 15 mg once-weekly with placebo or other glucose lowering agents in adult patients with T2D. RESULTS Nine clinical trials were included. Our pooled analysis revealed the dose-dependent superiority of tirzepatide in reducing HbA1c, ranging from -1.50% with 5 mg to -1.80% with 15 mg when compared with placebo, -0.61% with 5 mg to -0.95% with 15 mg when compared with GLP-1 receptor agonist, and -0.70% with 5 mg to 1.09% with 15 mg when compared with basal insulin. The dose-dependent superiority of tirzepatide was also seen in the bodyweight reduction effect with all comparators. These superiorities were not accompanied by increased odds of hypoglycemia, but there is an increase in gastrointestinal adverse events incidence. CONCLUSIONS Tirzepatide has shown superiority in glycemic control and bodyweight reduction with a good safety profile in patients with T2D. Tirzepatide may become a future potential drug in the management of T2D.
Collapse
Affiliation(s)
- Hikmat Permana
- Division of Endocrinology and Metabolic Disorders, Department of Internal Medicine, Padjadjaran University, Bandung, West Java, 45363, Indonesia
| | - Theo Audi Yanto
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, 15811, Indonesia
| | | |
Collapse
|
39
|
An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging. Sci Rep 2022; 12:17530. [PMID: 36266531 PMCID: PMC9584944 DOI: 10.1038/s41598-022-22511-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 10/17/2022] [Indexed: 01/13/2023] Open
Abstract
Tissue optical clearing permits detailed evaluation of organ three-dimensional (3-D) structure as well as that of individual cells by tissue staining and autofluorescence. In this study, we evaluated intestinal morphology, intestinal epithelial cells (IECs), and enteroendocrine cells, such as incretin-producing cells, in reporter mice by intestinal 3-D imaging. 3-D intestinal imaging of reporter mice using optical tissue clearing enabled us to evaluate both detailed intestinal morphologies and cell numbers, villus length and crypt depth in the same samples. In disease mouse model of lipopolysaccharide (LPS)-injected mice, the results of 3-D imaging using tissue optical clearing in this study was consistent with those of 2-D imaging in previous reports and could added the new data of intestinal morphology. In analysis of incretin-producing cells of reporter mice, we could elucidate the number, the percentage, and the localization of incretin-producing cells in intestine and the difference of those between L cells and K cells. Thus, we established a novel method of intestinal analysis using tissue optical clearing and 3-D imaging. 3-D evaluation of intestine enabled us to clarify not only detailed intestinal morphology but also the precise number and localization of IECs and incretin-producing cells in the same samples.
Collapse
|
40
|
Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients 2022; 14:nu14183775. [PMID: 36145148 PMCID: PMC9503433 DOI: 10.3390/nu14183775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The increasing prevalence of obesity and type 2 diabetes (T2DM) is provoking an important socioeconomic burden mainly in the form of cardiovascular disease (CVD). One successful strategy is the so-called metabolic surgery whose beneficial effects are beyond dietary restrictions and weight loss. One key underlying mechanism behind this surgery is the cooperative improved action of the preproglucagon-derived hormones, glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) which exert their functions through G protein-coupled receptors (GPCR). Great success has been reached with therapies based on the GLP-1 receptor monoagonism; therefore, a logical and rational approach is the use of the dual and triagonism of GCPC to achieve complete metabolic homeostasis. The present review describes novel findings regarding the complex biology of the preproglucagon-derived hormones, their signaling, and the drug development of their analogues, especially those acting as dual and triagonists. Moreover, the main investigations into animal models and ongoing clinical trials using these unimolecular dual and triagonists are included which have demonstrated their safety, efficacy, and beneficial effects on the CV system. These therapeutic strategies could greatly impact the treatment of CVD with unprecedented benefits which will be revealed in the next years.
Collapse
|
41
|
Seino Y, Yamazaki Y. Roles of glucose-dependent insulinotropic polypeptide in diet-induced obesity. J Diabetes Investig 2022; 13:1122-1128. [PMID: 35452190 PMCID: PMC9248429 DOI: 10.1111/jdi.13816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretins that play an important role in glucose metabolism, by increasing glucose-induced insulin secretion from pancreatic β-cells and help regulate bodyweight. Although they show a similar action on glucose-induced insulin secretion, two incretins are distinct in various aspects. GIP is secreted from enteroendocrine K cell mainly expressed in the upper small intestine, and GLP-1 is secreted from enteroendocrine L cells mainly expressed in the lower small intestine and colon by the stimulation of various nutrients. The mechanism of GIP secretion induced by nutrients, especially carbohydrates, is different from that of GLP-1 secretion. GIP promotes fat deposition in adipose tissue, and contributes to fat-induced obesity. In contrast, GLP-1 participates in reducing bodyweight by suppressing food consumption and/or slowing gastric emptying. There is substantial evidence that GIP and GLP-1 might differently contribute to bodyweight control. Although meal contents influence both glycemic and weight control, we do not fully understand whether incretin actions differ depending on the contents of the meal and what kind of signaling is involved in its context. We focus on the molecular mechanism of GIP secretion induced by nutrients, as well as the roles of GIP in weight changes caused by various diets.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Yuji Yamazaki
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKobeJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| |
Collapse
|
42
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
43
|
Campbell JE, Beaudry JL, Svendsen B, Baggio LL, Gordon AN, Ussher JR, Wong CK, Gribble FM, D’Alessio DA, Reimann F, Drucker DJ. GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes 2022; 71:1115-1127. [PMID: 35192688 PMCID: PMC7612781 DOI: 10.2337/db21-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) augments glucose-dependent insulin secretion through its receptor expressed on islet β-cells. GIP also acts on adipose tissue; yet paradoxically, both enhanced and reduced GIP receptor (GIPR) signaling reduce adipose tissue mass and attenuate weight gain in response to nutrient excess. Moreover, the precise cellular localization of GIPR expression within white adipose tissue (WAT) remains uncertain. We used mouse genetics to target Gipr expression within adipocytes. Surprisingly, targeting Cre expression to adipocytes using the adiponectin (Adipoq) promoter did not produce meaningful reduction of WAT Gipr expression in Adipoq-Cre:Giprflx/flx mice. In contrast, adenoviral expression of Cre under the control of the cytomegalovirus promoter, or transgenic expression of Cre using nonadipocyte-selective promoters (Ap2/Fabp4 and Ubc) markedly attenuated WAT Gipr expression. Analysis of single-nucleus RNA-sequencing, adipose tissue data sets localized Gipr/GIPR expression predominantly to pericytes and mesothelial cells rather than to adipocytes. Together, these observations reveal that adipocytes are not the major GIPR+ cell type within WAT-findings with mechanistic implications for understanding how GIP and GIP-based co-agonists control adipose tissue biology.
Collapse
Affiliation(s)
- Jonathan E. Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| | - Jacqueline L. Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew N. Gordon
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - John R. Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| |
Collapse
|
44
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
45
|
Ko J, Jang S, Kwon W, Kim SY, Jang S, Kim E, Ji YR, Park S, Kim MO, Choi SK, Cho DH, Lee HS, Lim SG, Ryoo ZY. Protective Effect of GIP against Monosodium Glutamate-Induced Ferroptosis in Mouse Hippocampal HT-22 Cells through the MAPK Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020189. [PMID: 35204073 PMCID: PMC8868324 DOI: 10.3390/antiox11020189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.
Collapse
Affiliation(s)
- Jiwon Ko
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyoung Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Si-Yong Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyeon Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Young-Rae Ji
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 42988, Korea
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| | - Zae-Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| |
Collapse
|
46
|
He X. Glucose-dependent insulinotropic polypeptide and tissue inflammation: Implications for atherogenic cardiovascular disease. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has pleiotropic actions on pancreatic endocrine function, adipose tissue lipid metabolism, and skeletal calcium metabolism. Recent data indicate a potential new role for GIP in the pathogenesis of cardiovascular disease. This review focuses on the emerging literature that highlights GIP’s role in inflammation—an established process in the initiation and progression of atherosclerosis. In vasculature tissue, GIP may reduce concentrations of circulating inflammatory cytokines, attenuate vascular endothelial inflammation, and directly limit atherosclerotic vascular damage. Important to recognize is that evidence exists to support both pro- and anti-inflammatory effects of GIP even within the same tissue/cell type. Therefore, future study designs must account for factors such as model heterogeneity, physiological relevance of doses/exposures, potential indirect effects on inflammatory pathways, and the glucose-dependent insulinotropic polypeptide receptor (GIPR) agonist form. Elucidating the specific effects of enhanced GIP signaling in vascular inflammation and atherosclerosis is crucial given the existing widespread use of DPP4 inhibitors and the emergence of dual-incretin receptor agonists for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Xiaoming He
- Department of General Surgery, First Affiliated Hospital of Dali University, Dali City, China
| |
Collapse
|
47
|
Abstract
The enteroendocrine system coordinates the physiological response to food intake by regulating rates of digestion, nutrient absorption, insulin secretion, satiation and satiety. Gut hormones with important anorexigenic and/or insulinotropic roles include glucagon-like peptide 1 (GLP-1), peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP). High BMI or obesogenic diets do not markedly disrupt this enteroendocrine system, which represents a critical target for inducing weight loss and treating co-morbidities in individuals with obesity.
Collapse
|
48
|
Rizvi AA, Rizzo M. The Emerging Role of Dual GLP-1 and GIP Receptor Agonists in Glycemic Management and Cardiovascular Risk Reduction. Diabetes Metab Syndr Obes 2022; 15:1023-1030. [PMID: 35411165 PMCID: PMC8994606 DOI: 10.2147/dmso.s351982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022] Open
Abstract
The incretin pathway is a self-regulating feedback system connecting the gut with the brain, pancreas, and liver. Its predominant action is on the postprandial glucose levels, with extraglycemic effects on fat metabolism and endovascular function. Of the two main incretin hormones released with food ingestion, the actions of glucagon-like peptide-1 (GLP-1) have been exploited for therapeutic benefit. However, little attention has been paid to glucose-dependent insulinotropic polypeptide (GIP) until the recent experimental introduction of dual agonists, or "twincretins". Interestingly, simultaneous activation of both receptors is not only replicative of normal physiology, it seems to be an innovative way to enhance their mutual salubrious actions. In patients with type 2 diabetes, dual agonists can have powerful benefits for glucose control and weight reduction. Additionally, there is mounting evidence of their favorable cardiovascular impact, making them potentially appealing pharmacologic agents of choice in the future. Although we seem to be poised on the horizons of exciting new breakthroughs, much knowledge has yet to be gained before these novel agents are ready for prime time.
Collapse
Affiliation(s)
- Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
- Correspondence: Ali A Rizvi, Department of Medicine, University of Central Florida College of Medicine, 3400 Quadrangle Blvd, Orlando, Florida, 32817, USA, Tel +1 803-609-1935, Fax +1 407-882-4799, Email
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
49
|
Sun D, Yang X, Wu B, Zhang XJ, Li H, She ZG. Therapeutic Potential of G Protein-Coupled Receptors Against Nonalcoholic Steatohepatitis. Hepatology 2021; 74:2831-2838. [PMID: 33826778 DOI: 10.1002/hep.31852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Dating Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xia Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Bin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Holst JJ. Treatment of Type 2 Diabetes and Obesity on the Basis of the Incretin System: The 2021 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2021; 70:2468-2475. [PMID: 34711671 PMCID: PMC8928930 DOI: 10.2337/dbi21-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In my lecture given on the occasion of the 2021 Banting Medal for Scientific Achievement, I briefly described the history of the incretin effect and summarized some of the developments leading to current therapies of obesity and diabetes based on the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In the text below, I discuss in further detail the role of these two hormones for postprandial insulin secretion in humans on the basis of recent studies with antagonists. Their direct and indirect actions on the β-cells are discussed next as well as their contrasting actions on glucagon secretion. After a brief discussion of their effect on insulin sensitivity, I describe their immediate actions in patients with type 2 diabetes and emphasize the actions of GLP-1 on β-cell glucose sensitivity, followed by a discussion of their extrapancreatic actions, including effects on appetite and food intake in humans. Finally, possible mechanisms of action of GIP-GLP-1 coagonists are discussed, and it is concluded that therapies based on incretin actions are likely to change the current hesitant therapy of both obesity and diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|