1
|
Bukharina D, Cauffiel K, Killingsworth LM, Brackenridge JA, Poliukhova V, Kim M, Brower J, Bernal-Chanchavac J, Stephanopoulos N, Tsukruk VV. Click-Chemistry-Enabled Functionalization of Cellulose Nanocrystals with Single-Stranded DNA for Directed Assembly. ACS Biomater Sci Eng 2024; 10:6155-6166. [PMID: 39259018 PMCID: PMC11480941 DOI: 10.1021/acsbiomaterials.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Controlling the self-assembly of cellulose nanocrystals (CNCs) requires precise control over their surface chemistry for the directed assembly of advanced nanocomposites with tailored mechanical, thermal, and optical properties. In this work, in contrast to traditional chemistries, we conducted highly selective click-chemistry functionalization of cellulose nanocrystals with complementary DNA strands via a three-step hybridization-guided process. By grafting terminally functionalized oligonucleotides through copper-free click chemistry, we successfully facilitated the assembly of brushlike DNA-modified CNCs into bundled nanostructures with distinct chiral optical dichroism in thin films. The complexation behavior of grafted DNA chains during the evaporation-driven formation of ultrathin films demonstrates the potential for mediating chiral interactions between the DNA-branched nanocrystals and their assembly into chiral bundles. Furthermore, we discuss the future directions and challenges that include new avenues for the development of functional, responsive, and bioderived nanostructures capable of dynamic reconfiguration via selective complexation, further surface modification strategies, mitigating diverse CNC aggregation, and exploring environmental conditions for the CNC-DNA assembly.
Collapse
Affiliation(s)
- Daria Bukharina
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine Cauffiel
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Laura Mae Killingsworth
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Justin A. Brackenridge
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Valeriia Poliukhova
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minkyu Kim
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Justin Brower
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85251, United States
| | - Julio Bernal-Chanchavac
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85251, United States
| | - Nicholas Stephanopoulos
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85251, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Zaw O, Noon Shean Aye N, Daduang J, Proungvitaya S, Wongwattanakul M, Ngernyuang N, Daduang S, Shinsuphan N, Phatthanakun R, Jearanaikoon N, Maraming P. DNA aptamer-functionalized PDA nanoparticles: from colloidal chemistry to biosensor applications. Front Bioeng Biotechnol 2024; 12:1427229. [PMID: 39045538 PMCID: PMC11263086 DOI: 10.3389/fbioe.2024.1427229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Polydopamine nanoparticles (PDA NPs) are widely utilized in the field of biomedical science for surface functionalization because of their unique characteristics, such as simple and low-cost preparation methods, good adhesive properties, and ability to incorporate amine and oxygen-rich chemical groups. However, challenges in the application of PDA NPs as surface coatings on electrode surfaces and in conjugation with biomolecules for electrochemical sensors still exist. In this work, we aimed to develop an electrochemical interface based on PDA NPs conjugated with a DNA aptamer for the detection of glycated albumin (GA) and to study DNA aptamers on the surfaces of PDA NPs to understand the aptamer-PDA surface interactions using molecular dynamics (MD) simulation. PDA NPs were synthesized by the oxidation of dopamine in Tris buffer at pH 10.5, conjugated with DNA aptamers specific to GA at different concentrations (0.05, 0.5, and 5 μM), and deposited on screen-printed carbon electrodes (SPCEs). The charge transfer resistance of the PDA NP-coated SPCEs decreased, indicating that the PDA NP composite is a conductive bioorganic material. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed that the PDA NPs were spherical, and dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy data indicated the successful conjugation of the aptamers on the PDA NPs. The as-prepared electrochemical interface was employed for the detection of GA. The detection limit was 0.17 μg/mL. For MD simulation, anti-GA aptamer through the 5'terminal end in a single-stranded DNA-aptamer structure and NH2 linker showed a stable structure with its axis perpendicular to the PDA surface. These findings provide insights into improved biosensor design and have demonstrated the potential for employing electrochemical PDA NP interfaces in point-of-care applications.
Collapse
Affiliation(s)
- Ohnmar Zaw
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nang Noon Shean Aye
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Biomedical Science, Thammasat University, Pathum Thani, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nikorn Shinsuphan
- Medical Instrument Subsection, Maintenance Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichada Jearanaikoon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Liu X, Liang Z, Du H, Zhang B, Wang Q, Xie S, Xiao L, Chen Y, Wang Y, Li F, Ling D. DNA-Mediated Magnetic-Dimer Assembly for Fault-Free Ultra-High-Field Magnetic Resonance Imaging of Tumors. NANO LETTERS 2024; 24:6696-6705. [PMID: 38796774 DOI: 10.1021/acs.nanolett.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Ultra-high-field (UHF) magnetic resonance imaging (MRI) stands as a pivotal cornerstone in biomedical imaging, yet the challenge of false imaging persists, constraining its full potential. Despite the development of dual-mode contrast agents improving conventional MRI, their effectiveness in UHF remains suboptimal due to the high magnetic moment, resulting in diminished T1 relaxivity and excessively enhanced T2 relaxivity. Herein, we report a DNA-mediated magnetic-dimer assembly (DMA) of iron oxide nanoparticles that harnesses UHF-tailored nanomagnetism for fault-free UHF-MRI. DMA exhibits a dually enhanced longitudinal relaxivity of 4.42 mM-1·s-1 and transverse relaxivity of 26.23 mM-1·s-1 at 9 T, demonstrating a typical T1-T2 dual-mode UHF-MRI contrast agent. Importantly, DMA leverages T1-T2 dual-modality image fusion to achieve artifact-free breast cancer visualization, effectively filtering interference from hundred-micrometer-level false-positive signals with unprecedented precision. The UHF-tailored T1-T2 dual-mode DMA contrast agents hold promise for elevating the accuracy of MR imaging in disease diagnosis.
Collapse
Affiliation(s)
- Xun Liu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Wang
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangyuan Li
- Songjiang Institute and Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Coatrini-Soares A, Soares JC, Popolin-Neto M, de Mello SS, Sanches EA, Paulovich FV, Oliveira ON, Mattoso LHC. Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue. Int J Biol Macromol 2024; 271:132460. [PMID: 38772468 DOI: 10.1016/j.ijbiomac.2024.132460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Mastitis diagnosis can be made by detecting Staphylococcus aureus (S. aureus), which requires high sensitivity and selectivity. Here, we report on microfluidic genosensors and electronic tongues to detect S. aureus DNA using impedance spectroscopy with data analysis employing visual analytics and machine learning techniques. The genosensors were made with layer-by-layer films containing either 10 bilayers of chitosan/chondroitin sulfate or 8 bilayers of chitosan/sericin functionalized with an active layer of cpDNA S. aureus. The specific interactions leading to hybridization in these genosensors allowed for a low limit of detection of 5.90 × 10-19 mol/L. The electronic tongue had four sensing units made with 6-bilayer chitosan/chondroitin sulfate films, 10-bilayer chitosan/chondroitin sulfate, 8-bilayer chitosan/sericin, and 8-bilayer chitosan/gold nanoparticles modified with sericin. Despite the absence of specific interactions, various concentrations of DNA S. aureus could be distinguished when the impedance data were plotted using a dimensionality reduction technique. Selectivity of S. aureus DNA was confirmed using multidimensional calibration spaces, based on machine learning, with accuracy up to 89 % for the genosensors and 66 % for the electronic tongue. Hence, with these computational methods one may opt for the more expensive genosensors or the simpler and cheaper electronic tongue, depending on the sensitivity level required to diagnose mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini-Soares
- Embrapa Instrumentação, Nanotechnology National Laboratory for Agriculture (LNNA), São Carlos, Brazil.
| | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Mario Popolin-Neto
- Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590 São Carlos, Brazil; Federal Institute of São Paulo (IFSP), 14804-296 Araraquara, Brazil
| | | | | | - Fernando V Paulovich
- Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), 5600 MB Eindhoven, the Netherlands
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | | |
Collapse
|
5
|
Mir OI, Gupta UK, Bhat GA, Pandith AA, Mir FA. Vibrational, Optical, Electrochemical, and Electrical Analysis of Normal and Cancer DNA. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2023; 12:127006. [DOI: 10.1149/2162-8777/ad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In the current article, we did characterizations like Fourier Transform Infrared (FT-IR) Spectroscopy, UV-Visible (UV–vis) spectroscopy, Photoluminescence (PL) spectroscopy, Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Current-Voltage (I-V) characteristics, dielectric spectroscopy, and transient time spectroscopy on normal and cancerous (esophagus) DNA samples. FT-IR confirms the associated functional groups of DNA. Also a significant change in these groups with mutations is observed. From the analysis of UV data, the various optical parameters like optical band gap, disorder energy were estimated and discussed. PL data demonstrate the various emissions and are described as per the existing structure of the molecule. From the CV plots, the energy levels, like highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also calculated. The EIS data interpretations show well developed changes in various parameters related with nature of the present molecules. Also from I-V characteristics, visible variations were observed and discussed. From the dielectric spectroscopy, a drastic change in the data were seen and described. Dynamic measurements like transient time demonstrates a vital impact on charge storage and hence on the rise and fall time of the molecules. The various calculated parameters related with these methods show changes with normal and mutated DNA. These observed properties shown by these techniques could be explored for further confirmation of the diagnostic of the disease.
Collapse
|
6
|
Yamada M, Yoshihara N. Anhydrous proton conductor consisting of protamine-monododecyl phosphate composite with self-assembled structure. RSC Adv 2023; 13:34877-34883. [PMID: 38035249 PMCID: PMC10687518 DOI: 10.1039/d3ra07191j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
We prepared a protamine-monododecyl phosphate composite by mixing protamine (P) and a monododecyl phosphate (MDP). This P-MDP composite formed an acid-base complex by the electrostatic interaction between cationic protamine and the negatively charged phosphate group. Additionally, according to the X-ray diffraction (XRD) measurements, the composite formed a self-assembled lamellar structure with an interaction between the long alkyl chains of MDP. As a result, the P-MDP composite showed the proton conductivity of 9.5 × 10-4 S cm-1 at 120-130 °C under anhydrous conditions. Furthermore, the activation energy of the proton conduction of the P-MDP composite was approximately 0.18 eV. These results suggested that the proton conduction of the P-MDP composite was based on an anhydrous proton conductive mechanism. In contrast, the anhydrous proton conduction of the P-methanediphosphonic acid (MP) composite, which did not form the self-assembled lamellar structure, was ca. 3 × 10-5 S cm-1 at 120-130 °C and this value was one order of magnitude lower than that of the P-MDP composite. Therefore, the two-dimensional self-assembled proton conductive pathway of the P-MDP composite plays a role in the anhydrous proton conduction.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan
| | - Naoaki Yoshihara
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku Okayama 700-0005 Japan
| |
Collapse
|
7
|
Ceccarini M, Chiesa I, Ripanti F, Cardinali MA, Micalizzi S, Scattini G, De Maria C, Paciaroni A, Petrillo C, Comez L, Bertelli M, Sassi P, Pascucci L, Beccari T, Valentini L. Electrospun Nanofibrous UV Filters with Bidirectional Actuation Properties Based on Salmon Sperm DNA/Silk Fibroin for Biomedical Applications. ACS OMEGA 2023; 8:38233-38242. [PMID: 37867705 PMCID: PMC10586176 DOI: 10.1021/acsomega.3c04563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of β-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and β-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.
Collapse
Affiliation(s)
| | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Francesca Ripanti
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Simone Micalizzi
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Gabriele Scattini
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Alessandro Paciaroni
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Lucia Comez
- Istituto
Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, Perugia 06123, Italy
| | | | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Luisa Pascucci
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, Perugia 06123, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, Terni 05100, Italy
| |
Collapse
|
8
|
Jia Z, Li Z, Liu C. CRISPR-powered Biosensing Platform for Quantitative Detection of Alpha-fetoprotein by a Personal Glucose Meter. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 390:133994. [PMID: 37303825 PMCID: PMC10249708 DOI: 10.1016/j.snb.2023.133994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alpha-fetoprotein (AFP) is an important protein biomarker of liver cancer, as its serum levels are highly correlated with the progression of disease. Conventional immunoassays for AFP detection rely on enzyme-linked immunosorbent assay analyses with expensive and bulky equipment. Here, we developed a simple, affordable, and portable CRISPR-powered personal glucose meter biosensing platform for quantitative detection of the AFP biomarker in serum samples. The biosensor takes advantage of the excellent affinity of aptamer to AFP and the collateral cleavage activity of CRISPR-Cas12a, enabling sensitive and specific CRISPR-powered protein biomarker detection. To enable point-of-care testing, we coupled invertase-catalyzed glucose production with the glucose biosensing technology to quantify AFP. Using the developed biosensing platform, we quantitatively detected AFP biomarker in spiked human serum samples with a detection sensitivity of down to 10 ng/mL. Further, we successfully applied the biosensor to detect AFP in clinical serum samples from patients with liver cancer, achieving comparable performance to the conventional assay. Therefore, this novel CRISPR-powered personal glucose meter biosensor provides a simple yet powerful alternative for detecting AFP and potentially other tumor biomarkers at the point of care.
Collapse
Affiliation(s)
- Zhengyang Jia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States
| |
Collapse
|
9
|
Wang D, Huang J, Zhang H, Ma M, Xu M, Cui Y, Shi X, Li L. ATP-Coated Dual-Functionalized Titanium(IV) IMAC Material for Simultaneous Enrichment and Separation of Glycopeptides and Phosphopeptides. J Proteome Res 2023; 22:2044-2054. [PMID: 37195130 PMCID: PMC11138137 DOI: 10.1021/acs.jproteome.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
10
|
Szymoński K, Chmura Ł, Lipiec E, Adamek D. Vibrational spectroscopy – are we close to finding a solution for early pancreatic cancer diagnosis? World J Gastroenterol 2023; 29:96-109. [PMID: 36683712 PMCID: PMC9850953 DOI: 10.3748/wjg.v29.i1.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal neoplasm, ranking seventh in the world for cancer deaths, with an overall 5-year survival rate of below 10%. The knowledge about PC pathogenesis is rapidly expanding. New aspects of tumor biology, including its molecular and morphological heterogeneity, have been reported to explain the complicated “cross-talk” that occurs between the cancer cells and the tumor stroma or the nature of pancreatic ductal adenocarcinoma-associated neural remodeling. Nevertheless, currently, there are no specific and sensitive diagnosis options for PC. Vibrational spectroscopy (VS) shows a promising role in the development of early diagnosis technology. In this review, we summarize recent reports about improvements in spectroscopic methodologies, briefly explain and highlight the drawbacks of each of them, and discuss available solutions. The important aspects of spectroscopic data evaluation with multivariate analysis and a convolutional neural network methodology are depicted. We conclude by presenting a study design for systemic verification of the VS-based methods in the diagnosis of PC.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Łukasz Chmura
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow 30-348, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
- Department of Neuropathology, Jagiellonian University Medical College, Cracow 33-332, Poland
| |
Collapse
|
11
|
A Biophysical Study of DNA Condensation Mediated by Histones and Protamines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kaimuangpak K, Tamprasit K, Thumanu K, Weerapreeyakul N. Extracellular vesicles derived from microgreens of Raphanus sativus L. var. caudatus Alef contain bioactive macromolecules and inhibit HCT116 cells proliferation. Sci Rep 2022; 12:15686. [PMID: 36127415 PMCID: PMC9489735 DOI: 10.1038/s41598-022-19950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles released from cells, containing natural cargos. Microgreens of Raphanus sativus L. var. caudatus Alef were used in this study as the source of EVs. EVs were isolated by differential centrifugation. The physical properties were determined by dynamic light scattering (DLS) and electron microscopy. The biological and chemical composition were studied by Fourier-transform infrared (FTIR) microspectroscopy and high-performance liquid chromatography analysis, respectively. EVs had a median size of 227.17 and 234.90 ± 23.30 nm determined by electron microscopy and DLS, respectively with a polydispersity index of 0.293 ± 0.019. Electron microscopy indicated the intact morphology and confirmed the size. The FTIR spectra revealed that EVs are composed of proteins as the most abundant macromolecules. Using a curve-fitting analysis, β-pleated sheets were the predominant secondary structure. Notably, the micromolecular biomarkers were not detected. EVs exerted anti-cancer activity on HCT116 colon cancer over Vero normal cells with an IC50 of 448.98 µg/ml and a selectivity index of > 2.23. To conclude, EVs could be successfully prepared with a simple and effective isolation method to contain nano-sized macromolecules possessing anti-cancer activity.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the Program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawintra Tamprasit
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittrapap Road, Amphoe Muang, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Hanke M, Grundmeier G, Keller A. Direct visualization of the drug loading of single DNA origami nanostructures by AFM-IR nanospectroscopy. NANOSCALE 2022; 14:11552-11560. [PMID: 35861612 DOI: 10.1039/d2nr02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient loading of DNA nanostructures with intercalating or groove-binding drugs is an important prerequisite for various applications in drug delivery. However, unambiguous verification and quantification of successful drug loading is often rather challenging. In this work, AFM-IR nanospectroscopy is thus employed to directly visualize the loading of DNA origami nanostructures with the photosensitizer methylene blue (MB). Single MB-loaded DNA origami nanostructures can be clearly resolved in high-resolution infrared (IR) maps and the occurrence of MB-specific IR absorption correlates well with the topographic signals of the DNA origami nanostructures. The intensity of the recorded MB absorption bands furthermore scales with the MB concentration used for MB loading. By comparing single- and multilayer DNA origami nanostructures, it is also shown that the IR signal intensity of the loaded MB increases with the thickness of the DNA origami nanostructures. This indicates that also DNA double helices located in the core of bulky 3D DNA origami nanostructures are accessible for MB loading. AFM-IR nanospectroscopy thus has the potential to become an invaluable tool for quantifying drug loading of DNA origami nanostructures and optimizing drug loading protocols.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
14
|
Komarala EP, Mariyappan K, Park S, Park SH. DNA foams constructed by freeze drying and their optoelectronic characteristics. Colloids Surf B Biointerfaces 2022; 217:112648. [PMID: 35759897 DOI: 10.1016/j.colsurfb.2022.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
The distinctive properties of DNA make it a promising biomaterial to use in nanoscience and nanotechnology. In the present study, DNA foam was fabricated into multi-dimensional shapes using a freeze drying process with liquid nitrogen and 3D printed molds. The physicochemical and optoelectronic properties of the fabricated DNA foams were investigated using Fourier transform infrared (FTIR) spectrum, X-ray photoelectron spectrum (XPS), thermogravimetric analysis (TGA), ultraviolet-visible (UV-Vis) absorption spectrum, and current-voltage (I-V) characteristics to understand the changes formed in the DNA structure and their effect on properties during the fabrication of DNA foam. The FTIR and XPS analyses confirmed that nitrogen was diffusing into the DNA structure during the DNA foam fabrication. The diffused nitrogen caused a decrease in bond lengths, strong chemical bonds, compaction of DNA structure, existence of additional carbon-nitrogen bonds, and variation in the electron density of the base elements in DNA. These changes in the DNA structure of the DNA foam were reflected in their chemical, optical, and electrical properties. Furthermore, the proper utilization of DNA foams as a template for functional materials by embedding carbon nanotubes (CNTs) and thermocolor was demonstrated.
Collapse
Affiliation(s)
- Eswaravara Prasadarao Komarala
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Karthikeyan Mariyappan
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suyoun Park
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Ha Park
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
16
|
Thevendran R, Foo KL, Hussin MH, Moses EJ, Citartan M, Prasad HR, Maheswaran S. Reverse Electrochemical Sensing of FLT3-ITD Mutations in Acute Myeloid Leukemia Using Gold Sputtered ZnO-Nanorod Configured DNA Biosensors. BIOSENSORS 2022; 12:170. [PMID: 35323440 PMCID: PMC8946250 DOI: 10.3390/bios12030170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Detection of genetic mutations leading to hematological malignancies is a key factor in the early diagnosis of acute myeloid leukemia (AML). FLT3-ITD mutations are an alarming gene defect found commonly in AML patients associated with high cases of leukemia and low survival rates. Available diagnostic assessments for FLT3-ITD are incapable of combining cost-effective detection platforms with high analytical performances. To circumvent this, we developed an efficient DNA biosensor for the recognition of AML caused by FLT3-ITD mutation utilizing electrochemical impedance characterization. The system was designed by adhering gold-sputtered zinc oxide (ZnO) nanorods onto interdigitated electrode (IDE) sensor chips. The sensing surface was biointerfaced with capture probes designed to hybridize with unmutated FLT3 sequences instead of the mutated FLT3-ITD gene, establishing a reverse manner of target detection. The developed biosensor demonstrated specific detection of mutated FLT3 genes, with high levels of sensitivity in response to analyte concentrations as low as 1 nM. The sensor also exhibited a stable functional life span of more than five weeks with good reproducibility and high discriminatory properties against FLT3 gene targets. Hence, the developed sensor is a promising tool for rapid and low-cost diagnostic applications relevant to the clinical prognosis of AML stemming from FLT3-ITD mutations.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (R.T.); (M.C.)
| | - Kai Loong Foo
- Nano Biochip Research Group, Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia;
| | - Mohd Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia;
| | - Marimuthu Citartan
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia; (R.T.); (M.C.)
| | | | - Solayappan Maheswaran
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia;
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Malaysia
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Bedong 08100, Malaysia
| |
Collapse
|
17
|
Fourier-Transform Infra-Red Microspectroscopy Can Accurately Diagnose Colitis and Assess Severity of Inflammation. Int J Mol Sci 2022; 23:ijms23052849. [PMID: 35269993 PMCID: PMC8911059 DOI: 10.3390/ijms23052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
The diagnosis and management of inflammatory bowel disease relies on histological assessment, which is costly, subjective, and lacks utility for point-of-care diagnosis. Fourier-transform infra-red spectroscopy provides rapid, non-destructive, reproducible, and automatable label-free biochemical imaging of tissue for diagnostic purposes. This study characterises colitis using spectroscopy, discriminates colitis from healthy tissue, and classifies inflammation severity. Hyperspectral images were obtained from fixed intestinal sections of a murine colitis model treated with cell therapy to improve inflammation. Multivariate analyses and classification modelling were performed using supervised and unsupervised machine-learning algorithms. Quantitative analysis of severe colitis showed increased protein, collagen, and nucleic acids, but reduced glycogen when compared with normal tissue. A partial least squares discriminant analysis model, including spectra from all intestinal layers, classified normal colon and severe colitis with a sensitivity of 91.4% and a specificity of 93.3%. Colitis severity was classified by a stacked ensemble model yielding an average area under the receiver operating characteristic curve of 0.95, 0.88, 0.79, and 0.85 for controls, mild, moderate, and severe colitis, respectively. Infra-red spectroscopy can detect unique biochemical features of intestinal inflammation and accurately classify normal and inflamed tissue and quantify the severity of inflammation. This is a promising alternative to histological assessment.
Collapse
|
18
|
Furber KL, Lacombe RJS, Caine S, Thangaraj MP, Read S, Rosendahl SM, Bazinet RP, Popescu BF, Nazarali AJ. Biochemical Alterations in White Matter Tracts of the Aging Mouse Brain Revealed by FTIR Spectroscopy Imaging. Neurochem Res 2022; 47:795-810. [PMID: 34820737 DOI: 10.1007/s11064-021-03491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.
Collapse
Affiliation(s)
- Kendra L Furber
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Merlin P Thangaraj
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
20
|
Pakbin B, Zolghadr L, Rafiei S, Brück WM, Brück TB. FTIR differentiation based on genomic DNA for species identification of Shigella isolates from stool samples. Sci Rep 2022; 12:2780. [PMID: 35177783 PMCID: PMC8854563 DOI: 10.1038/s41598-022-06746-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Shigellosis is one of the major public health concerns in developing and low-income countries caused by four species of Shigella. There is an apparent need to develop rapid, cost-effective, sensitive and specific methods for differentiation of Shigella species to be used in outbreaks and health surveillance systems. We developed a sensitive and specific Fourier-transform infrared spectroscopy (FTIR) based method followed by principal component analysis (PCA) and hierarchical clustering analysis (HCA) assays to differentiate four species of Shigella isolates from stool samples. The FTIR based method was evaluated by differentiation of 91 Shigella species from each other in clinical samples using both gold standards (culture-based and agglutination methods) and developed FTIR assay; eventually, the sensitivity and specificity of the developed method were calculated. In summary, four distinct FTIR spectra associated with four species of Shigella were obtained with wide variations in three definite regions, including 1800–1550 cm−1, 1550–1100 cm−1, and 1100–800 cm−1 distinguish these species from each other. In this study, we found the FTIR method followed by PCA analysis with specificity, sensitivity, differentiation error and correct differentiation rate values of 100, 100, 0 and 100%, respectively, for identification and differentiation of all species of the Shigella in stool samples.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950, Sion 2, Switzerland
| | - Leila Zolghadr
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran
| | - Shahnaz Rafiei
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950, Sion 2, Switzerland.
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching bei München, Germany
| |
Collapse
|
21
|
Amouzadeh Tabrizi M, Acedo P. Highly Sensitive RNA-Based Electrochemical Aptasensor for the Determination of C-Reactive Protein Using Carbon Nanofiber-Chitosan Modified Screen-Printed Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:415. [PMID: 35159761 PMCID: PMC8839947 DOI: 10.3390/nano12030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
C-reactive protein (CRP) is one of the biomarkers related to coronavirus disease 2019 (COVID-19). Therefore, it is crucial to develop a highly sensitive, selective, and cost-effective biosensor for the determination of CRP. In this study, we designed an electrochemical aptasensor. For this purpose, the surface of a carbon screen-printed electrode was first modified with a carbon nanofiber-chitosan (CNFs-CHIT) nanocomposite. After that, the amino-terminal RNA aptamer probes were linked to the amino groups of CHIT via glutaraldehyde as the cross-linker. Finally, methylene blue (MB) as a redox probe was self-assembled on the surface of the aptasensor. The obtained results indicated that the CNFs-CHIT nanocomposite increased the surface coverage of the aptamer up to 5.9 times. The square-wave voltammetry was used for the measurement of CRP concentration in the linear range of 1.0-150.0 pM. The obtained results indicated that the signal had a logarithmic relationship with the concentration of CRP. The limit of detection (LOD) was obtained to be 0.37 pM. The dissociation constant (Kd) that demonstrates the affinity of the aptamer probe to its target was found to be 0.93 pM. The analytical performances of the proposed RNA aptasensor were better than the previously reported aptasensors for CRP. The proposed aptasensor was also applied for the determination of CRP in the human plasma samples. The obtained results indicated that there were no statistically significant differences between the responses of the proposed RNA aptasensor and an enzyme-linked immunosorbent assay kit (ELISA). The analytical performances of the proposed RNA aptasensor described in this paper are better than previously reported aptasensors for CRP determination.
Collapse
Affiliation(s)
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
22
|
Jin H, Lim HJ, Liles MR, Chua B, Son A. Switchable inhibitory behavior of divalent magnesium ion in DNA hybridization-based gene quantification. Analyst 2022; 147:4845-4856. [DOI: 10.1039/d2an01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mg2+ ion is a switchable inhibitor that can cause either under or over-estimation at different concentrations in DNA hybridization based gene quantification.
Collapse
Affiliation(s)
- Hyowon Jin
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Beelee Chua
- School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Aithal S, Mishriki S, Gupta R, Sahu RP, Botos G, Tanvir S, Hanson RW, Puri IK. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta 2022; 236:122841. [PMID: 34635231 PMCID: PMC8409056 DOI: 10.1016/j.talanta.2021.122841] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
A rapid detection test for SARS-CoV-2 is urgently required to monitor virus spread and containment. Here, we describe a test that uses nanoprobes, which are gold nanoparticles functionalized with an aptamer specific to the spike membrane protein of SARS-CoV-2. An enzyme-linked immunosorbent assay confirms aptamer binding with the spike protein on gold surfaces. Protein recognition occurs by adding a coagulant, where nanoprobes with no bound protein agglomerate while those with sufficient bound protein do not. Using plasmon absorbance spectra, the nanoprobes detect 16 nM and higher concentrations of spike protein in phosphate-buffered saline. The time-varying light absorbance is examined at 540 nm to determine the critical coagulant concentration required to agglomerates the nanoprobes, which depends on the protein concentration. This approach detects 3540 genome copies/μl of inactivated SARS-CoV-2.
Collapse
Affiliation(s)
- Srivatsa Aithal
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Mishriki
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rohit Gupta
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rakesh P Sahu
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - George Botos
- Genemis Laboratories, Cambridge, Ontario, Canada; Aptavid, New York, USA
| | | | | | - Ishwar K Puri
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Hassan A, Sedenho GC, Vitale PAM, Oliviera MN, Crespilho FN. On the Weak Binding and Spectroscopic Signature of SARS-CoV-2 nsp14 Interaction with RNA. Chembiochem 2021; 22:3410-3413. [PMID: 34542936 PMCID: PMC8653059 DOI: 10.1002/cbic.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/18/2021] [Indexed: 11/29/2022]
Abstract
The SARS-CoV-2 non-structural protein 14 (nsp14), known as exoribonuclease is encoded from the large polyprotein of viral genome and is a major constituent of the transcription replication complex (TRC) machinery of the viral RNA synthesis. This protein is highly conserved among the coronaviruses and is a potential target for the development of a therapeutic drug. Here, we report the SARS-CoV-2 nsp14 expression, show its structural characterization, and ss-RNA exonuclease activity through vibrational and electronic spectroscopies. The deconvolution of amide-I band in the FTIR spectrum of the protein revealed a composition of 35 % α-helix and 25 % β-sheets. The binding between protein and RNA is evidenced from the spectral changes in the amide-I region of the nsp14, showing protein conformational changes during the binding process. A value of 20.60±3.81 mol L-1 of the binding constant (KD ) is obtained for nsp14/RNA complex. The findings reported here can motivate further studies to develop structural models for better understanding the mechanism of exonuclease enzymes for correcting the viral genome and can help in the development of drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Ayaz Hassan
- Department of Physical ChemistrySão Carlos Institute of ChemistryUniversity of São PauloAv. Trabalhador São Carlense, 400 – Parque Arnold SchimidtSão CarlosSP, 13566-590Brazil
| | - Graziela C. Sedenho
- Department of Physical ChemistrySão Carlos Institute of ChemistryUniversity of São PauloAv. Trabalhador São Carlense, 400 – Parque Arnold SchimidtSão CarlosSP, 13566-590Brazil
| | | | - Mona N. Oliviera
- BiolinkerAv. Prof. Lineu PrestesCietec – ButantãSão PauloSP, 05508-000Brazil
| | - Frank N. Crespilho
- Department of Physical ChemistrySão Carlos Institute of ChemistryUniversity of São PauloAv. Trabalhador São Carlense, 400 – Parque Arnold SchimidtSão CarlosSP, 13566-590Brazil
| |
Collapse
|
25
|
Silva FSR, Erdogmus E, Shokr A, Kandula H, Thirumalaraju P, Kanakasabapathy MK, Hardie JM, Pacheco LGC, Li JZ, Kuritzkes DR, Shafiee H. SARS-CoV-2 RNA Detection by a Cellphone-Based Amplification-Free System with CRISPR/CAS-Dependent Enzymatic (CASCADE) Assay. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100602. [PMID: 34514084 PMCID: PMC8420437 DOI: 10.1002/admt.202100602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Indexed: 05/16/2023]
Abstract
CRISPR (Clustered regularly interspaced short palindromic repeats)-based diagnostic technologies have emerged as a promising alternative to accelerate delivery of SARS-CoV-2 molecular detection at the point of need. However, efficient translation of CRISPR-diagnostic technologies to field application is still hampered by dependence on target amplification and by reliance on fluorescence-based results readout. Herein, an amplification-free CRISPR/Cas12a-based diagnostic technology for SARS-CoV-2 RNA detection is presented using a smartphone camera for results readout. This method, termed Cellphone-based amplification-free system with CRISPR/CAS-dependent enzymatic (CASCADE) assay, relies on mobile phone imaging of a catalase-generated gas bubble signal within a microfluidic channel and does not require any external hardware optical attachments. Upon specific detection of a SARS-CoV-2 reverse-transcribed DNA/RNA heteroduplex target (orf1ab) by the ribonucleoprotein complex, the transcleavage collateral activity of the Cas12a protein on a Catalase:ssDNA probe triggers the bubble signal on the system. High analytical sensitivity in signal detection without previous target amplification (down to 50 copies µL-1) is observed in spiked samples, in ≈71 min from sample input to results readout. With the aid of a smartphone vision tool, high accuracy (AUC = 1.0; CI: 0.715 - 1.00) is achieved when the CASCADE system is tested with nasopharyngeal swab samples of PCR-positive COVID-19 patients.
Collapse
Affiliation(s)
- Filipe S. R. Silva
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
- Department of BiotechnologyInstitute of Health SciencesFederal University of BahiaSalvadorBA40110‐100Brazil
| | - Eda Erdogmus
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Ahmed Shokr
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Hemanth Kandula
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Prudhvi Thirumalaraju
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Manoj K. Kanakasabapathy
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Joseph M. Hardie
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Luis G. C. Pacheco
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
- Department of BiotechnologyInstitute of Health SciencesFederal University of BahiaSalvadorBA40110‐100Brazil
| | - Jonathan Z. Li
- Harvard Medical SchoolBostonMA02115USA
- Division of Infectious DiseasesBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Daniel R. Kuritzkes
- Harvard Medical SchoolBostonMA02115USA
- Division of Infectious DiseasesBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
| | - Hadi Shafiee
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02139USA
- Harvard Medical SchoolBostonMA02115USA
| |
Collapse
|
26
|
Albarqouni Y, Ali GA, Lee SP, Mohd-Hairul AR, Algarni H, Chong KF. Dual-functional single stranded deoxyribonucleic acid for graphene oxide reduction and charge storage enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Gomes Rios T, Larios G, Marangoni B, Oliveira SL, Cena C, Alberto do Nascimento Ramos C. FTIR spectroscopy with machine learning: A new approach to animal DNA polymorphism screening. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120036. [PMID: 34116415 DOI: 10.1016/j.saa.2021.120036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Technological advances in recent decades, especially in molecular genetics, have enabled the detection of genetic DNA markers associated with productive characteristics in animals. However, the prospection of polymorphisms based on DNA sequencing is still expensive for the reality of many food-producing regions around the world, such as Brazil, demanding more accessible prospecting methods. In the present study, the Fourier transform infrared spectroscopy (FTIR) and machine learning algorithms were used to identify single nucleotide polymorphism (SNP) in animal DNA. The fragments of bovine DNA with well-known polymorphisms were used as a model. The DNA fragments were produced and genotyped by PCR-RFLP and classified according to the genotype (homozygous or heterozygous). FTIR spectra of DNA fragments were analyzed by principal component analysis (PCA) and machine learning algorithms. The best results exhibited 75-95% accuracy in the classification of bovine genotypes. Therefore, FTIR spectroscopy and multivariate analysis can be used as an alternative tool for prospecting polymorphisms in animal DNA. The method can contribute with studies to identify genetic markers associated with animal production and indirectly with food production itself, and reduce pressure on available natural resources.
Collapse
Affiliation(s)
- Thaynádia Gomes Rios
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Gustavo Larios
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Bruno Marangoni
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Cícero Cena
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | | |
Collapse
|
28
|
Physicochemical characterization of the DNA complexes with different surfactants. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Banerjee A, Bansal N, Kumar J, Bhaskar T, Ray A, Ghosh D. Characterization of the de-oiled yeast biomass for plausible value mapping in a biorefinery perspective. BIORESOURCE TECHNOLOGY 2021; 337:125422. [PMID: 34186333 DOI: 10.1016/j.biortech.2021.125422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Oleaginous yeast fermentation process has gained attention for yeast single cell oil production. However, after lipid extraction, the leftover de-oiled yeast biomass has not been investigated in detail for its suitability for thermochemical conversion. To understand the structural and morphological changes, the comparative characterization of yeast and de-oiled yeast biomass before and post lipid extraction is necessary. The present study investigates the characteristics of an oleaginous yeast Rhodotorula mucilaginosa IIPL32's de-oiled biomass for its potential utilization. FTIR, XRD, SEM, EDX, XRF, and TGA analysis were performed to understand the biomass properties. Increased surface area and structural changes were observed in de-oiled yeast biomass with an increase in crystallinity, indicating chitosan availability. Maximum thermal degradation temperature was reduced to 260 °C for de-oiled yeast biomass from 300 °C for dried yeast after lipid extraction. The findings favored de-oiled yeast biomass for multiple applications that merit further detailed investigation with different thermochemical interventions.
Collapse
Affiliation(s)
- Ayan Banerjee
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Neha Bansal
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Jitendra Kumar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Anjan Ray
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Debashish Ghosh
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India.
| |
Collapse
|
30
|
Yamada M, Sugihara T, Yamada T. Anhydrous proton-conducting material consisting of basic protein protamine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Brogna R, Fan J, Sieme H, Wolkers WF, Oldenhof H. Drying and temperature induced conformational changes of nucleic acids and stallion sperm chromatin in trehalose preservation formulations. Sci Rep 2021; 11:14076. [PMID: 34234244 PMCID: PMC8263733 DOI: 10.1038/s41598-021-93569-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Even though dried sperm is not viable, it can be used for fertilization as long as its chromatin remains intact. In this study, we investigated drying- and temperature-induced conformational changes of nucleic acids and stallion sperm chromatin. Sperm was diluted in preservation formulations with and without sugar/albumin and subjected to convective drying at elevated temperatures on glass substrates. Accumulation of reactive oxygen species was studied during storage at different temperatures, and the sperm chromatin structure assay was used to assess DNA damage. Fourier transform infrared spectroscopy was used to identify dehydration and storage induced conformational changes in isolated DNA and sperm chromatin. Furthermore, hydrogen bonding in the preservation solutions associated with storage stability were investigated. Reactive oxygen species and DNA damage in dried sperm samples were found to accumulate with increasing storage temperature and storage duration. Non-reducing disaccharides (i.e., trehalose, sucrose) and albumin counteracted oxidative stress and preserved sperm chromatin during dried storage, whereas glucose increased DNA damage during storage. When sperm was dried in the presence of trehalose and albumin, no spectral changes were detected during storage at refrigeration temperatures, whereas under accelerated aging conditions, i.e., storage at 37 °C, spectral changes were detected indicating alterations in sperm chromatin structure.
Collapse
Affiliation(s)
- Raffaele Brogna
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Juezhu Fan
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany.
| |
Collapse
|
32
|
Guleken Z, Bulut H, Bulut B, Depciuch J. Assessment of the effect of endocrine abnormalities on biomacromolecules and lipids by FT-IR and biochemical assays as biomarker of metabolites in early Polycystic ovary syndrome women. J Pharm Biomed Anal 2021; 204:114250. [PMID: 34274594 DOI: 10.1016/j.jpba.2021.114250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy associated with metabolic disturbances. Both in the development and improvement of the disease, the structure of phospholipids and proteins in the blood serum plays important role in the treatment of these disease. Herein, to investigate the metabolic process and the variations of biomacromolecules and lipids between young PCOS women and healthy subjects, biochemistry and Fourier Transform InfraRed spectroscopy (FTIR) methods, were used. Moreover, partial least squares regression (PLS) and Principal component analysis (PCA) to research differentiation of biomacromolecules, were performed. We obtained blood serum of of 100 individuals including 57 with PCOS and 43 healthy controls. The biochemical blood profile of PCOS women was presented by spectroscopic measurements, which is an analytical technique, as well as by laboratory indexes and oxidative stress status measurements. There was a significant structural differentiation between studied groups in the number of functional groups and biomolecules differentiation depending on the protein expression and oxidative stress status. Hence, FTIR spectroscopy and oxidative load can be effectively utilized as tools for classifying quantitative and qualitative changes of biomolecules in PCOS samples. PCOS samples did not correlate with luteinizing hormone (LH) level and proteins but had a negative correlation between carbohydrates and fatty acids, compared with control group.
Collapse
Affiliation(s)
- Zozan Guleken
- Department of Physiology, Uskudar University Faculty of Medicine, Istanbul, Turkey.
| | - Huri Bulut
- Department of Medical Biochemistry, Faculty of Medicine Istinye University, Istanbul, Turkey
| | - Berk Bulut
- Health Science University Istanbul Okmeydanı Training and Research Hospital, Department of Obstetrics and Gynecology, Turkey; Department of Obstetrics and Gynecology Faculty of Medicine Istinye University, Istanbul, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| |
Collapse
|
33
|
Yao Z, Zhang Q, Zhu W, Galluzzi M, Zhou W, Li J, Zayats AV, Yu XF. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. NANOSCALE 2021; 13:10133-10142. [PMID: 34060584 DOI: 10.1039/d1nr01652k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient point-of-care diagnosis of severe acute respiratory syndrome-corovavirus-2 (SARS-CoV-2) is crucial for the early control of novel coronavirus infections. At present, polymerase chain reaction (PCR) is primarily used to detect SARS-CoV-2. Despite the high sensitivity, the PCR process is time-consuming and complex which limits its applicability for rapid testing of large-scale outbreaks. Here, we propose a rapid and easy-to-implement approach for SARS-CoV-2 detection based on surface enhanced infrared absorption (SEIRA) spectroscopy. The evaporated gold nano-island films are used as SEIRA substrates which are functionalized with the single-stranded DNA probes for specific binding to selected SARS-CoV-2 genomic sequences. The infrared absorption spectra are analyzed using the principal component analysis method to identify the key characteristic differences between infected and control samples. The SEIRA-based biosensor demonstrates rapid detection of SARS-CoV-2, completing the detection of 1 μM viral nucleic acids within less than 5 min without any amplification. When combined with the recombinase polymerase amplification treatment, the detection capability of 2.98 copies per μL (5 aM) can be completed within 30 min. This approach provides a simple and economical alternative for COVID-19 diagnosis, which can be potentially useful in monitoring and controlling future pandemics in a timely manner.
Collapse
Affiliation(s)
- Zhiqi Yao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Di Meo V, Moccia M, Sanità G, Crescitelli A, Lamberti A, Galdi V, Rendina I, Esposito E. Advanced DNA Detection via Multispectral Plasmonic Metasurfaces. Front Bioeng Biotechnol 2021; 9:666121. [PMID: 34055762 PMCID: PMC8149789 DOI: 10.3389/fbioe.2021.666121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
We propose and demonstrate a sensing platform based on plasmonic metasurfaces for the detection of very low concentrations of deoxyribo-nucleic acid (DNA) fragments. The platform relies on surface-enhanced infrared absorption spectroscopy, implemented via a multispectral metasurface. Specifically, different regions (“pixels”) are engineered so as to separately cover the medium-infrared range of the electromagnetic spectrum extending from the functional-groups to the fingerprint region of a single analyte. In conjunction with a suitable bio-functionalization, this enables univocal and label-free recognition of specific molecules. For experimental validation, we fabricate a large-area gold metasurface on a silicon chip, and functionalize it with a recognition layer of peptide nucleic acid (PNA). Our experimental results indicate the possibility to detect complementary DNA fragments in concentrations as low as 50 fM, i.e., well below the value attained by standard methods, with additional advantages in terms of processing time, versatility and ease of implementation/operation.
Collapse
Affiliation(s)
- Valentina Di Meo
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Massimo Moccia
- Fields and Waves Laboratory, Department of Engineering, University of Sannio, Benevento, Italy
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Alessio Crescitelli
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenzo Galdi
- Fields and Waves Laboratory, Department of Engineering, University of Sannio, Benevento, Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Naples, Italy
| |
Collapse
|
35
|
Piccirilli F, Tardani F, D’Arco A, Birarda G, Vaccari L, Sennato S, Casciardi S, Lupi S. Infrared Nanospectroscopy Reveals DNA Structural Modifications upon Immobilization onto Clay Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1103. [PMID: 33923331 PMCID: PMC8147086 DOI: 10.3390/nano11051103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022]
Abstract
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
Collapse
Affiliation(s)
| | - Franco Tardani
- Istituto dei Sistemi Complessi (ISC)-CNR, UOS Roma Sapienza, 00185 Roma, Italy; (F.T.); (S.S.)
| | - Annalisa D’Arco
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
- National Institute of Nuclear Physics Section Rome, P.le A. Moro 2, 00185 Roma, Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Simona Sennato
- Istituto dei Sistemi Complessi (ISC)-CNR, UOS Roma Sapienza, 00185 Roma, Italy; (F.T.); (S.S.)
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
| | - Stefano Casciardi
- Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Istituto Nazionale per l’Assicurazione Contro gli Infortuni sul Lavoro, 00100 Roma, Italy;
| | - Stefano Lupi
- Istituto Officina dei Materiali CNR, 34149 Trieste, Italy;
- Dipartimento di Fisica, “La Sapienza” Universitá di Roma, 00185 Roma, Italy;
| |
Collapse
|
36
|
Mello MLS. Sodium Valproate-Induced Chromatin Remodeling. Front Cell Dev Biol 2021; 9:645518. [PMID: 33959607 PMCID: PMC8093769 DOI: 10.3389/fcell.2021.645518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Valproic acid/sodium valproate (VPA), a drug originally prescribed as an anticonvulsant, has been widely reported to act on epigenetic marks by inducing histone acetylation, affecting the DNA and histone methylation status, and altering the expression of transcription factors, thus leading to modulation of gene expression. All these epigenetic changes have been associated with chromatin remodeling effects. The present minireview briefly reports the main effects of VPA on chromatin and image analysis and Fourier transform infrared (FTIR) microspectroscopy in association with molecular biology methodological approaches to investigate the VPA-induced changes in chromatin structure and at the higher-order supraorganizational level.
Collapse
Affiliation(s)
- Maria Luiza S. Mello
- Department of Structural and Functional Biology, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
37
|
Mustafa M, Ali A, Siddiqui SA, Mir AR, Kausar T, Nayeem SM, Abidi M, Habib S. Biophysical characterization of structural and conformational changes in methylmethane sulfonate modified DNA leading to the frizzled backbone structure and strand breaks in DNA. J Biomol Struct Dyn 2021; 40:7598-7611. [PMID: 33719845 DOI: 10.1080/07391102.2021.1899051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methyl methanesulfonate (MMS) is a highly toxic DNA-alkylating agent that has a potential to damage the structural integrity of DNA. This work employed multiple biophysical and computational methods to report the MMS mediated structural alterations in the DNA (MMS-DNA). Spectroscopic techniques and gel electrophoresis studies revealed MMS induced exposure of chromophoric groups of DNA; methylation mediated anti→syn conformational change, DNA fragmentation and reduced nucleic acid stability. MMS induced single-stranded regions in the DNA were observed in nuclease S1 assay. FT-IR results indicated MMS mediated loss of the assigned peaks for DNA, partial loss of C-O ribose, loss of deoxyribose region, C-O stretching and bending of the C-OH groups of hexose sugar, a progressive shift in the assigned guanine and adenine peaks, loss of thymine peak, base stacking and presence of C-O-H vibrations of glucose and fructose, indicating direct strand breaks in DNA due to backbone loss. Isothermal titration calorimetry showed MMS-DNA interaction as exothermic with moderate affinity. Dynamic light scattering studies pointed towards methylation followed by the generation of single-stranded regions. Electron microscopy pictured the loss of alignment in parallel base pairs and showed the formation of fibrous aggregates in MMS-DNA. Molecular docking found MMS in close contact with the ribose sugar of DNA backbone having non-bonded interactions. Molecular dynamic simulations confirmed that MMS is capable of interacting with DNA at two levels, one at the level of nitrogenous bases and another at the DNA backbone. The study offers insights into the molecular interaction of MMS and DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tasneem Kausar
- Department of Chemistry, Faculty of Science, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Science, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
38
|
Caliskan S, Oldenhof H, Brogna R, Rashidfarokhi B, Sieme H, Wolkers WF. Spectroscopic assessment of oxidative damage in biomolecules and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119003. [PMID: 33035890 DOI: 10.1016/j.saa.2020.119003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Oxidative damage is one of the main causes of cryopreservation injury compromising the use of cryopreserved biospecimens. The aim of this study was to evaluate the use of Fourier transform infrared spectroscopy (FTIR) as a non-invasive method to assess changes in biomolecular composition and structure, associated with oxidative stress in isolated biomolecules, acellular heart valve tissues, and ovarian cortex tissues. FTIR spectra of these specimens subjected to various treatments (H2O2- and Fenton-treatment or elevated temperatures) were vector normalized and selected spectral regions were analyzed by principal component analysis (PCA). Control and damaged biomolecules can easily be separated using PCA score plots. Acellular heart valve tissues that were subjected to different levels of oxidative damage formed separate cluster in PCA score plots. In hydrated ovarian tissue, large variation of the principal components was observed. Drying the ovarian tissues samples resulted in improved cluster separation of treatment groups. However, early signs of oxidative damage under mild stress conditions could not be detected by PCA of FTIR spectra. For the ovarian tissue samples, the standardly used nitro blue tetrazolium chloride (NBT) assay was used to monitor the amount of formazan production, reflecting reactive oxygen species (ROS) production at various temperatures. At 37 °C, formazan staining rapidly increased during the first 30 min, and then slowly reached a saturation level, but also at lower temperatures (i.e. 4 °C) formazan production was observed. In summary, we conclude that ATR-FTIR combined with PCA can be used to study oxidative damage in biomolecules as well as in tissues. In tissues, however, sample heterogeneity makes it difficult to detect early signs of oxidative damage.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Raffaele Brogna
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bita Rashidfarokhi
- Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
39
|
Muntean CM, Dina NE, Tǎbǎran A, Gherman AMR, Fǎlǎmaş A, Olar LE, Colobǎţiu LM, Ştefan R. Identification of Salmonella Serovars before and after Ultraviolet Light Irradiation by Fourier Transform Infrared (FT-IR) Spectroscopy and Chemometrics. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1731524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Cristina M. Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Nicoleta E. Dina
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alexandra Tǎbǎran
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ana M. R. Gherman
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alexandra Fǎlǎmaş
- National Institute for Research & Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Loredana E. Olar
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Liora M. Colobǎţiu
- Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rǎzvan Ştefan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Morikawa K, Masubuchi Y, Shchipunov Y, Zinchenko A. DNA-Chitosan Hydrogels: Formation, Properties, and Functionalization with Catalytic Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:1823-1832. [DOI: 10.1021/acsabm.0c01533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohki Morikawa
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Yuichi Masubuchi
- Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yury Shchipunov
- Institute of Chemistry, Far-East Department of Russian Academy of Sciences, Far-Eastern Federal University, Vladivostok 690922, Russia
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Spectral fingerprinting to evaluate effects of storage conditions on biomolecular structure of filter-dried saliva samples and recovered DNA. Sci Rep 2020; 10:21442. [PMID: 33293589 PMCID: PMC7722934 DOI: 10.1038/s41598-020-78306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Saliva has been widely recognized as a non-invasive, painless and easy-to-collect bodily fluid, which contains biomarkers that can be used for diagnosis of both oral and systemic diseases. Under ambient conditions, salivary biomarkers are subject to degradation. Therefore, in order to minimize degradation during transport and storage, saliva specimens need to be stabilized. The aim of this study was to investigate the feasibility of preserving saliva samples by drying to provide a shelf-stable source of DNA. Human saliva was dried on filters under ambient conditions using sucrose as lyoprotective agent. Samples were stored under different conditions, i.e. varying relative humidity (RH) and temperature. In addition to assessment of different cell types in saliva and their DNA contents, Fourier transform infrared spectroscopy (FTIR) was used to evaluate the effects of storage on biomolecular structure characteristics of saliva. FTIR analysis showed that saliva dried without a lyoprotectant exhibits a higher content of extended β-sheet protein secondary structures compared to samples that were dried with sucrose. In order to evaluate differences in characteristic bands arising from the DNA backbone among differently stored samples, principal component analysis (PCA) was performed, allowing a clear discrimination between groups with/without sucrose as well as storage durations and conditions. Our results indicated that saliva dried on filters in the presence of sucrose exhibits higher biomolecular stability during storage.
Collapse
|
42
|
Ji C, Yin X, Duan H, Liang L. Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. Int J Biol Macromol 2020; 168:775-783. [PMID: 33227330 DOI: 10.1016/j.ijbiomac.2020.11.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The interaction between biomacromolecules and ligands has attracted great interest because of their biological properties. Calf thymus DNA (ctDNA) can interact with bioactive compounds to form complexes. Here, ctDNA-ligand complexes were studied using fluorescence, absorption, and infrared spectroscopy, circular dichroism, ABTS assay and competitive displacement. The binding constants of bioactive compounds at the intercalative site of ctDNA ranked in order kaempferol > apigenin > quercetin > curcumin > riboflavin, while the binding constants at minor groove sites ranked quercetin > kaempferol > naringenin ~ apigenin > hesperetin > curcumin ~ resveratrol ~ riboflavin > caffeic acid. CtDNA maintained stable B-form with an enhancement of base stacking and a decrease of right-handed helicity in the presence of these bioactive compounds, except for hesperetin and caffeic acid. Bioactive compounds preferentially bound to guanine bases and tended to transfer into a more hydrophobic environment upon complexation with ctDNA. The DNA complexation did not affect the ABTS·+ scavenging capacity of quercetin, kaempferol, resveratrol and apigenin but increased the ones of naringenin, caffeic acid, curcumin, hesperetin and riboflavin. The data gathered here should be useful to understand the binding modes of DNA with ligands for their potential application in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Chuye Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
43
|
Esmaeili Y, Zarrabi A, Mirahmadi-Zare SZ, Bidram E. Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy. Mikrochim Acta 2020; 187:553. [DOI: 10.1007/s00604-020-04490-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
|
44
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA‐Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Ya Liu
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiao Tong University Shannxi 710049 China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Xinju Yang
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Jiaxin Chen
- Department of Materials Science Fudan University Shanghai 200438 China
| | - Xiubo Yang
- Analytical & Testing Center Northwestern Polytechnical University Shaanxi 710072 China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| |
Collapse
|
45
|
Li S, Zhang J, Miao Y, Guo W, Feng G, Feng Y, Zhang C, Wu H, Zeng M. Stabilization and delivery of bioavailable nanosized iron by fish sperm DNA. Food Funct 2020; 11:6240-6250. [PMID: 32596698 DOI: 10.1039/d0fo00703j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanosized iron is a promising candidate as an iron fortificant due to its good solubility and bioavailability. Here, ferric hydrolysis in the presence of salmon/herring sperm DNA yielded irregularly shaped, highly negatively charged DNA-stabilized ferric oxyhydroxide nanoparticles (DNA-FeONPs) aggregated from 2-4 nm primary spherical monomers, in which phosphodioxy groups of the DNA backbone served as the iron-nucleation sites with high molecular weight (>500 bp), double-stranded winding, and acidic environmental pH disfavoring DNA's iron-loading capacity. The calcein fluorescence-quenching kinetics of polarized Caco-2 cells revealed the involvement of divalent transporter 1, macropinocytosis and nucleolin-mediated endocytosis in intestinal iron absorption from DNA-FeONPs with low molecular weight (<500 bp) favoring the performance of DNA in aiding iron absorption. In anemic rats, dietary DNA-FeONPs showed >80% relative iron bioavailability compared to FeSO4 as per hemoglobin regeneration efficiencies and delivered intestinally available nanosized iron, as determined by luminal iron speciation analysis. Overall, fish sperm DNA is promising in stabilizing and delivering bioavailable nanosized iron.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de Campos Vidal B, Mello MLS. Sodium valproate (VPA) interactions with DNA and histones. Int J Biol Macromol 2020; 163:219-231. [PMID: 32619665 DOI: 10.1016/j.ijbiomac.2020.06.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Valproic acid/sodium valproate (VPA) constitutes a widely prescribed drug for the treatment of seizure disorders and is a well-known epigenetic agent, inducing the acetylation of histones and affecting the methylation status of DNA and histones, with consequences on gene expression. Because this drug has been recently reported to exert affinity for histone H1, and to a minor degree for DNA, in this work, we investigated a possible interaction of sodium valproate with DNA and histones H1 and H3 using high-performance polarization microscopy and Fourier-transform infrared (FTIR) microspectroscopy. The preparations under examination consisted of hemispheres resulting from drop-casting samples containing VPA-DNA and VPA-histone mixtures. The results indicated that VPA may interact with DNA and histones, inducing changes in the textural superstructure and molecular order of the DNA possibly through van der Waals forces, and in histone H1 and H3 conformations, probably as a result of electrostatic binding between the drug and protein amino acid residues. These results contribute to a better understanding of the pharmacological potential of VPA. The precise sites and mechanisms involved in these interactions would certainly benefit from investigations provided by complementary methodologies.
Collapse
Affiliation(s)
- Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
47
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA-Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020; 59:12762-12768. [PMID: 32342610 DOI: 10.1002/anie.202004333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Electronic textiles may revolutionize many fields, such as communication, health care and artificial intelligence. To date, unfortunately, computing with them is not yet possible. Memristors are compatible with the interwoven structure and manufacturing process in textiles because of its two-terminal crossbar configuration. However, it remains a challenge to realize textile memristors owing to the difficulties in designing advanced memristive materials and achieving high-quality active layers on fiber electrodes. Herein we report a robust textile memristor based on an electrophoretic-deposited active layer of deoxyribonucleic acid (DNA) on fiber electrodes. The unique architecture and orientation of DNA molecules with the incorporation of Ag nanoparticles offer the best-in-class performances, e.g., both ultra-low operation voltage of 0.3 V and power consumption of 100 pW and high switching speed of 20 ns. Fundamental logic calculations such as implication and NAND are demonstrated as functions of textile chips, and it has been thus integrated with power-supplying and light emitting modules to demonstrate an all-fabric information processing system.
Collapse
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiao Tong University, Shannxi, 710049, China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Xinju Yang
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Jiaxin Chen
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Shaanxi, 710072, China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
48
|
Kasem MA, Yousef I, Alrowaili ZA, Zedan M, El-Hussein A. Investigating Egyptian archeological bone diagenesis using ATR-FTIR microspectroscopy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1752480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. A. Kasem
- The National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - I. Yousef
- MIRAS Beamline, infrared spectroscopy & microscopy, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Z. A. Alrowaili
- Physics Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - M. Zedan
- The National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - A. El-Hussein
- The National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| |
Collapse
|
49
|
Ayoib A, Hashim U, Gopinath SC. Automated, high-throughput DNA extraction protocol for disposable label free, microfluidics integrating DNA biosensor for oil palm pathogen, Ganoderma boninense. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Rodrigues FP, Macedo LJA, Máximo LNC, Sales FCPF, da Silva RS, Crespilho FN. Real-time redox monitoring of a nitrosyl ruthenium complex acting as NO-donor agent in a single A549 cancer cell with multiplex Fourier-transform infrared microscopy. Nitric Oxide 2020; 96:29-34. [PMID: 31952991 DOI: 10.1016/j.niox.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
Multiplex Fourier-transform infrared microscopy (μFT-IR) helped to monitor trans-[Ru(NO) (NH3)4 (isn)]3+(I), uptake by A549 lung carcinoma cell, as well as the generation of its product, nitric oxide (NO), inside the cell. Chronoamperometry with NO-sensor and μFT-IR showed that exogenous NADH and the A549 cell induced the NO release redox mechanism. Chemical imaging confirmed that (I) was taken up by the cell, and that its localization coincided with its consumption in the cellular environment within 15 min of exposure. The Ru-NO absorption band in the IR spectrum shifted from 1932 cm-1, when NO was coordinated to Ru as {RuII-NO+}3+, to 1876 cm-1, due the formation of reduced species {RuII-NO0}2+, a precursor of NO release. Futhermore, the μFT-IR spectral profile demonstrated that, as a result of the NO action on the target, NO interacted with nucleic acids, which provided a biochemical response that is detectable in living cells.
Collapse
Affiliation(s)
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Leandro N C Máximo
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil; Department of Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Urutaí, GO, 75790-000, Brazil
| | - Fernanda C P F Sales
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|