1
|
Abbas A, Hammad AS, Zakaria ZZ, Al-Asmakh M, Hussain K, Al-Shafai M. gnas Knockdown Induces Obesity and AHO Features in Early Zebrafish Larvae. Int J Mol Sci 2024; 25:12674. [PMID: 39684386 DOI: 10.3390/ijms252312674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
GNAS (Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gsα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in GNAS, resulting in Gsα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gsα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity. This study was prompted by identifying several GNAS variants of uncertain significance (VUSs) in pediatric patients presenting with unexplained, severe, early-onset obesity at Sidra Medicine in Qatar. To functionally characterize these variants, we developed the first zebrafish model of Gsα deficiency, offering numerous advantages over other model systems. This was achieved by knockdown of the ortholog through microinjection of translation-blocking Morpholino antisense oligonucleotides into the yolks of 1-8-cell-stage zebrafish embryos. The morphant larvae displayed an obese phenotype, marked by significantly enlarged yolk sacs, increased neutral lipid accumulation, and reduced metabolic rates, among other developmental abnormalities resembling those in AHO. This zebrafish model lays the foundation for efficient functional characterization of GNAS VUSs and paves the way for enhancing our understanding of Gsα deficiency-associated early-onset obesity.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zain Z Zakaria
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Liu H, Yang Q, Li G, Hung TC, Zuo J, Luan N, Liu X, Wu Q. Probiotic Lactobacillus rhamnosus modulates MCLR-induced oogenesis disorders in zebrafish: Evidence from the transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175532. [PMID: 39153614 DOI: 10.1016/j.scitotenv.2024.175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 μg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.
Collapse
Affiliation(s)
- Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| |
Collapse
|
3
|
Zheng X, Qian Y, Wang L. Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1406132. [PMID: 39386166 PMCID: PMC11463061 DOI: 10.3389/fcimb.2024.1406132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background The causal relationship between gut microbiota and insulin-like growth factor 1 (IGF-1) remains unclear. The purpose of this study was to explore the causal relationship between gut microbiota and IGF-1 in men and women. Methods Single-nucleotide polymorphisms (SNPs) related to gut microbiota were derived from pooled statistics from large genome-wide association studies (GWASs) published by the MiBioGen consortium. Pooled data for IGF-1 were obtained from a large published GWAS. We conducted Mendelian randomization (MR) analysis, primarily using the inverse variance weighted (IVW) method. Additionally, we performed sensitivity analyses to enhance the robustness of our results, focusing on assessing heterogeneity and pleiotropy. Results In forward MR analysis, 11 bacterial taxa were found to have a causal effect on IGF-1 in men; 14 bacterial taxa were found to have a causal effect on IGF-1 in women (IVW, all P < 0.05). After false discovery rate (FDR) correction, all bacterial traits failed to pass the FDR correction. In reverse MR analysis, IGF-1 had a causal effect on nine bacterial taxa in men and two bacterial taxa in women respectively (IVW, all P < 0.05). After FDR correction, the causal effect of IGF-1 on order Actinomycetales (PFDR = 0.049) remains in men. The robustness of the IVW results was further confirmed after heterogeneity and pleiotropy analysis. Conclusion Our study demonstrates a bidirectional causal link between the gut microbiota and IGF-1, in both men and women.
Collapse
Affiliation(s)
- Xuejie Zheng
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuping Qian
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Lili Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Licitra R, Fronte B, Verri T, Marchese M, Sangiacomo C, Santorelli FM. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. BIOLOGY 2024; 13:209. [PMID: 38666821 PMCID: PMC11047914 DOI: 10.3390/biology13040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Zebrafish are one of the most used animal models in biological research and a cost-effective alternative to rodents. Despite this, nutritional requirements and standardized feeding protocols have not yet been established for this species. This is important to avoid nutritional effects on experimental outcomes, and especially when zebrafish models are used in preclinical studies, as many diseases have nutritional confounding factors. A key aspect of zebrafish nutrition is related to feed intake, the amount of feed ingested by each fish daily. With the goal of standardizing feeding protocols among the zebrafish community, this paper systematically reviews the available data from 73 studies on zebrafish feed intake, feeding regimes (levels), and diet composition. Great variability was observed regarding diet composition, especially regarding crude protein (mean 44.98 ± 9.87%) and lipid content (9.91 ± 5.40%). Interestingly, the gross energy levels of the zebrafish diets were similar across the reviewed studies (20.39 ± 2.10 kilojoules/g of feed). In most of the reviewed papers, fish received a predetermined quantity of feed (feed supplied). The authors fed the fish according to the voluntary intake and then calculated feed intake (FI) in only 17 papers. From a quantitative point of view, FI was higher than when a fixed quantity (pre-defined) of feed was supplied. Also, the literature showed that many biotic and abiotic factors may affect zebrafish FI. Finally, based on the FI data gathered from the literature, a new feeding protocol is proposed. In summary, a daily feeding rate of 9-10% of body weight is proposed for larvae, whereas these values are equal to 6-8% for juveniles and 5% for adults when a dry feed with a proper protein and energy content is used.
Collapse
Affiliation(s)
- Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Chiara Sangiacomo
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| |
Collapse
|
6
|
Lancerotto S, Fakriadis I, Papadaki M, Mandalakis M, Sigelaki I, Mylonas CC. Timing of puberty in F1-generation hatchery-produced greater amberjack (Seriola dumerili). Gen Comp Endocrinol 2024; 347:114414. [PMID: 38008343 DOI: 10.1016/j.ygcen.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
We evaluated the onset of puberty of first-generation (F1) hatchery-produced greater amberjack (Seriola dumerili) reared in sea cages for 5 years. Fish were sampled every year in June, at the expected peak of the spawning period in the Mediterranean Sea. No sexual dimorphism in body weight was observed in the study. The ovaries of 1 and 2-year-old (yo) females consisted of primary oocytes only, while at the age of 3-yo early vitellogenic (Vg) oocytes were also identified, but with extensive follicular atresia. At the age of 4-yo, late Vg oocytes were observed, but again extensive follicular atresia characterized the ovaries of 50 % of females. At the age of 5-yo, follicular atresia of Vg oocytes was very limited. In males, gametogenesis was evident already in 1- and 2-yo fish, and 100 % of sampled 3-yo males produced collectable viable sperm. Plasma testosterone (T), 17β-estradiol (E2), and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) remained similar in 3 - 5-yo females, with T and E2 levels being highest in females in advanced vitellogenesis or with significant follicular atresia, compared to immature females. In males, plasma T declined over the years, while 11-ketotestosterone (11-KT) and 17,20β-P were highest in 4 and 5-yo males, with spermatozoa motility characteristics being improved from the 4th year onwards. The administration of GnRHa implants to 5-yo fish induced only two spawns, albeit no fertilized eggs were obtained. The results indicate that hatchery-produced greater amberjack males mature well and within the same age observed in the wild, however with smaller gonad size. On the contrary, females mature later than in the wild, also with a smaller gonad size. Spawning in response to GnRHa treatment was not effective, suggesting that Mediterranean hatchery-produced broodstocks may be dysfunctional, and further research is needed to document any improvement as the fish get older, or to determine if the results may be related to the specific stock of fish.
Collapse
Affiliation(s)
- Stefano Lancerotto
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece; Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Maria Papadaki
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Irini Sigelaki
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece.
| |
Collapse
|
7
|
Zhou Y, Sheng YJ, Li CY, Zou L, Tong CY, Zhang Y, Cao G, Shou D. Beneficial effect and mechanism of natural resourced polysaccharides on regulating bone metabolism through intestinal flora: A review. Int J Biol Macromol 2023; 253:127428. [PMID: 37838110 DOI: 10.1016/j.ijbiomac.2023.127428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Bone metabolism is an important biological process for maintaining bone health. Polysaccharides of natural origin exert beneficial effects on bone metabolism. Polysaccharide molecules often have difficulty passing through the intestinal cell membrane and are directly absorbed in the gastrointestinal tract. Therefore, polysaccharides may affect intestinal flora and play a role in disease treatment. We performed a comprehensive review of the relevant literature published from 2003 to 2023. We found that several polysaccharides from traditional Chinese medicines, including Astragalus, Achyranthes bidentata and Eucommia ulmoides, and the polysaccharides from several dietary fibers mainly composed of inulin, resistant starch, and dextran could enrich the intestinal microbiota group to regulate bone metabolism. The promotion of polysaccharide decomposition by regulating the Bacteroides phylum is particularly critical. Studies on the structure-activity relationship showed that molecular weight, glycosidic bonds, and monosaccharide composition may affect the ability of polysaccharides. The mechanism by which polysaccharides regulate intestinal flora to enhance bone metabolism may be related to the regulation of short-chain fatty acids, immunity, and hormones, involving some signaling pathways, such as TGF-β, Wnt/β-catenin, BMP/Smads, and RANKL. This paper provides a useful reference for the study of polysaccharides and suggests their potential application in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Li Zou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chao Ying Tong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; College of Chemistry and Chemical Engineering,Central South University, Changsha, Hunan 410083, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
8
|
Bahrami Z, Roomiani L, Javadzadeh N, Sary AA, Baboli MJ. Microencapsulation of Lactobacillus plantarum in the alginate/chitosan improves immunity, disease resistance, and growth of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:815-828. [PMID: 37500968 DOI: 10.1007/s10695-023-01224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
This study evaluated the effects of microencapsulation of L. plantarum (as a probiotic) with chitosan/alginate biopolymers (MLCA) on innate immune response, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Four hundred and eighty fish were randomly distributed in glass tanks (150 L) and fed with diets including diet 1: control; diet 2: 10 g kg-1 microcapsules; diet 3: 108 CFU g-1 L. plantarum; and diet 4: 10 g kg-1 MLCA for 60 days. The hematology and biochemical indices, lysozyme activity, alternative complement activities, respiratory burst, serum bactericidal activity, as well as growth performance parameters (specific growth rate, feed conversion ratio) were analyzed. White blood cells, plasma protein and globulin concentration, serum lysozyme, and respiratory burst activities of fish were significantly increased (P < 0.05) in the MLCA diet. A challenge test against Streptococcus agalactiae, at the end of the experiment, showed the highest survival rate of the fish fed with MLCA. Moreover, the fish fed with MLCA showed a significant improvement in SGR (3.12 ± 0.18%) and FCR (1.23 ± 0.20) and had the highest growth performance. These results suggest longer stability of probiotics in the microcapsules, and their immunomodulatory effect can be considered a promising immunostimulant and growth enhancer in the Nile tilapia diet.
Collapse
Affiliation(s)
- Zahra Bahrami
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Narges Javadzadeh
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | | |
Collapse
|
9
|
Bu LK, Jia PP, Li WG, Li YZ, Li TY, Pei DS. Probiotics mitigate kidney damage after exposure to Sri Lanka's local groundwater from chronic kidney disease with uncertain etiology (CKDu) prevalent area in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106671. [PMID: 37657145 DOI: 10.1016/j.aquatox.2023.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Groundwater in Sri Lanka, contaminated with environmental toxins, is suspected to potentially induce chronic kidney disease of uncertain etiology (CKDu) in humans. This study aims to elucidate the potential mitigating effects of probiotics on kidney damage induced by exposure to this local groundwater (LW) in zebrafish. We used zebrafish as a model organism and exposed them to local groundwater to evaluate the risk of CKDu. Probiotics were then added at a concentration of 108 colony-forming units per milliliter (CFU/mL). Our findings revealed that exposure to local groundwater resulted in abnormalities, such as tail deletion and spinal curvature in zebrafish larvae. However, the addition of probiotics mitigated these effects, improving the hatching rate, heart rate, length, weight, deformity rate, survival rate, and abnormal behavior of zebrafish. It also positively influenced the differential expression levels of kidney development and immunity-related genes (dync2h1, foxj1, pkd2, gata3, slc20a1, il1β, and lyso). Furthermore, exposure to LW decreased both the diversity and abundance of microbiota in zebrafish larvae. However, treatment with probiotics, such as L. plantarum and L. rhamnosus partially restored the disrupted gut microbiota and significantly impacted the cellular process pathways of the microbial community, as determined by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In conclusion, this study highlights the risks associated with Sri Lanka's local groundwater from a CKDu prevalent area and confirms the beneficial effects of different probiotics. These findings may provide new insights into bacterial function in host kidney health.
Collapse
Affiliation(s)
- Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, CAS, Chongqing 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, CAS, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Jain A, Jain R, Jain SK. Assessment of Lactobacillus rhamnosus mediated protection against arsenic-induced toxicity in zebrafish: a qPCR-based analysis of Firmicutes and Bacteroidetes groups and embryonic development. Arch Microbiol 2023; 205:316. [PMID: 37608161 DOI: 10.1007/s00203-023-03647-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Arsenic poses a significant health risk worldwide, impacting the gut microbiota, reproductive health, and development. To address this issue, a cost-effective method like probiotic supplementation could be beneficial. However, the interplay between arsenic toxicity, probiotics, gut microbiota, and maternal transcript modulation remains unexplored. This study investigates the impact of Lactobacillus rhamnosus (L. rhamnosus) DSM 20021 on the proportions of Firmicutes and Bacteroidetes, as well as its effects on embryonic development in zebrafish induced by arsenic trioxide (As2O3). Adult zebrafish were exposed to both high and environmentally relevant concentrations of As2O3 (10, 50, and 500 ppb) for 1, 6, and 12 weeks. qPCR analysis revealed increased proportions of Firmicutes and Bacteroidetes in all As2O3-exposed and As2O3 + L. rhamnosus-exposed groups, while no significant changes were observed in groups exposed only to L. rhamnosus DSM 20021. The larvae, exposed to 500 ppb of As2O3 for 12 weeks, exhibited low growth, decreased survival rates, and morphological deformities. However, these adverse effects were reversed upon exposure to only L. rhamnosus DSM 20021. Furthermore, the expression of DVR1 and ABCC5, which are involved in defense against xenobiotics and embryo development, decreased significantly in As2O3 (500 ppb) and As2O3 (500 ppb) + L. rhamnosus-exposed groups, whereas ameliorative effects were observed in only L. rhamnosus DSM 20021-exposed groups.
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Roshni Jain
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India
| | - Subodh Kumar Jain
- Department of Zoology, Dr. Harisingh Gour University, Sagar, 470003, M.P., India.
| |
Collapse
|
11
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
12
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
13
|
Guru A, Arockiaraj J. Exposure to environmental pollutant bisphenol A causes oxidative damage and lipid accumulation in Zebrafish larvae: Protective role of WL15 peptide derived from cysteine and glycine-rich protein 2. J Biochem Mol Toxicol 2023; 37:e23223. [PMID: 36106391 DOI: 10.1002/jbt.23223] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/23/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023]
Abstract
Humans are exposed to obesity causing Bisphenol A in various ways, especially through diet and food containers. Bioactive peptides are already reported to have antioxidant, antidiabetic, and antiobesity properties, which can mimic the role of mediators involved in obesity prevention. The protective effect of a short molecule or peptide, WL15 from cysteine and glycine-rich protein 2 of a teleost of aquatic resource on Bisphenol A (BPA)-induced lipid accumulation in zebrafish larvae was investigated. BPA exposure disrupted the antioxidant enzymes, apoptosis, and nitric oxide and led to changes in biochemical markers including alkaline phosphatase, lactate dehydrogenase, lipid peroxidation, glutathione S-transferases, glutathione peroxidase, and reduced glutathione. However, WL15 inhibited the overproduction of oxidative stress, which correlates with its lipid-lowering potential. BPA-induced lipid accumulation in zebrafish showed an increase in triglyceride, cholesterol, and glucose level; simultaneously, WL15 treatment significantly reduced such accumulation in zebrafish. Evidenced by Oil red O staining and Nile red assay, WL15 inhibited lipid accumulation. At the same time, WL15 at 50 µM increases 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy-d-glucose (2NBDG) glucose uptake in zebrafish. In addition, gene expression studies in zebrafish larvae demonstrated that the WL15 peptide could play a crucial role in preventing lipid accumulation by downregulating the expression of lipogenesis-specific genes. These results revealed an interesting and novel property of WL15, suggesting its potential application in preventing lipid accumulation through the hypolipidemic and antioxidant properties.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
15
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
17
|
Carnovali M, Banfi G, Porta G, Mariotti M. Soybean Meal-Dependent Acute Intestinal Inflammation Delays Osteogenesis in Zebrafish Larvae. Int J Mol Sci 2022; 23:7480. [PMID: 35806483 PMCID: PMC9267612 DOI: 10.3390/ijms23137480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Foods are known to be modulators of inflammation and skeletal development. The intestine plays an essential role in the regulation of bone health mainly through the regulation of the absorption of vitamin D and calcium; in fact, inflammatory bowel diseases are often related to bone health issues such as low bone mineral density, high fracture risk, osteoporosis and osteopenia. Considering the complexity of the pathways involved, the use of a simple animal model can be highly useful to better elucidate the pathogenic mechanisms. Soybean flour with a high saponin content has been used in many studies to induce intestinal inflammation in zebrafish larvae. Using a 50% soybean meal (SBM), we analyzed the effects of this soy-induced inflammatory bowel disease on zebrafish larval osteogenesis. Soybean meal induces intestinal functional alterations and an inflammatory state, highlighted by neutral red staining, without altering the general development of the larvae. Our data show that the chondrogenesis as well as endochondral ossification of the head of zebrafish larvae are not affected by an SBM-diet, whereas intramembranous ossification was delayed both in the head, where the length of the ethmoid plate reduced by 17%, and in the trunk with a delayed vertebral mineralization of 47% of SBM larvae. These data highlight that diet-dependent bowel inflammation can differently modulate the different mechanisms of bone development in different zones of the skeleton of zebrafish larvae.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
18
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
19
|
Sojan JM, Gioacchini G, Giorgini E, Orlando P, Tiano L, Maradonna F, Carnevali O. Zebrafish caudal fin as a model to investigate the role of probiotics in bone regeneration. Sci Rep 2022; 12:8057. [PMID: 35577882 PMCID: PMC9110718 DOI: 10.1038/s41598-022-12138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics are live microorganisms that confer several beneficial effects to the host, including enhancement of bone mineralization. However, probiotic action on bone regeneration is not well studied and therefore we analysed various effects of probiotic treatment on the caudal fin regeneration of zebrafish. Morphological analysis revealed an increased regenerated area with shorter and thicker lepidotrichia segments after probiotic treatment. Fourier transform infrared spectroscopy imaging analysis highlighted the distribution of phosphate groups in the regenerated fins and probiotic group showed higher amounts of well-crystallized hydroxyapatite. At the midpoint (5 days post amputation) of regeneration, probiotics were able to modulate various stages of osteoblast differentiation as confirmed by the upregulation of some key marker genes such as runx2b, sp7, col10a1a, spp1 and bglap, besides suppressing osteoclast activity as evidenced from the downregulation of ctsk. Probiotics also caused an enhanced cell cycle by regulating the expression of genes involved in Retinoic acid (rarga, cyp26b1) and Wnt/β-catenin (ctnnb1, ccnd1, axin2, sost) signaling pathways, and also modulated phosphate homeostasis by increasing the entpd5a levels. These findings provide new outlooks for the use of probiotics as a prophylactic treatment in accelerating bone regeneration and improving skeletal health in both aquaculture and biomedical fields.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
20
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
21
|
Zhong X, Li J, Lu F, Zhang J, Guo L. Application of zebrafish in the study of the gut microbiome. Animal Model Exp Med 2022; 5:323-336. [PMID: 35415967 PMCID: PMC9434591 DOI: 10.1002/ame2.12227] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reliable model for gut microbiome research. Owing to their low cost, strong genetic and development coherence, efficient preparation of germ-free (GF) larvae, availability in high-throughput chemical screening, and fitness for intravital imaging in vivo, zebrafish have been extensively used to investigate microbiome-host interactions and evaluate the toxicity of environmental pollutants. In this review, the advantages and disadvantages of zebrafish for studying the role of the gut microbiome compared with warm-blooded animal models are first summarized. Then, the roles of zebrafish gut microbiome on host development, metabolic pathways, gut-brain axis, and immune disorders and responses are addressed. Furthermore, their applications for the toxicological assessment of aquatic environmental pollutants and exploration of the molecular mechanism of pathogen infections are reviewed. We highlight the great potential of the zebrafish model for developing probiotics for xenobiotic detoxification, resistance against bacterial infection, and disease prevention and cure. Overall, the zebrafish model promises a brighter future for gut microbiome research.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Furong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| |
Collapse
|
22
|
Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L, Rui YF. The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr 2022; 63:7510-7528. [PMID: 35234534 DOI: 10.1080/10408398.2022.2047005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis (OP) is a systemic disease characterized by decreased bone mass and degeneration of bone microstructure. In recent years, more and more researches have focused on the close relationship between gut microbiota (GM) and the occurrence and progression of OP, and the regulation of probiotics and prebiotics on bone metabolism has gradually become a research hotspot. Based on the influence of brain-gut-bone axis on bone metabolism, this review expounds the potential mechanisms of probiotics and prebiotics on OP from next perspectives: regulation of intestinal metabolites, regulation of intestinal epithelial barrier function, involvement of neuromodulation, involvement of immune regulation and involvement of endocrine regulation, so as to provide a novel and promising idea for the prevention and treatment of OP in the future.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Li-Yong Bai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, P.R. China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
23
|
He S, Li D, Wang F, Zhang C, Yue C, Huang Y, Xie L, Zhang YT, Mu J. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127003. [PMID: 34474367 DOI: 10.1016/j.jhazmat.2021.127003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The individual and combined toxicity of antibiotics and nanoplastics in marine organisms has received increasing attention. However, many studies have been mostly focused on the impacts on the directly exposed generation (F0). In this study, intergenerational effects of sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) on the growth and the gut microbiota of marine medaka (Oryzias melastigma) were investigated. The results showed that parental exposure to dietary SMZ (4.62 mg/g) alone and PS (3.45 mg/g) alone for 30 days decreased the body weight (by 13.41% and 34.33%, respectively) and altered the composition of gut microbiota in F1 males (two months after hatching). Interestingly, parental exposure to the mixture of SMZ and PS caused a more modest decrease in the body weight of F1 males than the PS alone (15.60% vs 34.33%). The hepatic igf1 level and the relative abundance of the host energy metabolism related phylum Bacteroidetes for the SMZ + PS group were significantly higher than those for the PS group (igf1, increased by 97.1%; Bacteroidetes, 2.876% vs 0.375%), suggesting that the parentally derived mixture of SMZ and PS might influence the first microbial colonization of gut in a different way to the PS alone. This study contributes to a better understanding of the long-term risk of antibiotics and nanoplastics to marine organisms.
Collapse
Affiliation(s)
- Shuiqing He
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Feipeng Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Chaoyue Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chen Yue
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yaling Huang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Ting Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| |
Collapse
|
24
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
25
|
The Mediating Role of the Gut Microbiota in the Physical Growth of Children. Life (Basel) 2022; 12:life12020152. [PMID: 35207440 PMCID: PMC8880549 DOI: 10.3390/life12020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota succession overlaps with intensive growth in infancy and early childhood. The multitude of functions performed by intestinal microbes, including participation in metabolic, hormonal, and immune pathways, makes the gut bacterial community an important player in cross-talk between intestinal processes and growth. Long-term disturbances in the colonization pattern may affect the growth trajectory, resulting in stunting or wasting. In this review, we summarize the evidence on the mediating role of gut microbiota in the mechanisms controlling the growth of children.
Collapse
|
26
|
Warne RW, Dallas J. Microbiome mediation of animal life histories
via
metabolites and insulin‐like signalling. Biol Rev Camb Philos Soc 2022; 97:1118-1130. [DOI: 10.1111/brv.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Robin W. Warne
- School of Biological Sciences Southern Illinois University 1125 Lincoln Dr. Carbondale IL 62901‐6501 U.S.A
| | - Jason Dallas
- School of Biological Sciences Southern Illinois University 1125 Lincoln Dr. Carbondale IL 62901‐6501 U.S.A
| |
Collapse
|
27
|
Li L, Chen L, Yang Y, Wang J, Guo L, An J, Ma X, Lu W, Xiao Y, Wang X, Dong Z. Characteristics of Gut Microbiome and Its Metabolites, Short-Chain Fatty Acids, in Children With Idiopathic Short Stature. Front Endocrinol (Lausanne) 2022; 13:890200. [PMID: 35757432 PMCID: PMC9226366 DOI: 10.3389/fendo.2022.890200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gut microbiome is important for host nutrition and metabolism. Whether the gut microbiome under normal diet regulate human height remains to be addressed. Our study explored the possible relationship between gut microbiota, its metabolic products and the pathogenesis of idiopathic short stature disease (ISS) by comparing the gut microbiota between children with ISS and of normal height, and also the short-chain fatty acids (SCFAs) produced by the gut microbiota. METHODS The subjects of this study were 32 prepubescent children aged 4-8 years. The fecal microbial structure of the subjects was analyzed by 16S rRNA high-throughput sequencing technology. The concentrations of SCFAs in feces were determined by gas chromatography-mass spectrometry. RESULTS The richness of gut microbiota in ISS group was decreased, and the composition of gut microbiota was significantly different between ISS group and control group. The relative abundance of nine species including family Ruminococcaceae and genera Faecalibacterium and Eubacterium, in ISS group was significantly lower than that in control group (P<0.05). The relative abundance of 10 species, such as those belonging to genus Parabacteroides and genus Clostridium, in ISS group was significantly higher than that in control group (P<0.05). The concentration of total SCFAs and butyrate in ISS group was significantly lower than that in control group. The correlation analysis among different species, clinical indicators, and SCFAs showed that the relative abundance of family Ruminococcaceae and genera Faecalibacterium and Eubacterium was positively correlated with the standard deviation score of height. Furthermore, the concentrations of total SCFAs and butyrate were positively correlated with serum insulin-like growth factor 1 (IGF-1)-SDS. Disease prediction model constructed based on the bacteria who abundance differed between healthy children and ISS children exhibited high diagnostic value (AUC: 0.88). CONCLUSIONS The composition of gut microbiota and the change in its metabolite levels may be related to ISS pathogenesis. Strains with increased or decreased specificity could be used as biomarkers to diagnose ISS.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyan Yang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Guo
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jingjing An
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| |
Collapse
|
28
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Zhou X, Chen L. Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149458. [PMID: 34365260 DOI: 10.1016/j.scitotenv.2021.149458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant of international concern, which is found to impair the early embryonic development of fishes. In the context of ubiquitous and persistent pollution, it is necessary to explore mitigatory strategies against the developmental toxicity of PFBS. In this study, zebrafish larvae were acutely exposed to 0, 1, 3.3 and 10 mg/L of PFBS till 168 h post-fertilization (hpf), during which probiotic Lactobacillus rhamnosus bacteria were administered via the exposure media. After the singular or combined exposure, interaction between PFBS and probiotics on the growth of zebrafish larvae was measured. PFBS exposure significantly decreased the larval body weight, weight gain and specific growth rate, while probiotic supplementation efficiently inhibited the growth retardation caused by PFBS. Furthermore, PFBS and probiotic combinations remarkably activated the antioxidant capacity to timely scavenge the reactive oxidative species and protect the larvae from lipid peroxidation. Biochemical assay and fluorescent staining verified that PFBS exposure significantly promoted the production of bile acids, which were further enhanced by the probiotics. In coexposed zebrafish larvae, up-regulation of peroxisome proliferator-activated receptor (PPARb) would enhance the β-oxidation of fatty acids to meet the energy demand from larval growth, subsequently decreasing fatty acid concentrations. In addition, probiotic supplements masked the dysbiosis of PFBS and potently shaped the gut microbiota, which closely modulated the production of bile acids. Overall, the present findings underline the beneficial effects of probiotics to protect the developing larvae from the aquatic toxicities of PFBS, thus highlighting the potential application values of probiotic recipe in aquaculture and ecological reservation.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
29
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
The probiotic Lactobacillus rhamnosus mimics the dark-driven regulation of appetite markers and melatonin receptors' expression in zebrafish (Danio rerio) larvae: Understanding the role of the gut microbiome. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110634. [PMID: 34119649 DOI: 10.1016/j.cbpb.2021.110634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 01/15/2023]
Abstract
The use of probiotics has been recently considered a novel therapeutic strategy to prevent pathologies such as obesity; however, the specific mechanisms of action by which probiotics exert their beneficial effects on metabolic health remain unclear. The aim of the present study was to investigate the short-term effects of a probiotic Lactobacillus rhamnosus supplementation (PROB) on appetite regulation, growth-related markers, and microbiota diversity in zebrafish (Danio rerio) larvae, compared to a group subjected to a constant darkness photoperiod (DARK), as well as to evaluate the effects of both treatments on melatonin receptors' expression. After a 24 h treatment, both PROB and DARK conditions caused a significant increase in leptin a expression. Moreover, mRNA abundances of leptin b and proopiomelanocortin a were elevated in the PROB group, and DARK showed a similar tendency, supporting a negative regulation of appetite markers by the treatments. Moreover, both PROB and DARK also enhanced the abundances of melatonin receptors transcript (melatonin receptor 1 ba and bb) and protein (melatonin receptor 1) suggesting a potential involvement of melatonin in mediating these effects. Nevertheless, treatments did not exhibit a significant effect on the expression of most of the growth hormone/insulin-like growth factor axis genes evaluated. Finally, only the DARK condition significantly modulated gut microbiota diversity at such short time, altogether highlighting the rapid effects of this probiotic on modulating appetite regulatory and melatonin receptors' expression, without a concomitant variation of gut microbiota.
Collapse
|
31
|
Salam MA, Islam MA, Paul SI, Rahman MM, Rahman ML, Islam F, Rahman A, Shaha DC, Alam MS, Islam T. Gut probiotic bacteria of Barbonymus gonionotus improve growth, hematological parameters and reproductive performances of the host. Sci Rep 2021; 11:10692. [PMID: 34021215 PMCID: PMC8140159 DOI: 10.1038/s41598-021-90158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
This study aimed to isolate and identify probiotic bacteria from the gut of Barbonymus gonionotus and evaluate their effects on growth, hematological parameters, and breeding performances of the host. Five probiotic bacteria viz. Enterococcus xiangfangensis (GFB-1), Pseudomonas stutzeri (GFB-2), Bacillus subtilis (GFB-3), Citrobacter freundii (GFB-4), and P. aeruginosa (GFB-5) were isolated and identified using 16S rRNA gene sequencing. Application of a consortium of probiotic strains (1-3 × 1.35 × 109 CFU kg-1) or individual strain such as GFB-1 (1.62 × 109 CFU kg-1), GFB-2 (1.43 × 109 CFU kg-1), GFB-3 (1.06 × 109 CFU kg-1), GFB-4 (1.5 × 109 CFU kg-1) or GFB-5 (1.43 × 109 CFU kg-1feed) through feed significantly improved growth, histological and hematological parameters and reproductive performances of B. gonionotus compared to untreated control. Moreover, the application of these probiotics significantly increased gut lactic acid bacteria and activities of digestive enzymes but did not show any antibiotic resistance nor any cytotoxicity in vitro. The highest beneficial effects on treated fishes were recorded by the application of GFB-1, GFB-2, GFB-3, and a consortium of these bacteria (T2). This is the first report of the improvement of growth and health of B. gonionotus fishes by its gut bacteria.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Genetics and Fish Breeding, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Ariful Islam
- Department of Genetics and Fish Breeding, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Lutfar Rahman
- Department of Genetics and Fish Breeding, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Fatama Islam
- Department of Genetics and Fish Breeding, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashikur Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Dinesh Chandra Shaha
- Department of Fisheries Management, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Shah Alam
- Aquaculture Program Center for Marine Science, University of North Carolina Wilmington, 601, S. College Rd., Wilmington, NC, 28403, USA
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
32
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
33
|
Samaras A, Pavlidis M. A Modified Protocol for Cortisol Analysis in Zebrafish ( Danio rerio), Individual Embryos, and Larvae. Zebrafish 2020; 17:394-399. [PMID: 33090929 DOI: 10.1089/zeb.2020.1898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A modified protocol for the extraction and analysis of cortisol in individual zebrafish, Danio rerio, embryo, and larva samples has been developed and evaluated. Recovery efficiency of the method was high, specifically calculated at 93.8% ± 6.5%. Dilution tests showed high parallelism, while increasing the number of individuals used in each extraction sample resulted in a linear, although slightly underestimated, increase of cortisol yield. Results of cortisol content from 0, 3, and 5 days postfertilization (dpf) fish using the proposed protocol were within the range of most published studies analyzing cortisol in pooled samples of 10-30 individuals. Moreover, 5 dpf larvae had significantly higher cortisol levels than embryos, a pattern commonly observed in literature. Finally, application of an osmotic stress in 5 dpf larvae led to a statistically significant increase in cortisol content.
Collapse
|
34
|
Garcia-Gonzalez N, Prete R, Perugini M, Merola C, Battista N, Corsetti A. Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus on endocrine disruptors. FEMS Microbiol Lett 2020; 367:fnaa041. [PMID: 32124914 PMCID: PMC7082702 DOI: 10.1093/femsle/fnaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the interest in the role of dietary components able to influence the composition and the activity of the intestinal microbiota and, consequently, to modulate the risk of genotoxicity and colon cancer is increasing in the scientific community. Within this topic, the microbial ability to have a protective role at gastrointestinal level by counteracting the biological activity of genotoxic compounds, and thus preventing the DNA damage, is deemed important in reducing gut pathologies and is considered a new tool for probiotics and functional foods. A variety of genotoxic compounds can be found in the gut and, besides food-related mutagens and other DNA-reacting compounds, there is a group of pollutants commonly used in food packaging and/or in thousands of everyday products called endocrine disruptors (EDs). EDs are exogenous substances that alter the functions of the endocrine system through estrogenic and anti-estrogenic activity, which interfere with normal hormonal function in human and wildlife. Thus, this paper summarizes the main applications of probiotics, mainly lactobacilli, as a bio-protective tool to counteract genotoxic and mutagenic agents, by biologically inhibiting the related DNA damage in the gut and highlights the emerging perspectives to enlarge and further investigate the microbial bio-protective role at intestinal level.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
35
|
Siddik MAB, Chaklader MR, Foysal MJ, Howieson J, Fotedar R, Gupta SK. Influence of fish protein hydrolysate produced from industrial residues on antioxidant activity, cytokine expression and gut microbial communities in juvenile barramundi Lates calcarifer. FISH & SHELLFISH IMMUNOLOGY 2020; 97:465-473. [PMID: 31866445 DOI: 10.1016/j.fsi.2019.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The present study investigated the supplemental effects of tuna hydrolysate (TH) in poultry by-product meal (PBM) and dietary fishmeal (FM) diets on antioxidant enzymatic activities, gut microbial communities and expression of cytokine genes in the distal intestine of juvenile barramundi, Lates calcarifer. Fish were fed with fermented (FPBM + TH) as well as non-fermented PBM (PBM + TH) and FM (FMBD + TH) diets with 10% TH supplementation for 10 weeks. A basal diet prepared without TH supplementation served as control. The results showed that the activity of glutathione peroxidase was significantly higher in FPBM + TH than the control, while the malondialdehyde and catalase activities were unchanged. FPBM + TH diet significantly (P < 0.05) upregulated the pro-inflammatory cytokines including IL-1β and TNF-α while considerable downregulation (P < 0.05) was observed in the mRNA expression levels of anti-inflammatory cytokine, IL-10 in the distal intestine of fish. The 16SrRNA analysis using V3-V4 region evidenced the ability of FPBM + TH to modulate the distal intestinal gut microbiome, augmenting the richness of Firmicutes and Fusobacteriaat at phylum level and Bacillus, Lactococcus and Cetobacterium at genus level. All these results have shown that fermented PBM with TH supplementation could improve the antioxidant capacity and inflammatory responses of juvenile barramundi while influencing the microbial communities at both phylum and genera levels.
Collapse
Affiliation(s)
- Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA, 6102, Australia; Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh.
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA, 6102, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA, 6102, Australia; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Janet Howieson
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA, 6102, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA, 6102, Australia
| | - Sanjay K Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jhankhand, India
| |
Collapse
|
36
|
Dias DDC, Furlaneto FDPB, Sussel FR, Tachibana L, Gonçalves GS, Ishikawa CM, Natori MM, Ranzani-Paiva MJT. Economic feasibility of probiotic use in the diet of Nile tilapia, Oreochromis niloticus, during the reproductive period. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020. [DOI: 10.4025/actascianimsci.v42i1.47960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This work examines the economic advantages of probiotic use in the diet of Nile tilapia broodstock during the reproductive period. For this purpose, Bacillus subtilis was applied as a feed additive. The experimental design was completely randomized with three treatment groups: the T0 control (without probiotic), the T1 continuous probiotic intake, and the T2 alternate probiotic intake at a dose of 0.50 g kg-1 of feed (1010 CFU g-1) with four replicates. For the reproduction assay, 118 females and 48 males of Nile tilapia (proportion 4 males:9 females. hapa-1) (weight 527.65 g ± 185.98 g and length 30.16 cm ± 3.57 cm) were distributed into 12 hapas (3.5 × 2.0 × 1.5 m). Reproductive variables (spawning female percentage, egg production, and fry production) were used to calculate the economic feasibility indexes (total cost of nutrition [TcN], gross revenue [GR], and total operational profit [ToP]). The results show increasing values for spawning female number, collected eggs, and surviving fry in the probiotic groups. We recommend continuous intake of probiotic (feed with addition of probiotic) at a dose of 0.5 g kg-1 of feed (1010 CFU g-1) during the breeding season of Nile tilapia, due to the suitable reproductive indexes and profitability.
Collapse
|
37
|
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W. Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology 2020; 161:5638064. [PMID: 31758175 DOI: 10.1210/endocr/bqz024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Kridtayopas C, Rakangtong C, Bunchasak C, Loongyai W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult Sci 2019; 98:4595-4605. [PMID: 30951594 DOI: 10.3382/ps/pez152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
The current study investigated the effect of prebiotic mannan-oligosaccharide (MOS) and synbiotic (MOS mixed with Bacillus subtilis and Bacillus licheniformis) on growth performance and bacterial population under high stocking density (HSD) conditions in broilers. A total of 605 one-day-old male Arbor Acres broiler chickens were randomly assigned to 4 treatments: normal stocking density (NSD; 30 kg/m2 fed basal diets), HSD (40 kg/m2 fed basal diets), HSD chickens fed 0.1% prebiotic (HSDp), and HSD fed 0.1% synbiotic (HSDs). At 35 D of age, the body weight of HSD and HSDp were poorer than NSD group (P < 0.01), whereas the feed conversion ratio (FCR) of the HSDs) group was better than the NSD group (P < 0.01). The HSDp and HSDs groups improved FCR (P < 0.01) and has cheaper feed cost per gain compared to the HSD group. Moreover, the body weight of HSDs group was heavier than the HSDp group (P < 0.05). The level of corticosterone and the heterophil to lymphocyte ratio were highest in the HSD group, whereas these indexes were reduced in both HSDp and HSDs groups (P < 0.05). Duodenal, jejunal, and ileal villus heights were shortest in the HSD group (P < 0.01), and the lowest ileal segment goblet cell counts were also observed in this group (P < 0.05). The HSDp and HSDs groups improved the morphology of gastrointestinal (GI) tract (P < 0.05). The Lactobacillus sp. and Clostridium sp. count in the GI tract of HSD group were low (P < 0.01), whereas Escherichia coli was high (P < 0.01), and Salmonella spp. in jejunum and cecum were detectable when compared with NSD group. Conversely, Bacillus sp., Lactobacillus sp., and Clostridium sp. in HSDp and HSDs groups were increased, and E. coli was reduced in the HSDs group (P < 0.01). Therefore, it is clear that stress from HSD negatively affected growth performance, gut morphology, and microbial population, whereas the supplementation of prebiotic or synbiotic can mitigate the effect of stress and microbial dysbiosis in gut of broiler chickens under HSD condition. Comparatively, under this condition, using synbiotic appears to have more beneficial effects than using the prebiotic.
Collapse
Affiliation(s)
- Chayatid Kridtayopas
- Department of Animal Sciences, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand
| | - Choawit Rakangtong
- Department of Animal Sciences, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand
| | - Chaiyapoom Bunchasak
- Department of Animal Sciences, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand
| | - Wiriya Loongyai
- Department of Animal Sciences, Faculty of Agriculture, Kasetsart University, 10900 Bangkok, Thailand
| |
Collapse
|
39
|
Lin CR, Chu TM, Luo A, Huang SJ, Chou HY, Lu MW, Wu JL. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist. J Nutr Biochem 2019; 74:108245. [DOI: 10.1016/j.jnutbio.2019.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
|
40
|
Bolton AD, Haesemeyer M, Jordi J, Schaechtle U, Saad FA, Mansinghka VK, Tenenbaum JB, Engert F. Elements of a stochastic 3D prediction engine in larval zebrafish prey capture. eLife 2019; 8:e51975. [PMID: 31769753 PMCID: PMC6930116 DOI: 10.7554/elife.51975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
The computational principles underlying predictive capabilities in animals are poorly understood. Here, we wondered whether predictive models mediating prey capture could be reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes. Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity perception to construct a future positional estimate of its prey, indicating an ability to project trajectories forward in time. Importantly, the stochasticity in the fish's sensorimotor transformations provides a considerable advantage over equivalent noise-free strategies. This surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model of the world.
Collapse
Affiliation(s)
- Andrew D Bolton
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | | | - Josua Jordi
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| | - Ulrich Schaechtle
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Feras A Saad
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Vikash K Mansinghka
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Joshua B Tenenbaum
- Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUnited States
| | - Florian Engert
- Center for Brain ScienceHarvard UniversityCambridgeUnited States
| |
Collapse
|
41
|
Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 2019; 10:3780. [PMID: 31439844 PMCID: PMC6706415 DOI: 10.1038/s41467-019-11762-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disorders, yet no major breakthroughs have been made in AD human trials and the disease remains a paramount challenge and a stigma in medicine. Here we eliminate the toxicity of amyloid beta (Aβ) in a facile, high-throughput zebrafish (Danio rerio) model using casein coated-gold nanoparticles (βCas AuNPs). βCas AuNPs in systemic circulation translocate across the blood brain barrier of zebrafish larvae and sequester intracerebral Aβ42 and its elicited toxicity in a nonspecific, chaperone-like manner. This is evidenced by behavioral pathology, reactive oxygen species and neuronal dysfunction biomarkers assays, complemented by brain histology and inductively coupled plasma-mass spectroscopy. We further demonstrate the capacity of βCas AuNPs in recovering the mobility and cognitive function of adult zebrafish exposed to Aβ. This potent, safe-to-use, and easy-to-apply nanomedicine may find broad use for eradicating toxic amyloid proteins implicated in a range of human diseases. Treating Alzheimer’s disease, one of the most common neurodegenerative diseases, is of wide interest. Here, the authors report on the development of casein coated gold nanoparticles which were able to cross the blood brain barrier and protect against amyloid beta toxicity in a zebrafish model.
Collapse
|
42
|
Ruiz ML, Owatari MS, Yamashita MM, Ferrarezi JVS, Garcia P, Cardoso L, Martins ML, Mouriño JLP. Histological effects on the kidney, spleen, and liver of Nile tilapia Oreochromis niloticus fed different concentrations of probiotic Lactobacillus plantarum. Trop Anim Health Prod 2019; 52:167-176. [PMID: 31301037 DOI: 10.1007/s11250-019-02001-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
The aims of this study were to evaluate the inclusion of different concentrations of Lactobacillus plantarum in Nile tilapia diet and to verify histological effects on tissues of the animal organs, as well as to verify its effects on growth parameters and possible increase in the immune system. A total of 240 juveniles were distributed in 16 tanks arranged in a recirculation system. One control group and three treated groups (104, 106, and 108 colony-forming unit (CFU) g -1L. plantarum kg feed-1) were established in quadruplicate. After 35 days of supplementation, it was not possible to observe differences in growth rates and hematological parameters. However, in the kidney, there was a reduction in the presence of PAS-positive granular leukocytes (PAS-GL) between the collections (15 and 35 days). The liver had lower number of lesions related to loss of cordonal aspects of fish fed 108 CFU g-1 on day 15. Fish fed 104 and 108 CFU g-1 showed lower degree of congestion at day 35. The probiotic also provided a reduction in the number of melanomacrophage centers in the splenic tissue and an increase in the amount of goblet cells in the gut. The concentration 108 CFU g-1 of probiotic in diets increased the number of goblet cells, improved cordonal aspects, and reduced hepatic congestion, and indicated a possible improvement in the immunophysiological conditions of the fish.
Collapse
Affiliation(s)
- Maria Luiza Ruiz
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - Marco Shizuo Owatari
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil.
| | - Marcela Maya Yamashita
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - José Victor Saffadi Ferrarezi
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - Patricia Garcia
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - Lucas Cardoso
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - Maurício Laterça Martins
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| | - José Luiz Pedreira Mouriño
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianopolis, SC, 88040-900, Brazil
| |
Collapse
|
43
|
Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, Hu J, Kakade A, Liu P, Li X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front Cell Infect Microbiol 2019; 9:221. [PMID: 31297340 PMCID: PMC6607032 DOI: 10.3389/fcimb.2019.00221] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Diethylhexylphthalate (DEHP), acting as an endocrine disruptor, disturbed reproductive health. Here, we evaluated the effects of Lactobacillus plantarum TW1-1 (L. plantarum TW1-1) on DEHP-induced testicular damage in adult male mice. Results showed that oral supplementation of L. plantarum TW1-1 significantly increased the serum testosterone concentration, enhanced the semen quality, and attenuated gonad development defects in DEHP-exposed mice. L. plantarum TW1-1 also alleviated DEHP-induced oxidative stress and inflammatory responses by decreasing the mRNA expression and serum protein concentration of different inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β and IL-6]. Furthermore, L. plantarum TW1-1 significantly reduced DEHP-induced intestinal hyper-permeability and the increase in the serum lipopolysaccharide level. Gut microbiota diversity analysis revealed that L. plantarum TW1-1 shifted the DEHP-disrupted gut microbiota to that of the control mice. At phylum level, L. plantarum TW1-1 reversed DEHP-induced Bacteroidetes increase and Firmicutes decrease, and restored Deferribacteres in DEHP-exposed mice. Spearman's correlation analysis showed that Bacteroidetes, Deferribacteres, and Firmicutes were associated with DEHP-induced testicular damage. In addition, the ratio of Firmicutes to Bacteroidetes (Firm/Bac ratio) significantly decreased from 0.28 (control group) to 0.13 (DEHP-exposed group), which was restored by L. plantarum TW1-1 treatment. Correlation analysis showed that the Firm/Bac ratio was negatively correlated with testicular damage and inflammation. These findings suggest that L. plantarum TW1-1 prevents DEHP-induced testicular damage via modulating gut microbiota and decreasing inflammation.
Collapse
Affiliation(s)
- Xiaozhu Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Juyuan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Junping Hu
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Butt RL, Volkoff H. Gut Microbiota and Energy Homeostasis in Fish. Front Endocrinol (Lausanne) 2019; 10:9. [PMID: 30733706 PMCID: PMC6353785 DOI: 10.3389/fendo.2019.00009] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
The microorganisms within the intestinal tract (termed gut microbiota) have been shown to interact with the gut-brain axis, a bidirectional communication system between the gut and the brain mediated by hormonal, immune, and neural signals. Through these interactions, the microbiota might affect behaviors, including feeding behavior, digestive/absorptive processes (e.g., by modulating intestinal motility and the intestinal barrier), metabolism, as well as the immune response, with repercussions on the energy homeostasis and health of the host. To date, research in this field has mostly focused on mammals. Studies on non-mammalian models such as fish may provide novel insights into the specific mechanisms involved in the microbiota-brain-gut axis. This review describes our current knowledge on the possible effects of microbiota on feeding, digestive processes, growth, and energy homeostasis in fish, with emphasis on the influence of brain and gut hormones, environmental factors, and inter-specific differences.
Collapse
Affiliation(s)
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
45
|
Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, Hu J, Kakade A, Liu P, Li X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front Cell Infect Microbiol 2019. [PMID: 31297340 DOI: 10.3389/fcimb.2019.00221/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Diethylhexylphthalate (DEHP), acting as an endocrine disruptor, disturbed reproductive health. Here, we evaluated the effects of Lactobacillus plantarum TW1-1 (L. plantarum TW1-1) on DEHP-induced testicular damage in adult male mice. Results showed that oral supplementation of L. plantarum TW1-1 significantly increased the serum testosterone concentration, enhanced the semen quality, and attenuated gonad development defects in DEHP-exposed mice. L. plantarum TW1-1 also alleviated DEHP-induced oxidative stress and inflammatory responses by decreasing the mRNA expression and serum protein concentration of different inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β and IL-6]. Furthermore, L. plantarum TW1-1 significantly reduced DEHP-induced intestinal hyper-permeability and the increase in the serum lipopolysaccharide level. Gut microbiota diversity analysis revealed that L. plantarum TW1-1 shifted the DEHP-disrupted gut microbiota to that of the control mice. At phylum level, L. plantarum TW1-1 reversed DEHP-induced Bacteroidetes increase and Firmicutes decrease, and restored Deferribacteres in DEHP-exposed mice. Spearman's correlation analysis showed that Bacteroidetes, Deferribacteres, and Firmicutes were associated with DEHP-induced testicular damage. In addition, the ratio of Firmicutes to Bacteroidetes (Firm/Bac ratio) significantly decreased from 0.28 (control group) to 0.13 (DEHP-exposed group), which was restored by L. plantarum TW1-1 treatment. Correlation analysis showed that the Firm/Bac ratio was negatively correlated with testicular damage and inflammation. These findings suggest that L. plantarum TW1-1 prevents DEHP-induced testicular damage via modulating gut microbiota and decreasing inflammation.
Collapse
Affiliation(s)
- Xiaozhu Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Juyuan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Junping Hu
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Qin C, Xie Y, Wang Y, Li S, Ran C, He S, Zhou Z. Impact of Lactobacillus casei BL23 on the Host Transcriptome, Growth and Disease Resistance in Larval Zebrafish. Front Physiol 2018; 9:1245. [PMID: 30233415 PMCID: PMC6131626 DOI: 10.3389/fphys.2018.01245] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/17/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, zebrafish were treated with Lactobacillus strains as probiotics from hatching to puberty, and the effect of treatment with L. casei BL23 on the development and immunity response of the host was investigated. Genes that were differentially expressed (DEGs) in the overall body and intestine were detected at 14 days post fertilization (dpf) and 35 dpf, respectively, using whole transcriptome sequencing (mRNAseq). We showed that zebrafish raised by continuous immersion with L. casei BL23 showed a higher final body weight at 14 dpf (P < 0.05), and 35 dpf (P < 0.01). DEGs between L. casei BL23 treatment and control group at 14 dpf were involved in myogenesis, cell adhesion, transcription regulation and DNA-binding and activator. At 35 dpf, 369 genes were DEGs in the intestine after treatment with L. casei BL23, which were involved in such categories as signaling, secretion, motor proteins, oxidoreductase and iron, tight junctions, lipid metabolism, growth regulation, proteases, and humoral and cellular effectors. KEGG analysis showed DEGs to be involved in such pathways as those associated with tight junctions and the PPAR signal pathway. RT-qPCR analysis showed that expression of insulin-like growth factors-I (igf1), peroxisome proliferator activated receptors-α (ppar-α) and -β (ppar-β), Vitamin D receptor-α (vdr-α), and retinoic acid receptor-γ (rar-γ) was up-regulated in fish treated with L. casei BL23 at 35 dpf. After 35 days of treatment, the mortality rate in L. casei BL23 treated group was lower than the control after challenge with A. hydrophila (P < 0.05), and the pro-inflammatory cytokine il-1β, anti-inflammatory cytokine il-10 and complement component 3a (c3a) showed more expression in L. casei BL23 group at 8h after challenge, 24 h after challenge, or both.. Together, these data suggest that specific Lactobacillus probiotic strains can accelerate the development profile and enhance immunity in zebrafish, which supports the rationale of early administration of probiotics in aquaculture.
Collapse
Affiliation(s)
- Chubin Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suxu He
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Hsu CW, Pan YJ, Wang YW, Tong SK, Chung BC. Changes in the morphology and gene expression of developing zebrafish gonads. Gen Comp Endocrinol 2018; 265:154-159. [PMID: 29409886 DOI: 10.1016/j.ygcen.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/30/2022]
Abstract
Zebrafish gonadal sexual differentiation is an important but poorly understood subject. The difficulty in investigating zebrafish sexual development lies in its sex determination plasticity, the lack of morphological tools to distinguish juvenile females from males, and the lack of sex chromosomes in laboratory strains. Zebrafish sexual differentiation starts at around 8 days post-fertilization when germ cells start to proliferate. The number of germ cells determines the future sex of the gonad. Gonads with more germ cells differentiate into ovaries, whereas a reduced germ cell number leads to male-biased sexual differentiation. Genes controlling sexual differentiation in pre-meiotic gonads encode proteins such as transcription factors, the transforming growth factor (TGF)-β family of signaling proteins, and RNA-binding proteins. These proteins coordinately control germ cell proliferation/meiosis/maintenance and gonadal somatic cell differentiation, leading to stepwise differentiation of gonads. Morphological changes in differentiating gonads are characterized by the appearance of oocytes containing condensed chromatin, followed by incorporation of vitellogenin and oocyte maturation. Marker genes and morphological characteristics help distinguish the steps in zebrafish gonadal differentiation during this important sex-determining stage.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - You-Jiun Pan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yan-Wei Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Ahmadifard N, Rezaei Aminlooi V, Tukmechi A, Agh N. Evaluation of the Impacts of Long-Term Enriched Artemia with Bacillus subtilis on Growth Performance, Reproduction, Intestinal Microflora, and Resistance to Aeromonas hydrophila of Ornamental Fish Poecilia latipinna. Probiotics Antimicrob Proteins 2018; 11:957-965. [DOI: 10.1007/s12602-018-9453-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Lokesh J, Kiron V, Sipkema D, Fernandes JMO, Moum T. Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures. Microbiologyopen 2018; 8:e00672. [PMID: 29897674 PMCID: PMC6460355 DOI: 10.1002/mbo3.672] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Host‐associated microbiota undergoes a continuous transition, from the birth to adulthood of the host. These developmental stage‐related transitions could lead to specific microbial signatures that could impact the host biological processes. In this study, the succession of early‐life and intestinal bacterial communities of Atlantic salmon (starting from embryonic stages to 80‐week post hatch; wph) was studied using amplicon sequencing of 16S rRNA. Stage‐specific bacterial community compositions and the progressive transitions of the communities were evident in both the early life and the intestine. The embryonic communities showed lower richness and diversity (Shannon and PD whole tree) compared to the hatchlings. A marked transition of the intestinal communities also occurred during the development; Proteobacteria were dominant in the early stages (both embryonic and intestinal), though the abundant genera under this phylum were stage‐specific. Firmicutes were the most abundant group in the intestine of late freshwater; Weissella being the dominant genus at 20 wph and Anaerofilum at 62 wph. Proteobacteria regained its dominance after the fish entered seawater. Furthermore, LEfSe analysis identified genera under the above ‐ mentioned phyla that are significant features of specific stages. The environmental (water) bacterial community was significantly different from that of the fish, indicating that the host is a determinant of microbial assemblage. Overall the study demonstrated the community dynamics during the development of Atlantic salmon.
Collapse
Affiliation(s)
- Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - Truls Moum
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
50
|
Schwarzer M, Strigini M, Leulier F. Gut Microbiota and Host Juvenile Growth. Calcif Tissue Int 2018; 102:387-405. [PMID: 29214457 DOI: 10.1007/s00223-017-0368-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual's intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host's juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.
Collapse
Affiliation(s)
- Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France.
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic.
| | - Maura Strigini
- INSERM, U1059, Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, 42023, Saint-Étienne, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France
| |
Collapse
|